
Leakage Resilient IBE and IPE schemes?

Kaoru Kurosawa1 and Le Trieu Phong2

1 Ibaraki University, Japan, kurosawa@mx.ibaraki.ac.jp
2 NICT, Japan, phong@nict.go.jp

Abstract. We construct identity-based encryption (IBE) and inner product encryption (IPE) schemes
under the decision linear (DLIN) or symmetric external Diffie-Hellman (SXDH) assumptions. Their
private user keys are leakage-resilient in several scenarios. In particular,
• In the bounded memory leakage model (Akavia et al., TCC ’09), our basic schemes reach the

maximum-possible leakage rate 1− o(1).
• In the continual memory leakage model (Brakerski et al., Dodis et al., FOCS ’10), variants of the

above schemes enjoy leakage rate at least 1
2
− o(1). Among the results, we improve upon the work

of Brakerski et al. by presenting adaptively secure IBE schemes.
Keywords: Identity-based Encryption, Inner Product Encryption, leakage resilience.

1 Introduction

1.1 Background

Leakage-resilient cryptography tries to deal with the question: “Can we do cryptography with
no perfect secrets?”. The question is natural, since generating and handling secrets is uneasy in
practice, and furthermore they can be leaked by side-channel attacks. Following the research trend,
in this paper we will focus on leakage resilient IBE, and IPE schemes. We will work in the following
models of leakage:

• the bounded memory leakage model [4], which allows arbitrary leakage on the private key for
once. This is a basic model of leakage.
• the continual memory leakage model [13, 17], which allows leakage on the private key in many

period of time. The holder of the key can update his/her key if suspecting any danger on it.

Recall that in identity-based encryption, first asked by Shamir [31], one can use arbitrary strings as
public keys. The research on IBE is an active and stimulating field of cryptography, and so far IBE
schemes have been constructed under several assumptions: pairing-related assumptions, quadratic
residue-related assumptions and lattice-related assumptions. Akavia et al. [4] and Alwen et al. [7,8]
showed that some variants of them are secure against private key leakage attacks. The security of
these schemes is either analyzed in the random oracle model or is based on “non-static” assumption
in the standard model. In the standard model, Chow et al. [15] presented a leakage resilient IBE
with the leakage rate 1/3 under the DBDH assumption. Here, the leakage rate is defined as

size of leakage permitted

size of private key
.

Also recall that inner product encryption [21] goes beyond IBE by allowing encryption under
attribute vectors, while private keys are associated with predicate vectors. Let u be an encryption
attribute vector, and id a predicate vector, then decryption works correctly if the inner product
〈id, u〉 = 0. IPE implies IBE, since to test idIBE = id′IBE for some identities idIBE and id′IBE, just
check whether the inner product between vectors id = (1, idIBE) and u = (id′IBE,−1) equals 0. IPE
also serves as an important tool for designing encryption scheme supporting queries on encrypted
data [12], and disjunctions, polynomial evaluation [21]. IPE is a class of functional encryption,
which is a very active research field thanks to their potentially-wide applications.

? A preliminary version of this paper was presented at the 11th International Conference on Applied Cryptography
and Network Security (ACNS ’13) [23].

Table 1. Leakage resilient IBE in the standard model under static assumptions.

IBE Schemes Assumption Ciphertext overhead Private key Memory
(group elements) leakage rate

Chow et al. [15] DBDH |seed|+ 3 3 1/3

Lewko et al. [26] 1, 2, 3 L L 1
1+c1+c3

(1−O(1/L))

Ours (Sect.4) DLIN 2` (` ≥ 3) 2` 1− 3
2`
− o(1)

Ours (Sect.7) SXDH 2`′ (`′ ≥ 2) 2`′ 1− 1
`′ − o(1)

Above, c1 = |p1|/|p2|, c3 = |p3|/|p2| for some primes p1, p2, p3, and L ≥ 4. The elements may belong to different
groups, but we ignore that for simplicity. Assumptions 1, 2, 3 are some new assumptions in composite bilinear groups
(see [26] for details).

Table 2. IBE schemes in the CML model.

Schemes in CML model Security Memory leakage rate

Brakerski et al. [13] selective 1
2
− o(1)

Our DLIN-based IBE (Sect.6) full 1
2
− o(1)

Our SXDH-based IBE (Sect.7) full 1− o(1)

1.2 Our contributions

Our results and techniques are categorized and summarized as follows.

Contribution 1: IBE in bounded memory leakage model. We show leakage-resilient IBE
schemes which achieve the maximum-possible leakage rate 1 − o(1) in the standard model under
DLIN or SXDH assumptions. Precise values are in Table 1.

Technically, from the viewpoint of leakage resilience, our IBE scheme is based on the leakage
resilient public key encryption scheme of Naor and Segev [28]. From the viewpoint of utilizing
trapdoor in security reduction, it is motivated from the lattice based IBE of Agrawal, Boneh, and
Boyen [1]. Perhaps surprisingly, a big difference from [1] is that we achieve the maximum possible
leakage rate 1 − o(1), while the counterparts in [1] are not known to be leakage resilient. In fact,
it seems hard to prove them leakage resilient; see Remark 1 below the proof of Theorem 3, but
intuitively, the simulators of DLIN and SXDH have more freedom than that of [1].

Note also in Table 1, the IBE in Lewko et al. [26], while tolerating master key leakage, has

private key leakage rate 1
1+c(1 − o(1)) for c = |p1|+|p3|

|p2| (see the caption of Table 1). Simply taking

|p1| ≈ |p2| ≈ |p3| yields a scheme with leakage rate 1
3 − o(1). More sophisticated choices of c can

help improving the rate, but decreasing the security level and/or causing difficulties in generating
such pairing group.

Contribution 2: IPE in bounded memory leakage model. Going further, we propose the
first leakage resilient IPE schemes in the literature. The schemes are selectively-secure, under the
DLIN and SXDH assumptions respectively, with private key leakage rate 1− o(1).

The design of our IPE scheme is partially inspired by the work of Agrawal et al. [3] in the lattice
setting. Similarly to the above, the lattice-based counterpart is not known to be leakage resilient.

Contribution 3: extensions to the continual memory leakage model. Above are works
in which the private keys are leaked, while arbitrarily, but once. Brakerski et al. [13] and Dodis
et al. [17] considered the continual memory leakage (CML) model, and particularly the work [13]
presented a selectively secure IBE scheme.

We show that our above schemes, with slight modifications, can be proved secure in the CML
model. In particular, in the CML model, we present fully secure IBE schemes (see Table 2), and
selectively secure IPE schemes.

1.3 Refinements over the conference version

An abridged version of this paper was in [23]. In this full version, we mainly refine the conference
version in the following ways: (1) we add and analyze SXDH-based schemes, and (2) we conduct
testing implementation on the basic DLIN-based schemes.

1.4 More related works

The CML-IBE scheme of Brakerski et al. [13] (under DLIN) can be seen as basing on Cash et al.’s
IBE [14] (using lattices, not proven leakage resilient). The latter IBE is improved to obtain adaptive
security in [1] in lattice setting (not proven leakage resilient). Our IBE schemes can be seen as [1]’s
counterparts in DLIN setting.

Leakage models evolve in the literature. Some of them are motivated by practical issues, while
others by theoretical needs. Choosing which model to use thus depends much on the environments
running the schemes. We summarize some leakage models below.

• The “computation-leak-information” model was considered by Micali and Reyzin [27] to deal
with physical observation via side channel attacks as in [22, 30]. One important axiom in this
leakage model is that “computation, and only computation, leaks information”. The reason
given in [27] is: “data can be placed in some form of storage where, when not being accessed and
computed upon, it is totally secure.”
• The bounded memory leakage model was examined in [4], to cope with the cold boot attack [20].

In this kind of attack, data in memory can be stolen while no computation is in process, and
thus the above axiom of the “computation-leak-information” model is violated.
• The “floppy” model was introduced in [8] in which the leakage on secret keys can be continual

if one relies on a leak-free source (“floppy” disk) updating the secret keys. Due to the use of a
trusted external storage, this model is weaker than the CML model. In compensation, elegant
schemes can be built without pairings as in [2].
• In the CML model, while there is no long-term, leak-free source, one need to assume that the

randomness for updating secret keys is not totally leaked. In other words, these randomness can
be seen as short-term, one-time “floppy”. Initial works [13, 17] (and ours) tolerate logarithmic
leakage amount on these randomness. Subsequent works [18, 24] improved on this topic by
showing how to leak a constant fraction of the randomness for each local key update.
• The bottom-line of above models is that the secret key is still hard to recover given public

parameters. The auxiliary-input model [16] considers exactly that. In other words, the leakage
function can information-theoretically reveal the entire secret, provided that it is computa-
tionally infeasible to compute the secret. Yuen et al. [34] combined the CML model with the
auxiliary-input model to create the continual auxiliary leakage (CAL) model.

