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Abstract. KASUMI is a block cipher used in the confidentiality and
integrity algorithms of the 3GPP (3rd Generation Partnership Project)
mobile communications. In 2010, a related-key attack on full KASUMI
was reported. The attack was very powerful and worked in practical
complexity. However the attack was not a direct threat to full KASUMI
because of the impractical assumptions related to the attack. Therefore,
this paper concentrates on single-key attacks considered to be practical
attacks. This paper proposes a single-key attack on 6-round KASUMI.
The attack, which applies a technique of higher order differential attacks,
requires 260.8 data and 265.4 encryption time. To the best of our knowl-
edge, the attack reported in this paper is the most powerful single-key
attack against reduced-round KASUMI in terms of time complexity.

Keywords: A5/3, Block cipher, GSM, Higher order differential attack,
KASUMI, 3GPP.

1 Introduction

KASUMI [21] is a block cipher used in the confidentiality and integrity algo-
rithms of the 3GPP (3rd Generation Partnership Project) [20] mobile communi-
cations, developed through the collaborative efforts of the 3GPP organizational
partners. KASUMI is a modified version of the MISTY1 block cipher [14] having
a provable security regarding differential and linear cryptanalysis [4, 13], opti-
mized for implementation in hardware. It is also known as the A5/3 encryption
algorithm [22] for GSM (Global System for Mobile Communications), and it will
become one of the widely used block ciphers in the world.

Several cryptanalyses of KASUMI have been reported. In 2005, the first
attack against full KASUMI was proposed [3]. The attack, which used the tech-
niques of boomerang and rectangle attacks [2, 24], required the 254.6 data and
276.1 encryption time. In 2010, an improved attack on full KASUMI was reported
[6]. The paper also proposed an attack, named sandwich attacks, and the attack
required 226 data and 232 encryption time and 232 memory. The complexity of
the attack in [6] was very practical, and the authors could simulate the efficiency
of their attack using a personal computer.

Both attacks described above are categorized as related-key attacks [1]. This
kind of attacks requires the strong assumption that the attacker can input spe-
cific (sub)key differentials. The assumption is considered to be impractical in
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most real cryptosystems that generate session keys at random. That’s why, even
though the two attacks are very powerful and work in practical complexity, the
attacks described above are not a direct threat to full KASUMI and the cryp-
tosystem using the cipher, e.g., the A5/3 cryptosystem.

This paper concentrates on single-key attacks since those are considered to be
practical attacks. Some single-key attacks against reduced-round KASUMI have
been proposed. In 2001, an impossible differential attack on 6-round KASUMI
was reported [10]. The paper of [10] showed an attack using a 5-round impos-
sible differential, which requires 255 data and 2100 encryption time. In 2006, an
integral-interpolation attack on 6-round KASUMI was reported [17]. The paper
of [17] showed a 16th order differential and was applied to an attack that requires
248 data and 2126.2 encryption time.

This paper proposes an improved single-key attack on 6-round KASUMI. The
attack applies a technique of higher order differential attacks [9, 11]. We firstly
show a 48th order differential of 4-round KASUMI by extending the previously
known 3-round characteristic. We secondly demonstrate an attack using the 48th
order differential. Our attack requires 260.8 data and 265.4 encryption time. The
summary of the attacks on KASUMI is listed in Table 1. To the best of our
knowledge, the attack reported in this paper is the most powerful single-key
attack against reduced-round KASUMI in terms of time complexity.

Section 2 describes the structure of KASUMI. Section 3 explains higher order
differential attacks. Section 4 shows a higher order differential of KASUMI and
its application to attacks. Finally, section 5 concludes the paper and suggests
future work.

