
Receipt Freeness of Prêt à Voter
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2 Université du Luxembourg

Abstract. Prêt à Voter is an end-to-end verifiable voting scheme that
is also receipt free. Formal method analysis was used to prove that Prêt
à Voter is receipt free. In this paper we use one of the latest versions of
Prêt à Voter [XCH+10] to prove receipt freeness of the scheme using
computational methods. We use provable security game models for the
first time to prove a paper based voting scheme receipt free. In this
paper we propose a game model that defines receipt freeness. We show
that in order to simulate the game we require IND-CCA2 encryption
scheme to create the ballots. The usual schemes used in constructing
Prêt à Voter are either exponential ElGamal or Paillier because of their
homomorphic properties that are needed for tallying, however both are
IND-CPA secure. We propose a new verifiable shuffle “D-shuffle” to be
used together with an IND-CPA encryption schemes that guarantees
that the outputs of the shuffle are IND-CCA2 secure ciphertexts and
they are used for constructing the ballots. The idea is based on Naor-
Yung transformation [NY95]. We prove that if there exist an adversary
that breaks receipt freeness then there exist an adversary that breaks
the IND-CCA2 security of Naor-Yung encryption scheme. We further
show that the “D-Shuffle” provides us with the option of having multiple
authorities creating the ballots such that no single authority can break
voter’s privacy.

1 Introduction

For centuries, security properties of an election were maintained via enforcing
physical constraints of the real-world. For example, an isolated booth and a
locked ballot box, provided privacy of the vote and ensured coercion-resistance
and fairness; Transparency of the procedure where anyone can view the tally,
casting, counting, etc, was a form of verifiability of the procedure, and a guar-
antee of correctness, and robustness. Replicating these security notions in the
digital setting is what we refer to as secure electronic voting (E-voting).

Research in e-voting can be divided into two schools of thought. The first was
to have remote voting, in which voters submit their votes via some electronic
mean that is connected to some network (maybe even WWW) and gathered via
some tallying authority(s) with a public bulletin board [RT09,AMPQ09]. The
second school of thought was to use paper-based e-voting where paper ballots



have certain cryptographic elements that enable secrecy and the tallying is done
with the help of machines [XSH+07,FCS06]. The idea is to allow verifiable yet
confidential voting. Even though both research lines use cryptography to ensure
the security properties required, hardly any work in the literature managed to
prove these properties secure under computational models.

The main security property that concerned researchers when designing an
e-voting system was privacy of the vote. Privacy implies voters’ vote is kept
confidential [BHM08,DKR09,MN06]. The following are different terminologies
used in literature to express privacy:

– Ballot secrecy. A voter’s vote is not revealed to anyone and the vote is
computationally hidden using cryptographic elements.

– Receipt freeness. A voter cannot gain information which can be used to
prove, to a coercer, how she voted.

– Coercion resistance. A voter cannot collaborate, with a coercer, to gain in-
formation which can be used to prove how she voted.

– Ever lasting privacy. The link between the voter and her vote is destroyed
completely such that no computational power be it now or in the future can
retrieve it.

Ideally, ever lasting privacy seems to be the ultimate goal and there are
schemes in the literature that achieve it [MN06,MN10] but on the cost of verifi-
ability, unconditional integrity or by introducing other assumptions. However, a
lot of researchers prefer to use schemes that compromise the level of privacy to
gain either usability properties of the voting scheme or verifiability properties.
Verifiability is a notion that includes three aspects [JCJ05,Dag07,KRS10].

– Individual verifiability. A voter can check that her own encrypted ballot
is published on the election’s bulletin board and that her vote is correctly
encoded in the ballot.

– Universal verifiability. Anyone can check that all the votes in the election
outcome correspond to ballots published on the election’s bulletin board.

– Eligibility verifiability. Anyone can check that each ballot published on the
bulletin board was cast by a registered voter and at most one ballot is tallied
per voter.

Even though, e-voting schemes have deployed cryptography to insure privacy
on any level, hardly any computational models were used in proving their secu-
rity. The only attempts that we are aware of in the literature was Moran and
Naor ’s work [MN06,MN10] who proposed an ever lasting privacy scheme and
used UC models to prove security. Lately, Bernhard et al. [BCP+11] proposed
a voting friendly encryption scheme that can be used in Helious voting system
and proved that such a scheme is needed to prove ballot secrecy using provable
security techniques.

In this paper, we have chosen one of the well known paper based e-voting
schemes, Prêt à Voter , and proved its receipt freeness using provable security
game models. This is the first paper-based voting scheme proven secure receipt
free using a computational model. A few formal methods techniques were used



earlier on to prove Prêt à Voter secure [XSHT08,RBH+09]. The scheme achieves
end-to-end verifiability and receipt freeness.

2 Preliminaries

This section presents the assumptions and cryptographic primitives that will be
used throughout the paper. We shall start with some notations and conventions.
Let H denote a hash function and (p, q, g) be cryptographic parameters, where p
and q are large primes such that q | p−1 and g is a generator of the multiplicative
subgroup Z∗p of order q.

2.1 Baudron’s Homomorphic Counter [BFP+01]

Suppose there are (k + 1) candidates and the total number of eligible voters
is n, a value L is chosen such that n < 2L. We can define a set of coun-
ters {20, 2L, 22L, . . . , 2kL} as the election parameters, one for each candidate.
Encryptions corresponding to each counter represent votes for the candidate
who has been assigned the counter. Homomorphically adding the encrypted val-
ues of election parameter will end up with a ciphertext CT = Enc(v) where
v = 20c0 + 2Lc1 + 22Lc2 · · ·+ 2kLck, where cj is the number of votes that went
for candidate j for any j ∈ {0, . . . , k}. To implement such a counter, Paillier and
Exponential ElGamal1 can be used.