2 Preliminaries

Notations. Denote a
$←A as the process of taking a randomly from a set A. Let |a| be the bit length

of the element a, while |A| be the order of the set. Let q be a prime. We call PG = (G,GT , g, ê :
G×G→ GT) a pairing group if G and GT are cyclic groups of order q. The element g is a generator of
G, and the mapping ê satisfies the following properties: ê(g, g) 6= 1, and ê(ga, gb) = ê(g, g)ab. Vectors
and matrices will be in boldface. Let Zm×nq be the matrices of sizem×n over Zq. For an integer r > 0,

the set Rkr(Zm×nq) contains matrices of rank r in Zm×nq . For a matrix A over Zq, let gA =
(
gA[i,j]

)
,

which is a matrix over G. Also for the matrix A ∈ Zm×nq , span(A) = {zA : z ∈ Z1×m
q }, while

ker(A) = {x ∈ Zn×1q : A · x = 0}.

DLIN assumption. The decision linear assumption, originated in [10], essentially says that given

gx1 and gy2 , it’s hard to distinguish gx+y from random, where x, y
$← Zq, and g1, g2, g

$←G. For our

purpose, we will consider the matrix gA where A ∈ Z3×`
q for ` ≥ 3 of rank either 2 or 3. If the

DLIN assumption holds, then given gA, it is hard to tell the rank of A. (See [28, full version] for a
more general result.) More precisely, for any poly-time distinguisher D, the advantage∣∣∣∣∣Pr

[
b′ = b :

A0
$← Rk2(Z3×`

q),A1
$← Rk3(Z3×`

q),

b
$←{0, 1}, b′ ← D(g, gAb)

]
− 1

2

∣∣∣∣∣
is negligible under the DLIN assumption.

Generalized leftover hash lemma. A family of hash function H = {h : X → Y } is called
universal if Pr

h
$←H

[h(x) = h(x′)] = 1/|Y | for all x 6= x′ ∈ X. Let UY be the uniform distribution

on Y .

Lemma 1 (cf. [1]) Let H = {h : X → Y } be a universal hash family. Let f : X → Z be some
function. Then for any random variable T taking values in X, the statistical distance

∆
(

(h, h(T), f(T)); (h,UY , f(T))
)
≤ 1

2

√
γ(T) · |Y | · |Z|,

where γ(T) = maxt Pr[T = t]. In other words, if the right-hand side is negligible, h(T) is almost
random even given h and the side information f(T).

We will also make use of the following lemma.

Lemma 2 (Leakage-resilient random subspaces [13]) Let m ≥ l ≥ 4, and q be a prime. Let

X
$← Zm×lq ,T

$← Zl×2q ,Y
$← Zm×2q , and f : Zm×2q → Z. Then the statistical distance

∆((X, f(X ·T)); (X, f(Y))) ≤ ε

as long as
|Z| ≤ ql−3ε2.

3 Definitions for IBE and IPE in the bounded leakage model

IBE and its security definitions. The scheme consists of algorithms (Setup, Extract, Enc, Dec).
Setup generates the public parameters and master key (pp,msk). The public pp is the input to all
other algorithms. Extract, on input msk and an identity id, returns the private key skid. Enc, on
input id and a message m, returns a ciphertext c, which will be decrypted by an identity holding
skid, yielding m.

We now recap both the leakage-resilient IND-sID-CPA security. Below, 0 < ρM < 1 stands for
the leakage rate.

Definition 1 (Leakage resilient IND-sID-CPA security). An IBE scheme is IND-sID-CPA
secure with leakage rate ρM if any poly-time adversary succeeds in the following game with probability
negligibly close to 1/2.

1. Identity selection: the adversary decides and sends the target identity id∗ to the challenger.
Then the challenger runs Setup to generate (msk, pp), and sends pp to the adversary.

2. Private key generation: the challenger runs skid∗ ← Extract(msk, id∗).
3. Query set 1: the adversary makes queries of the following types:

– Extract queries id 6= id∗: the challenger returns skid = Extract(msk, id) to the adversary.
– Leakage queries (leak, id, f) where id can be id∗, and f is some function: the challenger

returns f(skid) to the adversary. These queries can be adaptive, and it is required that the
sum (over all submitted functions f) of all lengths |f(skid)| is less than ρM |skid|.

– Reveal queries id: if id 6= id∗ was in a leakage query, namely skid was partially leaked, the
adversary can even ask for the whole skid.

4. Challenge: the adversary gives equal-length m0,m1 to the challenger, who computes and sends

back c∗ ← Enc(id∗,mb) for b
$←{0, 1}.

5. Query set 2: the adversary issues additional extract queries id with id 6= id∗ to which the
challenger answers in the same manner as above.

6. Finish: Finally, the adversary outputs a guess b′ ∈ {0, 1}. It succeeds if b′ = b.

Definition 2 (Leakage resilient IND-ID-CPA security). An IBE scheme is IND-ID-CPA
secure with leakage rate ρM if any poly-time adversary succeeds in the following game with probability
negligibly close to 1/2.

1. Initially, the challenger runs Setup to generate (msk, pp), and sends pp to the adversary.

2. Query set 1: the adversary makes queries of the following types:

– Extract queries id. The challenger returns the private key skid = Extract(msk, id) to the
adversary.

– Leakage queries (leak, id, f) where f is some function. The challenger returns f(skid) to
the adversary. It is required that, for each identity id, the sum (over all submitted functions
f) of all lengths |f(skid)| is less than ρM |skid|.

– Reveal queries id: if id was in a leakage query, namely skid was partially leaked, the adversary
can even ask for the whole skid.

3. Identity selection: the adversary decides and send the target identity id∗ to the challenger. It
is possible that id∗ was appeared at leakage queries above, but not at reveal or extract queries.

4. Query set 2: the same as query set 1 above, except there is no extract or reveal query on id∗.

5. Challenge: the adversary gives m0,m1 of equal length to the challenger, who computes and

sends back c∗ ← Enc(id∗,mb) for b
$←{0, 1}.

6. Query set 3: the adversary can ask more of extract queries id 6= id∗.

7. Finish: Finally the adversary outputs a guess b′ ∈ {0, 1}. It succeeds if b′ = b.

Definition 3 (IBE in CML model, cf. [13]). An IBE scheme is IND-ID-CPA secure in the
CML model with leakage rate (ρU , ρM) if any poly-time adversary succeeds in the following game
with probability negligibly close to 1/2.

1. Setup: the challenger runs Setup to generate (msk, pp), and sends pp to the adversary.

2. Query set 1: the adversary makes queries of the following types:

– Extraction queries (extract, id). The challenger returns skid,0 = Extract(msk, id) to the
adversary.

– Leakage queries (leak, id, f) where f is a circuit. Initially, Lid,0 = 0 and i = 0. If Lid,i +
|f(skid,i)| ≤ ρM · |skid,i|, the challenger returns f(skid,i) to the adversary and sets Li ←
Li + |f(skid,i)|. Otherwise the challenger aborts.

– Update queries (update, f) for a circuit f . The challenger chooses randomness r for the
updating process, and computes f(skid,i, r). If either |f(skid,i, r)| > ρU · |skid,i| or Li +
|f(skid,i, r)| > ρU · |skid,i| then the challenge aborts. Otherwise it returns f(skid,i, r) to the
adversary and sets skid,i+1 ← Update(skid,i, r), Li+1 ← |f(skid,i, r)|, and i← i+ 1.

3. Target identity: the adversary chooses target id∗, which did not appear in extract queries
above.

4. Challenge: the adversary sends m0,m1 of the same length to the challenger, receiving the
challenge ciphertext c∗ = Enc(id∗,mb) for a bit b chosen randomly by the challenger.

5. Query set 2: the adversary issues additional extraction queries (extract, id) with id 6= id∗ to
which the challenger answers in the same manner as above.

6. Finish: the adversary outputs a guess b′ ∈ {0, 1}. It succeeds if b′ = b.

Inner product encryption. Consider algorithms (Setup, Extract, Enc, Dec) as in the IBE case.
Here Extract(msk, id) produces a key skid, while Enc(u,m) with attribute u returns a ciphertext c of
the message m. It is required that vectors id and u are of identical length. Decryption Dec(id, skid, c)
works correctly if the inner product, defined over some group, between vectors id and u is 0, namely
〈id, u〉 = 0. Define Predid(u) = true (resp, false) iff 〈id, u〉 = 0 (resp, 6= 0).

Leakage resilient, selective security for IPE schemes are defined as follows.

Definition 4 (Selectively secure IPE, with private key leakage). An IPE scheme is leakage
resilient, selectively secure if the advantage of any poly-time adversary A is negligible in the following
game. First, A announces attributes u(0), u(1). After that, (mpk,msk)← Setup, and mpk is given
to A.

1. Phase 1: A can ask extract query id to get skid as long as Predid(u
(0)) = Predid(u

(1)) = false.
A can also ask (leak, id, f) to obtain leakage f(skid). The condition is that the total length
over all submitted f of all |f(id)| is less than ρM |skid| for each id. Moreover, if A has already
asked extract query id, it will not ask for leakage on the same id (since doing so yields no more
advantage to A). On the other hand, if id was appeared in a leakage query, it can later be used
in an extract query as long as Predid(u

(0)) = Predid(u
(1)) = false.

2. Challenge: A submits equal-length m(0),m(1) for encryption. The challenger takes b
$←{0, 1},

and sets c∗ = Enc(u(b),m(b)).

