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Abstract

A zero-knowledge protocol allows a prover to convince a verifier of the correctness of a statement
without disclosing any other information to the verifier. It is a basic tool and widely used in many
other cryptographic applications. However, when stand-alone zero-knowledge protocols are used in
complex environments, e.g., the Internet, the basic properties may not be sufficient. This is why
researchers considered security of zero-knowledge protocols under concurrent composition and man-
in-the-middle attacks. Moreover, it is very likely that an adversary might break computers that run
the protocol and get internal information of the parties. It is thus necessary to take account of the
security of zero-knowledge protocols when adaptive corruptions are allowed.

Previous adaptively secure zero-knowledge protocols work either in a stand-alone setting, or in
a concurrent setting with trusted setup assumptions. In this paper, we study adaptive security of
zero-knowledge protocols under both concurrent self composition and man-in-the-middle attacks in
the plain model (i.e., without any set-up assumptions). We provide a construction of adaptively
secure concurrent non-malleable zero-knowledge proof/argument for every language in NP.
Keywords: Zero-knowledge protocol, concurrent non-malleability, adaptive corruption, commit-
ment schemes

1 Introduction

Zero knowledge proofs, introduced by Goldwasser, Micali and Rockoff [GMR85], allow a prover to con-
vince a verifier the validity of a statement without disclosing any other information to him. It was shown
that every NP language has a zero-knowledge proof system [GK96]. Zero-knowledge proofs are widely
used in many cryptographic applications and are one of the most fundamental cryptographic building
blocks. As application execution environments change from one to another, stand-alone zero-knowledge
proofs might fail to satisfy security requirements in these various settings.

Consider a setting where there are many instances of protocols which are invoked at arbitrary times.
Here, many verifiers are receiving proofs from various independent provers, and trying to collude together
to learn something non-trivial from the provers. It was shown that a stand-alone zero-knowledge protocol
fails to preserve the zero-knowledge property in the above setting [DNS98]. Thus, researchers considered
the notion of concurrent zero-knowledge. Another setting is that there are man-in-the-middle attacks.
A man-in-the-middle adversary may convince a verifier of a statement that it otherwise cannot do by
interacting with an honest prover. The notion of non-malleable zero-knowledge proofs was first introduced
by Dolev, Dwork and Naor [DDN00] to capture security requirements in this setting.

The notion of concurrent non-malleable zero-knowledge (CNMZK) considers both of the above set-
tings. An adversary may interact with many provers while playing the role of the verifier, and si-
multaneously interact with many verifiers while playing the role of the prover. Barak, Prabhakaran
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and Sahai [BPS06] gave the first CNMZK argument in the plain model. Ostrovsky, Pandey and Vis-
conti [OPV10] improved this result and gave more efficient instantiations of CNMZK arguments for a
special class of NP launages. Lin, Pass, Tseng and Venkitasubramanian (LPTV) [LPTV10] presented
the first construction of CNMZK proofs.

Previous CNMZK protocols in the plain model only considered settings where an adversary is allowed
to control/corrupt parties before the start of protocol executions, but, is not allowed to corrupt parties
during protocol executions. However, in reality, based on the information that was already gathered,
adversaries (e.g., hackers, viruses, insiders) may break into computers, possibly while they are executing
secure protocols. Thus, it is very necessary to model adaptive security of zero-knowledge protocols since
this models realistic security threats better and so provides a better security guarantee. We call a zero-
knowledge protocol secure in this setting an adaptively secure CNMZK, or CNMZK against adaptive
adversaries. Previous results on adaptive security of zero-knowledge protocols either work in the stand-
alone setting [Bea96, LZ09], or under concurrent composition with trusted setup assumptions [CF01,
DN02, CLOS02, LZ09]. This raises the following intriguing question:

Does there exist a concurrent non-malleable zero-knowledge proof/argument system for every
NP against adaptive corruptions in the plain model?

To design an adaptively secure protocol is always believed to be a more challenging work than
designing its statically secure counterpart. Therefore, researchers tend to resort to other assumptions
(e.g., parties have tamper proof hardware tokens [Kat07], or parties can reliably erase information [Lin09])
to overcome obstacles and simplify the design. As we focus on the plain model, we intend not to use
these stronger physical assumptions. We will explain the main obstacles in detail in the next section and
show how to overcome them step by step.

1.1 Our Results

In this work, we give a positive answer to the above question and show the following result.

Theorem 1.1. Assume the existence of one-way functions. Then there exists a poly(n)-round adaptively
secure concurrent non-malleable zero-knowledge proof for every NP. Furthermore, assuming the existence
of collision-resistant hash-functions, the round complexity is Õ(log n).

As an additional contribution, we give a construction of adaptively secure CNMZK argument.

Theorem 1.2. Assume the existence of one-way functions. Then there exists a poly(n)-round adaptively
secure concurrent non-malleable zero-knowledge argument for every NP. Furthermore, assuming the
existence of collision-resistant hash-functions, the round complexity is Õ(log n).

Other related work. Recently, Yao, Yung and Zhao [YYZ10] presented the first construction of
CNMZK protocol with full adaptive input selection in the bare public-key model. They allow the inputs
of both left and right interactions to be adaptively chosen by an adversary; moreover, the input to an
interaction can be decided adaptively at any time during this interaction. Lin and Pass [LP11a] provided
the first construction of CNMZK protocol with adaptive inputs in the plain model. Furthermore, the
input of an interaction is adaptively chosen by an adversary at the outset of each interaction. They called
this notion adaptive CNMZK, which is a bit confusing with our notion of adaptively secure CNMZK. The
main difference is that we focus on adaptive corruptions by an adversary, whereas Lin and Pass focused
on adaptive inputs selected by an adversary. We believe that our technique might be extended to
design adaptively secure CNMZK protocols with adaptive input selection based on the work of Lin and
Pass [LP11a].

Techniques. Our CNMZK protocol is based on the LPTV protocol [LPTV10]. We first recall the
structures of the LPTV protocol. This protocol roughly contains three phases. In the first phase,
called the preamble phase, the verifier commits to a random value (called trapdoor) using a concurrently
extractable commitment scheme CECom. In the second phase, called the commit phase, the prover
commits to a witness of the proof statement using both a CECom and robust non-malleable commitment
scheme NMCom. Finally, in the third phase, called the proof phase, the prover proves using a stand-
alone zero-knowledge protocol that it has either committed to a valid witness or a valid trapdoor in the
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commit phase. To prove security, the LPTV simulator uses rewindings to extract out trapdoors in the
preamble phases and then commits to the trapdoors in the commit phases. Using the “fake witnesses”
(i.e., decommitment information to the commitments in the commit phases), the simulator is able to
run the zero-knowledge proof in a straight-line manner in the proof phases. For all right accepting
interactions, the LPTV simulator again uses rewindings to extract out the witnesses committed to by
the adversary (from CECom in the commit phases).

When considering adaptive corruptions to verifiers on the right, the LPTV simulator can be directly
adjusted to handle this case. As the LPTV simulator follows the honest verifier strategy in all right
interactions and the verifier has no secret information, the simulator just provides randomness for the
simulated verifier when a verifier is corrupted. However, when considering adaptive corruptions to provers
on the left, several problems arise. First, if a prover is corrupted after completion of the CECom in the
commit phase, the simulator is given a witness w to the proof statement x, and now it has to provide the
adversary with the randomness of the simulated prover in the CECom. Recall that the LPTV simulator
commits to a trapdoor instead of the witness w, and the commitment CECom is binding. Now the LPTV
simulator gets stuck in explaining the commitment as to w. Second, the same problem arises for NMCom
in the commit phase. The LPTV simulator again gets stuck if the adversary corrupts a prover after the
completion of NMCom, since it committed to a trapdoor and has to explain the commitment as to w.
Finally, upon corruption of a prover of the zero-knowledge proof in the proof phase, the LPTV simulator
has to explain a proof as one generated using the real witness, whereas it is actually generated using a
“fake witness”. The LPTV simulator again cannot handle this case.

Our idea for circumventing the above three problems can be described as follows:

• For the first problem, we rely on a concurrently extractable commitment CECTCom which is also
concurrent trapdoor. The trapdoor property guarantees that there exists a simulator for the com-
mitment, such that knowing the trapdoor, it is able to open the commitment to arbitrary values.
Using CECTCom, the CNMZK simulator is able to explain a commitment to a trapdoor (i.e., the
value committed by an adversary in the preamble phase) as to the real witness w. Our construction
of CECTCom uses a concurrent trapdoor commitment scheme CTCom which is statistically binding.
At first sight, it seems that it is impossible to design CTCom against fully adaptive corruptions in
the plain model, since we have to achieve seemingly contradicting goals that, on one hand, even an
infinitely powerful committer is not able to equivocate the commitment, and on the other hand, an
expected PPT simulator can equivocate the commitment. However, we overcome this obstacle with
the help of the technique of the work [CO99]. Roughly, we rely on the property of Naor’s commit-
ment scheme which is equivocal if the result of the first message can be programmed/controlled by
the simulator. We let this message be generated by a coin-tossing protocol between the committer
and the receiver. Through this way, the simulator is able to hand the corruption of a committer
after execution of the CTCom (and then CECTCom).

• For the second problem, we rely on a robust non-malleable commitment scheme NMCTCom that is
concurrent trapdoor. The NMCTCom is based on the non-malleable commitment in [LPV08] and
a concurrent trapdoor commitment scheme CTCom.1 Using similar analysis as above, the trapdoor
property of NMCTCom can be used to handle adaptive corruptions. Another problem related with
NMCTCom is how to handle adaptive corruptions during special-sound witness-indistinguishable
(WI) proofs.2 The simulator has to interpret the proof generated using a “fake witness” as one
generated using a real witness. Here we resolve the above problem by requiring an honest prover
to commit using CTCom in each of the special-sound proofs.3 Through this way, we ensure that
the simulator is able to provide all the corresponding randomness upon corruption of a committer
after the execution of NMCTCom.

• For the third problem, we rely on an adaptive instance-dependent scheme AIDCom proposed by

1A possible efficient way to design an adaptively secure NMCTCom is to modify the recent constant-round concurrent
non-malleable commitment schemes [LP11b, Goy11] and make them adaptively secure. However, we cannot work it out
and left it as an open problem.

2In the non-malleable commitment scheme [LPV08], the receiver first computes a random image s of a one-way function,
then the committer commits to its message and proves using a sequence of special-sound WI proofs that it knows either
the opening of the commitment or the preimage of s.

3 The proof system is identical to Blum’s basic protocol for Hamiltonicity. It consists of three (or four) rounds. The
prover generates a commitment in the first round, the verifier then sends a random challenge and the prover responds
according to the challenge.

3



Lindell and Zarosim [LZ09]. An instance-dependent commitment scheme is a commitment whose
properties depend on whether the instance in question is in the language or not. Lindell and
Zarosim uses AIDCom to construct (stand-alone) zero-knowledge proof systems against adaptive
corruptions. We also use AIDCom to handle adaptive corruptions for the zero-knowledge proof in
the proof phase. However, to make our simulation go through, we are unable to apply the analysis
in [LZ09]. We have to explain a proof generated using a “fake witness” as one generated using a
real witness.

The approaches to solving the above three problems result in a new problem. In the simulation, we have
to run the extractor of CECom in the preamble phases, in addition to the concurrent trapdoor simulator
of both CECTCom and NMCTCom in the commit phases. It seems that we have to compose the (possibly
conflicting) individual rewinding strategies and present a complicated analysis. In order to get rid of
this obstacle, we combine part of commitment CECTCom and NMCTCom (i.e., the part for extraction)
with CECom in the preamble phase, and need only a new uniform rewinding strategy. In the following,
we will present constructions of protocols CECTCom and NMCTCom of which the properties satisfy this
simulation strategy.

Organization. We present the definition of CNMZK in Section 2. In Section 3 we introduce all basic
tools that we use in the construction of CNMZK. In Section 4, we give a construction of CNMZK proof
systems for all NP.

2 Preliminaries and Definitions

Let N be the set of all positive integers. For any integer n ∈ N, let [n] denote the set {1, 2, . . . , n}. Let
{0, 1}n be the set of n-bit strings. We assume familiarity with computational/statistical indistinguisha-
bility, interactive proofs, zero-knowledge, commitment schemes, and (strong) witness-indistinguishability.

2.1 Adaptively Secure Concurrent Non-Malleable Zero-Knowledge

Adaptively concurrent man-in-the-middle attack. Let 〈P,V〉 be an interactive proof for NP
language L with witness relation RL. Consider a man-in-the-middle adversary A that participates in
many left and right interactions. Without loss of generality, suppose that at most m = m(n) proofs
take place. Prior to all interactions, all parties in the system receives as common input the security
parameter in unary 1n, and A receives as auxiliary input z ∈ {0, 1}∗. The concurrent man-in-the-middle
setting proceeds as follows. First, the input statements to honest provers, i.e., statements x1, . . . , xm ∈
L ∩ {0, 1}n, and the corresponding tags id1, . . . , idm ∈ {0, 1}t(n) are chosen. A interacts with the honest
prover Pi with common input xi and idi while playing the role of a verifier. Pi receives as local input
the witnesses wi such that wi ∈ RL(xi). These interactions are called “left” interactions. During the
left interactions, A can corrupt arbitrary honest provers. At any point, A may adaptively choose a new
statement x̃i and tag ĩdi and start a new proof with a verifier Vi while acting as the role of a prover.
These interactions are called the “right” interactions. Furthermore, during the right interactions, A is
able to corrupt arbitrary honest verifiers. Once a party is corrupted, its common input, random input,
and the entire history of the messages sent and received by the party are already known to A. We denote
by ~X the input vector (x1, . . . , xm) and ~ID the tag vector (id1, . . . , idm). Let viewA(1n, ~X, ~ID, z) be the
view of the adversary A in the above experiment, i.e., it consists of A’s random coins, all common inputs
and the transcripts of all left and right interactions between A and honest provers and verifies, and all
collected information of corrupted parties. Given a function t = t(n), we use the notation {·}n, ~X, ~ID,z as

shorthand for {·}n∈N,x1,...,xm∈L∩{0,1}n,id1,...,idm∈{0,1}t,z∈{0,1}∗ .
Roughly, an interactive proof is adaptively secure CNMZK if for every man-in-the-middle adaptive

adversaryA, there exists a PPT simulator-extractor that can simulate both the left and right interactions
for A, while outputting a witness for every statement proved by A in the right interactions. We emphasize
here that when a prover is corrupted (not at the outset of the protocol), the simulator is then entitled
to the prover’s input and witness, and it need not compute the view of the adversary from scratch. It
only need fill the heretofore unknown portions in the adversary’s view.
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Definition 2.1 (Adaptively Secure Concurrent Non-Malleable Zero-Knowledge). An interac-
tive proof 〈P,V〉 for membership in an NP language L with witness relation RL is called adaptively secure
concurrent non-malleable zero-knowledge with tags of length t = t(n) if for every PPT man-in-the-middle
adaptive adversary A that participates in at most m = m(n) concurrent executions, there exists a PPT
simulator-extractor S such that,

• The two ensembles {S1(1n, ~X, ~ID, z)}n, ~X, ~ID,z and {viewA(1n, ~X, ~ID, z)}n, ~X, ~ID,z are computation-

ally indistinguishable over the security parameter n ∈ N, where S1(1n, ~X, ~ID, z) denote the first

output of S(1n, ~X, ~ID, z).

• Denote by (ν, (w̃1, . . . , w̃m)) the output of S(1n, ~X, ~ID, z). Let (x̃1, . . . , x̃m) be the statements
of right interactions in the view ν. Let ĩd1, . . . , ĩdm be the identities of the right interactions in
the view ν. For every i ∈ [m], if the verifier Vi is not corrupted, the transcript of the ith right
interaction is accepting and ĩdi 6= idj for all j ∈ [m], then w̃i is the witness to membership x̃i in
the language L ∩ {0, 1}n except with negligible probability, i.e., RL(x̃i, w̃i) = 1. Otherwise, w̃i is
set to ⊥.

3 Basic Tools

3.1 Concurrently Extractable Commitment Schemes

The notion of concurrently extractable commitment scheme is first introduced by Micciancio et al. [MOSV06].
This is an abstraction of the preamble stage of the concurrent zero-knowledge protocol of [PRS02].
Roughly, a commitment scheme is concurrently extractable if there exists an efficient extractor that is
able to generate a view that is statistically indistinguishable with the view of a malicious committer in
the commit phases, and moreover, extract the committed values from any valid commitments sent by
the committer. In this paper, we will use a concurrently extractable statistically hiding commitment
scheme CEComsh and a concurrently extractable statistically binding commitment scheme CEComsb.

3.2 Concurrent Trapdoor Commitment Schemes

Roughly, a trapdoor commitment is a commitment scheme with an additional property such that there
exists a simulator, with knowledge of some trapdoor information, can overcome the binding property
and open a commitment arbitrarily. We extend this notion to concurrent execution settings and define
concurrent trapdoor commitment schemes.