2.2 Verifiable Shuffles

A shuffle is a permutation and re-randomization of a set of ciphertexts. A shuf-
fle, given n ciphertexts as an input {CTi} output n ciphertexts {ĆTi}. Shuffling
itself is easy, the challenge is to provide a proof of correctness of a shuffle that
anyone can verify. Verifiable shuffles have been used widely in voting schemes.
The main motivation behind using them, is to submit encrypted votes into some
mix-net where every mix-server shuffles the votes. The output of the mix-net
is then decrypted, allowing anonymity of the voters to be maintained. Using
verifiable shuffles stops mix-servers from cheating. Verifiable shuffles in the early
studies required a lot of computational overhead [SK95,Abe99]. Neff [Nef01]
suggested using zero knowledge proofs for the correctness of ElGamal cipher-
text shuffles. The proofs were based on the invariance of polynomials under
permutation of the roots. They were a 7-move proof. The number of rounds
dropped to 3-moves in [FS02,FMOS02] where the general idea was to commit
to a permutation matrix and prove that the ciphertexts have been shuffled ac-
cordingly. As in Neff’s work, the schemes were based on ElGamal encryption.

1 The value v can be efficiently computed (the maximum value is if all voters vote
for the last candidate) using baby-step giant-step algorithm (this is possible be-
cause the values of k tend to be small), and c1, . . . , ck can be recovered using the
super-increasing nature of the encoding and with the help of algorithms such as the
knapsnack algorithm.



However similar techniques were used in Paillier encryption too [NSNK05,OT04].
Some verifiable shuffles were based on homomorphic integer commitments as the
building block [Wik05a,Wik05b,GL07]. Other shuffles were based on cut/choose
techniques, permutation networks,etc [Abe99,Wik05a,Wik05b,MA99]

3 Prêt à Voter

Prêt à Voter was first proposed by Ryan in [Rya05]. It is a paper based electronic
voting scheme that is known to be receipt free. In this section we describe the
idea behind the design of the scheme and we also propose a game model for
receipt freeness.

3.1 Prêt à Voter Overview

To explain how Prêt à Voter works, we need to explain the structure of the
ballots. Prêt à Voter is based on the assumption that the voter is given her
ballot confidentially. The ballot is divided into two sides: the left hand side
(LHS) which has the list of candidates name permuted randomly, and the right
hand side the onion. The onion is an encryption of the order of the candidates
in the LHS named as the onion for historical reasons. Each ballot has a unique
serial number, SN , for administrative purposes such as searching for the ballot
on the bulletin board, etc (See Figure 1).

The voting ceremony takes place in the booth. The voter takes her ballot
in the booth, ticks next to the name of the candidate she wants to vote for.
She separates the RHS from LHS. She shreds the LHS and comes out with the
RHS. She takes the remaining part of the ballot to the polling station’s employee
who will scan it, send it to the tallying authority and give a signed copy to the
voter to keep. The scanned information is enough to help in tallying the result
because the authorities responsible of the count can decrypt the onions to know
the candidate corresponding to the choice of the voter. The voter can verify that
their votes have been received by comparing the onion, serial number and index
of choice to what is announced on the bulletin board. The details of the procedure
of tabulation, randomization of ballots, tallying, distributing the ballots, etc,
varies in the different versions of Prêt à Voter [Rya05,RBH+09,XCH+10]. On
a conceptual level the procedure is the same. Auditing the ballots is an idea
that also has been considered in all versions of Prêt à Voter in literature but
differed slightly in style. Informally, the auditing procedure is revolving around
decrypting a number of onions and checking that they correspond to the LHS
order. Given that the authorities responsible of creating the ballots can not
predict which ballots will be chosen for auditing, it is hard to cheat without a
high possibility of getting caught.

3.2 Prêt à Voter Receipt Freeness Game model

Given we intend to use provable security techniques in proving receipt freeness,
we should define the term “Receipt Free” using a game model. We propose
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Fig. 1. Prêt à Voter : The Ceremony

a game between a hypothetical adversary A and challenger C. C runs certain
oracles that A can query. We first introduce the following oracles:

– Retrieve Empty Ballot (REB): A sends a serial number to C of which
ballot he would like to get. C responds with an empty ballot (i.e. both RHS
and LHS).

– Retrieve Half Ballot (RHB): A sends a serial number to C who responds
with the RHS of the ballot, unfilled.

– Retrieve Used Ballot (RUB): A sends a serial number and index to C,
who responds with the RHS of the ballot ticked on that index (i.e returns
the receipt of the ballot). Furthermore, the bulletin board is updated since
the ballot has been used and a vote should be counted.

– Vote: A sends a vote (i.e a RHS of ballot ticked on any position of A’s
choice). The bulletin board is updated.

– Reveal Candidate Order (RCO): A sends the RHS of the ballot used or
not, C responds with the candidate order on that ballot.

– Create New Ballot (CNB): A creates a ballot of his own and sends to C.
C saves the ballot in a database.

– Reveal Status of Bulletin Board (RBB): A sends a request to reveal
status of the bulletin board. C returns the tallying result of the board until
the moment of the query. Votes can be later added and C can query RBB
again.

– Reveal Partial Status of Bulletin Board (PRBB): A sends a set of
used ballots. C responds with the partial tallying result of that set.

Giving the adversary access to these oracles allows us to assume the existence
of a powerful attacker and proving receipt freeness under such assumption. It is
worth noting that such oracles can allow the adversary to conduct other types of
attacks but the game model we are defining is addressing receipt freeness only.
We give A the ability to tally using RBB and PRBB. He can stuff ballots using
CNB, he can corrupt votes using Vote oracle, and he can corrupt ballots using
RCO. The first three oracles, (REB, RHB, RUB), help in enabling the adversary
to obtain inputs from the system and observations. For example, A may use the
ballots retrieved from RHB or REB to query oracles such as RCO or Vote.
The game model is designed with the assumption that we have two candidates
only (Alice and Bob) for simplicity of explanation, however, it can be extended
to include more. We say that a “Prêt à Voter ” voting scheme is receipt free if



no polynomially bounded adversary A has a non-negligible advantage against
the challenger C in the following RF-game:

– RF.Setup: C sets up the system by creating the private and public param-
eters, then starting with an empty bulletin board. The bulletin board is
accessible to A as “read only”. C sends the public parameters to A. Any pri-
vate parameters used in tallying and/or decrypting ballots are kept secret.