3. Phase 2: A can ask for more extract queries as in Phase 1.

4. Finish: A return b′ as a guess of b. Its advantage is defined as |Pr[b′ = b]− 1/2|.

We above assume that Predid(u
(0)) = Predid(u

(1)) = false for all extract and leakage queries id.
While the same restriction is also made in [3,25,29], it is stronger than the original definition in [21].

Definition 5 (Selectively secure IPE in CML model). An IPE scheme is leakage resilient
with leakage rate ρM , selectively secure in the CML model if the advantage of any poly-time adver-
sary A is negligible in the following game.

1. Target: A announces attributes u(0), u(1).

2. Setup: (mpk,msk)← Setup, and mpk is given to A.

3. Phase 1: A can ask extract query id to get skid as long as Predid(u
(0)) = Predid(u

(1)) = false.

A can ask leakage queries (leak, id, f) where f is a circuit. Initially, Lid,0 = 0 and i = 0.
If Lid,i + |f(skid,i)| ≤ ρM · |skid,i|, the challenger returns f(skid,i) to the adversary and sets
Li ← Li + |f(skid,i)|. Otherwise the challenger aborts.

Moreover, if A has already asked extract query id, it will not ask for leakage on the same id (since
doing so yields no more advantage to A). On the other hand, if id was appeared in a leakage
query, it can later be used in an extract query as long as Predid(u

(0)) = Predid(u
(1)) = false.

4. Challenge: A submits equal-length m(0),m(1) for encryption. The challenger takes b
$←{0, 1},

and sets c∗ = Enc(u(b),m(b)).

5. Phase 2: A can ask for more extract queries as in Phase 1.

6. Guess: A return b′ as a guess of b. Its advantage is defined as |Pr[b′ = b]− 1/2|.

4 Proposed IBE schemes under DLIN

We begin with a basic IBE scheme to illustrate the main ideas. Then we show how to extend the
basic one to a fully secure scheme.

4.1 Basic scheme: selectively secure IBE

– Setup: Fix ` ≥ 3. The public parameters are pp = (gA0 , gA1 ,B, gD), where the matrices A0,

A1, B
$← Z2×`

q and D
$← Z2×1

q . The master secret key is msk = (A0,A1). For an identity

id ∈ {0, 1}∗, let F(id) = [A0|A1 + H(id) · B] ∈ Z2×2`
q , where H : {0, 1}∗ → Zq is a collision-

resistant hash function.
– Extract: on input id, return skid = gv where v ∈ Z2`×1

q is a random vector such that

F(id) · v = D. (1)

It is easy to generate such gv from msk using linear algebra. See Appendix A for details.

– Enc: on input id and M ∈ GT , take z
$← Z1×2

q and compute C = gz·F(id), E = ê(g, g)z·D ·M .
Return (C,E) as the ciphertext.

– Dec: On input skid = gv and C = gc, compute K = ê(g, g)c·v and M = EK−1, using the
bi-linearity of ê, and return M . Note that if c = zF(id) then cv = z(F(id)v) = zD, and the
completeness follows.

Trapdoor. Instead of generating A1 as above, suppose that

A1 = A0R
∗ −H(id∗)B

for R∗
$← Z`×`q and the target identity id∗. Since R∗ is freshly random, A1 is correctly distributed.

The matrix R∗ will be the trapdoor utilized in security proofs. Then from pp and R∗, we can
compute skid = gv for any identity id (6= id∗) as follows: First randomly choose w ∈ Z`×1q . Next

consider a random x ∈ Z`×1q such that

(H(id)−H(id∗))Bx = −A0w + D. (2)

It is easy to compute gx from B, gA0 , gD given in pp. Let v =

[
w −R∗x

x

]
. We can compute gv by

using gx. This v satisfies eq.(1) because

F(id)v = [A0|A0R
∗ + (H(id)−H(id∗))B] ·

[
w −R∗x

x

]
= A0(w −R∗x) + (A0R

∗ + (H(id)−H(id∗))B)x

= A0w + (H(id)−H(id∗))Bx

= D

We show that the above v is correctly distributed. The solution space of eq.(1) has dimension 2`−2.
On the other hand, w is chosen from a space of dimension `, and the solution of eq.(2) has freedom
` − 2 since B ∈ Z2×`

q . Hence the set of the above v is equal to the solution space of eq.(1), since
`+ (`− 2) = 2`− 2. The use of trapdoor is similar to [1] in lattice setting.

Theorem 3 Under the DLIN assumption, the IBE scheme is IND-sID-CPA-secure, leakage re-
silient with rate 1 − 3

2` −
η
`|q| for η-bit security. The private key and ciphertext overhead are of 2`

group elements.
When ` = 3, the private key and ciphertext overhead are of 6 group elements, with leakage rate

1/2− o(1).

Proof. Let Game0 be the real attack game against the IBE scheme (recalled in Section 3), and
Game1 be the same as Game0 except that C∗ in the challenge ciphertext is randomly chosen. We
first show that the two games are indistinguishable under the DLIN assumption, whose formulation

using matrices is in Sect.2. We will temporarily ignore leakage queries. Given an adversary A against
the IBE scheme, we build B with input gA telling whether random A ∈ Z3×`

q is of rank 2 or 3. After

A announces the target id∗, B sets up the public parameter pp = (gA0 , gA1 ,B, gD) as follows: gA0

is the first two rows of gA. Namely, A0 ∈ Z2×`
q consists of the two rows of A. B chooses B

$← Z2×`
q

and R∗
$← Z`×`q , and sets A1 = A0R

∗ − H(id∗)B. Certainly B can compute gA1 from gA0 . Note
that by the above,

F(id) = [A0|A1 +H(id)B] = [A0|A0R
∗ + (H(id)−H(id∗))B]

so particularly F(id∗) = [A0|A0R
∗]. B chooses v∗

$← Z2`×1
q and sets D = F(id∗)·v∗ = [A0|A0R

∗]·v∗

so that D ∈ Z2×1
q is uniformly distributed, and B can compute gD from gA0 . B then simulates A

as follows. On extract query id 6= id∗, B computes and returns gv as shown in the trapdoor above.

On challenge query (M0,M1), denote y the third row of A, let b
$←{0, 1}, and return

(C∗, E∗) =
(
g[y|yR

∗], ê(g, g)[y|yR
∗]v∗Mb

)
.

Finally, A outputs b′. If b′ = b, B bets that A is of rank 2. Otherwise, it guesses A is of rank 3.
We will show that (C∗, E∗) is the ciphertext in Game0 if rank(A) = 2; while it is in Game1 if
rank(A) = 3. First suppose that rank(A) = 2. Then y is a linear combination of the first two rows
of A0, namely y = z∗A0 for some z∗ ∈ Z1×2

q . Therefore

[y|yR∗] = [z∗A0|z∗A0R
∗] = z∗[A0|A0R

∗] = z∗ · F(id∗),

showing that (C∗, E∗) is the ciphertext in Game0. Now suppose that rank(A) = 3. Then y is
random in Z1×`

q . It suffices to prove that d = yR∗ is also random in Z1×`
q even given A0, U = A0R

∗,
y. It is easy to see that

A ·R∗ =

[
U
d

]
.

Therefore, for any d, there exists a unique R∗ such that the above equation holds because A is of
full rank (with all but negligible probability). This means that d is random since R∗ is random and
hence C∗ is random as expected. Thus Game0 and Game1 are indistinguishable under the DLIN
assumption. Let pi be the success probability Pr[b′ = b] of the adversary A in Gamei for i = 0, 1,
so that |p0− p1| is computationally negligible. We will show that p1 = 1/2 to finish the proof. First
C∗ is now written as C∗ = gc

∗
for some c∗ ∈ Z1×2`

q . Then E∗ = ê(g, g)c
∗·v∗Mb. Let α = c∗ ·v∗, and

remember that D = F(id∗) · v∗, we obtain[
α
D

]
=

[
c∗

F(id∗)

]
v∗.

In Game1, c∗ is random because C∗ is random. Hence c∗ is linearly independent of the two rows
of F(id∗) with overwhelming probability. This means that α is random even given c∗,D,F(id∗)
because v∗ is random. Thus E∗ = ê(g, g)αMb is random, and hence p1 = 1/2 as claimed. Therefore
the advantage of A against the IBE scheme

∣∣p0 − 1
2

∣∣ = |p0 − p1| is negligible under the DLIN
assumption.

Let us now consider leakage resilience. Consider the leakage function f : Z2`
q → Z encoding of

all leakage queries fi, for some set Z (whose order is decided below). We want to prove that the
distributions (c∗, c∗v∗, f(v∗)) and (c∗,UZq , f(v∗)) are statistically indistinguishable, which means
α = c∗v∗ is randomly distributed conditioned on c∗ = logg C

∗ and the leakage f(v∗).
Now re-consider the games, now with leakage queries. Since the simulator B for the DLIN

assumption can generate v∗, Game0 and Game1 are still indistinguishable even given f(v∗).
Furthermore, in Game1, c∗ is random over Z1×2`

q . Let hc∗(r) = c∗r maps r ∈ Z2`×1
q to Zq.

Since Prc∗ [hc∗(r) = hc∗(r
′)] = 1/q for r 6= r′, the function hc∗ is universal. Applying Lemma

1, the statistical distance of the above distributions is at most 1
2

√
γ(v∗) · q · |Z| in which γ(v∗) =

maxu∈Z2`
q

Pr[v∗ = u].