On a high level view, our concurrent trapdoor commitment scheme is build upon the trapdoor com-
mitment scheme in [CO99] and a concurrently extractable commitment scheme. The committer and the
receiver together first run a coin-tossing protocol to generate a random string r. Then the committer
commits to its value using Naor’s commitment scheme with r as the first message. Let Comsb be Naor’s
two-round statistically binding commitment scheme. Let CEComsh be a concurrently extractable sta-
tistically hiding commitment scheme. The commitment scheme CTComsb is shown in Figure 1. Due to
space constraints, the proof of CTComsb is shown in Appendix B.1.

Protocol CTComsb

Security parameter: 1n

String to be committed: v ∈ {0, 1}n
Commit Phase:

R←→ C: Pick a random string r′ ∈ {0, 1}3n2

. Commit to r′ using CEComsh.

C −→ R: Pick a random string r′′ ∈ {0, 1}3n2

. Send r′′.
R −→ C: Decommit to r′. Let r = r′ ⊕ r′′.
C −→ R: Commit to v using Comsb with r as the first message (bit by bit in parallel).

Reveal Phase:
C −→ R: Send v. Open the commitments to v.
R : Check that all the openings are valid.

Figure 1: Concurrent trapdoor commitment scheme
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To commit to an n-bit string v under scheme CTComsb, the receiver first commits to a random 3n2-bit
string r′ using CEComsh. Then the committer sends a random string r′′. Next the receiver opens its
random string r′ and the committer commits to v using Comsb with r′ ⊕ r′′ as the first message. In the
reveal phase, the committer just opens its commitment to v.

It would be worth noting explicitly that in the reveal phase, all the randomness used in the commit
phase will be revealed. This property is very useful when proving adaptive property of the concurrent
non-malleable zero-knowledge protocol in Section 4.

3.3 Concurrently Extractable and Concurrent Trapdoor Commitment Schemes

On a high level view, our concurrently extractable and concurrent trapdoor statistically binding com-
mitment scheme CECTComsb follows the structure of the concurrently extractable commitment scheme
in [PRS02, MOSV06]. We simply replace the commitment used by the committer with a concurrent
trapdoor one. The commitment scheme is shown in Figure 2. Due to space constraints, the proof is
shown in Appendix B.2.

Protocol CECTComsb

Security parameter: 1n

Inputs: a value v ∈ {0, 1}n
Commit Phase:

C −→ R: Generate n` pairs of random n-bit strings (α0
i,j , α

1
i,j), i ∈ [n], j ∈ [`] such that for

all i, j v = α0
i,j ⊕ α1

i,j . Commit to v and all n` pairs strings using CTComsb one by one.
For j = 1 to `:

R −→ C: Send a random n-bit string ej = (e1,j , . . . , en,j).
C −→ R: Open the corresponding α

ei,j
i,j for all i ∈ [n].

Reveal Phase:
The committer opens all the remaining n`+ 1 commitments. The receiver checks the correct-
ness of openings and v = α0

i,j ⊕ α1
i,j for all i ∈ [n], j ∈ [`]

Figure 2: Concurrently extractable and concurrent trapdoor commitment scheme

Let ` = `(n) be any super-logarithmic function. To commit to an n-bit string v under scheme of
CECTComsb, the committer generates n` pairs of random n-bit strings such that each pair is a (2, 2)
share of the committed value v, i.e., v = α0

i,j ⊕ α1
i,j for all i ∈ [n], j ∈ [`]. The committer then commits

to v and each of the 2n` strings in parallel using CTComsb. This is followed by ` rounds of interactions.
In the jth interaction, the receiver sends a random n-bit challenge ej = (e1,j . . . en,j) and the committer
opens the commitment of α

ei,j
i,j for all i ∈ [n]. In the reveal phase, the committer opens all the remaining

n` + 1 commitments, and the receiver checks that all the openings are correct and the opened values
satisfy v = α0

i,j ⊕ α1
i,j for all i ∈ [n], j ∈ [`].

We also point out a nice property of CECTComsb that in the reveal phase, all the randomness used
in the commit phase will be revealed. This property is very useful when proving adaptive property of
the concurrent non-malleable zero-knowledge protocol in Section 4.

3.4 Non-Malleable Concurrent Trapdoor Commitment Schemes

Roughly speaking, a commitment is non-malleable if an adversary cannot transform a commitment to
a value into a commitment to a related value. This definition is introduced by Dolev, Dwork and
Naor [DDN00]. A robust non-malleable commitment is non-malleable with respect to any protocol that
has a small round complexity (i.e., less than Õ(log n) rounds). This definition is introduced by Lin and
Pass [LP09]. A non-malleable concurrent trapdoor commitment is a commitment that is non-malleable
and concurrent trapdoor.

Special-sound proofs. A k-round interactive proof for the language L ∈ NP with witness relation RL

is special-sound with respect to RL if the following holds: there exists a deterministic polynomial-time
procedure that can extract a witness with overwhelming probability given a randomly sampled (k − 2)-
message prefix ~α of the protocol and two independent accepting completions of the prefix (~α, β, γ) and
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(~α, β′, γ′). By parallel running Blum’s basic protocol for Hamiltonicity, we get a 4-round special-sound
WI proofs for NP assuming the existence of one-way functions. Moreover, if the commitment scheme
used by the protocol [Blu86] is a CTComsb, then it becomes a k-round special-sound WI proofs, where
k depends on the round complexity of CTComsb. In the following, unless explicitly mentioned, when we
say special-sound WI proofs, we actually mean the above k-round one.

We construct a concurrent non-malleable concurrent trapdoor commitment scheme CNMCTCom in
Figure 3. The protocol is based on the commitment in [LPV08] and adapted to to our setting. The
scheduling in Stage 3 of the protocol is shown in Figure 4. Due to space constraints, the proof is shown
in Appendix B.3.

Protocol CNMCTCom
Common Input: Security parameter 1n, a tag id ∈ {0, 1}t(n).
String to be committed: value v ∈ {0, 1}n.
Commit Phase:
Stage 1:

C ←→ R : Commit to v using CTComsb. Let com be the commitment. Let dec be the
decommitment information.
Stage 2:

R −→ C : Uniformly choose r1, r2 ∈ {0, 1}n. Compute s1 = f(r1), s2 = f(r2). Send s1, s2.
R←→ C : Prove using a WI proof of knowledge that there exists a value r ∈ {0, 1}n such

that s1 = f(r) or s2 = f(r).
Stage 3:

C ←→ R : 4t special-sound WI proofs of the statement:
• Either there exists values v, dec s.t (v, com, dec) is a valid commitment and decommit-

ment transcript for CTComsb,
• or there exists values r ∈ {0, 1}n and b ∈ {0, 1} s.t sb = f(r).

with the following two additional requriments:

1. The prover uses CTComsb instead of Comsb in each proof, and
2. The length of the verifier challenge is 2n in the following schedule:

For j = 1 to t: execute designidj followed by design1−idj .

Reveal Phase:
C sends v, dec and R checks that v, com, dec is a valid commitment and decommitment

transcript for CTComsb.

Figure 3: Concurrent non-malleable concurrent trapdoor commitment scheme

~α1

β1

γ1

~α2

β2

γ2

(a) design0

~α2

~α1

β1

γ1

β2

γ2

(b) design1

Figure 4: Two schedules

Extension to O(log n)-round non-malleable concurrent trapdoor commitment schemes. Just
as the technique in [LPV08], we show how to construct a O(log n)-round commitment scheme that is
stand-alone non-malleable and concurrent trapdoor using any O(n)-round commitment scheme that is
concurrent non-malleable concurrent trapdoor. The protocol NMCTCom is constructed as follows. To
commit to a value v ∈ {0, 1}n, a committer chooses random strings v1, . . . , vn ∈ {0, 1}n such that
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v = v1 ⊕ . . . ⊕ vn. If id ∈ {0, 1}n is the tag of the protocol NMCTCom, then the committer commits to
vi in parallel using CNMCTCom under tag (i, idi), where idi is the ith bit of id. The protocol NMCTCom
is a non-malleable and concurrent trapdoor commitment scheme. The non-malleability proof is much
similar with that in [LPV08]. The trapdoor property follows from the concurrent trapdoor property of
CNMCTCom. We defer the proofs to the full version.

Extension to non-malleable concurrent trapdoor commitment scheme robust w.r.t k-round
protocols. Actually, the above O(log n)-round non-malleable commitment scheme is robust w.r.t log n-
round protocols, since it has at least log n rewinding slots. By choosing the parameter carefully, we can
prove the following lemma.

Lemma 3.1. Let `(n) be a super-logarithmic function. Then there exists a O(`(n))-round concurrent
trapdoor statistically binding commitment scheme that is robust w.r.t `(n)-round protocols.

3.5 Adaptive Instance-Dependent Commitment Schemes

Instance-dependent commitments were first introduced in [IOS97]. Roughly speaking, an instance-
dependent commitment scheme is a commitment whose properties depend on whether the instance in
question is in the language or not. Typically, it is defined for a language L as follows. Let x be a state-
ment. If x ∈ L then the commitment associated with x is computationally hiding, and if x /∈ L then the
commitment associated with x is statistically binding. The adaptive instance-dependent commitment
scheme AIDCom = (Com,Com′,Adapt) was first introduced by Lindell and Zarosim [LZ09]. Roughly,
it has the additional property that commitments are equivocal. It has a “fake” committing algorithm
Com′ which generates fake commitments. If knowing the witness to the statement, the fake commitment
can be opened to arbitrary value by the adaptive opening algorithm Adapt; otherwise, it cannot neces-
sarily be opened to any value. Due to space constraints, the definition of adaptive instance-dependent
commitment is shown in Appendix A.6.

4 Adaptively Secure Concurrent Non-Malleable Zero-Knowledge

In this section, we construct an adaptively secure concurrent non-malleable zero-knowledge proof for
every NP language. Let CEComsh be a concurrently extractable statistically hiding commitment scheme.
Let CECTComsb be a concurrently extractable and concurrent trapdoor statistically binding commitment
scheme. Let NMCTCom be a non-malleable concurrent trapdoor commitment scheme. Let AIDCom =
(Com,Com′,Adapt) be an adaptive instance-dependent commitment scheme for the language of Hamil-
tonicity. Let MBZKProof be a modification of Blum’s ω(1)-round zero-knowledge proof system for the
language of Hamiltonicity, in which the prover commits to the adjacency matrices using AIDCom. The
instance used by AIDCom is the statement proved in protocol MBZKProof.

Our concurrent non-malleable zero-knowledge protocol CNMZKProof is a variant of the LPTV pro-
tocol in [LPTV10]. The protocol CNMZKProof for an NP language L proceeds in six stages, given a
security parameter n, a common input statement x ∈ {0, 1}n ∩ L, a tag id ∈ {0, 1}t(n), and a private
input w ∈ RL(x) to the prover.

Stage 1: The verifier V chooses a random string r ∈ {0, 1}n and commits to r using CEComsh.
Stage 2: The prover P commits to the witness w using CECTComsb.
Stage 3: The prover P commits to the witness w using NMCTCom under tag id.
Stage 4: The prover P commits to the witness w using NMCTCom under tag id again.
Stage 5: The verifier V decommits its commitment in Stage 1 to value r.
Stage 6: The prover P proves using MBZKProof that the the commtments in Stage 2, 3 and 4 all

commits to the same value w̃, and either w̃ ∈ RL(x) or w̃ = r.

The main difference between our protocol CNMZKProof and the LPTV protocol is that we replace
primitives used by the prover with corresponding “adaptive” ones on which the simulator relies to handle
adaptive corruptions of provers. A formal description of the protocol CNMZKProof is shown in Figure 5.

Remark 1. For ease of exposition, we divided the protocol CNMZKProof into six stages. Actually,
in the following proof (of simulation-extractability), we have to optimize the above protocol a bit to
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Protocol CNMZKProof
Common Input: an instance of x ∈ L ∩ {0, 1}n, a tag id ∈ {0, 1}t(n).
Auxiliary input to prover: a witness w s.t (x,w) ∈ RL.

Stage 1: V uniformly chooses r ∈ {0, 1}n. It commits to r using CEComsh. Let T1 be the commit-
ment transcript.

Stage 2: P commits to w using CECTComsb. Let T2 be the commitment transcript.
Stage 3: P commits to w using NMCTCom and tag id. Let T3 be the commitment transcript.
Stage 4: P commits to w using NMCTCom and tag id. Let T4 be the commitment transcript.
Stage 5: V decommits T1 to value r. P aborts if the decommitment fails.
Stage 6: P ↔ V : Denote by L′ the language {(x, T2, T3, T4, r)}, where an instance in L′ satisfies:

there exists w̃ such that
• w̃ is a valid opening of T2,
• and w̃ is valid opening of T3 and T4 under tag id,
• and w̃ ∈ RL(x) or w̃ = r.

Prove using MBZKProof that (x, T2, T3, T4, r) ∈ L′, i.e., both the prover and the verifier run
a Cook-Levin reduction from L′ to Hamiltonicity, and then invoke MBZKProof.

Figure 5: Adaptively secure concurrent non-malleable zero-knowledge proof for NP

make a better use of the simulation strategy of the LPTV protocol. Roughly, the reason is follows:
in the simulation, we need run the extractor of CEComsh in Stage 1, in addition to the concurrent
trapdoor simulator of both CECTComsb and NMCTCom. It seems that we have to compose the (possibly
conflicting) individual rewinding strategies and present a complicated analysis. In order to get rid of this
obstacle, we combine the CEComsh part in CECTComsb and NMCTCom with Stage 1, and need only a
new uniform rewinding strategy. Recall that in the protocol CECTComsb, a committer first commits to
its value and many independent shares of the value using CTComsb. In the the protocol NMCTCom, a
committer first commits to its value using CTComsb, and also commits in the special-sound WI proof
using CTComsb. The commitment CTComsb requires the receiver first commits to a random challenge
using a CEComsh. The CEComsh part of CECTComsb in Stage 2 and of NMCTCom in Stage 3 and 4 can
be merged into the Stage 1 of protocol CNMZKProof. So, we can view the Stage 1 consisting of four
parts of parallel executions of CEComsh.4

Remark 2. For ease of description, we actually use CNMCTCom instead of NMCTCom in the proof. In
the proof, we invoke the concurrent trapdoor simulator of a variant of CNMCTCom, which is denoted
by CNMCTCom′. CNMCTCom′ is the same as CNMCTCom except that all CEComsh parts are executed
in parallel beforehand. The reader is refereed to Section B.3.1 for details. Here without confusion of
notation, we instead use NMCTCom in the protocol.

Properties of MBZKProof. Note that we use a modification of Blum’s ω(1)-round zero-knowledge
proof MBZKProof in Stage 6 (For reference, Blum’s basic protocol for Hamiltonicity is shown in Ap-
pendix D. ). We first show it is still a zero-knowledge proof for the language of Hamiltonicity. The
completeness is straightforward. Recall that in MBZKProof, the prover commits to the adjacency ma-
trix of a random permutation of the graph using an adaptive instance-dependent commitment AIDCom
instead of a statistically binding one. The soundness proof in [Blu86] relies on the binding property
of the commitment, and AIDCom is statistically binding when an input instance is not a Hamiltonian
graph, thus, the soundness property is preserved using almost the same analysis as in [Blu86]. On the
other hand, the zero-knowledge simulation in [Blu86] relies on the hiding property of the commitment.
Moreover, the AIDCom is computationally hiding when an input instance is a Hamiltonian graph. Thus,
the zero-knowledge simulation is the same as that in [Blu86]. Lindell and Zarosim [LZ09] also designed
a ZK simulator when adaptive corruptions are allowed. However, this ZK simulator does not suffice in
the proof of the protocol CNMZKProof. We will design a different ZK simulator for MBZKProof which
is especially suited to handle adaptive corruptions in our case.

Claim 4.1. The protocol CNMZKProof is an adaptively secure concurrent non-malleable zero-knowledge
proof system for NP.

4Note that the third and the fourth part each consists of many parallel executions of CEComsh.
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Proof. We need to prove that the protocol CNMZKProof satisfies the following three properties: com-
pleteness, unconditional soundness, and simulation-extractability. Due to space constraints, we only give
the construction of simulator-extractor S as required by Definition 2.1, and the formal proof is shown in
Appendix C.

Simulation-extractability. The definition of CNMZK requires a simulator-extractor S that is able
to simulate the view of a man-in-the-middle adaptive adversary A, while simultaneously extracting the
witnesses of statements proved in the right interactions. Roughly, S proceeds as follows.

Simulation of right interactions: S simply runs as honest verifiers in all right interactions.
Simulation of left interactions: In each protocol execution, S proceeds as follows:

1. In Stage 1, S first extracts a “fake witness” r, a challenge e2 for CECTComsb, a challenge vector
~e3 for NMCTCom in Stage 3 and a challenge vector ~e4 for NMCTCom in Stage 4 from CEComsh

committed to by A. (See Remark 1.)
2. In Stage 2, S commits using the concurrent trapdoor simulator Ts2 of CECTComsb. Denote by
τ2, aux2 the simulated view and the auxiliary information, respectively.