– RF.Phase[I]: A queries oracles REB, RHB, RUB, RCO, CNB, RBB, PRBB
and Vote.

– RF.Challenge: A picks two ballots it would like to challenge. Assume the
serial numbers of these ballots are i and j. The two ballots should have
not been queried in oracles REB, RUB, Vote, and RCO. C returns the two
receipts, one as a vote to Alice and the other as vote to Bob.

– RF.Phase[II]: A queries oracles REB, RHB, RUB, RCO, CNB, RBB, PRBB
and Vote. Except he can not query the challenged ballots. He can though
verify the challenge by querying RBB and PRBB.

– RF.Guess: The adversary returns a serial number b ∈ {i, j} as its guess to
which ballot was used in voting for Alice. If the guess is correct then A wins
the game and the output is 1, if the adversary does not guess it right then
the output is 0.

In this game model all trusted parties are considered one entity and that is the
challenger C and all corrupted parties are considered one entity and that is the
adversary A. The game focuses only on defining receipt freeness, so we assume
the adversary is not interested in other types of attack. As long as the ballots he
is challenging are not corrupted, the adversary should not be able to distinguish
between the receipt of i and the receipt of j. We refer to the game model above as
EXPRF , the probability of guessing the receipt in case of two candidates should
be 50%. Receipt Freeness for a two candidate elections is defined in Definition 1.

Definition 1. A “Prêt à Voter ” voting scheme is Receipt Free if for all poly-
nomial time adversaries A, Adv.RF (k) = |Pr(EXPRF = 1)− 1/2| ≤ ε where k
is the security parameter and ε is negligible.

4 Construction of a new “ Prêt à Voter ”

In this work we tried avoiding creating another version of “Prêt à Voter ”. We use
the version published in [XCH+10] as the construction we aim to prove secure.
We soon realize that to simulate the oracles mentioned earlier one would require
an IND-CCA2 secure encryption scheme to create the onions. The known homo-
morphic encryptions that can be used in voting are exponential ElGamal and
Paillier, and both are IND-CPA secure. See Appendix B for definitions. Thanks
to the work of Naor and Yung [NY95], a general construction was used to trans-
form any IND-CPA secure encryption scheme to an IND-CCA secure encryption
scheme. Later on, Sahai realized that such a construction achieves IND-CCA2
security [Sah99]. In this section we explain the Naor and Yung transformation.



We then show how one can add minimum modifications to “Prêt à Voter ” intro-
duced in [XCH+10] in order to help simulate the game model above and prove
receipt freeness. Throughout this paper we will refer to the scheme as [XCH+10]
and to the new version as PAV.

4.1 Construction of [XCH+10]

The general idea of [XCH+10] is to have each candidate coded with a Bau-
dron’s Homomorphic Counter (See Figure 2, part A). The codes encrypted are
homorphically added as explained in §2.1. The onion is composed of two parts
as follows:

– Ciphertexts: An encrypted list of the different candidates i.e. a permuta-
tion of {Enc(20, r0), Enc(2L, r1), Enc(22L, r2), . . . , Enc(2kL, rk)} that cor-
responds to the order of the candidates on the LHS and ri is a randomization
factor.

– Proofs: Non-interactive zero knowledge proofs to check that the ballot is
well formed. That means proving that each part of the onion encrypts a
unique counter.

There are two encryption schemes widely used for e-voting for their homomorphic
properties: ElGamal and Paillier. In [XCH+10] the authors chose Paillier and
used verifiable shuffles to check that the ballot is well formed. To generate a ballot
the authors suggest the following list as the first input to the first mix-server:
{Enc(20, 1), Enc(2L, 1), Enc(22L, 1), . . . , Enc(2kL, 1)}. Anyone can verify that
the ciphertexts are unique encryptions of the counters since the randomization
value is 1. Then the ciphertexts are re-encrypted and shuffled in a verifiable
manner. The proofs of these shuffles are published. In [XCH+10] do not specify
which shuffle to use. We will recommend in this paper a verifiable shuffle (in
§4.3) that helps in simulating the oracles in the receipt free game model. The
shuffle is based on ElGamal encryption because we use the zero knowledge proofs
in Appendix §A and therefore we assume that exponential ElGamal is used for
Prêt à Voter .

4.2 Naor-Yung Transformation

The general idea proposed by Naor-Yung is to start with any IND-CPA en-
cryption scheme E (See Appendix B). The new encryption scheme NY.E of a
message is two distinct encryptions under the original scheme and a simulation
sound zero-knowledge proof that the two ciphertexts encrypt the same mes-
sage. Let E = (KeyGen,Enc,Dec) be a public key encryption scheme. Let
P = (Prove, V erify, Simulate) be a non-interactive zero knowledge proof
of knowledge scheme for proving: PoK{(m, r1, r2) : c1 = Enc(pk1,m, r1) ∧
c2 = Enc(pk2,m, r2)} with uniquely applicable proofs. Naor-Yung Transfor-
mation [NY95] encryption scheme NY.E = (NY.KeyGen, NY.Enc, NY.Dec) is
as follows:



– NY.KeyGen(k) : Takes security parameter k and runs the key generator of
the original scheme twice to produce to pairs of keys (sk1, pk1) = KeyGen(k)
and (sk2, pk2) = KeyGen(k). The secret key NY.sk = (sk1, sk2) and public
key NY.pk = (pk1, pk2).

