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Abstract. The BB84 protocol is used by Alice (the sender) and Bob
(the receiver) to settle on a secret classical bit-string by communicating
qubits over an insecure quantum channel where Eve (the Eavesdropper)
can have access. In this paper, we revisit a well known eavesdropping
technique against BB84. We claim that there exist certain gaps in un-
derstanding the existing eavesdropping strategy in terms of cryptanalytic
view and we try to bridge those gaps in this paper.

First we refer to the result where it is shown that in the six-state
variant of the BB84 protocol (Bruß, Phys. Rev. Lett., 1998), the mutual
information between Alice (the sender) and Eve (the eavesdropper) is
higher when two-bit probe is used compared to the one-bit probe and
hence the two-bit probe provides a stronger eavesdropping strategy. How-
ever, from cryptanalytic point of view, we show that Eve has the same
success probability in guessing the bit transmitted by Alice in both the
cases of the two-bit and the one-bit probe. Thus, we point out that hav-
ing higher mutual information may not directly lead to obtaining higher
probability in guessing the key bit.

It is also explained in the work of Bruß that the six-state variant of
the BB84 protocol is more secure than the traditional four-state BB84.
We look into this point in more detail and identify that this advantage is
only achieved at the expense of communicating more qubits in the six-
state protocol. In fact, we present different scenarios, where given the
same number of qubits communicated, the security comparison of the
four and six-state protocols is evaluated carefully.
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1 Introduction

Establishing a common secret key between two parties at a distance is a pre-
requisite for executing a symmetric key cryptographic protocol between them.
The seminal paper by Diffie and Hellman [9] presents a nice idea in this direction
using the Discrete Logarithm problem. However, the pioneering work of Shor [17]
showed that the key distribution [9] as well as the public key crypto-systems like
RSA [16] and ECC [11] are not secure in the quantum computing model. On the
other hand, there are lattice and coding theory based public key algorithms [4]
that are believed to be secure in the quantum computing model and these are
the main focus in the domain of post-quantum cryptography. However, these
algorithms are quite complex and considerable works are going on for efficient
implementation of such schemes on low end devices. In this regard, it is notable
that provably secure quantum key distribution protocols exist and amongst them
BB84 [1] is the first and the most cited one. It has not only been verified exper-
imentally [3] in laboratory, but now-a-days some companies are manufacturing
devices [15] to implement this protocol. In this scenario, it is important to study
various eavesdropping models for these protocols and this is the motivation for
our current work.

The famous BB84 protocol [1] relies on the conjugate bases Z = {|0〉, |1〉}
and X = {|+〉, |−〉}, where |+〉 = |0〉+|1〉√

2
and |−〉 = |0〉−|1〉√

2
. Alice randomly

selects one of the two orthogonal bases and encodes 0 and 1 respectively by
a qubit prepared in one of the two states in each base. To be specific, Alice
encodes 0 to |0〉 or |+〉, and 1 to |1〉 or |−〉, depending on the chosen basis Z
or X respectively. Bob measures the qubits one by one, randomly selecting the
basis from the same set of bases. After the measurement, Alice and Bob publicly
announce the sequence of bases used by them and discard the bases that do
not match. They identify the sequence of bits corresponding to the bases that
match and the resulting bit string, followed by error correction and privacy
amplification [2], becomes the common secret key.

Fuchs et al. (Phy. Rev. A, 1997) presented an optimal eavesdropping strategy
on the four-state BB84 protocol. Later, Bruß (Phys. Rev. Lett., 1998) described

the use of the basis
{

|0〉+ı|1〉√
2

,
|0〉−ı|1〉√

2

}

(ı =
√
−1) along with the above two

to show that the BB84 protocol with three conjugate bases (six-state protocol)
provides improved security. Bruß had also shown that for the six-state protocol,
the mutual information between Alice (the sender) and Eve (the eavesdropper)
is higher when two-bit probe is used compared to the one-bit probe and hence
provides a stronger eavesdropping strategy. In this paper, we revisit the problem
towards a critical and concrete analysis in terms of Eve’s success probability in
guessing the qubits that Alice has sent.

The security of the BB84 protocol is based on the fact that if one wants to
distinguish two non-orthogonal quantum states, then obtaining any information
is only possible at the expense of introducing disturbance in the state(s). There
are several works in the literature, e.g., [6, 7, 10], that studied the relationship
between “the amount of information obtained by Eve” and “the amount of dis-



turbance created on the qubits that Bob receives from Alice”. There are also
several models for analysis of these problems. As example, Eve can work on each
individual qubit as opposed to a set of qubits studied together. While the first
one is called the incoherent attack [10], the second one is known as the coherent
attack [7]. In this paper, we study the incoherent attack.

Another interesting issue in specifying the eavesdropping scenario is whether
there will be equal error probability at Bob’s end corresponding to different
bases. If this is indeed equal, then we call it symmetric and that is what we
concentrate on here. It creates certain constraint on Eve in terms of extracting
information from the communicated qubits, as the disturbance created on the
qubits that Bob receives should be equal for all the bases. That is, as far as Alice
and Bob are concerned, the interference by Eve will produce a binary symmetric
channel between them, with an error probability that we will denote by D. There
is also another model where this is not equal and then we call the eavesdropping
model as asymmetric. Different error rates for different bases would be a clear
indication to Alice and Bob that an eavesdropper (Eve) is interfering in the
communication line. One may refer to [7] for details on this and it has been
commented in the same paper that given any asymmetric attack (coherent or
incoherent), one can always get a symmetric attack that can match the results
of the non-symmetric strategy.

In both [10, 6], the security of BB84 is analyzed in terms of the mutual
information between Alice and Eve. When measuring her probe, Eve has two
choices. One option is that she measures both her qubits - this is referred as a two-
bit probe. Alternatively, she can either measure only one of her two qubits [5, 6] or
may interact with one qubit at her disposal - both of these lead to identical results
and therefore we refer any one of them as one-bit probe. In [6], it was claimed
that the eavesdropping using the two-bit probe provides identical information
to Eve using the one-bit probe in case of four-state protocol; however, for the
six-state protocol, the two-bit probe leaks more information to Eve than the
one-bit probe.