Table 1. Summary of the attacks on KASUMI

No. of rounds Key constraint Data Time Method

5 2 related keys 219 232.7 Related-key attack [5]
5 Single key 222.1 260.7 HOD attack [19]
5 Single key 228.9 231.2 HOD attack [18]
6 2 related keys 218.6 2113.6 Related-key attack [5]

6 (2-7) Single key 248 2126.2 II attack [17]
6 (2-7) Single key 255 2100 ID attack [10]

6 (2-7) Single key 260.8 265.4 HOD attack (this paper)

8 4 related keys 254.6 276.1 RKR attack [3]
8 4 related keys 226 232 RKS attack [6]

HOD attack : Higher order differential attack
II attack : Integral-interpolation attack
ID attack : Impossible differential attack
RKR attack : Related-key rectangle attack
RKS attack : Related-key sandwich attack
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2 KASUMI

This section describes the structure of KASUMI. For a more detailed description
refer to the specification document [21].

KASUMI is a 64-bit block cipher with a 128-bit secret key. It has a recursive
Feistel structure in the same manner as the MISTY1 construction. KASUMI has
8 rounds; each round is composed of two functions: the FO function that has
3 rounds of the FI function, and the FL function that has a Feistel structure
performing logical AND/OR operations with subkeys. The order of the two
functions depends on the round number: in the even rounds the FO function
is applied first, and in the odd rounds the FL function is applied first. The FI
function is a 4-round unbalanced Feistel structure using two types of S-boxes, 9
bits and 7 bits in size.

The KASUMI encryption function is shown in Fig. 1. In this paper, bitwise
AND, OR, exclusive OR, and one bit left rotation operations are denoted as ∩,
∪, ⊕, and ≪, respectively. We denote plaintext as P and ciphertext as C. We
denote the subkey input to the FOi function as KOi, the subkey input to the
FIij function as KIij , and the subkey input to the FLi function as KLi.

KASUMI FLi function

FOi function FIij function
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Fig. 1. Structure of KASUMI
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The i-th-round output data is defined as Xi for the internal variables. In
KASUMI, 0 ≤ i ≤ 8, so X0 = P and X8 = C. Considering the Feistel structure
of KASUMI, 64-bit internal data Y consists of left and right 32-bit portions
defined as YL and YR. Other divisions are also defined with regard to the FO
function:

Y = Y3 ∥ Y2 ∥ Y1 ∥ Y0 , Yi ∈ GF (2)16 .

The ∥ indicates data concatenation. We denote the i-th (0 ≤ i < n) bit of Z as
Z[i] and the range from the i-th bit of Z to the j-th bit of Z as Z[i − j]. For
example, the leftmost 16 bits of plaintext P is denoted as

P [63− 48] = PL[31− 16] = P3 = X0
3 .

The key schedule divides the 128-bit secret key into 16-bit data blocks Ki

(1 ≤ i ≤ 8) and generates subkeys K ′
i. Since the characteristics of the key

schedule are not used in this paper, we omit a detailed description of its manner
for deriving round keys.

3 Higher Order Differential Attacks

Here, we describe both the higher order differential characteristic and the method
for solving the attack equation used in higher order differential attacks.

3.1 Higher Order Differential Characteristic

Let the encryption function be the E(X;K) defined by Eq. (1) with data X and
key K as input and data Y as output. Here, X ∈ GF (2)n, K ∈ GF (2)s, and
Y ∈ GF (2)m.

Y = E(X;K) (1)

Let (A1, A2, · · · , Ad) be d linearly independent vectors on GF (2)n, and de-
note the subspace of GF (2)d expanded by them as V (d). Then the d-th order
differential with respect to X of E(X;K) is defined by Eq. (2). Here, the symbol⊕

A∈V (d) denotes the total sum by exclusive OR.