Now that v∗ is random satisfying F(id∗)v∗ = D, its freedom is 2`− 2. Therefore γ(v∗) = q2−2`

so that we can choose |Z| = q2`−32−2η for η-bit security, namely the leakage on v∗ can be of
(2`− 3)|q| − 2η bits. Therefore the leakage rate is

(2`− 3)|q| − 2η

2`|q|
= 1− 3

2`
− η

`|q|
= 1− o(1)

as claimed. ut

4.2 On simulator comparison, and leakage rate computation

Below are some important notes.

Remark 1. In the above proof, the algorithm B against DLIN on input gA0 chooses v∗
$← Z2`×1

q

and sets D = F(id∗) · v∗ = [A0|A0R
∗] · v∗, so that v∗ is known to B. In contrast, in the lattice

based scheme of [1], the counterpart B against LWE has input (A0,D), so it cannot choose D, and
hence cannot choose (short vector) v∗ satisfying D = F(id∗) · v∗(mod q). Therefore, it seems hard
to prove the lattice-based scheme leakage resilient.

Remark 2. Above we neglect a technical point in estimating the leakage rate. Let G be an elliptic
curve over Zp for some prime p, so each element in G can be represented in about |p| bits. Thus
private key size is |gv∗ | ≈ 2`|p| bits. Now, the rate is more precisely

|leak(gv
∗
)|

|gv∗ |
≈ (2`− 3)|q| − 2η

2`|p|

so that to claim the rate 1 − o(1), we need |q|/|p| ≈ 1. This requirement is satisfied by practical
choices of q and p (e.g., [11, Table 1]). This remark applies as well for estimating the leakage rate
in the following sections.

4.3 Fully secure scheme under DLIN

For an identity id expressed as a bit sequence id = id[1]|| · · · ||id[m], consider the KEM in the
previous section, yet employing the matrix

F(id) =

[
A0

∣∣∣A′0 +
m∑
i=1

id[i]Ai

]
∈ Z2×2`

q ,

where A0,A1, . . . ,Am,A
′
0 ∈ Z2×`

q are random matrices employed as the master secret key. In the
public parameters, the matrices are given in the exponents.

Theorem 4 Employing the above F(id), the IBE scheme in Section 4.1 is IND-ID-CPA-secure
under the DLIN assumption, and leakage resilient with rate 1 − 3

2` −
η
`|q| for η-bit security. The

private key and ciphertext overhead are of 2` group elements.

When ` = 3, the private key and ciphertext overhead are of 6 group elements, with leakage rate
1/2− o(1).

Proof. At a high level, we utilize the artificial abort technique of Waters [33]. Note that one may
also use the technique in [9] to improve the concrete security, in which artificial abort is not needed
either.

Concretely, we construct simulator B against DLIN as follows. B first sets J = 4Q, where Q is

the total number of (extract, leakage, reveal) queries of the adversary. B chooses k
$←{0, . . . ,m}

and hi
$← ZJ for i = 0, 1, . . . ,m. B then constructs the matrices A′0 and each Ai (excluding A0) as

A′0 = A0R0 + (q − kJ + h0)C,Ai = A0Ri + hiC where C← Z2×`
q , and Ri ← Z`×`q . Then

F(id) =

[
A0

∣∣∣A0(R0 +

m∑
i=1

id[i]Ri) + (q − kJ + h0 +

m∑
i=1

id[i]hi)C

]
Let α(id) = q−kJ +h0 +

∑m
i=1 id[i]hi, B can succeed if α(id∗) = 0 mod q, and for all extract query

id 6= id∗, α(id) 6= 0 mod q. This probability λ is lower bounded by λ ≥ 1
(m+1)J

(
1− 2QJ

)
similarly

to [33, Sect.5.2, eq.(1k)], which is recapped in Section B for completeness. With probability λ,

F(id∗) =

[
A0

∣∣∣A0(R0 +
m∑
i=1

id∗[i]Ri)

]
,

so that the proof proceeds identically with that of Theorem 3 just by letting R∗ = R0+
∑m

i=1 id
∗[i]Ri,

except for that we use the artificial abort, and the following. A does not announce the target id∗

at the beginning of the attack game in the model of full security. Hence B cannot compute v∗ nor
gD as in the proof of Theorem 3.

1. Therefore B first chooses E ∈ Z`×1q randomly and consider D ∈ Z2×1
q such that D = A0E. B

computes gD from gA0 and E. Moreover, given D and for E = (E[1], . . . , E[`])T , we can let the
components E[3], . . . ,E[`] free in Zq since A0 ∈ Z2×`

q is of rank 2.
2. The simulation of queries depends on α(id): There are two cases for each query id. Firstly, if
α(id) 6= 0, the corresponding v is set to

v =

[
w − (R0 +

∑m
i=1 id[i]Ri)x

x

]
in which w is random and x satisfies α(id)Cx = D−A0w. Thus skid = gv can be computed,
and hence extraction, leakage, and reveal queries can be simulated. In the second case of target
identity id = id∗, namely α(id∗) = 0, B can again compute private key skid∗ = gv

∗
by solving

v∗ = (v∗[1], . . . , v∗[2`])T satisfying [I` | R∗] · v∗ = E where I` ∈ Z`×`q is the identity matrix. It

is easy to see that gv
∗

is the private key for id∗ by multiplying A0 from the left to both hand
sides of the above equation. From that equation, we now havev∗[1]

...
v∗[`]

 =

E[1]
...

E[`]

−R∗

v∗[`+ 1]
...

v∗[2`]

 .
Since E[3], . . . ,E[`],v∗[`+ 1], . . . ,v∗[2`] can be independently random in Zq, there are q(`−2)+`

choices for v∗, so that it is from a space of dimension 2`− 2 as expected. The leakage rate for
η-bit security 1− 3

2` −
η
`|q| is computed exactly as in the selective case. ut

5 Proposed IPE under DLIN

In this section we design the first leakage resilient IPE scheme under the DLIN assumption with
leakage rate 1 − o(1). Several techniques in previous sections are re-utilized here. Below id =
(id1, . . . , idn) ∈ Znq . For u = (u1, . . . , un) ∈ Znq , decryption will work correctly if 〈id, u〉 =

∑n
i=1 idiui =

0 ∈ Zq. The scheme is as follows.

– Setup: Take Ai,S
$← Z2×`

q and D
$← Z2×1

q , let

msk = (A0, . . . ,An)

and
mpk = (gA0 , . . . , gAn , gD,S).

– Extractmsk(id): Return gv ∈ G2`×1 where F(id) · v = D for F(id) = [A0|
∑n

i=1 idiAi].

– Enc(u,M ∈ GT): Take z
$← Z1×2

q , return C = gz[A0|A1+u1S|···|An+unS] and E = ê(g, g)z·DM.

– Decgv(id, C,E): From C = g[y|y1|···|yn], compute

n∏
i=1

(gyi)idi = g
∑n

i=1 idiyi ,

and hence obtain g[y|
∑n

i=1 idiyi]. Pair that with the private key gv, obtaining

F = ê(g, g)[y|
∑n

i=1 idiyi]·v ∈ GT

and finally compute the message m = E · F−1.

Correctness. Following directly from below equations:[
y|

n∑
i=1

idiyi

]
=

[
zA0|z

n∑
i=1

idiAi + 〈id, u〉zS

]
=

[
zA0|z

n∑
i=1

idiAi

]
= zF(id).

Theorem 5 The above IPE scheme is leakage resilient under the DLIN assumption with leakage
rate 1− 3

2` −
η
`|q| for η-bit security.

Proof. We will consider the following games: Game0 is the original attack game (described in
Section 3); Game1 is the same, except that logg C

∗ = [y|y1| · · · |yn] is chosen randomly. Consider
an adversary A against the scheme which can tell apart Game0 and Game1, we build B against
DLIN. A gets gA as input for A ∈ Z3×`

q , and will decide whether A is of rank 2 or 3. At first, A
outputs u(0), u(1) ∈ Znq . B considers gA0 as the first two rows of gA, and gy as the third one. B lets

for 1 ≤ i ≤ n, Ai = A0R
∗
i − u

(b)
i S, where b

$←{0, 1},R∗i
$← Z`×`q ,S

$← Z2×`
q chosen by B, and hence

F(id) =

[
A0|

n∑
i=1

idiAi

]
=

[
A0|A0

n∑
i=1

idiR
∗
i − 〈id, u(b)〉S

]
.

Let D = A0E where E
$← Z`×1q by B, so gD can be computed from gA0 . Then B feeds mpk =

(gA0 , . . . , gAn , gD,S) to A, simulating its queries as follows.

– Extract query id ∈ Znq where α = 〈id, u(b)〉 6= 0: B needs to return gv where F(id)v =

[A0|A0
∑n

i=1 idiR
∗
i − αS] · v = D (= A0E). Since α 6= 0, let w

$← Z`×1q , and set

v =

[
w − (

∑n
i=1 idiR

∗
i)x

x

]
where x ∈ Z`×1q satisfies αSx = A0w −D, so that gx, and hence gv can be computed by B.