1.1 Organization of the Paper

In Section 2, we revisit the background material in detail. Sections 3 and 4
contain our main contributions. We re-examine the security in the light of Eve’s
success probability of guessing what was sent by Alice. In practice, Eve’s goal
is to determine the secret key bits that Alice sends to Bob. Eve’s individual
probes and hence individual guesses are independent. After measurement of the
i-th probe, Eve makes a guess of the i-th secret key bit, i.e., she has to decide
whether the i-th bit was 0 or 1. If her decided bit matches with what Alice
has sent, then we call it a success, else it is an error. Eve’s strategy would
be to minimize the error probability in her guess, i.e., to maximize the success
probability.

The mutual information between Alice and Eve gives a theoretical measure
about the average information contained in the random variable associated with
one of them about the random variable associated with the other. However, from



the point of view of guessing the secret key established between Alice and Bob,
Eve’s success probability is a more practical parameter of cryptanalytic interest
than the mutual information between Alice and Eve. The difference between the
attacker’s success probability and the probability of random guess (in this case,
the probability of random guess is 1

2
) gives the attacker’s advantage.

In Section 3, we present an analysis of the success probabilities of the four-
state and the six-state protocols and show that there is no extra advantage of
the two-bit probe over the one-bit probe in the six-state protocol. We show that
these two probes do not differ in terms of success probability of Eve’s guess
about the bits sent by Alice, though the mutual information is different.

In Section 4, we propose a multi-round version of the BB84 protocol. Using
this strategy, Alice and Bob can decrease Eve’s advantage. Though the concept
is similar to privacy amplification [2], we study the multi-round communication
as part of the key distribution steps from a different viewpoint as follows. Both
in the traditional 4-state BB84 protocol [1] and in the six-state one [6], Bob
measures first and then Alice publishes the bases she used. Thus, while the six-
state protocol is more secure than the four-state one, the disadvantage of the
six-state scheme is that, on an average, only one-third of the qubits are kept
and the rest two-third are discarded, which is worse than in the case of four-
state scheme, where half of the received qubits are discarded. Hence, for a fair
comparison between our multi-round versions of these two protocols, we must
ensure that the same number of qubits communicated between Alice and Bob
and in the end, the secret keys established are of the same bit length. In this
setting, we critically evaluate the security parameters of both the protocols.

2 Review of Optimal Eavesdropping [6, 10]

In this part, we study a generic version of BB84 with the bases {|0〉, |1〉} and
{|ψ〉, |ψ⊥〉}, where |ψ〉 = a|0〉 + b|1〉 and |ψ⊥〉 = b∗|0〉 − a∗|1〉. We characterize
the values of a, b based on the eavesdropping model presented in [6, 10]. We take
each of a, b nonzero, as otherwise both the base will coincide (up to rotation).
It is also trivial to see that |a|2 + |b|2 = 1 from normality condition. Under
the symmetric incoherent optimal eavesdropping strategy [6, 10], we get certain
constraints on a, b as given in Theorem 1 in the next section. If one takes a state
|ψ〉 such that the conditions on a, b as given in Theorem 1 are not admitted,
then the symmetric attack of [10] needs to be modified properly.

Following [19], let {|φi〉|i = 1, . . . , N} and {|Φi〉|i = 1, . . . , N} be two or-
thonormal bases for an N dimensional Hilbert space. Such a pair of bases will
be called conjugate, if and only if |〈φi|Φj〉|2 = 1

N
for any i, j. Here 〈φi|Φj〉 is

the inner product between |φi〉, |Φj〉. The case N = 2 is considered here. The
analysis with non-conjugate bases has been presented by Phoenix [13] and it has
been shown that the original proposal of [1] using the conjugate bases provides
the optimal security.

In the absence of eavesdropper or any channel noise, Bob exactly knows the
state that has been sent by Alice, if measured in the correct basis. However,



Eve’s interaction does not allow that to happen. Consider the scenario when
Alice sends one of two orthogonal states |ψ〉 and |ψ⊥〉 to Bob and Eve has her
own initial two-qubit state |W 〉. Eve’s interaction with the state being sent from
Alice to Bob can be modeled as the action of a unitary operator U on three
qubits as follows.

U(|ψ〉, |W 〉) =
√
F ′|ψ〉|E′

00〉+
√
D′|ψ⊥〉|E′

01〉,
U(|ψ⊥〉, |W 〉) =

√
D′|ψ〉|E′

10〉+
√
F ′|ψ⊥〉|E′

11〉. (1)

Thus, when Alice sends |ψ〉 (respectively |ψ⊥〉), then Bob receives |ψ〉 (respec-
tively |ψ⊥〉) with probability F ′ (this is called fidelity) and receives |ψ⊥〉 (respec-
tively |ψ〉) with probability D′ (this is called disturbance). One may note that
F ′ +D′ = 1.

After Bob measures the qubit he receives, Eve tries to obtain information
about Bob’s qubit. As example, if Eve obtains |E′

00〉 after measurement, she
knows that Bob has received |ψ〉. The problem with Eve is that, if she tries to
extract such information with certainty, then |E′

00〉, |E′
01〉, |E′

10〉 and |E′
11〉 need

to be orthogonal and in that case the error probability D′ at Bob’s end will
be very high and Bob will abort the protocol. Thus all of |E′

00〉, |E′
01〉, |E′

10〉,
|E′

11〉 cannot be orthogonal and Eve has to decide the relationship among these
2-qubit states for optimal eavesdropping strategy.

Now let us consider the case for the {|0〉, |1〉} basis.

U(|0〉, |W 〉) =
√
F |0〉|E00〉+

√
D|1〉|E01〉,

U(|1〉, |W 〉) =
√
D|0〉|E10〉+

√
F |1〉|E11〉. (2)

The case for the generalized basis {|ψ〉, |ψ⊥〉} has already been expressed in (1).
As we are studying the symmetric attack here, we consider that the fidelity F
and the disturbance D are same for all the cases, i.e., F = F ′ and D = D′.