3. In Stage 3, S commits using the concurrent trapdoor simulator Ts3 of NMCTCom. 5 Note
that knowing ~e3 in advance, the construction of the Ts3 is straightforward. In more detail, S
simulates Stage 1 of NMCTCom by invoking the concurrent trapdoor simulator of CTComsb. S
simulates Stage 2 of NMCTCom by following the honest committer strategy. S simulates Stage
3 of NMCTCom as follows. It uses the concurrent trapdoor simulator of CTComsb to generate
the commitments and answer queries from the adversary. For simplicity and without loss of
generality, we only present the simulation for Blum’s basic protocol for Hamiltonicity (which is
used as the basic special-sound WI proof). Denote by G the input.

(a) S first picks a random permutation π on the vertices and commits to the adjacency matrix
of random graph G′ = π(G) using the concurrent trapdoor simulator of CTComsb.

(b) The adversary picks a random bit challenge b.
(c) If b = 0, S sends π along with the revealing of all commitments. That is, S invokes the

concurrent trapdoor simulator of CTComsb to open the commitments to corresponding value,
i.e., for each entry (i, j) ∈ G, it opens the commitment corresponding to (π(i), π(j)) to 1,
and for all other entries, it opens to 0. If b = 1, S chooses a random cycle C and reveals to
the adversary only the commitments to entries (π(i), π(j)) with (i, j) ∈ C (and the adversary
checks that all revealed values are 1 and the corresponding entries form a simple n-cycle).

Denote by τ3, aux3 the simulated view and the auxiliary information, respectively.
4. In Stage 4, S commits using the concurrent trapdoor simulator Ts4 of NMCTCom. It works

similarly as in Stage 3. Denote by τ4, aux4 the simulated view and the auxiliary information,
respectively.

5. In Stage 5, S receives decommitment information to r from A and checks the correctness of the
opening. If the opening fails, abort the current execution.

6. In Stage 6, S invokes Ts2 on inputs (r, aux2) and gets the decommitment information to r. It
also invokes Ts3 on inputs (r, aux3) and gets the decommitment information to r. Moreover, it
invokes Ts4 on inputs (r, aux4) and gets the decommitment information to r. S transforms all
the decommitment information to a witness C (i.e., a Hamiltonian cycle) to the reduced directed
graph G. S executes the MBZKProof protocol using C as witness. Note that S generates the
commitment in MBZKProof using “fake” commiting algorithm Com′ of AIDCom. For simplicity
and without loss of generality, we only present the simulation for Blum’s basic protocol for
Hamiltonicity.

(a) In the first step, select a random permutation π of the vertices of G, and commit to the
adjacency matrix of π(G) using the fake algorithm Com′ of protocol AIDCom. That is, for
each entry of the matrix, compute Com′(G;Up(n)).

(b) In the second step, receive a challenge bit b from the adversary A.
(c) In the third step, if b = 0, send decommitments to all entries in the adjacency matrix and π.

That is, for the (π(u), π(v))th entry of the matrix, if (u, v) ∈ G, reveal the commitment to 1.

5The concurrent trapdoor simulator is designed especially for the proof of CNMZK. Please refer to Section B.3.1 for
details.
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Otherwise, reveal the commitment to 0. To interpret the (π(u), π(v)th entry as a commitment
to e ∈ {0, 1}, run algorithm Adapt(G,C, e, cπ(u),π(v), ρ) of AIDCom where cπ(u),π(v) denotes
the commitment to the (π(u), π(v))th entry of the matrix and ρ is the randomness used in
the computation of cπ(u),π(v).
If b = 1, reveal only the commitments to entries (π(u), π(v)) with (u, v) ∈ C. That is, open
the commitment to 1 by running algorithm Adapt(G,C, 1, cπ(u),π(v), ρ) of AIDCom.

Extraction of the witnesses: In each right interaction that completes successfully and the verifier is
not corrupted, S extracts a witness w from CECTComsb committed to by A in Stage 2.

Handling adaptive corruptions:

Corruption of a verifier: When a verifier Vi is corrupted, the simulator S has to fill the view of
A by providing the internal information of Vi. Since S simulates Vi in the right interactions by
honestly following the honest verifier strategy and the verifier has no secret information, S just
sends the internal randomness of the simulated Vi to A.

Corruption of a prover: When a prover Pi is corrupted, the simulator S is then entitled to the
prover’s input statement xi and the corresponding witness wi. S hands xi and wi to A. In
addition, S has to fill the heretofore unknown portions in the adversary’s view. According to the
point where Pi is corrupted, we consider the following cases.

Corruption at the outset of the protocol: Do nothing.
Corruption in Stage 1: The extraction here uses a PRS simulator of [PRS02], an oblivious

simulator that is identical to the Killian-Petrank (KP) simulator [KP01]. We follow the analysis
of [Ros06]. As the simulator S acts as an honest receiver of CEComsh in this stage and the
messages are independent of the witness wi, S only provides A with the internal randomness
of the simulated Pi.

Corruption in Stage 2: S proceeds as above for the handling of Stage 1. In addition, S has to
interpret T2 as a commitment to the witness wi whereas T2 is a fake commitment. S runs the
concurrent trapdoor simulator of CECTComsb to open T2 to wi. Finally S provides A with
the random coins generated above.

Corruption in Stage 3: The handling of Stage 1 and 2 is the same as before. In addition, S has
to interpret T3 as a commitment to the witness wi whereas T3 is actually a fake commitment.
Note that it does not suffice to invoke the concurrent trapdoor simulator of NMCTCom alone,
which provides a simulated decommitment information. Moreover, S also has to provide the
randomness used in the special-sound proof. More formally, S proceeds as follows:

Corruption in CTComsb: S has to invoke the concurrent trapdoor simulator of NMCTCom
(which uses the concurrent trapdoor simulator of CTComsb) to explain the commitment as
to wi. Note that knowing ~e3 in advance, the construction of this simulator is straightfor-
ward. Denote by deci the decommitment information to wi.

Corruption in the WI proof of knowledge: Since it is public-coin, S runs the proof by
following the honest verifier strategy. S hands the randomness for the simulated Pi to A.

Corruption in special-sound WI proofs: Recall that for each execution of the special-
sound WI proof, S uses “fake witness” (i.e., concurrent trapdoor simulator of CTComsb).
Now it has to interpret the proof as one generated using the witness wi. Without loss of
generality, we only describe the strategy of S for Blum’s basic protocol for Hamiltonicity.

Corruption after Step 1 and before Step 3: Recall that Step 1 messages consist of
commitments to a randomized permutation of the original graph, and the computation
has no relation with the witness. S now gets the permutation π and runs concurrent
trapdoor simulator of CTComsb to provides A with the randomness of the simulated
Pi in this step. More precisely, for each edge (i, j) ∈ G, it opens the commitment
corresponding to (π(i), π(j)) entry of the adjacency matrix of π(G) to 1, and for all
other entries, it opens to 0.

Corruption after Step 3: The computation of this step needs the use of the real wit-
ness. S first computes this witness C ′ based on the witness wi and the decommitment
information deci (by Cook-Levin reduction). Then S explains the proof as one generated
using C ′ as follows. Note that S is able to equivocate the commitments generated in
this step.
If the challenge of the Step 2 is 0, all randomness in this proof has already been revealed.
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S does nothing. If the challenge of Step 2 is 1, according to the design, only decom-
mitments to a Hamiltonian cycle in the permutated graph are revealed. In addition,
S need provide A with the randomness of the simulated Pi used in other part of the
permutated graph except the Hamiltonian cycle. More precisely, S chooses a random
permutation π∗ between the two Hamiltonian cycles C and C ′, i.e., C = π∗(C ′). Let
π′ = π∗◦π, where ◦ denotes the composition of permutations.6 Let H = π′(G). For every
edge (u, v) ∈ H and (u, v) /∈ π′(C ′), S uses concurrent trapdoor simulator of CTComsb

to obtain random coins such that the appropriate commitment value in the adjacency
matrix is a commitment to 1. For every edge (u, v) /∈ H, S uses the concurrent trapdoor
simulator CTComsb to obtain random coins such that the appropriate committed value
in the adjacency matrix is a commitment to 0. S provides A with the input wi and the
set of random coins described above as well as π′.

Corruption in Stage 4: S provides the adversary A with the randomness of the simulated Pi
in Stage 1, 2 and 3 just as above. In addition, S proceeds as in Stage 3 in the handling of
adaptive corruptions in this stage.

Corruption in Stage 5: The handling of Stage 1, 2, 3 and 4 is the same as above. In addition,
S does nothing.

Corruption in Stage 6: The handling of Stage 1, 2, 3, 4 and 5 is the same as above. Recall
that S simulates this stage using a “fake witness”. Upon corruption, S has to interpret the
proof as one generated using real witness w. Without loss of generality, we only describe the
strategy of S for simulation of the Blum’s basic protocol for Hamiltonicity.

Corruption after Step 1 and before Step 3: Recall that S generates the message in Step
1 using fake committing algorithm Com′ of AIDCom. Upon corruption, S gets the permu-
tation π (selected by itself), and uses the adaptive opening algorithm Adapt of AIDCom
to get random coins such that the commitment value of the (π(u), π(v))th entry in the
adjacency matrix of π(G) is e, where e equals 0 if (u, v) ∈ G; otherwise e equals 1. S
provides the A with the input wi and the set of random coins generated by Adapt as well
as with π.

Corruption after Step 3: Denote by C ′ the new Hamiltonian cycle in G reduced from the
witness wi (in addition to decommitment information of T2, T3, T4 to wi). If e = 0, all
randomness in this proof has already been revealed. S does nothing. If e = 1, S has
to explain the commitments Com′(π(G)) as those generated using the witness C ′, i.e.,
there exists a permutation π′, such that π′(C ′) maps to π(C), and the commitments
already opened and unopened in Com′(π(G)) are consistent to π′(G). More precisely, S
proceeds as follows: find a random permutation π∗ between the two Hamiltonian cycles
C ′ and C, i.e., C = π∗(C ′). Let π′ = π∗ ◦ π and compute H = π′(G). For every edge
(u, v) ∈ H and (u, v) /∈ π′(C ′), S uses algorithm Adapt to obtain random coins such that
the appropriate commitment value in the adjacency matrix is a commitment to 1. For
every edge (u, v) /∈ H, S uses algorithm Adapt to obtain random coins such that the
appropriate commitment value in the adjacency matrix is a commitment to 0. S provides
A with the input wi and the set of random coins described above as well as π′.

Post-execution corruption: S provides the adversary A with randomness of the simulated Pi
from Stage 1 to Stage 6 just as above.

Completing Theorem 1.1 and Theorem 1.2. The CNMZKProof is a Õ(log n)-round adaptively
secure CNMZK proof assuming the existence of collision-resistant hash functions. If we replace the
commitment CEComsh in Stage 1 with CEComsb, then we get a Õ(log n)-round adaptively secure CNMZK
argument. Note that the resulting protocol also assumes the existence of collision-resistant hash functions
(needed by NMCTCom or CECTComsb). In order to get a poly(n)-round adaptively secure CNMZK
proof/argument based on one-way functions, we have to replace the statistically hiding commitment
used in CEComsh, CECTComsb and NMCTCom with the commitment from one-way functions by Haitner
et al. [HNO+09].

6The notation π∗ ◦ π means that to apply π∗ first and then apply π.
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A Basic Definitions

We recall the definition of a witness relation for an NP language.

Definition A.1 (Witness Relation). A witness relation for a language L ∈ NP is a binary relation RL that
is polynomial bounded, polynomial-time recognizable and characterizes by L = {x| ∃w s.t.(x,w) ∈ RL}.

We say that y is a witness for the membership of x in L if (x, y) ∈ RL. We let RL(x) denote the set
of witnesses for the membership of x in L, i.e., RL(x) = {y : (x, y) ∈ L}. In the following, we assume a
fixed witness relation RL for each language L ∈ NP.

A function µ(·), where µ : N → [0, 1] is called negligible if for every positive polynomial p(·), for all
sufficiently large n ∈ N, µ(n) < 1

p(n) . A probability ensemble is a sequence X = {Xs}s∈S of random

variables, where S is a set of strings and Xs is a random variable ranging over {0, 1}p(|s|) for some
polynomial p(·). We assume the reader is familiar with commitment schemes and interactive proofs.

Definition A.2 (Computational Indistinguishability). Let S be a set of strings. We say that the two
probability ensembles X = {Xs}s∈S and Y = {Ys}s∈S are computationally indistinguishable, denoted

by X
c≡ Y , if for every probabilistic polynomial-time (PPT) distinguisher D, every polynomial p(·), all

sufficiently long s ∈ S and all auxiliary information z ∈ {0, 1}poly(n),

Pr[D(Xs, s, z)]− Pr[D(Ys, s, z)] <
1

p(|s|)

Definition A.3 (Statistical Closeness). Let S ⊆ {0, 1}∗ be a set of strings. We say that the two proba-
bility ensembles X = {Xs}s∈S and Y = {Ys}s∈S are statistically close or statistically indistinguishable,

denoted by X
s≡ Y , if for all sufficiently long s ∈ S, the statistical distance

∑
α |Pr[Xs = α]− Pr[Ys = α]|

is negligible.

A.1 Commitment Schemes

A commitment scheme is a basic cryptographic primitive which is usually seen as a digital analogue of
the sealed envelope. It is a two-phase protocol between a committer and a receiver. In the commit
phase, the committer puts its message in a box, locks the box and hands it to the receiver. Receiving
the box, the receiver does not know the exact message in the box. This is called the hiding property.
In the reveal phase, the committer gives the key to the receiver. The receiver then opens the box and
retrieves the message. The message should be the same as the one chosen by the committer. This is
called the binding property. Commitment schemes come in two different flavors, statistically hiding and
statistically binding. We only sketch the properties of both the flavors.

Statistically binding: In a statistically binding commitment, the binding property holds against un-
bounded adversaries, i.e., even an all-powerful adversary is not able to generate a commitment that
later is opened to two different values. The hiding property holds against computationally bounded
adversaries, i.e., commitments to two different values are computationally indistinguishable.

Statistically hiding: In a statistically hiding commitment scheme, the hiding property holds against
unbounded adversaries, i.e., commitments to any two different values are statistically close. The
binding property holds only against computationally bounded adversaries, i.e., no polynomial-time
adversary is able to open a commitment in two different ways.

Non-interactive statistically binding commitment can be constructed from any 1-1 one-way functions [Gol01].
Based on one-way functions, there exists two-round statistically binding commitment [Nao91]. Statisti-
cally hiding commitment scheme can be constructed from any one-way functions [HNO+09]. However,
constant-round ones are known to exist under the stronger assumptions, such as the certified claw-fee
permutations [GK96], and collision-resistant hash functions [DPP97].
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A.2 Concurrently Extractable Commitment Schemes

The notion of concurrently extractable commitment scheme is first introduced by Micciancio et al. [MOSV06]
and is implicit in [PRS02]. This is an abstraction of the preamble stage of the concurrent zero-knowledge
protocol of [PRS02]. Roughly, a commitment scheme is concurrently extractable if there exists an effi-
cient extractor that is able to generate a view that is statistically indistinguishable with the view of a
malicious committer in the commit phases, and moreover, extract the committed values from any valid
commitment sent by the committer.

Definition A.4 (Concurrently Extractable Commitment Scheme). Let 〈C,R〉 be a statistically
hiding (resp. statistically binding) commitment scheme. We say that 〈C,R〉 is a concurrently extractable
commitment scheme if there exists an (expected) PPT oracle machine (the extractor) E such that for
every polynomial p = p(n), for every any unbounded (resp. PPT) p-concurrent adversarial committer
C∗, outputs a pair ~τ ,V such that the following properties hold:

Simulation: ~τ is identically distributed to the view of C∗ with an honest receiver R in all commit
phases.

Concurrent extraction: Denote by ~τ = (τ1, . . . , τp), where p = p(n) is a polynomial and τi is the view
of the committer C∗ in the ith execution. Denote by V = (v1, . . . , vp). The probability that there
exists i ∈ [p] such that τi is accepting and vi =⊥ is negligible.

We say that a commitment scheme is concurrently extractable and trapdoor if it is a concurrently ex-
tractable commitment and a trapdoor commitment. Moreover, we say that a commitment is concurrently
extractable and concurrent trapdoor if it is a concurrently extractable commitment and a concurrent
trapdoor commitment.

Assuming the existence of collision-resistant hash functions, there exists Õ(log n)-round concurrently
extractable statistically hiding commitment schemes [PRS02, MOSV06]. If we only assume the existence
of one-way functions, the round complexity changes to poly(n) [HNO+09]. Assume the existence of one-
way functions, there exists Õ(log n)-round concurrently extractable statistically binding commitment
schemes [LPTV10]. We emphasize here that these constructions all have a non-interactive reveal phase.