– NY.Enc(m,NY.pk) : Choose the randomization factors r1, r2, compute c1 =
Enc(pk1,m, r1), c2 = Enc(pk2,m, r2), and π = Prove(m, pk1, pk2, r1, r2,
c1, c2). Ciphertext of the transformation would be NY.CT = (c1, c2, π).

– NY.Dec(c1, c2, π) : If V erify(c1, c2, π) = 1 then m = Enc(c1, sk1) else
abort2.

Theorem 1. (Sahai [Sah99]): If the zero knowledge proof system P is a proof
of knowledge and has uniquely applicable proofs and if the encryption scheme E is
IND-CPA then applying Naor-Yung transformation gives an encryption scheme
NY.E that is IND-CCA2 secure.

We are going to use Theorem 1 to make Prêt à Voter provably secure under
the game model defined in §3.2. The main goal is to simulate the game model of
receipt freeness. If we have an IND-CPA secure encryption scheme we do not have
access to a decryption oracle. The decryption oracle will help us with simulating
oracles such as RCO,CNB,RBB,and PRBB (details in §5). We shall use Naor-
Yung’s transformation to get an IND-CCA2 scheme. However, our intention is
to avoid designing a new version of Prêt à Voter for that purpose and use the
one proposed by [XCH+10]. We notice that in the original paper the authors use
verifiable shuffle proofs as a proof that the ballots are well formed. They did not
specify which shuffle in literature is most suitable. In this work, we propose a
verifiable shuffle that can include the Naor-Yung’s proof. The shuffle proposed
is inspired from the designs in [MA99,HS00]. Section §4.3 explains the shuffle
while §4.4 explains how to use it for Prêt à Voter ballots.

4.3 The D-Shuffle

The main aim of proposing the D-shuffle is to have a verifiable shuffle that has all
inputted ciphertexts as IND-CCA2 secure and all outputted ciphertexts as IND-
CCA2 secure. The latter requirement guarantees that once we use the outputs
of a mix-net to create a ballot for Prêt à Voter , we get a ballot onion that is
IND-CCA2 secure.

In literature, Wikström [Wik06] proposed a mix-net that uses the concept
of augmented cryptosystems. Wikström’s idea was to provide a mix-net that is
secure under the universal composability model. He needed to provide a level
of IND-CCA2 security in the mix-net yet maintain the homomorphic properties
needed. Initially his solution seemed to address our problem. He uses a Cramer
Shoup like encryption which is IND-CCA2 secure and extracts from it an El-
Gamal encryption which is homomorphic. However, Wikström mix-net does not
help our purpose because the last outputted results of the mix-net are not IND-
CCA2 secure. They are pure ElGamal encryptions that are IND-CPA secure.

2 One can also decrypt m = Enc(c2, sk2).



Definition 2. Sequence A = (c0, . . . , ck) is a superincreasing sequence if every
element of the sequence is positive and is greater than the sum of all previous
elements in the sequence (i.e. cn >

∑n−1
i=0 ci ).

Theorem 2. Let (c0, . . . , ck) be a super-increasing sequence, A = {c0, . . . , ck},
and C =

∑k
i=0 ci. If (x0, . . . , xk) is a solution of

C =

k∑
i=0

xk

such that ∀j ∈ {0, . . . , k} : xj ∈ A, then (x0, . . . , xk) is a permutation of A.

Proof. Recall the subset sum problem; Given a set of integers A and an integer
C, find any non-empty subset X that sums to C. The subset sum problem is
proven to have either one unique solution or none [Nea87] over super-increasing
sequences. Given Theorem 2 assumes the existence of the subset X ⊆ A and

assumes that C =

k∑
i=0

xk then by the uniqueness property X = A.

The general idea behind our shuffle is derived from Theorem 2. Furthermore, the
shuffle relies on two assumptions: the set of plaintexts are of a super-increasing
property and are public knowledge. These two assumptions are reasonable if we
are to use the shuffle for voting schemes such as Prêt à Voter that have the plain-
texts as candidate codes described by Baudron’s Homomorphic Counter §2.1.
The following two conditions derived from Theorem 2 implies a verifiable and
honest shuffle.

– Theorem 2 states ∀i, i ∈ [0, k], xi ∈ A. In a verifiable shuffle this is equiv-
alent to saying “All outputted ciphertexts belong to the list of all inputted
ciphertexts”. The 1-out-of-L re-encryption proof §A will be used for that
purpose. Furthermore, the first inputted ciphertexts to the mix-net should
encrypt values of super-increasing properties. Proving that the values are
super-increasing is difficult but if the original plaintext is publicly known,
i.e. A = {c0, . . . , ck} is known to everyone, then one can use the disjunc-
tive proof of equality between discrete logs §A to prove that each ciphertext
encrypts a plaintext from that set.

– Theorem 2 states that C =

k∑
i=0

ci =

k∑
i=0

xk. In a verifiable shuffle this is

equivalent to saying that the homomorphic summation of the inputted ci-
phertexts and the homomorphic summation of the outputted ciphertexts are
encryptions of the same plaintext value. Plaintext equivalence test is done
using the discrete logarithm equality proofs §A.

The following are the steps defining the D-shuffle which include the Naor-Yung’s
tranformation and how that transformation is transfered from one mix-server
to the other, maintaining the IND-CCA2 security of the outputted ciphertexts.
Note that the index j is used for mix server, and i is an index for ciphertexts.
That is, CTi,j is the i-th ciphertext inputted to the j-th mix-server.



– The initial ciphertexts present a permutation of A = {Enc(pk1, c0, rnd0,0),
Enc(pk1, c1, rnd0,1),. . . , Enc(pk1, ck, rnd0,k)} for random values {rnd0,1, . . . ,
rnd0,k} ∈ Z∗p. Furthermore, we have the encryption B = Enc(pk2, C,RND0)

where C =

k∑
i=1

ci and RND0 ∈ Z∗p is a randomization factor. A proof π is

provided, of equality of plaintext between the encrypted C and the homo-
morphic sum of ciphertexts in A. Note that the elements above do form a
Naor-Yung transformation. The last proof to be provided is a disjunctive
proof of equality between discrete logs that shows the ciphertexts in A do
encrypt the values {c0, . . . , ck}.