– The target key: Note that if α = 0, it is sufficient that v satisfies [I`|
∑n

i=1 idiR
∗
i] · v = E,

where I` is the identity matrix of rank `. That v is easily computed. In particular, for id∗ ∈ Znq
satisfying 〈id∗, u(b)〉 = 0, the corresponding v∗ can be computed by B. This fact will be used
later.

– Challenge query M (0),M (1): B simply returns

C∗ = g[y|y1|···|yn], E∗ = ê(g, g)[y|
∑n

i=1 id
∗
i yi]·v∗ ·M (b)

where yi = yR∗i for 1 ≤ i ≤ n.
– Finally A returns b′. If b′ = b, B bets A is of rank 2; otherwise bets A is of rank 3.

We will show that (C∗, E∗) is a legitimate ciphertext of u(b),M (b) if A is of rank 2, while logg C
∗ =

[y|y1| · · · |yn] is random if A is of rank 3. Let us consider the following cases. Suppose A is of rank
2. We have y = z∗A0 for some random z∗. Therefore, as expected,

C∗ = g[z
∗A0|z∗A0R∗1|···|z∗A0R∗n] = gz

∗[A0|A0R∗1|···|A0R∗n]

= gz
∗[A0|A1+u

(b)
1 S|···|An+u

(b)
n S].

Now suppose A is of rank 3. This means y is random in Z1×`
q . We need to show that yi = yR∗i is

random for all 1 ≤ i ≤ n, even given A0R
∗
i (in Ai). This is justified since[

A0R
∗
i

yi

]
=

[
A0

y

]
·R∗i

in which A =

[
A0

y

]
is of full rank. Since R∗i is random, so is yi = yR∗i as required. The

above arguments ensure that Game0 and Game1 are indistinguishable under the DLIN assump-

tion. Now we move into Game1 in which, for y,y1, . . . ,yn
$← Z1×`

q , C∗ = g[y|y1|···|yn] and E∗ =

ê(g, g)[y|
∑n

i=1 id
∗
i yi]·v∗ ·M (b). We will show e∗ =

[
y
∣∣∣∑n

i=1 id
∗
iyi

]
· v∗ is randomly distributed in Zq.

Consider the equation [
e∗

D

]
=

[
y|
∑n

i=1 id
∗
iyi

F(id∗)

]
· v∗,

and note that [y|
∑n

i=1 id
∗
iyi] is independent with the rows of F(id∗) (with all but negligible prob-

ability). Thus e∗ is random even conditioned on D. Therefore, both C∗ and E∗ are truly random
in Game1, and hence Pr[b′ = b] = 1/2 in this game. Thus |Pr[b′ = b]−1/2| in Game0 is negligible
under the DLIN assumption.

Up to now, we did not consider leakage queries. Let us now examine them. Consider the leak-
age function f : Z2`

q → Z encoding of all leakage queries fi, for some set Z (whose order is
decided below). We want to prove that the distributions (c∗, c∗v∗, f(v∗)) and (c∗,UZq , f(v∗)), for
c∗ = [y|

∑n
i=1 id

∗
iyi], are statistically indistinguishable, which means c∗v∗ is randomly distributed

conditioned on c∗ and the leakage f(v∗). Thus ê(g, g)c
∗·v∗ and hence E∗ are also randomly dis-

tributed. Now re-consider the games. Since the simulator B for the DLIN assumption can generate
v∗, Game0 and Game1 are still indistinguishable even given f(v∗). Furthermore, in Game1, c∗ is
random over Z1×2`

q . Let hc∗(r) = c∗r maps r ∈ Z2`×1
q to Zq. Since Prc∗ [hc∗(r) = hc∗(r

′)] = 1/q for
r 6= r′, the function hc∗ is universal. Applying the leftover hash lemma (Lemma 1), the statistical
distance of the distributions is at most 1

2

√
γ(v∗) · q · |Z| in which γ(v∗) = maxu∈Z2`

q
Pr[v∗ = u].

Recall that v∗ is random satisfying F(id∗)v∗ = D. Since F(id∗) ∈ Z2×2`
q , the freedom of v∗ is

2` − 2. Therefore γ(v∗) = q2−2` so that we can choose |Z| = q2`−32−2η for η-bit security, namely

the leakage on v∗ can be of (2` − 3)|q| − 2η bits. In turn, (2`−3)|q|−2η
2`|q| = 1 − 3

2` −
η
`|q| = 1 − o(1)

fraction of the private key skid∗ = gv
∗

can be leaked. ut

6 Extensions to the CML model

Identity-based Encryption. To work in the CML model, we need to specify the algorithm
Updateuser re-newing the private key of users. To do so, we choose D = 0 working on ker(F(id)).

The private key for identity id ∈ {0, 1}m is g[v1|v2] for vi
$← ker(F(id)). To renew the key, the user

takes S
$← Z2×2

q and returns g[v1|v2]S. The nice effect of D = 0 is that [v1|v2]S is also in the kernel
space ker(F(id))× ker(F(id)) as required since

F(id)[v1|v2]S = [F(id)v1|F(id)v2]S = 0.

However, due to D = 0, we now have to consider an IBE scheme encrypting one bit. The scheme
is described below, in which the parameter ` ≥ 7 (e.g., ` = 12) affects the leakage rates.

– Setup: The public parameters are pp = (gA0 , . . . , gAm , gB) for A0
$← Z2×3

q , and A1, . . . , Am,

A′0
$← Z2×(`−3)

q . The master secret key is set to msk = (A0, . . . ,Am,A
′
0).

– Extract: For id ∈ {0, 1}m, skid = gv where v = [v1|v2] in which v1,v2 ∈ Z`×1q satisfies

F(id) · v1 = F(id) · v2 = 0

for

F(id) =

[
A0

∣∣∣A′0 +
m∑
i=1

id[i]Ai

]
∈ Z2×`

q .

– Updateuser: Choose S
$← Z2×2

q and return sk′id = g[v1|v2]·S.

– Enc: To encrypt µ ∈ {0, 1}, take c
$← span(F(id)) = {zF(id) : z ∈ Z1×2

q } if µ = 0; otherwise

c
$← Z1×`

q . Return the ciphertext gc.

– Dec: To decrypt gc, compute ê(g, g)c·v. If the result is ê(g, g)0, then let µ = 0, else µ = 1.

Theorem 6 The above IBE scheme is IND-ID-CPA-secure in the CML model under the DLIN
assumption.

Proof. Given an IND-ID-CPA adversary A against the scheme in the CML model, we build a
simulator B against the DLIN assumption. The proof re-utilizes some ideas previously described.
Specifically, B gets inputs gA and gy for A ∈ Z2×3

q ,y ∈ Z1×3
q , and it will decide whether y ∈

span(A). From gA, the simulator sets up pp = (gA0 , . . . , gAm , gA
′
0) for the adversary A of the IBE

scheme as follows.

B first sets J = 4Q, where Q is the number of extract queries of the adversary. B chooses

k
$←{0, . . . ,m} and hi

$← ZJ for i = 0, 1, . . . ,m. It sets A0 = AY1 ∈ Z2×3
q for Y1

$← Z3×3
q . B then

constructs the matrices A′0 and each Ai (excluding A0) as

A′0 = A0R0 + (q − kJ + h0)C

Ai = A0Ri + hiC

where C← Z2×(`−3)
q , and Ri ← Z3×(`−3)

q .

Note that as before

F(id) =

[
A0

∣∣∣A′0 +

m∑
i=1

id[i]Ai

]

=

[
A0

∣∣∣A0(R0 +
m∑
i=1

id[i]Ri) + α(id)C

]

for function

α(id) = q − kJ + h0 +

m∑
i=1

id[i]hi.

In case α(id) 6= 0, B can answer extract queries id as follows. To find g[v1|v2] where F(id) ·v1 =
F(id) · v2 = 0, it lets

v1 =

[
w1 − (R0 +

∑m
i=1 id[i]Ri)x1

x1

]
,v2 =

[
w2 − (R0 +

∑m
i=1 id[i]Ri)x2

x2

]
in which w1,w2

$← Z3×1
q and x1,x2 ∈ Z(`−3)×1

q satisfies A0w1 + α(id)Cx1 = 0 and A0w2 +
α(id)Cx2 = 0. The freedom of x1,2 is (`−3)−2, so that of corresponding v1,2 is (`−3)−2+3 = `−2,
as expected. Leakage queries with circuit f are answered by returning f(skid) = f(g[v1|v2]). Update

queries with circuit f are answered by returning f(skid,S) = f(g[v1|v2],S) for S
$← Z2×2

q .
In case α(id) = 0, denote id = id∗ (the challenge identity). B sets

Y2 = Y1

(
R0 +

m∑
i=1

id∗[i]Ri

)
.

Now take X′
$← Z(`−3)×(`−3)

q , and consider

X =

[
−(R0 +

∑m
i=1 id

∗[i]Ri) ·X′
X′

]
∈ Z`×(`−3)q ,

we have for Y = [Y1|Y2] ∈ Z3×`
q ,

YX = [Y1|Y2] ·
[
−(R0 +

∑m
i=1 id

∗[i]Ri) ·X′
X′

]
= −Y1(R0 +

m∑
i=1

id∗[i]Ri) ·X′ + Y2 ·X′

= 0 ·X′

= 0.