A.3 Concurrent Trapdoor Commitment Schemes

Roughly, a trapdoor commitment is a commitment scheme with an additional property such that there
exists a simulator, with knowledge of some trapdoor information, can overcome the binding property
and open a commitment arbitrarily. We extend this notion to concurrent execution setting and define
concurrent trapdoor commitment schemes. Let p = p(n) be a polynomial. We say that R∗ is a p-
concurrent malicious receiver if it performs at most p concurrent executions with a committer. We use
the notation {·}V,n,z as shorthand for {·}V∈{0,1}n·p,n∈N,z∈{0,1}∗ .

Definition A.5 (Concurrent Trapdoor Commitment Scheme). Let (C,R) be a statistically bind-
ing (resp. statistically hiding) commitment scheme. We say that (C,R) is a concurrent trapdoor com-
mitment scheme if there exists an (expected) PPT oracle machine (i.e., concurrent trapdoor simulator)
Ts = (Ts1,Ts2) such that for any polynomial p = p(n), for any PPT p-concurrent malicious receiver
R∗ and for all V = (v1, . . . , vp), v1, . . . , vp ∈ {0, 1}n, the following two probability distributions are
computationally indistinguishable (resp. statistically indistinguishable):

•
{

staR
∗

〈C,R〉(1
n,V, z)

}
V,n,z, where staR

∗

〈C,R〉(1
n,V) denotes the random variable describing the re-

ceiver’s view of the interactions in the commit phases and reveal phases with C(1n,V).

•
{

(~τ , aux)← Ts1
R∗(1n, z), ~ω ← Ts2(aux,V) : (~τ , ~ω)

}
V,n,z

, where ~τ = (τ1, . . . , τp) and ~ω = (ω1, . . . , ωp).

Note that τi is the simulated view for the ith commit phase, and ωi is the decommitment informa-
tion for the ith reveal phase.

Remark 3. In the above definition, we only require the concurrent trapdoor simulator to simulate the
view of a PPT (not unbounded) adversary R∗ interacting with an honest committer.

Considering statistically hiding commitments, D. Crescenzo et al. [CO99] constructed a constant-
round trapdoor commitment scheme based on the hardness of discrete-logarithm problem. Pass and
Wee [PW09] gave a black-box construction of trapdoor commitment scheme from any one-way functions.
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Their protocol is only computationally hiding and computationally binding. Considering statistically
binding commitments, we will give constructions of trapdoor commitment schemes in this paper. Pre-
vious work only use computationally binding trapdoor commitments. We find that the statistically
binding ones are also very useful in achieving adaptive security of zero-knowledge protocols. We believe
this variant to be of independent interest.

A.4 Adaptive Instance-Dependent Commitment Schemes

Instance-dependent commitment schemes were first introduced in [IOS97]. Roughly speaking, an instance-
dependent commitment scheme is a commitment whose properties depend on whether the instance in
question is in the language or not. Typically, it is defined for a language L as follows. Let x be a state-
ment. If x ∈ L then the commitment associated with x is computationally hiding, and if x /∈ L then the
commitment associated with x is statistically binding. The adaptive instance-dependent commitment
scheme was first introduced by Lindell and Zarosim [LZ09]. Roughly, it has the additional property that
commitments are equivocal. It has a fake algorithm which generates fake commitments. If knowing the
witness to the statement, the fake commitment can be opened to arbitrary value; otherwise, it cannot
necessarily be opened to any value.

Definition A.6 (Adaptive Instance-Dependent Commitment Schemes). Let R be an NP relation
and let L be an NP language associated with R. (Com,Com′,Adapt) is an adaptive instance-dependent
commitment scheme for L if the following conditions hold:

• Efficiency: Com,Com′,Adapt are all probabilistic polynomial-time algorithms.
• Computational Hiding: For every x ∈ L, the following holds:{

Com(x, 0)
}
x∈L

c≡
{

Com(x, 1)
}
x∈L

c≡
{

Com′(x)
}
x∈L

• Statistical Binding: For every x /∈ L, there exists a negligible function ε(·), such that Pr[Com(x, 0; r) =
Com(x, 1; r′)] < ε(|x|).

• Adaptive Trapdoor: For all x ∈ L, all c′ = Com′(x;Up(|x|)) and all bit b ∈ {0, 1}, and for all w ∈ R(x)

the following holds:
{
c′,Adapt(x,w, b, c′, Up(|x|))

}
x∈L,w∈R(x)

c≡
{

Com(x, b;Up(|x|)), b, Up(|x|)
}
x∈L,w∈R(x).

Note that Com is an ordinary committing algorithm. Com′ is a “fake” committing algorithm. Adapt
is an adaptive opening algorithm. When x ∈ L, Com′ creates commitments that are not associated to
any specific value. However, given a witness w ∈ R(x) to the fact x ∈ L, the algorithm Adapt can explain
every output c′ of Com′ as a valid commitment to any bit b. But without such a witness, a commitment
generated by Com′ can not necessarily to be decommitted to any bit.

Lindell and Zarosim [LZ09] constructed an adaptive instance-dependent commitment scheme by
slightly modifying the trapdoor commitment scheme of [FS89]. Their scheme is only for a single bit.
By running their atomic scheme in parallel, they obtained an adaptive instance-dependent commitment
scheme for multiple bits. The reader is referred to the full version of [LZ09] for the explicit construc-
tions and the formal security definition of adaptive trapdoor property for instance-dependent string
commitment scheme.

A.5 Non-Malleable Commitment Schemes

We recall the definition of non-malleability from [LPV08]. Let 〈C,R〉 be a tag-based commitment
scheme. Consider a man-in-the-middle adversary A that participates in one left interaction and one
right interaction simultaneously. In the left interaction, A interacts with an honest committer under tag
id of its choice. A will receive a commitment to a value v. In the right interaction, A tries to commit
to a related value ṽ under tag ĩd of its choice. If the right commitment fails, or undefined, or id = ĩd,
its value is set to ⊥. Let nmcA〈C,R〉(v, z) be a random variable that describe the value ṽ combined with

the view of A in the above experiment. Given a function t = t(n), we use notation {· · · }n,v,v′,z,id as
shorthand for {· · · }n∈N,v∈{0,1}n,v′∈{0,1}n,z∈{0,1}∗,id∈{0,1}t .

Definition A.7 (Non-Malleable Commitments). Let 〈C,R〉 be a statistically binding commit-
ment. We say that 〈C,R〉 is non-malleable (with respect to itself) with tags of length t = t(n) if
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for every PPT man-in-the-middle adversary A, the two ensembles {nmcA〈C,R〉(v, z, id)}n,v,v′,z,id and

{nmcA〈C,R〉(v
′, z, id)}n,v,v′,z,id are computationally indistinguishable.

We say that a commitment scheme 〈C,R〉 is non-malleable (concurrent) trapdoor commitment scheme
if it is non-malleable commitment scheme and a (concurrent) trapdoor commitment scheme.

Non-malleable commitment robust w.r.t k-round protocols. The notion of non-malleability
w.r.t k-round protocols was first introduced by Lin and Pass [LP09]. Previously non-malleability w.r.t
commitment only considers man-in-the-middle adversaries that participates executions of the same pro-
tocols on the left and on the right. Robust non-malleability, on the other hand, considers man-in-
the-middle adversaries that participates in executions of arbitrary protocol on the left. We recall the
definition from [LP09]. The man-in-the-middle adversary A interacts with B on the left, while simulta-
neously acting as a committer using a commitment scheme 〈C,R〉. The input to B is y. On the right,

A commits to ṽ using tag of its choice. We let nmcB,A〈C,R〉(y, z) be the random variable that describes

the value ṽ combined with the view of A in the above experiment. Intuitively, we say that 〈C,R〉 is

non-malleable w.r.t B if nmcB,A〈C,R〉(y1, z) and nmcB,A〈C,R〉(y2, z) are indistinguishable whenever interactions

with B(y1) and B(y2) are indistinguishable.

Definition A.8 (Non-malleability w.r.t B). Let 〈C,R〉 be a statistically binding commitment scheme.
Let B be a PPT machine. We say the commitment scheme 〈C,R〉 is non-malleable w.r.t B if for every
two sequences {y1n}n∈N and {y1n}n∈N, such that for all PPT machine Ã, it holds that{

〈B(y1n), Ã(z)〉(1n)
}
n∈N,z∈{0,1}∗

c≡
{
〈B(y2n), Ã(z)〉(1n)

}
n∈N,z∈{0,1}∗

where 〈B(y), Ã(z)〉(1n) denotes the view of Ã after interaction with B on common input 1n, and private
inputs y and z respectively, then it also holds that, for every PPT man-in-the-middle adversary A{

nmcB,A〈C,R〉(y
1
n, z)

}
n∈N,z∈{0,1}∗

c≡
{

nmcB,A〈C,R〉(y
2
n, z)

}
n∈N,z∈{0,1}∗

We say that 〈C,R〉 is non-malleable w.r.t k-round protocols if 〈C,R〉 is non-malleable w.r.t any
PPT machine B that interacts with the man-in-the-middle adversary in k rounds. Below, we focus on
commitment schemes that are non-malleable w.r.t itself and arbitrary `(n)-round protocols, where ` is a
super-logarithmic function. We say that such a commitment scheme is robust w.r.t `(n)-round protocols.

B Proofs of the Commitment Schemes

B.1 Concurrent Trapdoor Commitments

Before proving the protocol CTComsb in Figure 1 is a concurrent trapdoor statistically binding commit-
ment scheme, we emphasize that Naor’s commitment scheme is equivocal if the first message is generated
by a coin-tossing protocol between the committer and the receiver. The reader is referred to [CO99] for
details. Here for self-reference, we give a brief introduction to the scheme.

Claim B.1. The protocol CTComsb in Figure 1 is a concurrent trapdoor statistically binding commitment
scheme.

Proof. We need to prove the protocol CTComsb satisfies the following three properties: computational
hiding, statistical binding and concurrent trapdoor.

Computational hiding. The hiding property follows from the hiding property of Comsb. By using
standard hybrid argument, we can show that the protocol CTComsb is computationally hiding. More
formally, fix a cheating receiverR∗, two n-bit values v1, v2 and suppose we want to show that CTComsb(v1)
and CTComsb(v2) are indistinguishable. We define a sequence of hybrids. For each 0 ≤ i ≤ n, in the ith
hybrid, the first i bits are from v1 and the last n− i bits are from v2. It is straightforward that the zeroth
hybrid is identical to CTComsb(v2), and the nth hybrid is identical to CTComsb(v1). Next by the hiding
property of Comsb we get that the transcript of the (i−1)th hybrid and ith hybrid are indistinguishable.
By a union bound, we conclude that CTComsb(v1) and CTComsb(v2) are indistinguishable.
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Statistical binding. Roughly, as the commitment of CEComsh is statistically hiding, even an infinitely
powerful adversary cannot guess the challenge of the receiver. Thus, it cannot program the coin-tossing
result to one which allows equivocation. With all but negligible probability the result r of the coin-
tossing is uniformly random. Then following from the property of Naor’s commitment scheme, we get
the commitment is statistically binding.

Concurrent trapdoor: We construct a PPT concurrent trapdoor simulator Ts = (Ts1,Ts2) such that
for any polynomial p = p(n), for any PPT p-concurrent malicious receiver R∗ and for all V = (v1, . . . , vp)
where v1, . . . , vp ∈ {0, 1}n, the view of R∗ in real executions and the output of Ts (i.e., the simulated
transcript) are computationally indistinguishable. More formally, on input the security parameter 1n, z,
Ts = (Ts1,Ts2) proceeds as follows.

1. Ts1 interacts with the p-concurrent malicious receiver R∗(z).
2. Ts1 acts as an honest committer and waits commitments from R∗ (under the CEComsh). Ts1

proceeds as follows: Ts1 invokes the concurrent extractor of CEComsh. Denote by ~τ = (τ1, . . . , τp)

the simulated views and ~r′ = (r′1, . . . , r
′
p) the extracted challenges.

3. Ts1 next prepares the result of the coin-tossing. For the ith interaction, if r′i =⊥, then Ts1 outputs
the transcript up to now and aborts the ith commitment. Otherwise, it chooses a random string
r′′i such that r′i ⊕ r′′i allows equivocation in the following execution. Ts1 records the trapdoor in
auxi. Next if the adversary R∗ opens its commitment to a value different from r′i, then Ts1 outputs
the transcript up to now and aborts the ith commitment.

4. Ts1 next prepares the commitments to V. For each i ∈ [p], if the ith commitment is not aborted,
Ts1 generates a “fake” commitment to vi using Comsb. Ts1 records the transcript in the ith commit
phase in τi.

5. In the ith reveal phase, to open to vi, Ts2(τi, auxi) generates the decommitment information of
Comsb using auxi. Ts2 records the decommitment information in ωi.

6. Output ~τ = (τ1, . . . , τp), ~ω = (ω1, . . . , ωp).

Next we show that the view of R∗ with an honest committer and the simulated transcript (~τ , ~ω) are
indistinguishable. Note that if the extraction of CEComsh succeeds and for each commit phase R∗ opens
to a challenge the same as the one extracted (i.e., Ts1 does not abort), then the view of R∗ with an
honest committer and the simulated transcripts generated by Ts are computationally indistinguishable
following from the hiding property of the Comsb. Due to the concurrent extractability property of protocol
CEComsh, the extraction fails only with negligible probability for valid commitments. Moreover, since
the commitment CEComsh is computationally binding, R∗ is able to open its commitment to a challenge
different from the one extracted only with negligible probability. Thus, we conclude that the view of R∗

in real executions is indistinguishable from ~τ , ~ω.

B.2 Concurrently Extractable and Concurrent Trapdoor Commitments

In this section, we give a construction of concurrently extractable and concurrent trapdoor commitment.
Let CTComsb be a statistically binding concurrent trapdoor commitment scheme. Let ` = `(n) be any
super logarithmic function. The protocol is shown in Figure 2.

Claim B.2. The protocol CECTComsb in Figure 2 is a concurrently extractable and concurrent trapdoor
statistically binding commitment scheme.

Proof. We need to prove the protocol CECTComsb satisfies the following four properties: computational
hiding, statistical binding, concurrent extractability and concurrent trapdoor. Note that the commitment
used by the committer is replaced with a concurrent trapdoor one compared with the committer in
protocol CEComsb. The first three properties are not affected by this change. Thus, the proof of the first
three properties are virtually identical to that in [MOSV06]. We only give a proof sketch for these three
properties.

Computational hiding. The hiding property follows from the hiding property of CTComsb. We give
a hybrid argument. Suppose, on the contrary, there exists a PPT distinguisher D and a polynomial p(n)
such that for infinitely many n ∈ N, there exists strings v1, v2, |v1| = |v2| = n, such that D distinguishes
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between the probability ensembles CECTComsb(v1) and CECTComsb(v2) with probability at least 1
p(n) .

We then define the following hybrid committers Hi. Hi runs as an honest committer C. It commits
to independent random shares of v1 for the first i pairs, and independent random shares of v2 for the
last n− i pairs. It is straightforward that the hybrid H0 is the same as CECTComsb(v2) and the hybrid
Hn is identical to CECTComsb(v1). By standard hybrid argument, there exists an i ∈ [n] such that D
distinguishes the view of a receiver in the hybrids Hi−1 and Hi with probability at least 1

np(n) . Recall that

the only difference between the hybrids Hi−1 and Hi is that in the former, the ith pair is independent
random shares of v2 whereas in the latter it is independent random shares of v1. Since both of the
hybrids only reveal one of their random shares, we break the hiding property of CTComsb.

Statistical binding. Note that the value v (in additional to many shares) is committed to using
CTComsb in the commit phase and opened in the reveal phase. The binding property follows directly
from the binding property of CTComsb. As CTComsb is statistically binding, the protocol CTComsb is
also statistically binding.

Concurrent extractability. Recall that the difference between the commitment CEComsb and the
commitment CECTComsb is that in the former the committer uses Comsb to commit to v and all 2n`
strings whereas in the latter the committer uses CTComsb. As the trapdoor property of CTComsb does
not affect the extraction, we can show that CECTComsb is concurrently extractable following from a
similar analysis as in [PRS02, MOSV06].

Concurrent trapdoor. The trapdoor property follows from the trapdoor property of CTComsb. Next
we construct a PPT concurrent trapdoor simulator Ts = (Ts1,Ts2) such that for any polynomial p =
p(n), for any PPT p-concurrent adversary R∗ and for all V = (v1, . . . , vp), the view of R∗ in real
executions and the output of Ts (i.e., the simulated transcript) are computationally indistinguishable.
More formally, on input the security parameter 1n, z, Ts proceeds as follows.

1. Ts1 interacts with the p-concurrent adversary R∗(z).

2. Ts1 invokes the concurrent trapdoor T̃s = (T̃s1, T̃s2) of CTComsb on a p′-bounded adversary, where

p′ = p(1 + 2n`). Denote by ~τ = (τ1, . . . , τp′) and ~aux = (aux1, . . . , auxp′) the outputs of T̃s1. Let
trani = (τ(i−1)(1+2n`)+1, . . . , τi(1+2n`)) and infoi = (aux(i−1)(1+2n`)+1, . . . , auxi(1+2n`)). Note that
trani is the simulated view in the ith commitment and infoi is the auxiliary information for the ith
commitment.