We have considered |ψ〉 = a|0〉+ b|1〉 and |ψ⊥〉 = b∗|0〉−a∗|1〉, where a, b are
nonzero. Hence, by linearity and then using Equation (2), we get

U(|ψ〉, |W 〉) = aU(|0〉, |W 〉) + bU(|1〉, |W 〉)
= |0〉(a

√
F |E00〉+ b

√
D|E10〉) + |1〉(a

√
D|E01〉+ b

√
F |E11〉). (3)

Substituting |ψ〉 = a|0〉 + b|1〉 and |ψ⊥〉 = b∗|0〉 − a∗|1〉 in the first one of
Equation (1), we obtain

U(|ψ〉, |W 〉) = |0〉(a
√
F |E′

00〉+ b∗
√
D|E′

01〉)+ |1〉(b
√
F |E′

00〉− a∗
√
D|E′

01〉). (4)
Equating the right hand sides of Equations (3) and (4), we get

√
F |E′

00〉 =
√
F
(

|a|2|E00〉+ |b|2|E11〉
)

+
√
D (ab∗|E01〉+ a∗b|E10〉) , (5)

√
D|E′

01〉 = ab
√
F (|E00〉 − |E11〉)−

√
D
(

a2|E01〉 − b2|E10〉
)

. (6)

Similarly, comparing two different expressions for U(|ψ⊥〉, |W 〉), we get
√
D|E′

10〉 = a∗b∗
√
F (|E00〉 − |E11〉) +

√
D
(

b∗2|E01〉 − a∗2|E10〉
)

, (7)
√
F |E′

11〉 =
√
F
(

|b|2|E00〉+ |a|2|E11〉
)

−
√
D (ab∗|E01〉+ a∗b|E10〉) . (8)



As explained in [10, 7], for a symmetric attack, we have the following constraints.

(i) The scalar products 〈Eij |Ekl〉 and 〈E′
ij |E′

kl〉, are such that 〈Eij |Ekl〉 =
〈Ekl|Eij〉 and 〈E′

ij |E′
kl〉 = 〈E′

kl|E′
ij〉, for i, j, k, l ∈ {0, 1}. This assumption

implies that all the inner products must be real.
(ii) Any element of {|E00〉, |E11〉} is orthogonal to any element of {|E01〉, |E10〉}.

Similar orthogonality condition holds between the pairs {|E′
00〉, |E′

11〉} and
{|E′

01〉, |E′
10〉}.

(iii) Further, we take 〈E00|E11〉 = 〈E′
00|E′

11〉 = x, 〈E01|E10〉 = 〈E′
01|E′

10〉 = y,
where x, y are real. It is evident that all the other inner products are zero
due to the orthogonality conditions.

We have 〈E′
00|E′

01〉 = 0 and replacing them as in (5) and (6), we get

ab(|a|2 − |b|2)(1− x)−D
[

ab
(

|a|2 − |b|2
)

(2− x) +
(

a3b∗ − a∗b3
)

y
]

= 0. (9)

From (9) we get the following

D =
ab
(

|a|2 − |b|2
)

(1− x)

ab (|a|2 − |b|2) (2− x) + (a3b∗ − a∗b3) y
. (10)

The expression of D in (10) is not defined when the denominator is zero. Given

y 6= 0, the denominator of (10) is 0 if and only if
(

|a| = |b| = 1√
2

)

AND
(

arg(a
b
) ≡ 0 mod π

2

)

. Under this condition, we get that a = ±b or ±ıb.
When a = ±b or ±ıb, D cannot be calculated from (10) as the denominator

will be zero. However, taking 〈E′
01|E′

01〉 = 1 and putting there the expression of
|E′

01〉 from (6), we get the value of D as follows

D =
1− x

2− x+ y
, when a = ±b (11)

=
1− x

2− x− y
, when a = ±ıb. (12)

Now consider the case when denominator of D in (10) is not zero. It has already
been considered that 〈E′

00|E′
10〉 = 0. Now replacing them as in (5) and (7) and

plugging in the value of D from (10), we get (1− x)y
(

a2b∗2 − a∗2b2
)

= 0.
We have considered that 〈E00|E11〉 = 〈E′

00|E′
11〉 = x, and 〈E01|E10〉 =

〈E′
01|E′

10〉 = y, where both x, y are real. Thus, it is natural to consider that
0 < x, y < 1; otherwise, the vectors will be either orthogonal or the same. In
such a situation, from (1− x)y

(

a2b∗2 − a∗2b2
)

= 0, we get
(

a2b∗2 − a∗2b2
)

= 0,

i.e., ab∗ = ±a∗b. This holds if and only if a = ±rb,±ırb, where r = |a|
|b| 6= 1. The

r = 1 case has already been taken care of.
For r 6= 1, when we put a = ±rb in (10), we get D = 1−x

2−x+y
, as given in (11)

already. Now taking the inner product of both sides of (6) and (7) and putting

D = 1−x
2−x+y

, we get 〈E′
01|E′

10〉 =
(

(b∗)2 + (a∗)2
)2
y which has been assumed to

be y. Thus,
(

(b∗)2 + (a∗)2
)2

= 1, and given a = ±rb, we obtain either both a, b
are real of both a, b are imaginary.



However, for r 6= 1, if we put a = ±ırb in (10), we get D = 1−x
2−x−y

as in (12).
Then following the similar manner as before, we get one of a, b is real and the
other one is imaginary. Thus we have the following result.

Theorem 1. Consider symmetric incoherent eavesdropping with 0 < x, y < 1,
on the BB84 protocol with the bases |0〉, |1〉 and |ψ〉 = a|0〉 + b|1〉, |ψ⊥〉 =
b∗|0〉 − a∗|1〉. We have (i) D = 1−x

2−x+y
if and only if a, b are either both real or

both imaginary and (ii) D = 1−x
2−x−y

if and only if one of a, b is real and the other
one is imaginary.

Theorem 1 identifies that for such eavesdropping where BB84 protocol is imple-
mented with the bases |0〉, |1〉 and |ψ〉, |ψ⊥〉, the form of |ψ〉 is restricted given
0 < x, y < 1. When r 6= 1, then the bases |0〉, |1〉 and |ψ〉, |ψ⊥〉 cannot be conju-
gate. To have conjugate bases, one must take r = 1, i.e., |a| = |b| = 1√

2
. As the

simplest example, it is natural to consider a = b = 1√
2
, which gives |ψ〉 = |0〉+|1〉√

2

and |ψ⊥〉 = |0〉−|1〉√
2

that has indeed been used in BB84 protocol [1]. On such

conjugate bases, the eavesdropping idea of [10] works that we discuss in the next
section.