– Each mix-server j, re-encrypts each inputted ciphertext i it received with
random values rndi,j . It then permutes the ciphertexts and provides a 1-
out-of-L re-encryption proof for elements of A, and a proof that if the re-
encrypted values of ciphertexts in A are homomorphically summed, and
compared to the re-encrypted value of B, the plaintext is still equivalent.
This is done by proving that the same randomization factors were used for
both as follows:

1. Let α0 =

k∑
i=0

rnd0,i; Initial values received by the first mix-server are:

B0 = Enc(pk2, C,RND0) = (u0, v0) = (gRND0 , gRND0sk2gC)

HB0 =

k∏
i=0

Enc(pk1, ci, rnd0,i) = (ū0, v̄0) = (gα0 , gsk1α0gC)

2. Re-encryption after mix-server j chooses {rndj,0,. . . ,rndj,k}:

Let RNDj =

k∑
i=0

rndj,i and αj =

k∑
i=0

j∑
l=0

rndl,i = RNDj + αj−1,

Bj = ReEnc(Bj−1, RNDj) =

(uj , vj) = (g

(RNDj+

j−1∑
l=0

RNDl)

, g

(RNDj+

j−1∑
l=0

RNDl)sk2

gC)

HBj =

k∏
i=0

ReEnc(CTi,j−1, rndj,i) =

(ūj , v̄j) = (g(αj−1+RNDj), g(αj−1+RNDj)sk1gC)
3. Provide a proof of equality between discrete logs of all three elements

below §A:

uj

uj−1
=

ūj

¯uj−1
= gRNDj ;

vj
vj−1

= gRNDjsk2 = (pk2)RNDj ;

v̄j
¯vj−1

= gRNDjsk1 = (pk1)RNDj
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Fig. 2. Prêt à Voter : The Ballot Design

The shuffle is sound, and correct given Theorem 2. The shuffle is verifiable given
the proofs of knowledge. The shuffle maintains anonymity and unlinkability given
the zero knowledge property of the proofs of knowledge. Finally, the encrypted
ciphertexts of the shuffle have to be IND-CCA2 secure given that Naor-Yung
transformation is maintained.

4.4 The new Construction of PAV

In Prêt à Voter schemes shuffles are used for creating the ballots. The candi-
dates on each ballot are shuffled using a mix-net. Research has been done on
Prêt à Voter to create the ballots in a distributed manner [RS06]. However,
in [XCH+10], the authors point out that achieving distributed ballot generation
is not easy in their scheme for three reasons: [I] Proving the ballot is well-
formed in the distributed fashion is not easy. [II] Printing the ballot without
the printer(s) learning the candidates order is difficult. [III] How to ensure ro-
bustness so that the scheme can be run even in the presence of some dishonest
election officials.

In this paper we provide two solutions; One improves security and allows a
distributed way of creating the ballot making use of properties of the D-shuffle.
However, usability of the scheme maybe compromised and needs to be further
studied. On the other hand, we also propose a solution with the same assump-
tion as done in [XCH+10] of one authority but keep the desirable property of
Prêt à Voter being easy to use.
Single Authority: One can use a mix-net that has one mix-server. If we are to
use the D-Shuffle then one can use the initial values B0, HB0, the Naor-Yung
proof π, and the disjunctive proofs that plaintexts belong to Baudron’s Homo-
morphic Counter to present the proofs in the onion (See Figure 2) together with
the ciphertexts of the Baudron’s Counters. Figure 2 shows the ballots of the
original scheme [XCH+10] in part ‘A’ and the proposed change in ‘B’.
Multi-Authorities: Assume we use the bulletin board to publish all zero knowl-



edge proofs used in the shuffle. The bulletin board is secure in the sense it main-
tains history and ballot generation authorities, can only add information to it.
This allows public verifiability of the shuffles.
We plan to use the proposed D-Shuffle for creating the ballots and offer a print-
on-demand option to voters as done in [RS06]. In this case we have two onions
(RHS.onion and LHS.onion) and no candidate names. On the day of voting, the
voter can ask for the LHS to be generated and printed. The D-shuffle is used
to randomize the RHS and LHS as ciphertexts while providing zero knowledge
proofs to show that the sides correspond to each other. Assume we have ElGamal
encryption for the LHS with public keys (LHS.pk, LHS.sk) and one for the RHS
(RHS.pk,RHS.sk) where RHS.E is a Naor-Yung transformation. The following
describes the ballot generation using the D-shuffle:

– The RHS is done as described in the D-shuffle with the initial ciphertexts be-
ing a permutation ofARHS = {Enc(RHS.pk1, c0, rnd0,0), . . . , Enc(RHS.pk1,
ck, rnd0,k)}, B = Enc(RHS.pk2, C,RND0) and a Naor-Yung proof π is pro-
vided with a disjunctive proof. The difference though that the D-shuffle also
encrypts ALHS = {Enc(LHS.pk, c0, r0,0), . . . , Enc(LHS.pk, ck, r0,k)} for
ri,j is also random,and provides PET for each pair of elements in ALHS and
its correspondence in ARHS . All the zero knowledge proofs are submitted to
the bulletin board.

– The D-shuffle shuffles the RHS as done in §4.3 by each mix-server j, re-
encrypting the inputted ciphertexts it received, permuting the new cipher-
texts and providing a 1-out-of-L re-encryption proof for elements of ARHS ,
and the plaintext equivalence test for the homomorphic summation of the
RHS values and the B value. The only addition we add is that the mix-
server should also submit a proof that the RHS ciphertexts correspond to
LHS ciphertexts since the randomization factors ratio for each ciphertext
pair is known (i.e. ri,j and rndi,j) for each mix server j, i.e using equality
between discrete logs proofs (See Appendix A). All proofs are submitted to
the bulletin board.