3. Next, Ts1 simulates the ` rounds of interactions in the ith commitment, where i ∈ [p]. More
formally, for each j ∈ [`], Ts1 proceeds as follows:

(a) Ts1 receives a challenge ej from R∗.
(b) For each k ∈ [n], choose a random string α

ek,j

k,j ∈ {0, 1}n. This corresponds to the (i− 1)(1 +

2n`) + 1 + 2(j − 1)n+ 2(k − 1) + (1 + ek,j)th commitment of T̃s.

(c) Invoke T̃s2((α
e1,j
1,j , . . . , α

en,j

n,j ), infoi) and get outputs ωj = (ω1,j , . . . , ωn,j). Update trani =
trani||ej ||ωj and infoi = infoi||wj .

(d) Send to R∗ the decommitment information ωj .

4. Set info = (info1, . . . , infop).
5. After all the commit phases complete, Ts2 starts the simulation of the reveal phases. On inputs

V = (v1, . . . , vp), info, for the ith reveal phase, Ts2 proceeds as follows:

(a) Extract from infoi all the opened strings {αek,jk,j }k∈[n],j∈[`] in the ith commit phase.

(b) For each k ∈ [n], j ∈ [`], compute α
1−ek,j

k,j = vi ⊕ α
ek,j

k,j . Note that α
1−ek,j

k,j is the opened value

of (i− 1)(1 + 2n`) + 1 + 2(j − 1)n+ 2(k − 1) + (1 + 1− ek,j)th commitment of T̃s, and vi is

the opened value of (i− 1)(1 + 2n`) + 1th commitment of T̃s.

(c) Invoke T̃s2(vi, α
1−e1,j
1,1 , . . . , α

1−en,j

n,` , infoi) and gets ωi = (ω∗i , ω1,1, . . . , ωn,`).
(d) Send R∗ the decommitment information ωi.
(e) Update trani = trani||ωi.

6. Output tran = (tran1, . . . , tranp).
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The outputs of Ts(1n,V, z) and staR
∗

〈C,R〉(1
n,V, z) are indistinguishable following from the concurrent

trapdoor property of CTComsb. To prove this, we design a sequence of hybrid simulators {Hi}0≤i≤p. Hy-
brids Hi receives inputs of the values V = (v1, . . . , vp), and proceeds identically as Ts except that for the
last n− i commitments, it generates the commitments by following the honest committer strategy. It di-
rectly follows from the construction that H0(1n,V, z) = staR

∗

〈C,R〉(1
n,V, z) and Hp(1

n,V, z) = Ts(1n,V, z).
Next we show that the outputs of hybrids Hi and Hi+1 are indistinguishable. Note that the difference
between the execution of Hi and Hi+1 is that in the former the ith commitment is generated honestly,
whereas in the latter, it is generated by the trapdoor simulator of CTComsb. It follows from the concurrent

trapdoor property of CTComsb that Hi(1
n,V, z) c≡ Hi+1(1n,V, z).

B.3 Non-Malleable Concurrent Trapdoor Commitments

In this section, we give a construction of non-malleable concurrent trapdoor commitment scheme. The
protocol is shown in Figure 3. The protocol is based on the commitment in [LPV08] and adapted to to
our setting.

Before presenting the description of the protocol, we give a short introduction of a special-sound
witness-indistinguishable proof system and the message scheduling technique introduced by [DDN00].

Special-sound proofs. A k-round interactive proof for the language L ∈ NP with witness relation RL

is special-sound with respect to RL if the following holds: there exists a deterministic polynomial-time
procedure that can extract a witness with overwhelming probability given a randomly sampled (k − 2)-
message prefix ~α of the protocol and two independent accepting completions of the prefix (~α, β, γ) and
(~α, β′, γ′). Special-sound WI proofs for NP languages can be based on the existence of non-interactive
commitment schemes. Assuming only one-way functions, 4-round special-sound WI proofs for NP lan-
guages exist. More precisely, there is a 3-round special-sound WI proof for the language of Hamiltonian
Graphs [Blu86], assuming one-way permutation families exist. If the commitment scheme used by the
protocol [Blu86] is replaced by Naor’s commitment scheme [Nao91], then it becomes a 4-round special-
sound WI proof while the assumption is reduced to the existence of one-way functions. Moreover, if the
commitment scheme used by the protocol [Blu86] is a CTComsb, then it becomes a k-round special-sound
WI proofs, where k depends on the round complexity of CTComsb.

1. In Stage 1, the committer commits to v using a concurrent trapdoor commitment CTComsb. Let
com be the commitment.

2. In Stage 2, the receiver picks two random n-bit strings r1, r2 and sends its image s1 = f(r1) and
s2 = f(r2). Then it uses a WI proof of knowledge that there exists a value r such that s1 = f(r)
or s2 = f(r).

3. In Stage 3, the committer proves that com is either a valid commitment to v, or it knows the
preimage of s0 or s1. This is proved by 4t invocations of a special-sound WI proof that the
messages are scheduled based on the tag id. More precisely, there are t rounds, where in the ith
round , the schedule designidj is followed by design1−idj .

Message scheduling technique. The commitment scheme in Figure 3 relies on a special-sound WI
scheduling which encodes the tag of the commitment. The scheduling is shown in Figure 4. This
scheduling is vital in achieving the non-malleability. The main advantage of this scheduling is that for
the proof given by a man-in-the-middle adversary in the right interaction, there exists a point at which
the adversary cannot answer the challenge from the verifier by simply modifying the proof on the left
interaction. Note that we extend the message scheduling technique in [LPV08] to cover the k-round
special-sound WI proofs instead of 3-round ones.

Remark 4. There are several differences between our protocol and the commitment scheme in [LPV08].
First, we exchange the sequence of Stage 1 and Stage 2. In the following, when we design an adaptively
secure CNMZK protocol, we require the Stage 1 to be combined with other part of the zero-knowledge
protocol (See Remark 1). Second, the committer in Stage 1 and Stage 3 uses a concurrent trapdoor
commitment scheme CTComsb instead of a statistically binding commitment in [LPV08]. Third, in order
to prove the protocol is hiding, we require the receiver to prove knowledge of either preimage of two

21



values under one-way function f using a WI proof of knowledge system. This two-pair technique is
well-known in the design of zero-knowledge protocols [FS89].

Remark 5. In the design of CNMZK protocols, we merge the CEComsh part in CTComsb with other parts
of CNMZK , i.e., the receiver runs all of CEComsh first before the execution of CNMCTCom. This means
that part of execution in Stage 1 and Stage 3 will be executed in parallel ahead of schedule. Denote
by CNMCTCom′ this modified version. We emphasize here that this modification will not affect the
property of CNMCTCom′. We will give the rough idea after the proof of CNMCTCom.

Claim B.3. The protocol CNMCTCom in Figure 3 is a concurrent non-malleable concurrent trapdoor
commitment scheme.

Proof. We need to show that the protocol satisfies the following four properties: computational hiding,
statistical binding, concurrent non-malleability and concurrent trapdoor.

Computational hiding: The hiding property essentially follows from the hiding property of CTComsb

in Stage 2 and the fact that Stage 3 of the protocol is WI (note that WI property is preserved under
sequential composition [FS90]). If there exists an adversary R∗ that violates the hiding property of
CNMCTCom, we design an algorithm R′ that breaks the hiding property of CTComsb. Without loss of
generality, we assume R∗ is deterministic. R′ internally runs a copy of R∗. It forwards messages in Stage
1 to an external committer of CTComsb. R

′ runs as an honest verifier in Stage 2. After the completion
of Stage 2, R′ keeps rewinding the WI protocol and extracts a “fake witness”. In Stage 3, R′ gives
WI proofs using the fake witness. Finally, it outputs whatever R∗ outputs. From the WI property of
Stage 3, it follows that R′ distinguishes the commitment made using CTComsb, if R∗ distinguishes the
commitment made using NMCTCom.

Statistical binding: The binding property follows directly from the binding property of CTComsb.
As CTComsb is statistically binding, CNMCTCom is also statistically binding.

Concurrent non-malleability. Pass and Rosen [PR08] showed that if a commitment scheme is one-
many non-malleable, then it is also concurrent non-malleable. Thus, we only show the scheme is one-
many non-malleable. The proof follows the line of [LPV08]. We present a proof sketch and point out
the main difference with the work [LPV08]. Before giving the proof, we define a determining message
of a commitment scheme which is from the committer and determines the value committed in the
commitment. For the protocol CNMCTCom, the determining message falls in Stage 1. More precisely, it
is the message in the commitment CTComsb which consists of commitments to v using Comsb, i.e., the
last message of CTComsb. In the following, we sometimes use 〈C,R〉 to denote the commitment scheme
CNMCTCom.

Just as the proof of [LPV08], for every man-in-the-middle adversary A, we design an expected non-
uniform PPT malicious receiver R∗ for a variant of the commitment scheme 〈C,R〉, which is denoted
by 〈Ĉ, R̂〉. We postpone the description of 〈Ĉ, R̂〉 to a later stage. Upon receiving a commitment to
v using 〈Ĉ, R̂〉, R∗ outputs what is indistinguishable from the view and the values committed to by A
when receiving a commitment to v using 〈C,R〉. By the hiding property of 〈Ĉ, R̂〉, we then conclude
that nmcA〈C,R〉(v, z, id) and nmcA〈C,R〉(v

′, z, id) are indistinguishable.
More formally, R∗ internally incorporates a simulated copy of A and emulates a one-many man-

in-the-middle execution by simulating all right receivers and emulating the left 〈C,R〉 interaction by
requesting the appropriate messages expected by A using 〈Ĉ, R̂〉 from outside. For each commitment
in the right interactions, if it fails, nothing has to be done. Otherwise, R∗ has to internally extract
the committed values for each accepting right commitment as long as its tag is different from the left
commitment. Depending on whether or not the determining message of this commitment completes
before the first message of the left commitment, the extraction is divided into two cases. If yes, there
is no need to do extraction, the value (and the corresponding view in this commitment) is given to R∗

as auxiliary inputs or non-uniformly hard-wired into R∗. 7 Otherwise, R∗ has to extract the value. This
is done as follows: The message scheduling technique guarantees that there exists a point at which the

7There is a bit more subtlety here. If the determining message of a right commitment but not the whole commitment
completes before the start of the left commitment, then the value committed and the partial joint view of A in this
commitment are also given to R∗ as auxiliary inputs. R∗ continues the simulation from this partial joint view.
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adversary cannot answer the challenge from the receiver simply by “mauling” the commitments on the
left as long as it uses a tag different from the left commitment (Otherwise, the value is set to ⊥.). Thus,
R∗ keeps rewinding from this point and extracts the value. Through careful analysis, this value is the
right one but not the preimage of the one-way function f .8

Left is the description of commitment scheme 〈Ĉ, R̂〉, which is a variant of 〈C,R〉. Recall that in the
above design of R∗, it needs to extract the value for each right commitment whose determining message
is after the start of the left commitment. Thus, the rewinding on the right may rewind CTComsb in
Stage 1 or special-sound WI proofs in Stage 3 on the left. We adapt 〈Ĉ, R̂〉 to handle the above two
cases. Furthermore, our goal is to ensure that from the adversary’s point of view, it is interacting with
an honest committer and multiple receivers of 〈C,R〉, while actually it is interacting with R∗ (with the
help of Ĉ). Towards this goal, we make two possible modifications to 〈C,R〉. First, this one relates to
the handling of the rewinding of CTComsb. Recall that the commitment scheme CTComsb in Figure 1
is a committed-receiver commitment scheme, where the receiver commits and fixes all of its messages
at the start of the protocol. Thus, the rewinding of CTComsb except the start message has no effect
on the properties of 〈Ĉ, R̂〉. R∗ need interacts with Ĉ only once in Stage 1 and the response to A in
Stage 1 of left commitment is always the same. Second, this relates to the handling of rewindings of
special-sound WI proofs. The receiver can ask for an arbitrary number of special-sound WI designs in
Stage 3. Furthermore, 〈Ĉ, R̂〉 does not have a fixed scheduling in Stage 3; the receiver instead gets to
choose which design to execute in each iteration (by sending bit i to select designi ). Note that, clearly,
any execution of 〈C,R〉 can be emulated by an execution of 〈Ĉ, R̂〉 by simply requesting the appropriate
designs. Using a similar analysis as the proof hiding property of 〈C,R〉, we can show that 〈Ĉ, R̂〉 is
hiding against expected PPT adversaries.

Concurrent trapdoor. The trapdoor property follows from the concurrent trapdoor property of
CTComsb. We construct a PPT oracle machine Ts = (Ts1,Ts2) such that for any polynomial p = p(n),
for any PPT p-concurrent adversary R∗ and for all V = (v1, . . . , vp) where v1, . . . , vp ∈ {0, 1}n, the

two ensembles {staR
∗

〈C,R〉(1
n,V)}V,n,z and {(~τ , aux) ← Ts1

R∗(1n, z), ~ω ← Ts2(aux,V) : (~τ , ~ω)}V,n,z are

computationally indistinguishable. In the following, for brevity, we use notation {Ts(1n,V, z)}V,n,z to
denote the latter ensemble.

More formally, Ts proceeds as follows on input 1n,V, z:

1. Ts1 interacts with the p-concurrent receiver R∗(z).
2. Ts1 simulates Stage 1 of CNMCTCom as follows. It invokes the concurrent trapdoor simulator

T̃s = (T̃s1, T̃s2) for p-concurrent adversary R̂(z) of CTComsb. Let (~τ , aux) ← T̃s1(1n, z′), where
~τ = (τ1, . . . , τp).

3. Ts1 simulates Stage 2 by following the honest committer strategy. Denote by tri,2 the transcript
of Stage 2 in the ith commitment.

4. Ts1 simulates Stage 3 of CNMCTCom as follows. It randomly chooses v′1, . . . , v
′
p ∈ {0, 1}n and

executes ~ω ← T̃s2(v′1, . . . , v
′
p, aux), where ~ω = (ω1, . . . , ωp). For each i ∈ [p], in the i commitment,

Ts1 runs the special-sound WI proofs using ωi as the witness. Denote by tri,3 the transcript of
Stage 3 in the ith commitment.

5. Update τi = τi||tri,2||tri,3.
6. After all the commit phases compete, Ts2 is given inputs V and proceeds as follows. It invokes

~ω ← T̃s2(V, aux). For the ith reveal phase, Ts2 sends ωi.
7. Output (~τ , ~ω).

We show that the output of Ts is indistinguishable from the view of the p-concurrent R∗ in real
executions. We first design a hybrid argument H. On inputs 1n,V, z, H acts identically as Ts except

that in Stage 3, it first invokes T̃s2 on inputs V and aux instead of randomly chosen v′1, . . . , v
′
p and

aux. Then it uses the returned decommitment information from T̃s2 as the “fake witness” to complete
the WI proofs. In the reveal phases, H directly uses the above decommitment information. It follows
from the WI property in Stage 3 that the outputs of Ts(1n,V, z) and H(1n,V, z) are computationally
indistinguishable.

8The proof that the extracted value is the right one is different from that in [LPV08]. Suppose, on the contrary, this is
not the case. Then we will design an algorithm that breaks the one-wayness of the function f or the WI property of the
proof in Stage 2.
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Next we show that the outputs of H(1n,V, z) and staR
∗

〈C,R〉(1
n,V, z) are computationally indistin-

guishable. Suppose, for contradiction, that this is not the case. Without loss of generality, we assume
that R∗ is deterministic. Then, there exists a polynomial-time distinguisher D and a polynomial q(n)
such that for infinitely many n ∈ N, there exist strings v1, . . . , vp ∈ {0, 1}n, z ∈ {0, 1}∗, such that D
distinguishes staR

∗

〈C,R〉(1
n,V, z) and H(1n,V, z) with probability at least 1

q(n) . Fix a generic n for which

this happens. We construct a p-concurrent adversary R̂ that breaks the concurrent trapdoor property
of CTComsb. R̂ on inputs 1n, z,V proceeds as follows. It internally incorporates R∗ and forwards the
external commitments in Stage 1 of all commit phases. It follows the honest committer strategy in Stage
2. In Stage 3, R̂ receives the decommitment information from external and gives the WI proofs using
these witnesses. In the reveal phases, R̂ directly uses the above decommitment information. Finally, R̂
outputs whatever R∗ outputs. It follows that R̂ violates the concurrent trapdoor property of CTComsb

with the same probability that R∗ distinguishes between ensemble staR
∗

〈C,R〉(1
n,V, z) and H(1n,V, z).