In [10], the conjugate bases |0〉, |1〉 and |0〉+|1〉√
2

, |0〉−|1〉√
2

have been considered.

That is in this case, a = b = 1√
2
and D = 1−x

2−x+y
, as in Equation (11).

In [6], three conjugate bases |0〉, |1〉; |0〉+|1〉√
2

, |0〉−|1〉√
2

and |0〉+ı|1〉√
2

,
|0〉−ı|1〉√

2
have

been exploited for the BB84 protocol. Thus, while considering a = b = 1√
2
one

gets D = 1−x
2−x+y

, but in case of a = 1√
2
, b = ı√

2
we obtain D = 1−x

2−x−y
. To have

the symmetric attack possible, we need 1−x
2−x+y

= 1−x
2−x−y

and thus y = 0. For

y = 0, both (11) and (12) reduce to

D =
1− x

2− x
. (13)

However, there are complex numbers a, b, where |a| = |b| = 1√
2
, but a 6=

±b,±ıb and in those case a, b are not as given in Theorem 1. As example, one
can take, |ψ〉 = 1+ı

2
|0〉 + 1√

2
|1〉 and |ψ⊥〉 = 1√

2
|0〉 − 1−ı

2
|1〉. Symmetric attack

in the attack model of [6, 10] is not directly possible in these cases when y is
nonzero. However, if Eve uses a phase-covariant cloner or orients her probes
appropriately, then she can mount the same attack. Thus, by no choice of a, b,
Alice and Bob can avoid the symmetric attack on the four-state protocol.

3 Eavesdropper’s Success Probability as a Function of
Disturbance at Receiver End

In this part, we critically revisit the attack models of [10] and [6] in the light
of success probability of Eve’s guess about the qubit that was actually sent by
Alice. In the analysis, we require to compute the probabilities of different related



events. These probabilities form the components for the mutual information be-
tween Alice and Eve as well as the success probability for Eve’s guess. First in
Section 3.1, we compute these individual probabilities and for the sake of com-
pleteness show the calculation of mutual information also. Next in Section 3.2,
we derive the success probabilities of Eve’s guess for various cases and discuss
how they give different insight from mutual information.

We introduce a few notations for the sake of our analysis. Let A,B, V be the
random variables corresponding to the bit sent by Alice, the bit received by Bob
and the outcome observed by Eve due to her measurement. Eve performs the
measurement after Alice and Bob announce their bases. After the announcement,
Eve discards the probes corresponding to the qubits for which Alice and Bob’s
bases do not match and works with the probes corresponding to the bases that
match. For one-bit probe, Eve measures her second qubit in the bases Z or
X, as used by Alice. Similarly, for two-bit probe, Eve measures in the bases
{|00〉, |01〉, |10〉, |11〉} when Alice and Bob use the Z basis and she measures in
the basis {|++〉, |+−〉, | −+〉, | − −〉} when Alice and Bob use the X basis. In
this paper, we calculate all probabilities considering the Z basis only. Symmetry
gives the same results when theX basis is used. Hence, without loss of generality,
V can be assumed to be in {0, 1} for one-bit probe, and it can be assumed to
be in {00, 01, 10, 11} for two-bit probe. In the subsequent discussion, we use the
term Eve’s observation to denote the observed outcome V of her measurement.

3.1 Probability Analysis and Mutual Information

We follow the standard definitions of mutual information and conditional entropy
from information theory [8]. The mutual information between Alice and Bob is
given by

IAB = H(A)−H(A|B), (14)

and the mutual information between Alice and Eve is given by

IAV = H(A)−H(A|V ), (15)

where H(·) is the Shannon entropy function.
We assume that Alice randomly generates the bits to be transmitted, so that

P (A = 0) = P (A = 1) = 1

2
. Hence H(A) = − 1

2
log2(

1

2
)− 1

2
log2(

1

2
) = 1. Also,

P (B = 0 | A = 1) = P (B = 1 | A = 0) = D and
P (B = 0 | A = 0) = P (B = 1 | A = 1) = 1−D.

Hence, P (B = 0) = P (B = 1) = 1

2
and the conditionals P (A | B) are identical

with the conditionals P (B | A). Thus,
H(A | B = 0) = H(A | B = 1) = −D log2(D)− (1−D) log2(1−D) and
H(A | B) = P (B = 0)H(A | B = 0) + P (B = 1)H(A | B = 1)
= −D log2(D)− (1−D) log2(1−D). So from Equation (14) we have

IAB = 1 +D log2(D) + (1−D) log2(1−D). (16)

Recall that (one may refer to Section 2 for details) the general unitary transfor-
mation designed by Eve is as follows:



U(|0〉, |W 〉) =
√
F |0〉|E00〉+

√
D|1〉|E01〉, and

U(|1〉, |W 〉) =
√
D|0〉|E10〉+

√
F |1〉|E11〉, where F = 1−D.

If we rewrite the interactions expressed in [10, Equations 50-51] in our notation,
we obtain the following expressions for |Eij〉’s.
|E00〉 =

√
1−D

|00〉+|11〉√
2

+
√
D

|00〉−|11〉√
2

, |E01〉 =
√
1−D

|01〉+|10〉√
2

−
√
D

|01〉−|10〉√
2

,

|E10〉 =
√
1−D

|01〉+|10〉√
2

+
√
D

|01〉−|10〉√
2

, |E11〉 =
√
1−D

|00〉+|11〉√
2

−
√
D

|00〉−|11〉√
2

.