The LHS is decrypted by a printing authority, which has the keys for the secret
keys LHS.sk. That authority can be a threshold of authorities if the ElGamal
encryption used is threshold based (maybe a threshold number of printers). The
RHS is decrypted by the tallying authority and that can also be a threshold of
authorities. Figure 3 describes the ballots.
Auditing of the LHS onion can be done by any one checking the plaintext equiv-
alence tests on the bulletin board. For usability purposes, the voter can choose
which authority they trust most for auditing the ballot. Auditing the whole bal-
lot requires, revealing the decryption of both left and right hand side, as done
in the original Prêt à Voter .

5 PAV is Receipt Free

Before we can start the Receipt Freeness proof we need to explain the concept
of splitting ciphertexts. This concept will be used to simulate the challenge.
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Fig. 3. Prêt à Voter : The Multiple Authority Ballot

Definition 3. An encryption scheme is splittable if one can define an algorithm
Split over its ciphertext as shown in Figure 5.

Splitting can be done without knowing the randomization factor r or secret key
sk. Both Exponential ElGamal and Paillier are splittable encryptions. Figure 5
shows Exponential ElGamal’s Split Algorithm and in the Full Version of the
paper we show Paillier to be Splittable.

Split(CT,RND, M̄,M) : Takes as input a ciphertext CT = Enc(M, r, pk), a ran-
domization factor RND and another message M̄ . It outputs two ciphertexts CT1 and
CT2 such that

– CT1 = Enc(M − M̄, r
RND

, pk)

– CT2 = Enc(M̄, r(RND−1)
RND

, pk)
– CT = CT1.CT2

Fig. 4. The Split Algorithm

The following explains the splitting procedure of Exponential ElGamal where CT =
(u, v) = (gr, yrgM ):

– Let t1 = 1
RND

and t2 = RND−1
RND

– Let m1 = M − M̄ and m2 = M̄
– ui = uti = grti , vi = vti(g−Mti+mi) = yrtigmi , for i = {1, 2}
– Let CT1 = (u1, v1), and CT2 = (u2, v2)

Fig. 5. Exponential ElGamal is Splittable

In the proof we assume ballots are well formed. This allows us to drop all
zero knowledge proofs other than Naor-Yung. One argues that this game model
is for proving receipt freeness and these proofs of knowledge reveal minimum



A S C
NY.PK←− Initialize BB and DB

NY.PK←− Setup NY.E

Fig. 6. Setup Phase

information. Another argument, is that well formness of a ballot is captured in
auditing and is an integrity related issue rather than privacy related.
The ballot referred to in this proof is one which has the ciphertexts and a proof
of Naor-Yung as an onion. We explain the proof for the case of a single authority
producing the ballot. We end the section with a discussion about how the proof
can be extended for the multiple authority case.

Theorem 3. If there exists an Adversary A that can break the receipt freeness
of PAV then there exists a simulator S that breaks the IND-CCA2 security of
Naor-Yung encryption.

Proof. Assume we have a simulator S interacting with a challenger C with the
intension of breaking the IND-CCA2 of Naor-Yung encryption. Assume we have
an adversary A who breaks the RF-game model. The simulator S interacts with
C and A as follows:

– Setup: C sets up NY.E by running NY.KeyGen(k). He gives S the public
parameters NY.pk = (pk1, pk2). The S initializes the bulletin board BB
which is accessible to A as read only. He also creates a database of ballots
DB that will contain (SN , onion, candidates.order, vote). Initially that
database is empty. He passes to A the values in NY.pk. See Figure 6.

– RF.Phase[I]: A queries oracles REB,RHB,RUB,RCO,CNB,RBB,PRBB and
Vote. We explain how the oracles are simulated (See Figure 7)
• REB, RHB, and RUB: S receives a serial number SN of a ballot. He

creates a new ballot by creating the proper encryptions given he has
the public parameters required (i.e. NY.PK). He adds the onion in the
database of (SN , onion, candidates.order, vote), with vote being null.
He sends either half or full ballot back to A. If RUB is queried, he sends a
used ballot ticked in the index requested. He updates the bulletin board
to include it as a vote and has the candidate name registered in the
database of ballots DB, as vote = c.name.

• Vote: S receives the query as onion, and index. Checks the ballot on
the bulletin board if it has been used before, checks the vote element in
the database, if the ballot exists but the vote does not, updates bulletin
board, and updates database to have vote = c.name. If the ballot does
not exist in database then it most be created by the adversary, so query
the decryption oracle from C to get the information of the ballot. Update
the database and the bulletin board as required. At the end of this oracle
the adversary should get one of two responses: either the “ballot has been
used” or “the vote accepted, and a receipt”. If it is the latter response
then the adversary should be able to see an updated bulletin board.
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Oracle REB,RHB, RUB:

REB:SN−→ Create Ballot;
RHB:SN−→ If RUB; vote = c.name, update BB, and DB
RUB:SN−→ Else; Update DB with vote=null;

If REB; response = empty ballot;
If RHB; response = half ballot;
If RUB; response = used ballot;

response←−
Oracle Vote:

V ote:Onion,index−→ If Ballot ∈ DB, vote 6= null, Ballot ∈ BB;
response←− response = Ballot used.

If Ballot ∈ DB, vote= null, Ballot 6∈ BB;
Update BB, Update DB vote= c.name

If Ballot 6∈ DB Dec:Ballot−→ candidates.order =

Update DB, Update BB
candidate.order←− NY.Dec(ballot,..)

response←− response = receipt,vote accepted
Oracle RCO:

RCO:RHS−→ If Ballot ∈ DB;
response←− response =candidate.order

If Ballot 6∈ DB Dec:Ballot−→ candidates.order =

Update DB
candidate.order←− NY.Dec(ballot,..)

response←− response =candidate.order
Oracle CNB:

CNB:Ballot−→ If Ballot ∈ DB
response←− response = ballot exist

If Ballot 6∈ DB Dec:Ballot−→ candidates.order =

Update DB
candidate.order←− NY.Dec(ballot,..)

response←− response = ballot added
Oracle RBB:

RBB−→ Result = Tally BB
Results←−

Oracle PRBB:
PRBB:{Ballots}−→ If allBallot ∈ DB;

Results←− Result=Tally BB
If allBallot 6∈ DB;

Do :
Dec:Ballot−→ candidates.order =

Update DB
candidate.order←− NY.Dec(ballot,..)