We claim that X is random. To prove, it suffices to show R0X
′ ∈ Z3×(`−3)

q is random. This indeed

holds true since R0 ∈ Z3×(`−3)
q is random and X′ is invertible with all but negligible probability.

Also note that with high (namely, λ in Section B) probability,

F(id∗) =

[
A0

∣∣∣A0(R0 +
m∑
i=1

id∗[i]Ri)

]
=

[
AY1

∣∣∣AY1(R0 +
m∑
i=1

id∗[i]Ri)

]
=
[
AY1

∣∣∣AY2

]
= AY

so that the challenge query will be answered by gyY.
Moreover, B can answer leakage and update queries on id∗ using the target private key for

period i as skid∗,i = gXSi , where Si
$← Z(`−3)×2

q . The leakage and update queries can be answered
as in the following manner:

– Leakage query (leak, fi) for time period i: return fi(skid∗,i).
– Update query (update, fi) for time period i: return fi(skid∗,i,Si) where Si is as above.

Since all extract queries id 6= id∗ are answered correctly, the game now can be focuses on id∗ as
follows. The adversary attacks an PKE scheme described as follows:

– The public key is pk = gF(id∗) and secret key sk = g[v1|v2] for vi
$← ker(F(id∗)).

– To update sk = g[v1|2], take S
$← Z2×2

q and return g[v1|v2]S.

– The ciphertext for 0 is in the set gspan(F(id∗)), while that for 1 is chosen randomly from G`. To
decrypt gc, compute ê(g, g)c[v1|v2] using the bilinearity of the pairing.

This PKE is exactly the scheme L[`] in [13], recalled in Appendix C for completeness. The
simulation thus goes on identically with the one in [13, full version, Sect.6.3]. Note also that the
simulation in [13] requires that X is random in order to apply a type of leftover hash lemma
(see [13, full version, Sect.2.1]), and yet this was already established above. Following the security
of L[`] in the CML model (re-stated in Appendix C), the leakage rate tolerated by our scheme is

(ρU , ρM) =

(
c log2 |q|

(2`+ 4) log2 q
,
`− 6− γ

2`

)
for constants c, γ > 0. Taking ` = 12 results in an IBE scheme secure in the CML model with
memory leakage rate ρM ≈ 1/4 (namely about 1/4 fraction of the private keys can be leaked), and
the leakage amount tolerable for each update is O(log2 |q|) (bits).

Inner Product Encryption. The scheme is described as follows. Setup takes A1≤i≤n,S
$← Z2×(`−3)

q ,

A0
$← Z2×3

q , and lets msk = (A0, . . . ,An), mpk = (gA0 , . . . , gAn ,S). Extractmsk(id) for id ∈
Znq \ {(0, . . . , 0)} returns gv = g[v1|v2] ∈ G`×2 where with j = 1, 2,

F(id) · vj =

[
A0

∣∣∣ n∑
i=1

idiAi

]
· vj = 0.

Updateuser chooses T
$← Z2×2

q and returns sk′id = g[v1|v2]·T. Algorithm Enc(u,M ∈ {0, 1}) takes

z
$← Z1×2

q , and returns

C = gz[A0|A1+u1S|···|An+unS]

if M = 0; otherwise choose C
$←G(`−3)n+3. Decgv(id, C = g[y|y1|···|yn]) computes

∏n
i=1(g

yi)idi =
g
∑n

i=1 idiyi , and hence obtain g[y|
∑n

i=1 idiyi]. Pair that with the private key gv, obtaining F =
ê(g, g)[y|

∑n
i=1 idiyi]·v ∈ GT and output M = 0 if F = ê(g, g)0. Otherwise output M = 1.

Theorem 7 The above IPE scheme is IND-sID-CPA-secure in the CML model under the DLIN
assumption, with memory leakage rate 1/2− o(1).

Proof. We will consider the following games: Game0 is the original attack game (described in
Section 3); Game1 is the same, except that logg C

∗ = [y|y1| · · · |yn] is chosen randomly. Consider
an adversary A against the scheme which can tell apart Game0 and Game1, we build B against
DLIN. A gets gA, gy as inputs for A ∈ Z2×3

q and y ∈ Z1×3
q , and will decide whether y = zA or

not. At first, A outputs u(0), u(1) ∈ Znq . B considers gA0 = gAY1 for random Y1
$← Z3×3

q chosen by

B. Then B sets for 1 ≤ i ≤ n, Ai = A0R
∗
i − u

(b)
i S, where b

$←{0, 1},R∗i
$← Z3×(`−3)

q ,S
$← Z2×(`−3)

q

chosen by B, and hence

F(id) =

[
A0|

n∑
i=1

idiAi

]
=

[
A0|A0

n∑
i=1

idiR
∗
i − 〈id, u(b)〉S

]
.

Then B feeds mpk = (gA0 , . . . , gAn ,S) to A, simulating its queries as follows.

– Extract query id ∈ Znq where α = 〈id, u(b)〉 6= 0: B needs to return gv = g[v1|v2] where

F(id)v1 = F(id)v2 = 0. Since α 6= 0, let w1,w2
$← Z3×1

q , and set

v1 =

[
w1 − (

∑n
i=1 idiR

∗
i)x1

x1

]
,v2 =

[
w2 − (

∑n
i=1 idiR

∗
i)x2

x2

]
where x1,x2 ∈ Z(`−3)×1

q satisfies αSxj = A0wj (j = 0, 1) so that gxj , and hence gvj can be
computed by B.

– Leakage queries with (id, f): if 〈id, u(b)〉 6= 0 mod q, then similarly to the above simulation,
B can generate skid, and then return f(skid) to A. Therefore let us focus on the case 〈id, u(b)〉 =
0 mod q in which now F(id) = [A0|A0

∑n
i=1 idiR

∗
i] = A [Y1|Y1

∑n
i=1 idiR

∗
i]. Now randomly

take X′
$← Z(`−3)×(`−3)

q , and consider

Xid =

[
−(
∑m

i=1 id[i]R∗i) ·X′
X′

]
∈ Z`×(`−3)q ,

so that F(id) ·Xid = A · 0 = 0. The private key skid = gvid can be computed and returned to

A by considering vid = XidR for random R
$← Z(`−3)×2

q chosen by B.
– Challenge query M (0) = 0,M (1) = 1: B simply returns

C∗ = g[yY1|yY1R∗1|···|yY1R∗n].

If y = zA for some random z ∈ Z1×2
q , we have

C∗ = g[zAY1|zAY1R∗1|···|zAY1R∗n] = gz[A0|A0R∗1|···|A0R∗n] = gz[A0|A1+u
(b)
1 S|···|An+u

(b)
n S]

becoming an encryption of 0. Otherwise, if y is random independent of A, C∗ is random and
hence becomes an encryption of 1.

– Finally A returns b′. If b′ = b, B bets A is of rank 2; otherwise bets A is of rank 3.

Revealing leakage on skid with 〈id, u(b)〉 = 0 mod q certainly raises a concern because these keys
can decrypt the challenge ciphertext. We need to ensure these leakage information is harmless by

restricting its amount. Applying Lemma 2 with subspace X = Xid ∈ Z`×(`−3)q , we need to set the
leakage amount |Z| ≤ q(`−3)−32−2η for statistical distance 2−η. This means the memory leakage
rate tolerated is

(`− 6) log2 q − 2η

2` log2 q
=

1

2
− o(1)

as ` increases. ut

7 Variant schemes based on SXDH

In this section, we work on asymmetric pairing groups (G1, G2, GT , g1, g2, ê) where g1, g2 are gen-
erators of G1, G2, with pairing ê : G1×G2 → GT and G1 6= G2. The SXDH assumption intuitively
say the decisional Diffie-Hellman assumption holds on both groups G1 and G2. In matrix language,
it is hard to distinguish rank-1 and rank-2 matrices given in the exponent in both G1 and G2. More
precisely, for all poly-time distinguishers D, the advantage∣∣∣∣∣Pr

[
b′ = b :

U0
$← Rk1(Z2×`

q),U1
$← Rk2(Z2×`

q),

b
$←{0, 1}, b′ ← D(gUb

1 , gUb
2)

]
− 1

2

∣∣∣∣∣
is negligible under the SXDH assumption. Above, ` ≥ 2 can be any integer.

Selective IBE. The scheme is described as follows.

– Setup: Fix ` ≥ 2. The public parameters are pp = (gA0
1 , gA1

1 ,B, gd1) for A0,A1,B
$← Z1×`

q and

d
$← Zq. The master secret key is msk = (A0,A1).

– Extract: skid = gv2 where v ∈ Z2`×1
q is a random vector such that F(id) · v = d, for F(id) =

[A0|A1 +H(id)B] ∈ Z1×2`
q , where H : {0, 1}∗ → Zq is a collision-resistant hash function.

– Enc: To encrypt M ∈ GT under identity id, take z
$← Zq and compute C = g

z·F(id)
1 , E =

ê(g1, g2)
zdM . Return (C,E) as the ciphertext.

– Dec: To decrypt (C,E) using skid = gv2 , compute F = ê(C, skid) = ê(g1, g2)
zF(id)v = ê(g1, g2)

zd.
Return M = F−1E.