For i ∈ {0, 1}, by Bayes’ Theorem, Eve’s posterior probability
P (A = i | V = v) of what Alice sent is given by

P (A = i) · P (V = v | A = i)

P (V = v)
=

P (A = i) · P (V = v | A = i)
∑

j=0,1

P (A = j) · P (V = v | A = j)

=
P (V = v | A = i)

P (V = v | A = 0) + P (V = v | A = 1)
.(17)

Again, the likelihoods P (V = v | A = i) are computed as

P (B = 0 | A = i)P (V = v | A = i, B = 0)

+P (B = 1 | A = i)P (V = v | A = i, B = 1)

= P (B = 0 | A = i)P (V = v | Ei0) + P (B = 1 | A = i)P (V = v | Ei1).(18)

After the announcement of the bases in the BB84 protocol, Eve measures her
qubit in the corresponding bases. The likelihoods for the attack in [10] when
computed using Equation (18) turns out to be as shown in Table 1 below.

V = 0 V = 1

A = 0 1

2
+

√

D(1−D) 1

2
−

√

D(1−D)

A = 1 1

2
−

√

D(1−D) 1

2
+

√

D(1−D)

Marginal of V 1

2

1

2

Table 1. Values of P (V = v | A = i) = P (A = i | V = v) for the attack model of [10].

For example, P (V = 0 | A = 0) is given by P (B = 0 | A = 0)P (V =

0 | E00)+P (B = 1 | A = 0)P (V = 0 | E01) = (1−D)·
(

1√
2

(√
1−D +

√
D
))2

+

D ·
(

1√
2

(√
1−D +

√
D
))2

= 1

2
+
√

D(1−D) = f(D), say.

Note that since P (A = 0) = P (A = 1) = 1

2
, the half of the sum of

each column in Table 1 gives the marginal probability of V for that column.
In Equation (17), putting the value of P (V = v | A = i) from Table 1, we
find that the posteriors are identical with the corresponding likelihoods. Hence
H(A | V = 0) = H(A | V = 1) = −f(D) log2 f(D)− (1− f(D)) log2 (1− f(D)).

Also, from Table 1, we have P (V = 0) = P (V = 1) = 1

2
, giving H(A|V ) =

P (V = 0)H(A | V = 0) + P (V = 1)H(A | V = 1) = −f(D) log2 f(D) −



(1− f(D)) log2 (1− f(D)). Substituting in Equation (15), we have

IAV = 1 + f(D) log2 f(D) + (1− f(D)) log2 (1− f(D)) . (19)

Note that the above computation is shown assuming a one-bit probe. It is easy
to show that, for the four-state protocol, the one-bit and the two-bit probes give
identical mutual information between Alice and Eve. The expression for this
mutual information is given by Equation (19) which matches with [10, Equation
65].

Next, the interactions of [6, Equations 9-15], when expressed in our notations,
become |E00〉 = β|10〉 +

√

1− |β|2|01〉, |E01〉 = |00〉, |E10〉 = |11〉, and |E11〉 =
√

1− |β|2|10〉 + β|01〉. From Equation (13) (Section 2), we obtain, D = 1−x
2−x

,

which gives, x = 1−2D
1−D

. Noting that, x = 〈E00|E11〉, we get

|β|2 =
1

2

(

1 +

√

D(2− 3D)

1−D

)

. (20)

Technically, the square-root in Equation (20) should be written with a ± sign.
However, for simplicity, we show all calculation with the + sign here. The cal-
culation with the − sign would be similar.

V = 0 V = 1

A = 0 D + (1−D)|β|2 1−D − (1−D)|β|2

A = 1 1−D − (1−D)|β|2 D + (1−D)|β|2

Marginal of V 1

2

1

2

Table 2. Values of P (V = v | A = i) = P (A = i | V = v) for one-bit probe of [6].

V = 00 V = 01 V = 10 V = 11

A = 0 D 1−D − (1−D)|β|2 (1−D)|β|2 0

A = 1 0 (1−D)|β|2 1−D − (1−D)|β|2 D

Marginal of V D

2

1−D

2

1−D

2

D

2

Table 3. Values of P (V = v | A = i) for two-bit probe of [6].

For one-bit probe, the likelihoods for [6] when computed using Equation (18)
turns out to be as shown in Table 2.

From Equation (17), we find that in this case also, the posteriors are identical
with the corresponding likelihoods.

For ease of calculation, let us denote

f1(D) = D + (1−D)|β|2 =
1

2

(

1 +D +
√

D(2− 3D)
)

. (21)



V = 00 V = 01 V = 10 V = 11

A = 0 1 1− |β|2 |β|2 0

A = 1 0 |β|2 1− |β|2 1

Marginal of V D

2

1−D

2

1−D

2

D

2

Table 4. Values of P (A = i | V = v) for two-bit probe of [6].

Hence H(A | V = 0) = H(A | V = 1) can be written as −f1(D) log2 f1(D) −
(1− f1(D)) log2 (1− f1(D)).

Also, from Table 2, we have P (V = 0) = P (V = 1) = 1

2
, giving H(A|V ) =

P (V = 0)H(A | V = 0) + P (V = 1)H(A | V = 1) = −f1(D) log2 f1(D) −
(1− f1(D)) log2 (1− f1(D)). Substituting in Equation (15), we have

IAV
1 = 1 + f1(D) log2 f1(D) + (1− f1(D)) log2 (1− f1(D)) . (22)

This expression matches with [6, Equation 18].
Now, consider the two-bit probe. The likelihoods for [6] when computed using

Equation (18) turns out to be as shown in Table 3.
From Equation (17), the posteriors are computed as given in Table 4. Hence

H(A | V = 00) = H(A | V = 11) = 0 and H(A | V = 01) = H(A | V = 10) =
−|β|2 log2 |β|2−

(

1− |β|2
)

log2
(

1− |β|2
)

= h(D) (say). Thus,H(A|V ) = P (V =
00)H(A | V = 00) + P (V = 01)H(A | V = 01) + P (V = 10)H(A | V = 10) +
P (V = 11)H(A | V = 11) = D

2
·0+ 1−D

2
·h(D)+ 1−D

2
·h(D)+D

2
·0 = (1−D)·h(D).

Substituting in Equation (15), we have

IAV
2 = 1− (1−D)h(D). (23)

Again, this matches with [6, Equation 17].
If one plots the curves of IAV , IAV

1 and IAV
2 against D, one can find that

for all values of D ∈ (0, 1
2
), the relation IAV

1 < IAV
2 < IAV holds. From this, it

is concluded in [6] that the six-state protocol is more secure than the four-state
protocol. Moreover, within the six-state protocol, two-bit probe helps Eve in
obtaining more mutual information than the one-bit probe. However, we present
a different view on both of these claims.