B.3.1 The protocol CNMCTCom′

We give a short introduction of the protocol CNMCTCom′ in Remark 5. We claim that CNMCTCom′ is
still concurrent non-malleable and concurrent trapdoor. Roughly, it is straightforward that the binding
property still holds. The hiding property preserves since the special-sound proofs are still WI under
concurrent composition [FS90]. (we can regard the 4t invocations of special-sound WI proofs as 4t
concurrent invocations.) For the concurrent trapdoor property, the simulator is almost identical to that
of CNMCTCom with the exception that it just ignores the trapdoor information extracted from the
CEComsh of Stage 3. In the proof of concurrent non-malleability, the modified commitment scheme
〈Ĉ, R̂〉 is almost the same as that of CNMCTCom with the exception that here the receiver is able to
query polynomial-many special-soundWI proofs where the first message is fixed once and for all in each
session. Here the receiver is weaker than that of CNMCTCom. Thus, the hiding property of 〈Ĉ, R̂〉 still
holds.

Another concurrent trapdoor simulator. Considering the CNMZK protocol in Figure 5, we want
to use the above concurrent trapdoor simulator in the design of the simulator-extractor for CNMZK.
However, the above trapdoor simulator does not suffice upon adaptive corruptions. The main problem
is how to handle adaptive corruptions during special-sound WI proofs. The simulator has to interpret
the proof generated using a “fake witness” as one generated using a real witness. Here we solve the
above problem by letting the committer generate commitments using concurrent trapdoor simulator of
CTComsb in the special-soundWI proofs. Accordingly, we define another concurrent trapdoor simulator
for CNMCTCom′ which is more suitable to the proof of the CNMZK protocol upon corruptions.

We construct a PPT oracle machine Ts = (Ts1,Ts2) such that for any polynomial p = p(n), for
any PPT p-concurrent adversary R∗ and for all V = (v1, . . . , vp) where v1, . . . , vp ∈ {0, 1}n, the two
ensembles {staR

∗

〈C,R〉(1
n,V)}V,n,z and {Ts(1n,V, z)}V,n,z are computationally indistinguishable.

More formally, Ts proceeds as follows on input 1n,V, z:

1. Ts1 interacts with the p-concurrent receiver R∗(z).

2. Ts1 simulates Stage 1 by invoking the concurrent trapdoor simulator T̃s = (T̃s1, T̃s2) of CTComsb.
More precisely, it invokes the concurrent extractor E of CEComsh for p′-concurrent adversary R̂(z),
where p′ = p ∗ (1 + 4t). Let ~τ ,V′ be the corresponding view and extracted values. Ts1 uses
part of ~τ ,V′ to simulate the Stage 1. Denote by auxi the auxiliary information in Stage 1 of ith
commitment, which includes V′ and the randomness used by Ts1.

3. Ts1 simulates Stage 2 by following the honest committer strategy. Denote by tri,2 the transcript
of Stage 2 in the ith commitment.

4. Roughly, Ts1 simulates Stage 3 as follows. It uses the concurrent trapdoor simulator of CTComsb

to generate the commitment and answer the query from the adversary. Note that a nice property
of Blum’s protocol for Hamiltonicity is that the prover only uses a witness in the final round of the
protocol. Thus, we can handle the first two steps a bit easier. More precisely, for simplicity and
without loss of generality, we only describe how to simulate Blum’s basic protocol. Denote by G
the input.

• Ts1 first picks a random permutation π on the vertices and commits to a random graph
G′ = π(G) using the concurrent trapdoor simulator of CTComsb.
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• The adversary picks a random bit challenge b.
• If b = 0, Ts1 sends π along with the revealing of all commitments. Ts1 invokes the concurrent

trapdoor simulator of CTComsb (with the help of ~τ ,V′) to open the commitments to corre-
sponding values, i.e., for each entry (i, j) ∈ G, it opens the commitment corresponding to
(π(i), π(j)) to 1, and for all other entries, it opens to 0. If b = 1, Ts1 chooses a random cycle
C and reveals to the adversary only the commitments to entries (π(i), π(j)) with (i, j) ∈ C
(and the adversary checks that all revealed values are 1 and the corresponding entries form a
simple n-cycle).

Denote by tri,3 the transcript of Stage 3 in the ith commitment.
5. Update τi = τi||tri,2||tri,3.
6. After all the commit phases compete, Ts2 is given inputs V and proceeds as follows. It invokes

~ω ← T̃s2(V, aux). For the ith reveal phase, Ts2 sends ωi.
7. Output (~τ , ~ω).

We show that the output of Ts is indistinguishable from the view of the p-concurrent R∗ in real
executions. We first design a hybrid argument H. On inputs 1n,V, z, H acts identically as Ts except that
in Stage 1, it runs as honest committer and in the reveal phase, it opens the commitments by revealing
the decommitment information in Stage 1. It follows from the concurrent trapdoor property of CTComsb

that the outputs of Ts(1n,V, z) and H(1n,V, z) are computationally indistinguishable.
Next we show that the outputs of H(1n,V, z) and staR

∗

〈C,R〉(1
n,V, z) are computationally indistinguish-

able. For simplicity, we only consider a basic special-soundWI proof. Recall that the difference between
H and the real executions lies in that the former generates “fake” commitments and equivocates them,
whereas the latter generates real commitments and opens them. It follows from the concurrent trapdoor
property of CTComsb that these two outputs are indistinguishable.

B.4 Relations among Commitment Schemes

In the above sections, we give constructions of different kinds of commitment schemes, which will be
used in the construction of adaptively secure CNMZK. In order to better understand these commitment
schemes, we show the relations among them in Figure 6.

A direct line from A to B and a dashed line from C to B mean that the commitment scheme
B is constructed based on the commitment scheme A by replacing part of the primitive in A with
the commitment B. For example, the concurrently extractable and trapdoor commitment scheme in
Figure 2 is almost the same as the concurrently extractable commitment in [MOSV06] except that the
commitment scheme used by the committer is replaced with a concurrent trapdoor one.

Naor’s Commitment Coin Tossing

Concurrently Extractable
Commitment

Concurrent Trapdoor Com-
mitment

Concurrently Extractable
Concurrent Trapdoor Commitment

Non-Malleable
Commitment

Non-Malleable Concurrent
Trapdoor Commitment

Figure 6: Relations among different kinds of commitment schemes.
Dashed line denotes the commitment replaced.
Direct Line denotes the base commitment/tool.
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C The Non-Malleability Proof

Proof of Claim 4.1.

Completeness: It is straightforward. An honest prover knows the witness w and commits to w in
Stage 2, 3 and 4. Thus, it knows w and the decommitment information of commitments in Stage 2, 3
and 4. Moreover, the Cook-Levin reduction from L′ to Hamiltonicity guarantees that given a witness to
x′ ∈ L′, the prover is able to compute a witness to the corresponding instance in Hamiltonicity. Thus,
according to the completeness of MBZKProof, the prover is able to execute the ZK proof and convince
the verifier.

Soundness: The soundness property follows from the hiding property of CEComsh, the binding prop-
erty of CECTComsb and NMCTCom, and the soundness property of MBZKProof in Stage 6. More
formally, if there exists an adversary P∗ such that for infinitely many n ∈ N, there exist x ∈ {0, 1}n ∩ L̄
and a polynomial p(n), such that P∗ convinces an honest verifier the statement x with probability at
least 1

p(n) . We then design an unbounded adversary A that breaks the soundness property of the protocol

MBZKProof for Hamiltonicity. Without loss of generality, we assume that P∗ is deterministic. A on
inputs x, 1n internally runs a copy of P∗. A acts as an honest verifier except that in Stage 6, it forwards
the statement x′ (i.e., the reduction from (x, T2, T3, T4, r) to a directed graph G) and messages to an
external verifier of MBZKProof. As A acts as an honest verifier for P∗ in the protocol CNMZKProof, it
is straightforward that the probability that A convinces the external verifier is at least 1

p(n) . Next we

argue that G is not a Hamiltonian graph. We then conclude that A breaks the soundness property of
MBZKProof. Note that the commitment CEComsh in Stage 1 is statistically hiding, P∗ correctly guesses
the committed value r of A after Stage 1 only with negligible probability. Thus, in Stage 2, 3 and 4,
P∗ commits to a value r with negligible probability. Moreover, as the CECTComsb in Stage 2 and the
NMCTCom in Stage 3 and 4 are statistically binding, P∗ interprets T2, T3 and T4 as commitments to
value r only with negligible probability. On the other hand, x is also a false instance for the language
L. Thus, (x, T2, T3, T4, r) is a false instance for the language L′. Due to the property of the Cook-Levin
reduction, we conclude that the statement G is not a Hamiltonian graph.

Our simulator S is similar to the LPTV protocol except the handling of corruptions. On a high level
view, S attempts to simulate the view of A in one continuously straight-line manner. S will extract the
“fake witnesses” with the help of numerous auxiliary rewinds. 9 The simulator strategy guarantees that
the view of S depends on the extracted “fake witnesses”, but is otherwise independent of the interaction
in auxiliary rewinds.

Note that S may abort in two manners. At the end of CEComsh, if S is unable to extract the
committed value, S outputs ⊥ext. Or, in Stage 5 of a left interaction, if A opens its commitment in
Stage 1 to a value that is different from the extracted value, S outputs ⊥bind. The following claim bounds
the abort probability of S. The proof is essentially the same as the LPTV protocol [LPTV10].

Claim C.1. S outputs ⊥ext and ⊥bind with negligible probability.

C.1 The View Generated by the Simulator

We next show that the view generated by S is indistinguishable from the real view of A.

Lemma C.2. The following ensembles are computationally indistinguishable over n ∈ N:

•
{
S
(

1n, ~X, ~ID, z
)}

n∈N,x1,...,xm∈{0,1}n,id1,...,idm∈{0,1}t(n),z∈{0,1}∗

•
{

viewA
(

1n, ~X, ~ID, z
)}

n∈N,x1,...,xm∈{0,1}n,id1,...,idm∈{0,1}t(n),z∈{0,1}∗

To show Lemma C.2, we introduce a series of hybrid simulators {Hi}0≤i≤m. Hybrid Hi receives the
witnesses of the statement proved in all left interactions and proceeds as follows.

9The “fake witnesses” here means the extracted value committed by A in Stage 1. It consists of four parts: r, e2 for
CECTComsb, ~e3 and ~e4 for NMCTCom. In the following, without confusion, we sometimes call r the fake witness.
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Real Execution Phase: Run the simulator S with the man-in-the-middle adaptive adversary A en-
tirely. Output ⊥ext or ⊥bind if S outputs ⊥ext or ⊥bind. Otherwise, let V be the view of A produced
by S and rj , ej,2, ~ej,3, ~ej,4 be the values extracted by S from the Stage 1 of jth left interaction,
where rj is the “fake witness”, and ej,2, ~ej,3, ~ej,4 are the corresponding extracted values for the
CECTComsb in Stage 2, NMCTCom in Stage 3 and 4, respectively. (see Remark 1.)

Simulation Phase: Let Vi be the prefix of V up until the ith left interaction has completed Stage 1 of
the protocol. Simulate a man-in-the-middle execution with A, continue from Vi in a “straight-line
manner” as follows.

1. Continue of the simulation of right interactions by following the honest verifier strategy (just
like S). Handle adaptive corruptions as S does.

2. For left interaction j ≤ i, simulate the interaction in the same manner as S, i.e., invoke the
concurrent trapdoor simulator of CECTCom to generate the commitment in Stage 2, invoke
the concurrent trapdoor simulator of NMCTCom to generate the commitment in Stage 3 and
4, and run the proof in Stage 6 using the above decommitment information as the witness.
Handle adaptive corruptions as S does.

3. For left interaction j > i, emulate the interaction by following the honest prover strategy.
Handle adaptive corruptions by providing A with the corresponding randomness.

Output Phase: Output ⊥ext or ⊥bind if S returns ⊥ext or ⊥bind. Otherwise, output the newly com-
pleted view of A from the simulation phase.

For 0 ≤ i ≤ m, we also define hybrid H+
i that proceeds identically as Hi except that in the Simulation

Phase, the ith left interaction is simulated by following the honest prover strategy, using the given
real witness (rather than using the concurrent trapdoor simulator). Note that these hybrids are only
concerned with producing the view of A, and do not extract the witnesses of the right interactions.

By construction, Hi and H+
i abort when S aborts. Hence by Claim C.1, we get the following claim.

Claim C.3. For all 0 ≤ i ≤ m, Hi and H+
i output ⊥ with negligible probability.

By Claim C.3, the output of H0 is statistically close to the real view of A (they only differ when H0

aborts, which occurs with negligible probability). The output of Hm, on the other hand, is identical to
the output of simulator S. Therefore, Lemma C.2 follows directly from the Claim C.4 and Claim C.5.

Claim C.4. For each i ∈ [m], the following ensembles are statistically indistinguishable over integer
n ∈ N:

•
{

Hi−1
(

1n, ~X, ~ID, z
)}

n∈N,x1,...,xm∈{0,1}n,id1,...,idm∈{0,1}t(n),z∈{0,1}∗

•
{

H+
i

(
1n, ~X, ~ID, z

)}
n∈N,x1,...,xm∈{0,1}n,id1,...,idm∈{0,1}t(n),z∈{0,1}∗

Proof. Ignoring the fact that H+
i and Hi−1 may abort, their outputs are identical. This is because H+

i and
Hi−1 differ only in that when generating the output view, from the end of Stage 1 of i−1st left interaction
until the end of Stage 1 of the ith left interactions, H+

i employs rewinds. However, these rewinds do not
extract any new “fake witnesses” for use in the output view, and do not skew the output distribution
because the rewinding schedule is oblivious. Moreover, the corruptions are identically handled in both
hybrids. Since both hybrids abort at most with negligible probability by Claim C.3, their outputs are
statistically close.

Claim C.5. For each i ∈ [m], the following ensembles are compuationally indistinguishable over integer
n ∈ N:

•
{

H+
i

(
1n, ~X, ~ID, z

)}
n∈N,x1,...,xm∈{0,1}n,id1,...,idm∈{0,1}t(n),z∈{0,1}∗

•
{

Hi
(

1n, ~X, ~ID, z
)}

n∈N,x1,...,xm∈{0,1}n,id1,...,idm∈{0,1}t(n),z∈{0,1}∗

Proof. The proof of this claim is very different from the LPTV protocol. We has to argue the indis-
tinguishability between the outputs of the two hybrids when adaptive corruptions happen in Stage 2 to
Stage 6 of the ith left interaction. The main difference between hybrids H+

i and Hi is that the ith left
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interaction is generated using a real witness in the former, whereas in the latter it is simulated relying on
the concurrent trapdoor simulator of CECTComsb and NMCTCom. If the adversary A does not corrupt
Pi or it corrupts other provers or verifiers, then with similar analysis, the outputs of H+

i and Hi are
computationally indistinguishable by the concurrent trapdoor property of the commitments in Stage
2, 3 and 4, and the strong witness indistinguishability property of the zero-knowledge proof in Stage
6. Otherwise, according to the point where A corrupts Pi, we classify several cases. Note that upon
corruption, H+

i provides A with the real randomness of Pi, since it runs as honest prover strategy from
Stage 2 to Stage 6.

Corruption in Stage 2: Hybrid Hi provides A with the randomness for the simulated Pi using the
concurrent trapdoor simulator of CECTComsb. It follows from the concurrent trapdoor property of
CECTComsb that the outputs of Hi and H+

i are computationally indistinguishable.
Corruption in Stage 3: Hybrid Hi invokes the concurrent trapdoor simulator of NMCTCom and CTComsb

to generate the randomness used by Pi. We again emphasize that Hi need invokes the concurrent
trapdoor simulator of NMCTCom and provides the randomness used in the special-sound proof (see
the simulator S for details). It follows from the concurrent trapdoor property of Stage 2 and 3,
and the concurrent trapdoor property of CTComsb in Stage 3 that the outputs of the two hybrids
are computationally indistinguishable.

Corruption in Stage 4: Hi handles corruptions as in Stage 3. It follows from the concurrent trapdoor
property of Stage 2,3 and 4 that the outputs of the two hybrids are computationally indistinguish-
able.

Corruption in Stage 6: Recall that Hi uses a fake witness to generate the proof. Upon corruption,
it has to explain it as a proof generated using a real witness. It follows from the concurrent
trapdoor property of Stage 2, 3 and 4, and the strong WI property of MBZKProof (along with the
adaptive trapdoor property of AIDCom) that the outputs of the two hybrids are computationally
indistinguishable.

C.2 The Witness Output by the Simulator

Next we show that the extracted witnesses are indeed the NP witnesses of the statements proved in
the right interactions. Note that if A commits to a valid witness using CECTComsb in Stage 2 of a
right interaction, then by Claim C.1, the simulator S would extract this witness except with negligible
probability. We argue the correctness of the output witnesses in the following lemma.

Lemma C.6. For every probabilistic polynomial-time adaptive adversary A, for every n ∈ N, x1, . . . , xm ∈
{0, 1}n ∩ L and z ∈ {0, 1}∗, for every id1, . . . , idm ∈ {0, 1}t(n), the probability that A fails to commit to a
valid witness in Stage 2 of a right interaction that is accepting for an honest verifier and uses a different
tag from all left interactions, is negligible.