Until: all ballots in DB
Results←− Result=Tally BB

Fig. 7. Phase I and Phase II

• The oracle RCO is handled in a similar way, if the ballot is in the
database return the candidate order otherwise query the decryption or-
acle, update the database then return the candidate order.

• For the RBB, the simulator tallies the bulletin board and returns the
result.

• For the PRBB oracle, the simulator S checks the database to reveal
information, if any ballot does not exist in the database it retrieves the
information using the decryption oracle and adds it to DB.

– RF.Challenge: A picks two serial numbers i and j, where the two ballots
have not been queried before in REB, RHB, RUB, Vote and RCO and sends



A S C
i,j−→ M1 = 2L + 22L

M2 = random
M1,M2−→ NY.CTb = NY.Enc(Mb, NY.pk)

Create Ballot i with
Cb←− NY.CTb = (c1, c2, π)

(EAlice, EBob) = Split(c1, 2
L, RND,M1)

Onion = (EAlice, EBob, π, c2)
Create Ballot j as in RUB

Toss fair coin
If coin = head;
i votes for Alice
j votes for Bob
If coin = tail;
i votes for Bob
j votes for Alice

Receipti,Receiptj←− Update BB and DB

Fig. 8. Challenge Phase

them to S. Assume the code of Alice was 2L and of Bob 22L. S chooses
two messages M1 = 2L + 22L and M2 is random. It sends the messages to
C who responds with NY.CTb = NY.Enc(Mb, NY.pk) = (c1, c2, π) where
b ∈ {1, 2}. S computes EAlice, and EBob using the split algorithm. Assuming
b = 1, the elements EAlice, EBob, and NY.CTb will form a valid onion because
EAlice = Enc(2L, r

RND , pk1) is a valid encryption of Alice’s code and EBob =

Enc(22L, r(RND−1)
RND , pk1) is a valid encryption of Bob’s code. The last part of

the onion is the Naor-Yung transformation NY.CTb that guarantees CCA2
security notion for the whole ballot. S creates a first ballot i with order
{Alice, Bob} and the onion order is EAlice, EBob. He then creates a second
ballot j normally using the public keys he knows, he tosses a fair coin if the
toss is equal to head, he uses i to be a vote for Alice, and j to be a vote
for Bob, otherwise he swaps the votes. Finally, he updates the database and
bulletin board accordingly. He sends the receipts to A. See Figure 8.

– RF.Phase[II]: This phase is similar to RF.Phase [I] with the condition that
the challenge is not queried in REB, RHB, RUB, Vote and RCO.

– RF.Guess: Assuming that b = 1 then the ballots are well formed and A
returns the right serial number for the vote Alice, otherwise the ballots are
not well formed and the adversary aborts. S receives the serial number, if it
is what he expected then he returns to the C that b = 1 otherwise b = 2.

Assuming the adversary A wins the RF-game model with non-negligible advan-
tage, the S wins the IND-CCA2 game model, since there is no way that the
A will respond i without the ballots being well formed implying b = 1 and
otherwise the adversary A will abort, implying b = 2

Multiple Authority Extension: The game model can be extended to simulate
ballots created by multiple authorities. The idea is to drop the 1-out-of-L Re-
encryption proofs for the same reason behind dropping the disjunctive proofs.
The simulator, in the RF.Setup stage, runs an encryption key generation algo-
rithm to create a pair of keys for the LHS only. He gives the public keys he



received from C to A together with the public key of LHS. The oracle Reveal
Candidate Order (RCO) can be used to query either LHS or RHS. However,
given the private key of the LHS is known to the simulator he will not need
to query the decryption oracle. The rest of the oracles and the challenge are
simulated as in the single authority case.

6 Conclusion

Prêt à Voter has been introduced in [Rya05]. The general idea behind the scheme
is to provide an end-to-end verifiable, receipt free, paper based, e-voting scheme.
Several formal method analysis exist in the literature to prove the properties
of the scheme [XSHT08,RBH+09]. In this paper we provide a proof of receipt
freeness of Prêt à Voter using provable security game models. We defined a new
game model that presents receipt freeness. We discussed the Prêt à Voter latest
version introduced in [XCH+10], and showed how their construction together
with a special verifiable shuffle, the D-shuffle, construct a receipt free Prêt à
Voter scheme. The D-shuffle proposed together with ElGamal encryption form
a Naor and Yung transformation, causing the ballot to be encrypted in an IND-
CCA2 secure manner. We proved that the existence of an adversary that wins
the receipt freeness game model implies the existence of a simulator that can
break the IND-CCA2 security of Naor-Yung transformation. Finally, the “D-
shuffle” helps in providing the option of having multiple authorities for creating
the ballot.
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A Non-interactive Zero knowledge proofs

Knowledge of discrete logs: Proving knowledge of x, given h where h ≡
gx mod p [CEGP87,CEG88,Sch89].

Sign. Given x, select a random nonce w ∈R Z∗q and compute, Witness g′ =
gw mod p, Challenge c = H(g′) mod q and Response s = w + c · x mod q.
Output Signature (g′, s)

Verify. Given h and signature (g′, s), check gs ≡ g′ · hc (mod p), where c =
H(g′) mod q.

A valid proof asserts knowledge of x such that x = logg h; that is, h ≡ gx mod p.
Equality between discrete logs: Proving knowledge of the discrete loga-
rithm x to bases f, g ∈ Z∗p, given h, k where h ≡ fx mod p and k ≡ gx mod
p [Ped91,CP93].