3.2 Optimal Success Probability and Its Implications

We introduce a few relevant definitions first and then proceed with the analysis.

Definition 1. A strategy S of the Eavesdropper is a function of her observa-
tion v such that for each v, it produces a unique guess S(v) about the bit sent by
Alice to Bob.

Definition 2. For some observation v, if the Eavesdropper’s guess matches with
the bit sent by Alice, i.e., if S(v) = A, we call this event a success.



Definition 3. For some observation v, if the Eavesdropper’s guess does not
match with the bit sent by Alice, i.e., if S(v) 6= A, we call this event a failure
or an error.

Thus, the conditional error probability of Eve is given by P (error | V = v) =
P (S(v) 6= A | V = v) and the error probability of Eve is given by

P (error) =
∑

v

P (V = v)P (error | V = v)

=
∑

v

P (V = v)P (S(v) 6= A | V = v). (24)

The success probability of Eve is given by P (success) = 1− P (error).

Definition 4. If P (success) is the success probability of the Eavesdropper in
guessing the bit sent by Alice through some strategy S, and P (prior) is the prob-
ability denoting the Eavesdropper’s prior knowledge about the bit sent by Alice
before applying any strategy, then the advantage of the Eavesdropper for the
particular strategy is defined as A(D) = |P (success)− P (prior)| .

Since Alice chooses the bit to be sent uniformly at random over {0, 1}, in our
case P (prior) = 1

2
and so A(D) =

∣

∣P (success)− 1

2

∣

∣ .

Maximizing the success probability or the advantage is equivalent to min-
imizing the error probability. Note that Eve’s success or error probability is a
feature of the particular strategy devised by Eve. Her goal is to choose the best
possible strategy in determining the secret key.

Definition 5. Out of all possible strategies, the one giving the maximum suc-
cess probability or the minimum error probability, is called the optimal strat-
egy Sopt. The corresponding success (or error) probability is called the optimal
success (or error) probability of the Eavesdropper and the corresponding
advantage is called the optimal advantage of the Eavesdropper.

In the result below, we formulate how Eve can decide the optimal strategy.

Theorem 2. The optimal strategy is given by

Sopt(v) = argmax
i

P (A = i | V = v) ,

and the corresponding optimal success probability is given by

Popt(success) =
∑

v

max
i
P (A = i, V = v) ,

where the notation argmax
i

denotes the particular value iopt of the argument i

which maximizes the above conditional probability across all values i.



Proof. Since P (V = v) is independent of the strategy S, an optimum strategy
that minimizes P (error) must minimize P (S(v) 6= A | V = v) for each v, as
per Equation (24). In other words, for each v, it should maximize P (S(v) =
A | V = v). This means that S(v) should produce a guess i ∈ {0, 1} for which
P (A = i|V = v) is maximum. For the particular observation v, denote this
optimal value of i by iopt(v). With this optimal strategy the optimal error prob-
ability turns out to be Popt(error) =

∑

v P (V = v)P (A 6= iopt(v) | V = v) =
∑

v P (A 6= iopt(v), V = v) and the optimal success probability becomes
Popt(success) = 1− Popt(error) = 1−∑v P (A 6= iopt(v), V = v)
=
∑

v P (A = iopt(v), V = v). Hence the result follows. ⊓⊔

Since P (A = 0) = P (A = 1) = 1

2
, if we multiply each likelihood in Tables 1, 2

and 3 by 1

2
, we get the corresponding joint probabilities P (A = i, V = v)’s

and the optimal success probability is given by summing the maximum joint
probability (corresponding to the row iopt(v)) for each column v.

Thus, for the attack model of [10], the optimal success probability is com-
puted from Table 1 as

P 4-state
opt (success) =

1

2

(

1

2
+
√

D(1−D)

)

+
1

2

(

1

2
+
√

D(1−D)

)

=
1

2
+
√

D(1−D) = f(D). (25)

It can be easily shown that, like the mutual information, the success probabilities
are also the same in both the probes (one-bit and two-bit) for the four-state
protocol.

Since the six-state protocol [6] has different mutual information between Alice
and Eve for the one-bit and the two-bit probes, one may be tempted to conclude
that Eve has different success probabilities in these two probes. However, we
are going to show that this is not the case. In spite of having different mutual
information, both the probes lead to the same success probability for the six-
state protocol.

For the one-bit probe of the six-state protocol [6], the optimal success prob-
ability is computed from Table 2 as

P 6-state
opt1 (success) =

1

2

(

D + (1−D)|β2|
)

+
1

2

(

D + (1−D)|β|2
)

= D + (1−D)|β|2 = f1(D). (26)

Note that in the above derivation, we have used the fact that D+(1−D)|β|2 ≥
1−D−(1−D)|β2|, which follows from D+(1−D)|β2| ≥ 1

2
as per Equation (21).

For the two-bit probe of [6], the optimal success probability is computed from
Table 3 as

P 6-state
opt2 (success) =

1

2
·D +

1

2
· (1−D)|β|2 + 1

2
· (1−D)|β|2 + 1

2
·D

= D + (1−D)|β|2 = f1(D). (27)



Note that in the above derivation, we have used the fact that (1 − D)|β|2 ≥
1−D − (1−D)|β2|, which follows from |β2| ≥ 1

2
as per Equation (20).

Hence, we have the following result.

Theorem 3. For all D ∈ (0, 1
2
),

P 6-state
opt1 (success) = P 6-state

opt2 (success) < P 4-state
opt (success).
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Fig. 1. Optimal mutual information and optimal success probability as a function of
disturbance D.

In Figure 1, we plot (as functions of the disturbance D) the optimal mu-
tual information between Alice and Eve (on the left) and the optimal success
probability of Eve’s guess (on the right).

As an illustrative example, we show the values of the probabilities for D = 1

6

in Table 5. The optimal success probability in one-bit probe is given by 5

6
· 1
2
+ 5

6
·

One-bit Probe Two-bit Probe
V = 0 V = 1 V = 00 V = 01 V = 10 V = 11

A = 0 5

6

1

6
1 1

5

4

5
0

A = 1 1

6

5

6
0 4

5

1

5
1

Marginal of V 1

2

1

2

1

12

5

12

5

12

1

12

Table 5. Values of P (A = i | V = v) for D = 1

6
for both one- and two-bit probes of [6].