Our proof follows the structure of the proof of LPTV protocol. The LPTV protocol argues the
correctness of the witnesses output by the simulator in the following three steps (Our notation is little
different from theirs and we use our notation to describe their result.).

1. In hybrid H0 (i.e., identical to real execution execept with negligible probability), the adversary A
commits to a real witness for each right accepting interaction as long as the verifier is not corrupted
and the tag is different from all left interactions.

2. The view and the witnesses output by Hi−1 and H+
i are statistically indistinguishable.

3. The view and the witnesses output by H+
i and Hi are computationally indistinguishable.

They then conclude that in Hm (which is the simulator S), A commits to a real witness for each right
accepting interaction with an uncorrupted verifier that uses a tag different from all left interactions. We
also argue the correctness of witnesses output by the simulator following the above three steps. When
no corruptions happen, we can alternatively analyze the above three steps in the same manner as the
LPTV protocol. But for general cases, we apply a quite different analysis. In the following, we only
consider the above three steps when adaptive corruptions happen. The proof for the first two steps are
simple. We omit the details here. The tricky part is the third step, which is established in Claim C.7.
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Claim C.7. The view and the witness output by hybrid H+
i and Hi are computationally indistinguishable.

The hybrids Hi and H+
i act identically until the completion of Stage 1 of the ith left interaction.

According to Lin et al. [LPTV10], this point is called the cut-off point. The only difference after the
cut-off point between the two hybrids is the remaining ith left interaction, in which Hi uses the “fake
witness” (in addition to the concurrent trapdoor simulator of CECTComsb and NMCTCom), and H+

i uses
a real witness. For each right interaction, the message scheduling by A is categorized in the following
three cases, see Figure 7.
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Figure 7: The three scheduling in a man-in-the-middle execution of A

Scheduling 1: A completes the Stage 2 commitment on the right before the cut-off point.
Scheduling 2: A completes the Stage 2 commitment after the cut-off point, but completes the Stage 3

commitment and proof before the start of the Stage 6 of the ith left interaction.
Scheduling 3: A completes the Stage 2 commitment after the cut-off point, and completes the Stage 3

commitment and proof after the start of the Stage 6 of the ith left interaction.

We define Hi,j where j ∈ {1, 2, 3}, which acts identically as Hi except that it outputs ⊥ if the
scheduling j does not occur in the output view. Define H+

i,j correspondingly for H+
i . The extracted value

in each right interaction is defined to be ⊥ if the interaction is not successfully completed or its tag is
the same as one of the left interaction, or the hybrid fails. Define the output of H+

i,j correspondingly

for H+
i . Next we show that for each right interaction and j ∈ {1, 2, 3}, the output of Hi,j and H+

i,j are
computationally indistinguishable. In the following, we omit the index of the right interaction explicitly,
as the following claims hold for every right interaction with an uncorrupted verifier that is accepting and
has a tag different from all left interactions.

C.2.1 The Scheduling 1

For the case for Scheduling 1, we get the following claim.

Claim C.8. For every 0 ≤ i ≤ m the outputs of Hi,1 and H+
i,1 are computationally indistinguishable,

i.e., {
Hi,1

(
1n, ~X, ~ID, z

)}
n, ~X, ~ID,z

c≡
{

H+
i,1

(
1n, ~X, ~ID, z

)}
n, ~X, ~ID,z

Proof. Since both hybrids act identically before the cut-off point and the commitment in Stage 2 of right
interaction is before the cut-off point, the extracted value in Stage 2 of right interaction is identical.
By Claim C.5, it follows that the view of the adversary in both hybrids are computationally indistin-
guishable. Thus, we conclude that the view and the committed value on the right are computationally
indistinguishable.
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C.2.2 The Scheduling 2

For the case for Scheduling 2, we get the following claim.

Claim C.9. For every 0 ≤ i ≤ m, the outputs of Hi,2 and H+
i,2 are computationally indistinguishable,

i.e., {
Hi,2

(
1n, ~X, ~ID, z

)}
n, ~X, ~ID,z

c≡
{

H+
i,2

(
1n, ~X, ~ID, z

)}
n, ~X, ~ID,z

Proof. Note that Stage 3 to Stage 6 of the right interaction in Hi,2 and H+
i,2 are simulated completely

after the cut-off point in a straight-line fashion. It follows from the soundness property of Stage 6 that,
except from negligible probability, A always commits to the same value in Stage 2, 3 and 4 on the right,
provided that the right interaction is accepting. Hence, in order to prove Claim C.9, it is sufficient to
show that the view and the value v that A commits to in Stage 3 are indistinguishable. According to the
point where A corrupts Pi (all other corruptions are handled identically in both hybrids), we distinguish
among the following cases: corruption in Stage 2, 3, 4 and 6. We only prove the most complicated case,
i.e., corruption in Stage 6. Other cases can be proved in a similar but simper way. Towards proving this,
we introduce a sequence of hybrids {Hji:2}0≤j≤4.

Hybrid H0
i:2 proceeds identically to H+

i:2 except that in H0
i:2, Stage 6 of the ith left interaction is now

simulated by invoking the simulator of the ZK protocol MBZKProof. Since the Stage 3 commitment
on the right completes before the Stage 6 of the left interaction, the value committed to by the
adversary A in Stage 3 is independent of the ZK proof. Left is the handling of corruptions. Upon
corruption, H0

i:2 proceeds identically as H+
i:2 except that in Stage 6, it has to explain the proof as

one generated using real witness.
Recall the simulator of MBZKProof. (The reader is refereed to [LZ09] for details.) The ZK simulator
first guesses the challenge of the adversary and prepares its message accordingly. If the guess is
right, then the simulator proceeds smoothly without difficulty. Otherwise, the simulator keeps on
rewinding the adversary and making a new guess until the guess is right. Next we first discuss
the simulation in Stage 6 in detail and then describe how H0

i:2 hands corruptions in Stage 6. For
simplicity, we only give a short description of Blum’s basic protocol for Hamiltonicity.

Step 1: H0
i:2 makes a random guess b ∈ {0, 1}. If b = 0, H0

i:2 selects a random permutation π of
the vertices of G, and commits to the adjacency matrix of the π(G) using the algorithm Com
of protocol AIDCom. If b = 1, H0

i:2 creates an adjacency matrix of a graph containing only a
random cycle C of length n (all other entries are set to 0). It then uses Com to commit to all
1’s in the adjacency matrix. All other entries are filled with commitment values created by
the fake algorithm Com′.

Step 2: It receives a challenge bit b′ from the adversary A.
Step 3: If b 6= b′, H0

i:2 rewinds the adversary to the first step. Otherwise, if b = b′ = 0, H0
i:2 sets

the prover’s second message to be decommitments to all entries at the adjacency matrix and
π; if b = b′ = 1, H0

i:2 decommits to all 1’s in the adjacency matrix (i.e., the cycle π(C).).
Corruption: Denote by C ′ the new Hamiltonian cycle in G reduced from the witness wi (in

addition to real decommitment information of T2, T3, T4 to wi). If b = b′ = 0, the first step
message has been created exactly as in a real run of the protocol and the simulator can provide
A with the random coins used to create the commitment. If b = b′ = 1, S has to make the
commitments except the cycle C consistent with the witness C ′. More precisely, S proceeds
as follows: find a random permutation π′ between the two Hamiltonian cycles C ′ and C,
i.e., C = π′(C ′). Compute H = π′(G). For every edge (u, v) ∈ C, it provides A with the
randomness used by Com to commit to 1. For every edge (u, v) ∈ H and (u, v) /∈ C, S uses
algorithm Adapt to obtain random coins such that the appropriate commitment value in the
adjacency matrix is a commitment to 1. For every edge (u, v) /∈ H, S uses algorithm Adapt
to obtain random coins such that the appropriate commitment value in the adjacency matrix
is a commitment to 0. S provides A with the input wi and the set of random coins described
above as well as π′.

It follows from the adaptive zero-knowledge property of MBZKProof that the view and the value
A commits to is computationally indistinguishable in H+

i,2 and H0
i:2.
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Hybrid H1
i:2 proceeds identically to H0

i:2 except that in H1
i:2, Stage 2 of the ith left interaction is now a

commitment generated by the concurrent trapdoor simulator of Ts2 of CECTComsb. Upon corrup-
tion, H1

i:2 provides A with the simulated randomness for Pi in Stage 2 of the ith left interaction by
invoking Ts2 and opening the commitment in Stage 2 to wi. Moreover, it uses this decommitment
information as part of the witness (in addition to decommitment information in Stage 3 and 4) to
handle corruption in the zero-knowledge proof. (all other stages are handled identically as H0

i:2.).
It follows from the concurrent trapdoor property of CECTComsb and non-malleability w.r.t `(n)-
round protocols of NMCTCom (and the fact that Stage 2 of the protocol consist of `(n) rounds)
that the view and the value A commits to is computationally indistinguishable in H0

i:2 and H1
i:2.

Hybrid H2
i:2 (and H3

i:2 resp.) proceeds identically to H1
i:2 (and H2

i:2 resp.) except that in H2
i:2 (and

H3
i:2 resp.), Stage 3 (and Stage 4 resp.) of the ith left interaction is now a simulated commitment

generated by the concurrent trapdoor simulator Ts3 (and Ts4 resp.) of NMCTCom. Upon cor-
ruption, H1

i:2 provides A with the simulated randomness for Pi in Stage 3 (and Stage 4 resp.) of
the ith left interaction by invoking Ts3 (and Ts4 resp.) and opening the commitment in Stage 3
(and Stage 4 resp.) to wi (in addition to the handling of the special-sound proof). Moreover, in
Stage 6, H2

i:2 (and H3
i:2 resp.) uses this decommitment information as part of the witness to handle

corruptions in the zero-knowledge proof. (all other stages are handled identically as H1
i:2 (and H2

i:2

resp.).) It follows from the concurrent trapdoor property of NMCTCom and the non-malleability
w.r.t itself of NMCTCom that the view and the value A commits to in Stage 3 is computationally
indistinguishable in H2

i:2 and H3
i:2 (and in H3

i:2 and H4
i:2 resp.).

Hybrid H4
i:2 proceeds identically to H3

i:2 except that, Stage 6 of the ith left interaction is simulated by
proving the Stage 2, 3 and 4 are valid commitments to the value ri revealed by A in Stage 5 of this
interaction. More precisely, H4

i:2 first invokes the concurrent trapdoor simulators of CECTComsb and
NMCTCom and opens the corresponding commitments to ri. Then H4

i:2 uses these decommitment
information as the witness to run the zero-knowledge proof in Stage 6 just as the simulator S does
(H4

i:2 uses Com′ of AIDCom to generate commitments to the adjacency matrix of the permutated
graph.). Upon corruption, H4

i:2 would explain the commitments in Stage 2, 3 and 4 as to the real
witness wi and explain the proof in Stage 6 as one generated using real witness. Note that, by
definition, H4

i:2 proceeds identically to the hybrid Hi:2. Hybrid H3
i:2 and H4

i:2 differ only in how the
proof in Stage 6 of the ith left interaction is simulated and handled upon corruption. In Stage 6,
H3
i:2 would simulate by invoking the ZK simulator while H4

i:2 opens the commitments in Stage 2, 3
and 4 to ri and uses this as the witness to run the ZK protocol. Upon corruption, both H3

i:2 and
H4
i:2 explain the proof as one generated using real witness wi. Since in Scheduling 2, the Stage

3 commitment on the right completes before the Stage 6 proof starts, the value A commits to in
Stage 3 is independent of the zero-knowledge proof. Therefore, it follows from the WI property of
the zero-knowledge protocol and the adaptive trapdoor property of AIDCom that the view and the
value A commits to in Stage 3 are computationally indistinguishable in H3

i:2 and H4
i:2 .

Next we formally prove that the outputs of neighbor hybrids above are computationally indistinguish-
able. Without loss of generality, we only prove the most complicated case where corruptions happen in
Stage 6 of the ith left interaction. Other cases can be proved in a similar and simpler way. Note that for
the ith left interactions (except Stage 1) of the above hybrids, we only explicitly deal with corruptions
of Pi, since all other corruptions are handled identically in neighbor hybrids.

Claim C.10. For every 0 ≤ i ≤ m, the outputs of H+
i:2 and H0

i:2 are computationally indistinguishable.

Proof. Assume, for contradiction, that there exists an adversary A, a distinguisher D and a polynomial
p, such that for infinitely many n, ~X = (x1, . . . , xm) where xi ∈ {0, 1}n ∩ L, ~ID = (id1, . . . , idm) where

idi ∈ {0, 1}t(n), ~W = (w1, . . . , wm) where wi ∈ RL(xi) and z ∈ {0, 1}∗, D distinguishes H+
i:2(1n, ~X, ~ID, z)

and H0
i:2(1n, ~X, ~ID, z) with probability at least 1

p(n) . We then show how this violates the adaptive zero-

knowledge property of MBZKProof.
Note that the two hybrids H+

i:2 and H0
i:2 proceed identically before the Stage 6 commitment of the

ith left interaction. Therefore, there must exist a partial joint view τ of all parties that defines the
execution before Stage 6 of the ith left interaction, such that D distinguishes {H+

i:2(1n, ~X, ~ID, z)|τ} and
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{H0
i:2(1n, ~X, ~ID, z)|τ} with probability at least 1

2p(n) , where {H0
i:2(1n, ~X, ~ID, z)|τ} denotes the outputs of

H0
i:2(1n, ~X, ~ID, z) conditioned on the event that the execution is consistent with joint view τ .

We now construct an adversary Ã that breaks the adaptive ZK of MBZKProof. 10 Ã, upon auxiliary
inputs ~X, ~W, ~ID, z, τ , internally emulates a man-in-the-middle execution with A from τ as follows. It
emulates the interactions for A just as H+

i:2 with the following exceptions.

• In Stage 6 of the ith left interaction, Ã hands the statement x′ = {(x, T2, T3, T4, r)} to the external
party. It also sends to the external party the “fake” witness to x′. (The non-uniform Ã has hard-
wired the decommitment information in Stage 2, 3 and 4 or the trapdoor information.) It next
relays the message between the external party and A.

• Upon corruption of Pi in Stage 6, Ã explains the Stage 2, 3 and 4 commitments (in τ) as to wi
and sends the real witness to x′ to the external party. Then it forwards the response to A. All
other corruptions are handled identically as H+

i:2.

Denote by V the view of Ã in the above executions. Denote by v committed to by Ã. The distinguisher
D̃, on input the view of V and the value v, reconstructs the view VA and the value v committed to by A
in Stage 3 in emulation by Ã. Finally, D̃ invokes the distinguisher D on VA and v, and outputs whatever
D outputs. When Ã interacts with the prover of MBZKProof, the view VA and the v are identically
distributed to {H0

i:2(1n, ~X, ~ID, z)|τ}. When Ã interacts with the simulator of MBZKProof, the view VA
and the v are identically distributed to {H+

i:2(1n, ~X, ~ID, z)|τ}. We claim that D̃ distinguishes the two
ensembles with probability 1

2p(n) , which contradicts with the ZK of MBZKProof.

Claim C.11. For every 0 ≤ i ≤ m, the outputs of H0
i:2 and H1

i:2 are computationally indistinguishable.

Proof. Assume, for contradiction, that there exists an adversary A, a distinguisher D and a polynomial
p, such that for infinitely many n, ~X = (x1, . . . , xm) where xi ∈ {0, 1}n ∩ L, ~ID = (id1, . . . , idm) where

idi ∈ {0, 1}t(n), ~W = (w1, . . . , wm) where wi ∈ RL(xi) and z ∈ {0, 1}∗, D distinguishes H0
i:2(1n, ~X, ~ID, z)

and H1
i:2(1n, ~X, ~ID, z) with probability at least 1

p(n) . We then show how this violates the robustness of

NMCTCom. 11

Note that the two hybrids H0
i:2 and H1

i:2 proceed identically before the Stage 2 commitment of the ith
left interaction. It again follows using an averaging argument that, there must exist a partial joint view τ
of all parties that defines the execution before Stage 2 of the ith left interaction, such that D distinguishes
{H0

i:2(1n, ~X, ~ID, z)|τ} and {H1
i:2(1n, ~X, ~ID, z)|τ} with probability at least 1

2p(n) . Let ei be the second

extracted value (i.e., the trapdoor information of CECTComsb) in Stage 1 of the ith left interaction. Let
ρ be the partial transcript of the CEComsh part in CECTComsb of the ith left interaction. Consider the
machine B(0n) and B(1n). B(0n), on inputs ei, wi, continues the execution from ρ and commits to wi
using CECTComsb. Upon decommitment query, B(0n) provides the adversary with the randomness used
in generating the commitment. B(1n), on inputs ei, wi and the partial transcript ρ of the CEComsh part,
continues the execution from ρ and generates a commitment using the concurrent trapdoor simulator
Ts2 of CECTComsb. Upon decommitment query, B(1n) opens the commitment to wi and provides the
adversary with the simulated randomness used in generating the commitment with the help of Ts2. Due
to the concurrent trapdoor property of CECTComsb, no PPT adversary can distinguish interactions with
B(0n) and B(1n).