Sign. Given f, g, x, select a random nonce w ∈R Z∗q . Compute Witnesses f ′ =
fw mod p and g′ = gw mod p, Challenge c = H(f ′, g′) mod q and Response
s = w + c · x mod q. Output signature as (f ′, g′, s)

Verify. Given f, g, h, k and signature (f ′, g′, s, c), check fs ≡ f ′ · hc (mod p)
and gs ≡ g′ · kc (mod p), where c = H(f ′, g′) mod q.

A valid proof asserts logf h = logg k; that is, there exists x, such that h ≡
fx mod p and k ≡ gx mod p. Note that this proof of knowledge can be used to
prove equality of plaintexts for two ElGamal ciphertext encryptions such a proof
is referred to as plaintext equivalence test (PET).
Disjunctive proof of equality between discrete logs Let h = gy. Given
(a, b) = (gx, hx · gm) contains message m, prove that m ∈ {min, . . . ,max} for
some parameters min,max ∈ N [CDS94].

Sign. Given (a, b) such that a ≡ gx mod p and b ≡ hx ·gm mod p for some nonce
x ∈ Z∗q , where plaintext m ∈ {min, . . . ,max}. For all i ∈ {min, . . . ,m−1,m+
1, . . . ,max}, compute challenge ci ∈R Z∗q , response si ∈R Z∗q , and witnesses

ai = gsi/aci mod p and bi = hsi/(b/gi)ci mod p. Select a random nonce
w ∈R Z∗q . Compute witnesses am = gw mod p and bm = hw mod p, chal-
lenge cm = H(a, b, amin, bmin, . . . , amax, bmax) −

∑
i∈{min,...,m−1,m+1,...,max} ci

(mod q) and response sm = w + x · cm mod q. To summarise, we have
the Witnesses (amin, bmin), . . . , (amax, bmax), Challenge cmin, . . . , cmax and Re-
sponse smin, . . . , smax. Output signature of knowledge (ai, bi, ci, si) for all
i ∈ {min, . . . ,max}.

Verify. Given (a, b) and (amin, bmin, cmin, smin, . . . , amax, bmax, cmax, smax), for each
min ≤ i ≤ max check gsi ≡ ai · aci (mod p) and hsi ≡ bi · (b/gi)ci (mod p).

Finally, check H(a, b, amin, bmin, . . . , amax, bmax) ≡
∑

min≤i≤max

ci (mod q).



A valid proof asserts that (a, b) contains the messagem where m ∈ {min, . . . ,max}.
1-out-of-L ElGamal Re-encryption Proof: Let h = gy. Given (ui, vi) =
(gxgζ , hx · hζ · gm) is a re-encryption of (u, v) = (gx, hx · gm) for a random
ζ ∈ Z∗p. Prove that (ui, vi) belongs to the list {(u1, v1), . . . , (un, vn)} [HS00].

Sign. Select random values d1, . . . , dn, r1, . . . , rn ∈ Z∗p. Compute at = (ut

u )dtgrt

, bt = ( vtv )dthrt where t ∈ {1, . . . , i − 1, i + 1, . . . , n}. Choose randomly
a nounce ω ∈ Z∗p. Let ai = gω and bi = hω. Compute challenge c =
H(E||a1|| . . . ||an||b1|| . . . ||bn) where E = (u||v||u1||v1|| . . . ||un||vn). Com-

pute di = c −
n∑

t=1,t 6=i

dy. Compute ri = ω − ζdi then Witnesses d1, . . . , dn,

Challenge c and Response r1, . . . , rn. Output signature of knowledge (rt, dt)
where t ∈ [1, n]

Verify. Check

n∑
t=1

dt = H(E||(u1

u )d1gr1 || . . . ||(un

u )dngrn ||( v1v )d1gr1 || . . . ||( vnv )dngrn)

A valid proof asserts that (ui, vi) ∈ {(u1, v1), . . . , (un, vn)}.

B Encryption Schemes Security Notions [Sma04]

We explain IND-CPA, IND-CCA, and IND-CCA2 in this section. In an IND-
CPA A and C agree on the ENC scheme, the plaintext message space M and
ciphertext message space C they want to challenge. We say that ENC is IND-
CPA secure if and only if there exist no polynomial time adversary that can
win the IND-CPA game. Assume the encryption algorithm is E. The IND-CPA
game is described as follows:

– C sets up the system by creating a public key pk, and a secret key sk . C
gives pk to A and retains sk.

– A chooses two messages M1 and M2. They should be the same size or the
shorter message should be padded to equalize the size. A sends the two
messages to C.

– C randomly chooses b ∈ {1, 2} and encrypts a message Cb = E(Mb, pk). In
other words one of the messages is chosen randomly and encrypted. Cb is
sent to A as the challenge.

– Adam uses the ciphertext Cb and all his computational ability to choose a
b̄ ∈ {0, 1} that matches b. If b̄ = b then A wins the game else A loses.

The advantage of winning the game is defined by how much better A can do
than a simple random guess (which has a probability 1/2 of being right). In
other words, AdvCPA(k) = |Pr[b = b̄] − 1/2| where k is the security parameter
used in setting up the encryption scheme.

Definition 4. (Indistinguishable Chosen Plaintext Attack) An encryption scheme
is IND-CPA secure if and only if AdvCPA(k) < ε where ε is negligible and k is
the security parameter used in setting up the system.



In the literature there are more powerful security notions for encryption schemes
other than IND-CPA. For example, we can give the adversary access to a de-
cryption oracle that he queries a number of times before and after the challenge,
as long as he does not use the challenge ciphertext for issuing a query. If A
is given access to such an oracle before the challenge only then the encryption
scheme is said to be IND-CCA secure, (i.e. Non-adaptive), otherwise the scheme
is IND-CCA2 secure, (i.e. Adaptive).