1

2
= 5

6
and that in two-bit probe turns out to be the same: 1 · 1

12
+ 4

5
· 5

12
+ 4

5
· 5

12
+

1 · 1

12
= 5

6
. But the mutual information in the first case is 1+ 5

6
log2

5

6
+ 1

6
log2

1

6
=

0.3500 and in the second case is 1 + 5

6
·
(

4

5
log2

4

5
+ 1

5
log2

1

5

)

= 0.3984.



According to Definition 4, the optimal advantages of the eavesdropper in the
four-state and in the six-state protocols are respectively given by

A4(D) =
√

D(1−D). (28)

A6(D) =
D +

√

D(2− 3D)

2
. (29)

Thus, though Eve has more mutual information in the two-bit probe, that does
not give any extra cryptographic advantage in guessing the bit sent by Alice.
So from the point of view of cryptanalysis, both the one-bit probe and two-bit
probe are equivalent even in the six-state BB84.

4 Comparing Four and Six-State Protocols Considering
Same Number of Qubits

For BB84 with four states, on average half of the qubits communicated by Alice
to Bob is discarded due to mismatch in their bases. For the six-state protocol,
the expected number of discarded qubits is two-third of the total number of
qubits communicated. So for a fair comparison, we must take the same values of

1. the length of the secret key established, and

2. the total number of qubits communicated

in both the protocols. To establish a secret key of length n bits, the four-state
protocol must communicate around 4n qubits (in the practical scenario, the exact
number is little more than 4n) and the six-state protocol must communicate
around 6n qubits (practically little more than that). Therefore, in order to match
the total number of bits communicated, the four-state protocol may be repeated
3t times and the six-states protocol should be repeated 2t times for any positive
integer t.

With the above motivation, we define a variant of BB84, called m-BB84 in
Table 6. In this protocol, Alice and Bob establish m different keys of the same
length by running m independent instances of BB84 and finally establish the
actual secret key by bitwise XOR-ing the individual keys together. The main
idea behind this scheme is the fact that when several biased bits are XOR-
ed together, the bias in the XOR output bit becomes smaller than the bias of
each bit. The concept is in the direction to privacy amplification [2]. However,
the motivation here is to compare the four-state and six-state protocol under
the same footage. Any post-processing including privacy amplification can be
performed on the string produced by the multi-round BB84.

The bias in Kj , the j-th bit of the final key K, depends on the biases in the
j-th bits of the individual keys. We can use the Piling-up Lemma [18] stated
below to compute the bias in Kj . We present the proof also for the sake of
completeness.



Protocol m-BB84

1. Alice and Bob run m independent instances of BB84.

(The instances may either be run sequentially,

or they may be run in parallel through separate channels).

2. Suppose they establish m many n-bit secret keys, namely,

k1, k2, . . . , km. Let ki,j be the j-th bit of the key ki established

in the i-th instance of BB84, for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

3. The j-th bit of the final secret key K is given by

Kj = k1,j ⊕ k2,j ⊕ · · · ⊕ km,j, for 1 ≤ j ≤ n.

Table 6. Multi-round BB84 Protocol with parameter (number of rounds) m.

Lemma 1 (Piling-up Lemma). Let ǫi be the bias in the binary random vari-
able Xi, i = 1, 2, . . . ,m, i.e., P (Xi = 0) = 1

2
+ ǫi and P (Xi = 1) = 1

2
− ǫi. Then

the bias in the random variable X1 ⊕X2 ⊕ · · · ⊕Xm is given by 2m−1ǫ1ǫ2 . . . ǫm,
considering the individual random variables as independent.

Proof. The result trivially holds for m = 1. For m = 2, we have

P (X1 ⊕X2 = 0) = P (X1 = 0, X2 = 0) + P (X1 = 1, X2 = 1)

=

(

1

2
+ ǫ1

)(

1

2
+ ǫ2

)

+

(

1

2
− ǫ1

)(

1

2
− ǫ2

)

=
1

2
+ 2ǫ1ǫ2

and hence the bias is 22−1ǫ1ǫ2. Assume that the result holds for m = ℓ, i.e., the
bias in XOR of ℓ variables is given by δ = 2ℓ−1ǫ1ǫ2 . . . ǫl. Now, for k = ℓ + 1,
taking Y = X1 ⊕ X2 ⊕ · · · ⊕ Xℓ, we can apply the result for k = 2 to obtain
the bias in Y ⊕Xℓ+1 as 2δǫℓ+1 = 2ℓǫ1ǫ2 . . . ǫℓ+1. Hence, by induction, the result
holds for any m. ⊓⊔

Now, we can formulate the optimal advantage of the adversary for m-BB84 as
follows.

Theorem 4. For a disturbance D in each qubit of the individual instances of
BB84, the optimal advantages of the adversary in guessing a bit of the final key

of m-BB84 are given by A4(D,m) = 2m−1

(

√

D(1−D)
)m

, and A6(D,m) =

1

2

(

D +
√

D(2− 3D)
)m

corresponding to the four-state and the six-state proto-

cols respectively.

Proof. For any bit position j, the computation of the bias follows in the same
manner. Hence, without loss of generality, fix a bit position j. Corresponding to
this position, there are m key bits, each having the same bias ǫi, 1 ≤ i ≤ m. The
value of this bias is given by Equation (28) for the four-state protocol and by
Equation (29) for the six-state protocol. By substituting these expressions for ǫi
in Lemma 1, the result follows. ⊓⊔

Note that Equations (28) and (29) can be considered as special cases of Theo-
rem 4 with m = 1, i.e., they represent A4(D, 1) and A6(D, 1) respectively.



In principle, the higher the value of m, the greater is the reduction of Eve’s
advantage. However, one should keep in mind that with increasing m, the effec-
tive disturbance perceived by Bob also increases. We can formulate this by the
following result.