We now construct an adversary Ã that breaks the non-malleability w.r.t O(`(n))-round protocols of
NMCTCom, i.e., the view and the value that Ã commits to after interacting with B(0n) and B(1n) can

be distinguished by a distinguisher D̃. Ã, upon auxiliary inputs ~X, ~W, ~ID, z, τ , internally emulates a
man-in-the-middle execution with A from τ as follows. It emulates the interactions for A just as H0

i:2

with the following exceptions.

10We compare between a real execution and a simulated execution. The real execution is slightly different from the
execution between an honest prover and an adversary. Here the prover knows the real witness but cheats in the proof.

11The non-malleability requirement of NMCTCom here and the Definition A.7 differ in two aspects. First, in the com-
mitment on the left interaction, the former is either a regular commitment or a simulated commitment generated by the
trapdoor simulator, moreover, the trapdoor information (as auxiliary input) is known in advance, whereas the latter is
a regular commitment to either values. Second, the internal randomness of the committer on the left might be revealed
upon corruption in the former (both commitments opens to the same value), whereas it is hidden in the latter. Due to the
trapdoor property of NMCTCom, we claim that the non-malleability property still preserves in this case and the proof in
Appendix B.3 can be modified to adapt this setting.
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• To emulate the Stage 2 of the ith left interaction, it externally sends B the witness wi and the
extracted value ei. It next forwards the commitment from B to A.

• In Stage 3 of the right interaction, it externally forwards messages from A to an honest receiver of
NMCTCom.

• Upon corruption of Pi in Stage 2 and afterwards, Ã sends the decommitment query to B and
forwards the response to A. All other corruptions are handled identically as H0

i:2.

Denote by V the view of Ã in the above executions. Denote by v committed to by Ã. The distinguisher
D̃, on input the view of V and the value v, reconstructs the view VA and the value v committed to by
A in Stage 3 in emulation by Ã. Finally, D̃ invokes the distinguisher D on VA and v, and outputs
whatever D outputs. When Ã interacts with B(bn), the view VA and the v are identically distributed

to {Hbi:2(1n, ~X, ~ID, z)|τ}. We claim that D̃ distinguishes the view and the values committed by Ã using
NMCTCom with probability 1

2p(n) , which contradicts with the robustness of NMCTCom.

Claim C.12. For every 0 ≤ i ≤ m, the outputs of H1
i:2 and H2

i:2 are computationally indistinguishable.

Proof. Assume, for contradiction, that there exists an adversary A, a distinguisher D and a polynomial
p, such that for infinitely many n, ~X = (x1, . . . , xm) where xi ∈ {0, 1}n ∩ L, ~W = (w1, . . . , wm) where

wi ∈ RL(xi), ~ID = (id1, . . . , idm) where idi ∈ {0, 1}t(n), and z ∈ {0, 1}∗, D distinguishes H1
i:2(1n, ~X, ~ID, z)

and H2
i:2(1n, ~X, ~ID, z) with probability at least 1

p(n) . We then show how this violates the non-malleability

w.r.t itself of NMCTCom.
Note that the two hybrids H1

i:2 and H2
i:2 proceed identically before the Stage 3 commitment of the

ith left interaction is sent. Using an averaging argument, it follows that there must exist a partial joint
view τ of all parties that defines the execution before Stage 3 of the ith left interaction, such that D
distinguishes {H1

i:2(1n, ~X, ~ID, z)|τ} and {H2
i:2(1n, ~X, ~ID, z)|τ} with probability at least 1

2p(n) . Let ~ei be

the third part of the extracted values (i.e., the trapdoor information of NMCTCom) in Stage 1 of the ith
left interaction.

We now construct an adversary Ã that breaks the non-malleability w.r.t itself of NMCTCom. Ã,
upon auxiliary inputs ~X, ~W, ~ID, z, τ , internally emulates a man-in-the-middle execution with A from τ
as follows. It emulates the interactions for A just as H1

i:2 with the following exceptions.

• To emulate the Stage 3 of the ith left interaction, it externally sends the committer (i.e., honest
committer or trapdoor simulator) of NMCTComsb the witness wi and the extracted value ~ei. It
next forwards the commitment from the external committer to A.

• In Stage 3 of the right interaction, it externally forwards messages from A to an honest receiver of
NMCTCom.

• Upon corruption of Pi in Stage 3 and afterwards, Ã asks the external committer of NMCTCom to
provide A with the internal randomness, i.e., decommitment information. All other corruptions
are handled identically as H1

i:2.

Denote by V the view of Ã in the above executions. Denote by v committed to by Ã. The distinguisher
D̃, on input the view of V and the value v, reconstructs the view VA and value v committed to by A
in the emulation by Ã. Finally, D̃ invokes the distinguisher D on VA and the committed value v,
and outputs whatever D outputs. From the construction, when Ã interacts with real committer of
NMCTCom, the view VA and v is identically distributed to {H1

i:2(1n, ~X, ~ID, z)|τ}. When Ã interacts
with trapdoor simulator (knowing trapdoor in advance) of NMCTCom, the view VA and v is identically

distributed to {H2
i:2(1n, ~X, ~ID, z)|τ}. We claim that D̃ distinguishes the view and the value committed

by Ã using NMCTCom with probability 1
2p(n) , which contradicts with the non-malleability w.r.t itself of

NMCTCom.

It follows from the same argument as in H2
i:2 that the following claim holds.

Claim C.13. For every 0 ≤ i ≤ m, the outputs of H2
i:2 and H3

i:2 are computationally indistinguishable.

Claim C.14. For every 0 ≤ i ≤ m, the outputs of H3
i:2 and H4

i:2 are computationally indistinguishable.

Proof. Assume, for contradiction, that there exists an adversary A, a distinguisher D and a polynomial
p, such that for infinitely many n, ~X = (x1, . . . , xm) where xi ∈ {0, 1}n ∩ L, ~W = (w1, . . . , wm) where
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wi ∈ RL(xi), ~ID = (id1, . . . , idm) where idi ∈ {0, 1}t(n) and z ∈ {0, 1}∗, D distinguishes H3
i:2(1n, ~X, ~ID, z)

and H4
i:2(1n, ~X, ~ID, z) with probability at least 1

p(n) . We then show how this violates the adaptive zero-

knowledge property of MBZKProof.12

Note that the two hybrids H3
i:2 and H4

i:2 proceed identically before the Stage 6 proof of the ith left
interaction is sent. Using an averaging argument, it follows that there must exist a partial joint view τ of
all parties that defines the execution before Stage 6 of the ith left interaction, such that D distinguishes
{H3

i:2(1n, ~X, ~ID, z)|τ} and {H4
i:2(1n, ~X, ~ID, z)|τ} with probability at least 1

2p(n) . Let decreal (decfake resp.)

be the whole decommitments information to wi (to ri opened by the adversary in Stage 5 resp.) in Stage
2, 3 and 4 of the ith left interaction. Let v be the value committed to by A on the right.

We now construct an adversary Ã such that the view of the adversary after receiving a simulated
MBZKProof proof (as in H3

i:2) and a “real” proof (as in H4
i:2) can be distinguished by a distinguisher D̃.

Ã, upon auxiliary inputs ~X, ~W, ~ID, z, τ , internally emulates a man-in-the-middle execution with A from
τ as follows. Ã proceeds as H3

i:2 with the following exceptions.

• To emulate the Stage 6 of the ith left interaction, it externally sends the party the witnesses to
x′ = {(x, T2, T3, T4, r)}, i.e., the witness reduced from decfake. It next forwards the proof from the
external to A.

• Upon corruption of Pi in Stage 6, Ã explains the Stage 2, 3 and 4 commitments (in τ) to wi and
sends the real witness to x′ to the external party, i.e., the witness reduced from decreal. Ã asks the
external party to provide the internal A with the randomness, i.e., randomness used in generating
the permutated graph in MBZKProof. All other corruptions are handled identically as H3

i:2.

Denote by V the joint view of all parties in the above executions. The distinguisher D̃, on input the
view of V, and the value v committed to by Ã, reconstructs the view VA and the value v committed
to by A in the emulation of Ã. D̃ then invokes the distinguisher D on VA and the committed value v,
and outputs whatever D outputs. From the construction, when Ã interacts with the external simulator,
the view VA and the v is identically distributed to {H3

i:2(1n, ~X, ~ID, z)|τ}. When Ã interacts with the

external prover, the view VA and the v is identically distributed to {H4
i:2(1n, ~X, ~ID, z)|τ}. It follows that

D̃ distinguishes the view of Ã using MBZKProof with probability 1
2p(n) , which contradicts the adaptive

zero-knowledge property of MBZKProof (actually, the adaptive trapdoor property of AIDCom.).

C.2.3 The Scheduling 3

For the case for Scheduling 3, we get the following claim.

Claim C.15. For every 0 ≤ i ≤ m, the outputs of Hi,3 and H+
i,3 are computationally indistinguishable,

i.e., {
Hi,3

(
1n, ~X, ~ID, z

)}
n, ~X, ~ID,z

c≡
{

H+
i,3

(
1n, ~X, ~ID, z

)}
n, ~X, ~ID,z

Proof. Due to the soundness property of zero-knowledge protocol, the man-in-the-middle adversary al-
ways commits to the same value in Stage 2, 3 and 4. As the Stage 3 of right interaction completes after
the Stage 6 of the ith left interaction, the Stage 4 of right interaction starts after the Stage 6 of the ith
left interaction. It follows from the non-malleability w.r.t ω(1)-round protocols of NMCTCom and the
strong WI property of the zero-knowledge protocol (in addition to the concurrent trapdoor property of
CECTComsb and NMCTCom) that the outputs of Hi,3 and H+

i,3 are computationally indistinguishable.
More formally, according to the point where A corrupts Pi, we distinguish among the following cases:

corruption in Stage 2, 3, 4 and 6. We only prove the most complicated case, i.e., corruption in Stage 6.
Other cases can be proved in a similar but simper way. Note that we only explicitly deal with corruption
of Pi in the ith left interaction (except Stage 1), since all other corruptions are handled identically in
hybrids Hi,3 and H+

i,3.
Assume, for contradiction, that there exists an adversary A, a distinguisher D and a polynomial

p, such that for infinitely many n, ~X = (x1, . . . , xm) where xi ∈ {0, 1}n ∩ L, ~W = (w1, . . . , wm) where

12Here the MBZKProof is ZK between a “real’ execution and a simulated execution. In the real execution, the prover
generates fake commitments to a permuted graph using Com′ of AIDCom and answers the challenges of the adversary
using Adapt of AIDCom with witness w1. Upon corruptions, the prover provides the adversary with the randomness which
explains the messages as generated using another witness w2 (see the simulation strategy of S).
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wi ∈ RL(xi), ~ID = (id1, . . . , idm) where idi ∈ {0, 1}t(n), and z ∈ {0, 1}∗, D distinguishes Hi,3(1n, ~X, ~ID, z)

and H+
i,3(1n, ~X, ~ID, z) with probability 1

p(n) . We then show how this violates the non-malleability w.r.t

ω(1)-round protocols of NMCTCom.
Towards this goal, first note that the two experiment Hi,3 and H+

i,3 proceed identically before the
Stage 2 commitment of the ith left interaction. Using an averaging argument, there must exist a partial
joint view τ of all parties that defines the execution before Stage 2 of the ith left interaction, such
that D distinguishes {Hi,3(1n, ~X, ~ID, z)|τ} and {H+

i,3(1n, ~X, ~ID, z)|τ} with probability at least 1
2p(n) . Let

ri, ei,2, ~ei,3, ~ei,4 be the extracted values in Stage 1 of the ith left interaction. Consider the machine B(0n)
which upon receiving wi, provides a commitment to CECTComsb and two commitments to NMCTCom to
wi honestly (Recall that part of these commitments are in Stage 1.). Upon decommitment query, B(0n)
provides the internal randomness of committer in these commitments. Consider another machine B(1n)
which upon receiving ri, ei,2, ~ei,3, ~ei,4, provides a commitment CECTComsb and two commitments to
NMCTCom using all the concurrent trapdoor simulator accordingly. Upon decommitment query, B(1n)
explains these commitments as to wi. It follows from the concurrent trapdoor property of CECTComsb

and NMCTCom that no PPT adversary can distinguish between B(0n) and B(1n).
We now construct an adversary Ã. Ã, upon receiving wi, ri, ei,2, ~ei,3, ~ei,4 and τ as auxiliary inputs,

internally emulates a man-in-the middle execution with A from τ as follows. Ã proceeds as Hi:3 with
the following exceptions.

• To emulate the Stage 2, 3 and 4 of the ith left interaction, it externally sends B the values
wi, ri, ei,2, ~ei,3, ~ei,4. It next forwards the messages from B to A.

• Upon corruptions of Pi in Stage 2, 3 or 4, Ã sends decommitment query to B and forwards the
messages from B to Ã, i.e., the simulated randomness of Pi. All other corruptions are handled
identically as Hi:3.
• Ã aborts interactions with A at the outset of the Stage 6 of the ith left interaction.

Denote by Vpart the joint view of all parties in the above executions. Denote by x′ = (x, T2, T3, T4, r)
the proof statement in Stage 6 of the ith left interaction. Denote by w′ the witness for the statement
x′ ∈ L′ in the above execution. If Ã interacts with B(0n), then consider the machine B(0n), which upon
receiving x′, w′ and the trapdoors e2, ~e3, ~e4 as auxiliary inputs, generates a MBZKProof proof honestly. If
Ã interacts with B(1n), then consider the machine B(1n), which upon receiving x′, w′ and the trapdoors
r, e2, ~e3, ~e4 as auxiliary inputs, generates a MBZKProof proof as S. Upon corruptions, B(1n) uses the
trapdoors to explain the commitment in Stage 2, 3 and 4 as to wi and explain the MBZKProof proof
as one generated using the real witness. It follows from the strong WI property of MBZKProof that no
PPT distinguisher can distinguish interactions with B(0n) and B(1n).

Next we design an adversary A′ such that the view and the value that A′ commits to after interacting
with B(0n) and B(1n) can be distinguished by a distinguisher D̃. A′ on input the view of Vpart, first
emulates the interactions for A from the view Vpart. Then A′ continues the executions of the remaining
interactions for A. It emulates the left provers and right verifiers for A just as Hi,3 with the following
exceptions.

• To emulate the Stage 6 of the ith left interaction, A′ sends the proof statement x′ = (x, T2, T3, T4, r)
to the external B. Then A′ forwards the proof to A. Here we emphasize that B is given the private
information of prover in the view Vpart, i.e., w′, e2, ~e3, ~e4.

• In Stage 4 of the right interaction, it externally forwards messages from A to an honest receiver of
NMCTCom.

• Upon corruption of Pi in Stage 6 of the ith left interaction, A′ asks B to provide the simulated
randomness of Pi. All other corruptions are handled identically as Hi,3.

The distinguisher D̃, on input the view and the values v committed to by A′, reconstructs the view
VA and value v committed to by A in Stage 4 of the above executions. D̃ then invokes the distinguisher
D on the constructed view and the value and outputs whatever D outputs. Note that if Ã interacts
with B(0n) (B(1n) resp.), then the reconstructed view VA and the committed value v are identically

distritbuted to {H+
i,3(1n, ~X, ~ID, z)|τ} ( {Hi,3(1n, ~X, ~ID, z)|τ} resp.). It follows that D̃ distinguishes the

view and the value committed to by A′ using NMCTCom with probability 1
2p(n) , which contradicts the

non-malleability w.r.t ω(1)-round protocols of NMCTCom.
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D Blum’s Basic Protocol for Hamiltonicity

Following is the description of Blum’s basic protocol for Hamiltonicity [Blu86]. The protocol is a zero-
knowledge proof with soundness error 1

2 . By parallel execution of the basic protocol, the soundness error
can be reduced to 2−n. However, the zero-knowledge property is lost.

Common Input: A directed graph G = (V,E) with n
def
= |V |.

Auxiliary Input to Prover: A directed Hamiltonian cycle, C ⊂ G, in G
Step 1: The prover selects a random permutation π of the vertices V , and commits (using a

perfectly-binding commitment scheme) the entries of the adjacency matrix of the resulting per-
mutated graph. That is, it sends an n-by-n matrix of commitments so that the (π(i), π(j))th

entry is a commitment to 1 if (i, j) ∈ E, and is a commitment to 0 otherwise.
Step 2: The verifier sends a random chosen bit b ∈ {0, 1}.
Step 3: If b = 0 then the prover sends π to the verifier along with the revealing of all commitments

(and the verifier checks that the revealed graph is indeed isomorphic to G via π); If b = 1,
the prover reveals to the verifier only the commitments to entries (π(i), π(j)) with (i, j) ∈ C
(and the verifier checks that all revealed values are 1 and the corresponding entries form a
simple n-cycle). In both cases check that the decommitments are valid. Accept if only if the
corresponding conditions holds.

Figure 8: Blum’s basic protocol for Hamiltonicity
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