Theorem 8 The above IBE scheme is leakage-resilient IND-sID-CPA secure under the SXDH
assumption with leakage rate 1− o(1).

Proof. The proof is quite similar to that of Theorem 3, so let us just outline the main ideas. The

inputs to the simulator B are (gx1 , g
x′
1 , g

x
2 , g

x′
2) for x,x′

$← Z1×`
q , and it will decide whether x′ = αx

for some α ∈ Zq. This corresponds to deciding whether matrix

[
x
x′

]
∈ Z2×`

q is of rank 1 or rank 2.

After the adversary A announces id∗, B sets gA0
1 = gx1 and considers A1 = A0R

∗ − H(id∗)B for

R∗
$← Z`×`q and B

$← Z1×`
q . B takes v∗

$← Z2`×1
q and sets d = F(id∗)v∗. B gives pp = (gA0

1 , gA1
1 ,B, gd1)

to A. As before,

F(id∗) = [A0|A0R
∗]

F(id) = [A0|A0R
∗ + (H(id)−H(id∗))B].

The answers to extract queries id 6= id∗ is gv2 where F(id) · v = d. Such v is constructed as

v =

[
w −R∗w′

w′

]
where w

$← Z`×1q and random w′ ∈ Z`×1q satisfying A0w+(H(id)−H(id∗))Bw′ = d. The knowledge

of gA0
2 = gx2 is used here to compute gv2 .

The challenge ciphertext consists of C∗ = g
[x′|x′R∗]
1 , E∗ = ê(g1, g2)

[x′|x′R∗]v∗Mb. If x′ = αx then

[x′|x′R∗] = α[A0|A0R
∗], so that the ciphertext is legitimate. Otherwise x′ 6= αx, then

[
x
x′

]
is full-

rank, we have x′R∗ is random and so does C∗. The rest of the proof goes a long those of Theorem
3. Since γ(v∗) = q1−2` the leakage rate is

(2`− 2)|q| − 2η

2`|q|
= 1− 1

`
− η

`|q|

approaching 1 as ` increases. ut

We now describe other SXDH variants in the rest of this section, with their properties but
without proofs, to avoid presenting essentially the same proofs twice.

Full IBE. By changing the function F(id) as in Sect.4.3, the above selective IBE can be turned
into a fully secure one. More precisely, for id ∈ {0, 1}m,

F(id) =

[
A0

∣∣∣A′0 +
m∑
i=1

id[i]Ai

]
∈ Z1×2`

q ,

where A0,A1, . . . ,Am,A
′
0 ∈ Z1×`

q are random matrices employed as the master secret key. In the
public parameters, the matrices are given in the exponents.

Inner Product Encryption. Below id = (id1, . . . , idn) ∈ Znq . For u = (u1, . . . , un) ∈ Znq , decryp-
tion will work correctly if 〈id, u〉 =

∑n
i=1 idiui = 0 ∈ Zq. The scheme is as follows.

– Setup: Take Ai,S
$← Z1×`

q and d
$← Zq, letmsk = (A0, . . . ,An), andmpk = (gA0

1 , . . . , gAn
1 , gd1 ,S).

– Extractmsk(id): Return gv2 ∈ G2`×1 where F(id) · v = D for F(id) = [A0|
∑n

i=1 idiAi].

– Enc(u,M ∈ GT): Take z
$← Zq, return C = g

z[A0|A1+u1S|···|An+unS]
1 and E = ê(g1, g2)

zdM.

– Decgv(id, C,E): From C = g
[y|y1|···|yn]
1 , compute

n∏
i=1

(gyi
1)idi = g

∑n
i=1 idiyi

1 ,

and hence obtain g
[y|

∑n
i=1 idiyi]

1 . Pair that vector with the private key gv, obtaining F =
ê(g1, g2)

[y|
∑n

i=1 idiyi]·v ∈ GT and finally compute the message M = E · F−1.

Theorem 9 The above IPE scheme is selectively secure under the SXDH assumption with memory
leakage rate 1− o(1).

Full IBE in CML model.

– Setup: Fix ` ≥ 4. The public parameters are pp = (gA0
1 , . . . , gAm

1 , gB1) for A0
$← Z1×1

q , and A1, . . . ,

Am, B
$← Z1×(`−1)

q . The master secret key is msk = (A0, . . . ,Am,B).

– Extract: For id ∈ {0, 1}m, skid = gv2 where v ∈ Z`×1q satisfies

F(id) · v = 0

for

F(id) =

[
A0

∣∣∣B +

m∑
i=1

id[i]Ai

]
∈ Z1×`

q .

– Updateuser: Choose s
$← Zq and return sk′id = gs·v2 .

– Enc: To encrypt µ ∈ {0, 1}, let cT ← span(F(id)) = {z · F(id) : z ∈ Zq} if µ = 0; otherwise

cT
$← Z1×4

q . Return the ciphertext gc
T

1 .

– Dec: To decrypt gc
T

1 , compute ê(g1, g2)
cT ·v. If ê(g1, g2)

cT ·v = ê(g1, g2)
0, then let µ = 0, else

µ = 1.

Theorem 10 The above scheme is IND-ID-CPA-secure in the CML model under the SXDH as-
sumption with memory leakage rate 1− o(1).

IPE in CML model. Fix ` ≥ 4. Setup takes A1≤i≤n,S
$← Z1×(`−3)

q , A0
$← Z1×1

q , and lets msk =

(A0, . . . ,An), mpk = (gA0
1 , . . . , gAn

1 ,S). Extractmsk(id) for id ∈ Znq \ {(0, . . . , 0)} returns gv2 with

v ∈ Z`×1q where

F(id) · v =

[
A0

∣∣∣ n∑
i=1

idiAi

]
· v = 0.

Updateuser chooses t
$← Zq and returns sk′id = gt·v. Algorithm Enc(u,M ∈ {0, 1}) takes z

$← Zq, and
returns

C = g
z[A0|A1+u1S|···|An+unS]
1

if M = 0; otherwise choose random C as the encryption of M = 1. Decgv2 (id, C = g
[y|y1|···|yn]
1)

computes
∏n
i=1(g

yi
1)idi = g

∑n
i=1 idiyi

1 , and hence obtain g
[y|

∑n
i=1 idiyi]

1 . Pair that with the private key
gv2 , obtaining F = ê(g1, g2)

[y|
∑n

i=1 idiyi]·v ∈ GT and output M = 0 if F = ê(g, g)0. Otherwise output
M = 1.

Theorem 11 The above IPE scheme is selectively secure in the CML model under the SXDH
assumption with memory leakage rate 1− o(1).

8 Implementation

To obtain a sense on how our schemes perform on current computers, we prototype an implemen-
tation of our DLIN-based IBE schemes using Python with the Charm library [6]. Table 3 reports
average running times after 10 trials using a laptop of moderate hardware (2.0 GHz CPU, 8 GB
RAM) running Ubuntu 12.04 and Python 2.7.3.

Table 3. Running time of our DLIN-based IBE schemes with ` = 3.

Schemes Setup Extract Encryption Decryption

Selective IBE 72 ms 23 ms 80 ms 23 ms

Full IBE 3760 ms 24 ms 67 ms 25 ms

The Setup algorithm of our full IBE is much slower than the one in selective IBE due to the
use of Waters-like F (id). Other algorithms of both perform similarly. Also note that, while Extract
contains 6 exponetiations and Dec contains 6 pairings, the timings are almost the same. This is
due to the version 0.42 of Charm we use does not optimize the computation of exponentation via
pre-processing [5]. We take the ‘SS512’ pairing group (super-singular curve of 512-bit base field) in
implementation.

References

1. S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model. In Gilbert [19], pages
553–572.

2. S. Agrawal, Y. Dodis, V. Vaikuntanathan, and D. Wichs. On continual leakage of discrete log representations.
Cryptology ePrint Archive, Report 2012/367, 2012. http://eprint.iacr.org/. Accepted to Asiacrypt 2013.

3. S. Agrawal, D. M. Freeman, and V. Vaikuntanathan. Functional encryption for inner product predicates from
learning with errors. Cryptology ePrint Archive, Report 2011/410, 2011. http://eprint.iacr.org/. Accepted
to Asiacrypt 2011.

4. A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and cryptography against memory
attacks. In O. Reingold, editor, TCC, volume 5444 of Lecture Notes in Computer Science, pages 474–495. Springer,
2009.

5. J. A. Akinyele. Personal communication, 2013.
6. J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan, M. Green, and A. D. Rubin. Charm: a

framework for rapidly prototyping cryptosystems. J. Cryptographic Engineering, 3(2):111–128, 2013.
7. J. Alwen, Y. Dodis, M. Naor, G. Segev, S. Walfish, and D. Wichs. Public-key encryption in the bounded-retrieval

model. In Gilbert [19], pages 113–134.
8. J. Alwen, Y. Dodis, and D. Wichs. Survey: Leakage resilience and the bounded retrieval model. In K. Kurosawa,

editor, ICITS, volume 5973 of Lecture Notes in Computer Science, pages 1–18. Springer, 2009.
9. M. Bellare and T. Ristenpart. Simulation without the artificial abort: Simplified proof and improved concrete

security for Waters’ IBE scheme. In A. Joux, editor, EUROCRYPT, volume 5479 of Lecture Notes in Computer
Science, pages 407–424. Springer, 2009.

10. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. K. Franklin, editor, CRYPTO, volume
3152 of Lecture Notes in Computer Science, pages 41–55. Springer, 2004.

11. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. J. Cryptology, 17(4):297–319,
2004.

12. D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data. In S. P. Vadhan, editor,
TCC, volume 4392 of Lecture Notes in Computer Science, pages 535–554. Springer, 2007.

13. Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan. Overcoming the hole in the bucket: Public-key
cryptography resilient to continual memory leakage. In Trevisan [32], pages 501–510. Full version available at
http://eprint.iacr.org/2010/278.pdf.

14. D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice basis. In Gilbert [19],
pages 523–552.

15. S. S. M. Chow, Y. Dodis, Y. Rouselakis, and B. Waters. Practical leakage-resilient identity-based encryption
from simple assumptions. In E. Al-Shaer, A. D. Keromytis, and V. Shmatikov, editors, ACM Conference on
Computer and Communications Security, pages 152–161. ACM, 2010.

16. Y. Dodis, S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Public-key encryption schemes with
auxiliary inputs. In D. Micciancio, editor, TCC, volume 5978 of Lecture Notes in Computer Science, pages
361–381. Springer, 2010.

17. Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. Cryptography against continuous memory attacks. In
Trevisan [32], pages 511–520.

18. Y. Dodis, A. B. Lewko, B. Waters, and D. Wichs. Storing secrets on continually leaky devices. In R. Ostrovsky,
editor, FOCS, pages 688–697. IEEE, 2011.

19. H. Gilbert, editor. Advances in Cryptology - EUROCRYPT 2010, 29th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, French Riviera, May 30 - June 3, 2010. Proceedings,
volume 6110 of Lecture Notes in Computer Science. Springer, 2010.

20. J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A. J. Feldman, J. Ap-
pelbaum, and E. W. Felten. Lest we remember: Cold boot attacks on encryption keys. In P. C. van Oorschot,
editor, USENIX Security Symposium, pages 45–60. USENIX Association, 2008.

21. J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polynomial equations, and inner
products. In N. P. Smart, editor, EUROCRYPT, volume 4965 of Lecture Notes in Computer Science, pages
146–162. Springer, 2008.

22. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J. Wiener, editor, CRYPTO, volume 1666
of Lecture Notes in Computer Science, pages 388–397. Springer, 1999.

23. K. Kurosawa and L. T. Phong. Leakage resilient ibe and ipe under the dlin assumption. In M. J. J. Jr., M. E.
Locasto, P. Mohassel, and R. Safavi-Naini, editors, ACNS, volume 7954 of Lecture Notes in Computer Science,
pages 487–501. Springer, 2013.

24. A. B. Lewko, M. Lewko, and B. Waters. How to leak on key updates. In L. Fortnow and S. P. Vadhan, editors,
STOC, pages 725–734. ACM, 2011.

25. A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure functional encryption: Attribute-
based encryption and (hierarchical) inner product encryption. In Gilbert [19], pages 62–91.

26. A. B. Lewko, Y. Rouselakis, and B. Waters. Achieving leakage resilience through dual system encryption. In
TCC, pages 70–88, 2011.

27. S. Micali and L. Reyzin. Physically observable cryptography (extended abstract). In M. Naor, editor, TCC,
volume 2951 of Lecture Notes in Computer Science, pages 278–296. Springer, 2004.

28. M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In S. Halevi, editor, CRYPTO,
volume 5677 of Lecture Notes in Computer Science, pages 18–35. Springer, 2009. Full version available at
http://research.microsoft.com/en-us/um/people/gilse/papers/KeyLeakage.pdf.

29. T. Okamoto and K. Takashima. Fully secure functional encryption with general relations from the decisional
linear assumption. In T. Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages
191–208. Springer, 2010.

30. J.-J. Quisquater and D. Samyde. Electromagnetic analysis (EMA): Measures and counter-measures for smart
cards. In I. Attali and T. P. Jensen, editors, E-smart, volume 2140 of Lecture Notes in Computer Science, pages
200–210. Springer, 2001.

31. A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 47–53, 1984.

32. L. Trevisan, editor. 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October
23-26, 2010, Las Vegas, Nevada, USA. IEEE Computer Society, 2010.

33. B. Waters. Efficient identity-based encryption without random oracles. In R. Cramer, editor, EUROCRYPT,
volume 3494 of Lecture Notes in Computer Science, pages 114–127. Springer, 2005.

34. T. H. Yuen, S. S. M. Chow, Y. Zhang, and S. M. Yiu. Identity-based encryption resilient to continual auxiliary
leakage. In D. Pointcheval and T. Johansson, editors, EUROCRYPT, volume 7237 of Lecture Notes in Computer
Science, pages 117–134. Springer, 2012.

A Computing gv

We are given F ∈ Z2×2`
q , gD ∈ G2×1 and want to compute gv ∈ G2`×1 where Fv = D. With all

but negligible probability, we can assume that F as generated in our scheme is of rank 2. Solving
the linear equation Fv = D gives us

[
I2
∣∣F1

]
v = F2D where I2 is the 2 × 2 identity matrix, and

F1 ∈ Z2×(2`−2),F2 ∈ Z2×2
q depends on F. Now let w = (v[1],v[2])T and w′ = (v[3], . . . ,v[2`])T we

have w + F1w
′ = F2D, so that w′ can be free, and w = F2D − F1w

′. Since gD is given, we can
compute gw, and hence gv as well.

B The probability λ in artificial abort

First define a binary function β(id) =

{
0 if h0 +

∑m
i=1 id[i]hi = 0 mod J

1 otherwise
, and note that since q is

exponential compared to mJ , we have

α(id) = 0 mod q⇔ h0 +
m∑
i=1

id[i]hi = kJ mod q ⇔ h0 +
m∑
i=1

id[i]hi = kJ

⇒ h0 +

m∑
i=1

id[i]hi = 0 mod J ⇔ β(id) = 0

Since hi are random in ZJ , Pr[β(id) = 0] = 1/J . Let id1, . . . , idQ are the extract queries, and note
that the events β(idj) = 0 and β(id∗) = 0 are pairwise independent for all idj 6= id∗, we have

λ = Pr
[(
∧Qj=1α(idj) 6= 0 mod q

)
∧ α(id∗) = 0 mod q

]
= Pr

[(
∧Qj=1β(idj) = 1

)
∧

m∑
i=1

id∗[i]hi = kJ

]
=

1

m+ 1
Pr
[(
∧Qj=1β(idj) = 1

)
∧ β(id∗) = 0

]
=

1

m+ 1
Pr
[(
∧Qj=1β(idj) = 1

)]
Pr
[
β(id∗) = 0

∣∣∣ (∧Qj=1β(idj) = 1
)]

=
1

m+ 1

(
1− Pr

[
∨Qj=1β(idj) = 0

])
Pr
[
β(id∗) = 0

∣∣∣ (∧Qj=1β(idj) = 1
)]

≥ 1

m+ 1

1−
Q∑
j=1

Pr [β(idj) = 0]

Pr
[
β(id∗) = 0

∣∣∣ (∧Qj=1β(idj) = 1
)]

=
1

m+ 1

(
1− Q

J

)
Pr
[
β(id∗) = 0

∣∣∣ (∧Qj=1β(idj) = 1
)]

=
1

m+ 1

(
1− Q

J

)
Pr [β(id∗) = 0]

Pr
[
∧Qj=1β(idj) = 1

] Pr
[
∧Qj=1β(idj) = 1

∣∣∣β(id∗) = 0
]

≥ 1

(m+ 1)

(
1− Q

J

)
1

J
Pr
[
∧Qj=1β(idj) = 1

∣∣∣β(id∗) = 0
]

≥ 1

(m+ 1)

(
1− Q

J

)
1

J

1−
Q∑
j=1

Pr
[
β(idj) = 0

∣∣∣β(id∗) = 0
]

≥ 1

(m+ 1)J

(
1− Q

J

)2

≥ 1

(m+ 1)J

(
1− 2

Q

J

)
,

as stated.

C Public key encryption scheme L[`] in [13]

Description. Fix integer parameter ` ≥ 7. In key-generation, take random matrices A ∈ Z2×`
q and

Y ∈ Z`×2q such that AY = 0. The public key is pk = gA and the secret key is sk = gY. To update

the secret key, take random R ∈ Z2×2
q and set sk′ = gYR. Message space is of one bit. Encryption

of bit 1 is gu for random vector u ∈ Z`q. Encryption of bit 0 is grA for random vector r ∈ Z1×2
q . In

decryption, given a ciphertext gc and secret key gY, apply pairing ê to get ê(g, g)cY. If the result
equals ê(g, g)0, return 0, otherwise return 1 as the message.

Security in CML model [13, Theorem 6.1]. Under the DLIN assumption, for ` ≥ 7 and for
all constants γ, c > 0, the above public key encryption scheme is secure in the CML model with
update and memory leakage rates

(ρU , ρM) =

(
c log2 |q|

(2`+ 4) log2 q
,
`− 6− γ

2`

)
.