Theorem 5. For a disturbance D in the channel for each qubit of the individual
instances of BB84, the effective disturbance perceived by Bob for each bit of the
final key of m-BB84 is given by ∆(D,m) = 1

2
− 2m−1

(

1

2
−D

)m
.

Proof. A disturbanceD corresponds to a no-error (success) probability of 1−D =
1

2
+
(

1

2
−D

)

, i.e., a bias of
(

1

2
−D

)

at Bob’s end. For any bit position j, the
computation follows in the same manner. Hence, without loss of generality, fix a
bit position j. Corresponding to this position, there are m key bits, each having
the same bias ǫi =

(

1

2
−D

)

, 1 ≤ i ≤ m. By Lemma 1, the equivalent bias
(of no-error) for the j-th bit (and so for each bit) of the final key is given by
2m−1

(

1

2
−D

)m
. Thus, the equivalent no-error probability for each bit of the

final key is given by s = 1

2
+ 2m−1

(

1

2
−D

)m
. The equivalent disturbance is

given by 1− s. ⊓⊔

As discussed already, for fair comparison we should always compare four-
state 3t-BB84 with six-state 2t-BB84 for any fixed integral value of t. Because
of Theorem 5, higher t means more error for Alice and Bob. Hence, we would
restrict our subsequent discussion for t = 1, i.e, we would compare the four-state
3-BB84 with the six-state 2-BB84, though in principle similar comparison holds
for any t.

We consider three scenarios for our comparative study. Let D4 and D6 denote
the disturbances in each qubit of the individual instances of the four and the six-
state protocols respectively. For comparison in equal footing, we take D6 = D

and express all the other quantities in terms of D.

4.1 Scenario 1: Equal Disturbance in Each Qubit of the Individual
Instances of Four-state and Six-state BB84

Here, D4 = D6 = D. In Figure 2 (top), we plot the optimal advantages of Eve
and the effective disturbances of Bob as a function of the disturbance D for
D ∈ [0, 1

2
].

As pointed out in [6], one can note that for all D ∈ [0, 0.5], A4(D, 1) >
A6(D, 1). That is, the eavesdropper can obtain more information in the tradi-
tional 4-state BB84 [1] than the 6-state modification [6]. However, we note that
A4(D, 3) ≤ A6(D, 2) for D ≤ 0.27 (up to two decimal places). Thus, at the
expense of same number of qubits, for the range of disturbance ≤ 0.27, the four-
state BB84 is more secure (as eavesdropper obtains less information) than the
six-state BB84 in the model we discussed above. But this greater security comes
at the cost of greater effective disturbance at Bob’s end, as depicted by the plot.

As a numerical example, consider D = 0.1. Then A4(D, 1) = 0.3, which
is more than A6(D, 1) = 0.2562. Again, A4(D, 3) = 0.108, which is less than
A6(D, 2) = 0.1312, implying that the four-state 3-BB84 is more secure. However,
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Fig. 2. Eavesdropper’s advantages and Bob’s disturbances against D6 = D, for three
cases: Scenario 1 (top), Scenario 2 (middle) and Scenario 3 (bottom).



its effective disturbance ∆(D4, 3) = 0.244 is more than that of the six-state 2-
BB84 one, which is ∆(D6, 2) = 0.18.

4.2 Scenario 2: Equal Effective Disturbance in Each Bit of the Final
Key of Four-state and Six-state BB84

In this scenario, we consider that Eve chooses different values of D4 and D6 so
that the effective disturbances ∆(D4, 3) and ∆(D6, 2) are equal. Using The-

orem 5, we can write ∆(D4, 3) = 1

2
− 22

(

1

2
−D4

)3
, and ∆(D6, 2) = 1

2
−

2
(

1

2
−D6

)2
. Equating the right hand sides and substituting D6 = D, we ob-

tain D4 = 1

2
−
(

1

2

(

1

2
−D

)2
)

1

3

. Now we plot Eve’s optimal advantages A4(D4, 3)

and A6(D6, 2) using Theorem 4 and the quantities for Bob’s disturbances in
Figure 2 (middle). Note that for the entire range of D, the four-state 3-BB84 is
more secure than the six-state 2-BB84.

As a numerical example, consider D6 = 0.1. Then ∆(D6, 2) = 0.18. For
∆(D4, 3) to have the same value, we must have D4 = 0.0691. For the single
instance, we have A4(D4, 1) = 0.2536 to be marginally less than A6(D6, 1) =
0.2562, but for multiple instances with the same number of qubits, A4(D4, 3) =
0.0653 is much less than A6(D6, 2) = 0.1312.

4.3 Scenario 3: Equal Advantages for Eve for Four-state 3-BB84
and Six-state 2-BB84

From Theorem 4, we have A4(D4, 3) = 22
(

√

D4(1−D4)
)3

, and A6(D6, 2) =

1

2

(

D6 +
√

D6(2− 3D6)
)2

. Equating the right hand sides and substituting D6 =

D, we obtain D4 = 1

2
− 1

2

√

1−
(

D +
√

D(2− 3D)
)

4

3

. In Figure 2 (bottom), we

plot Bob’s effective disturbances ∆(D4, 3) and ∆(D6, 2) using Theorem 5, along
with Eve’s advantages. Here also, the four-state protocol offers more (individual
as well as effective) disturbance at Bob’s end than the six-state one.

As a numerical example, consider D6 = 0.1. Then A6(D6, 2) = 0.1312. For
A4(D4, 3) to have the same value, we must have D4 = 0.1159. The effective
disturbances are ∆(D4, 3) = 0.2734 > ∆(D6, 2) = 0.18. Also, for the single
instances, A4(D4, 1) = 0.3201 > A6(D6, 1) = 0.2562.

5 Conclusion

In this paper, we revisit the symmetric incoherent eavesdropping strategy of
Fuchs et al. [10] and Bruß [6] on the four and the six-state BB84 protocols
respectively in the light of the success probability of Eve. We show that both the
one-bit and the two-bit probes in the six-state have the same success probability
for Eve. Further, we critically compare the security issues in the four and the



six-state protocols when same number of qubits are used in both the cases.
Though the theoretical results of [6] as well as ours are correct, our results are
placed from the cryptanalytic viewpoint of optimal eavesdropping and thus the
interpretation is different from what claimed in [6].
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