∆V (d)E(X;K) =
⊕

A∈V (d)

E(X ⊕A;K) (2)

We call the subspace V (d) the variable sub-blocks and the subspace other
than V (d) the fixed sub-blocks. In the following, we abbreviate ∆V (d) as ∆(d),
when the subspace V (d) is clearly understood. If the Boolean degree of E(X;K)
with respect to X is N , Eq. (3) necessarily holds without dependence on X.{

∆(N)E(X;K) = constant
∆(N+1)E(X;K) = 0

(3)
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3.2 Attack Equations

This section explains the equations required for an attack using the higher or-
der differential characteristic described in section 3.1. If encryption function E
comprises R rounds of functions F i (1 ≤ i ≤ R), the (R− 1)th-round output for
input X is expressed as

Y R−1(X) = FR−1(FR−2(· · ·F 2(F 1(X;K1);K2) · · · ;KR−2);KR−1) , (4)

whereKi is the subkey input in the i-th round. If the Boolean degree of Y R−1(X)
with respect to X is N , Eq. (5) necessarily holds according to Eq. (3).{

∆(N)Y R−1(X) = constant
∆(N+1)Y R−1(X) = 0

(5)

Denoting the ciphertext for input X as C(X) and the function for obtaining
Y R−1 from C(X) as F−1, we obtain

Y R−1(X) = F−1(C(X);KR) . (6)

Substituting Eq. (6) into Eq. (5), we obtain{⊕
A∈V (N) F−1(C(X ⊕A);KR) = constant⊕
A∈V (N+1) F−1(C(X ⊕A);KR) = 0

. (7)

Equation (7) holds when the final round subkey KR is correct, so the true
key, KR, can be determined by solving Eq. (7). Therefore, Eq. (7) is called the
attack equation.

3.3 Algebraic Method

One method of solving the attack equation presented in section 3.2 is an alge-
braic method. This method regards attack equations as functions on GF (2) and
subjects them to linearization, that is, transforms them into linear equations, by
redefining the higher degree terms related to the key as new first-degree unknown
terms [15, 16]. This approach has the potential to reduce the time complexity of
solving attack equations.

Let Eq. (7) be an n-bit attack equation derived using a d-th order differential.
Denoting the key contained in the attack equation as KR = (KR1,KR2), we
determine KR1 by an exhaustive search and obtain KR2 by using an algebraic
method. Here, we let L denote the number of unknown terms excluding constant
terms included in the linearized attack equation with regard to KR2. As for KR1,
we let KR1 ∈ GF (2)s1 .

The KR2 for the true key KR1 can be obtained by solving the L × (L + 1)
extended coefficient matrix obtained from L independent linearized equations.
Here, the coefficient matrix includes constant terms. However, if KR1 is guessed
incorrectly, KR2 will be determined based on that guess, which means that false
KR1 keys must be excluded. If L +m linearized equations have been prepared
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for determining KR2, the probability that the linearized equations for a false
KR1 key are not inconsistent is estimated to be 2−m. Thus, by using L + m
linearized equations whose probability of not being inconsistent for a false KR1

key is extremely small, that is, that satisfy the condition 2−m × 2s1 ≪ 1, false
KR1 keys can be rejected with very high probability.

Because the attack equation is an n-bit attack equation, n linearized equa-
tions are obtained with one set of d-th order differentials. Therefore, the number
of plaintexts needed to obtain L+m linearized equations is given by

D = 2d ×
⌈
L+m

n

⌉
. (8)

Furthermore, to obtain n linearized equations, the round function must be
calculated D times for each of L unknown terms and 1 constant term. Here,
considering that the time complexity for Gaussian elimination to solve the simul-
taneous equation is negligibly small, the time complexity for solving the attack
equation is equivalent to that of calculating the coefficient matrix. Thus, con-
sidering that KR1 is to be determined by an exhaustive search, time complexity
T is given by

T = 2s1 ×D × (L+ 1)

= 2s1+d ×
⌈
L+m

n

⌉
× (L+ 1) . (9)

Here, time complexity signifies the number of times the round function is calcu-
lated.

4 Higher Order Differential Attack on 6-Round KASUMI

The following section describes a higher order differential characteristic of KA-
SUMI and an attack that make use of this characteristic.

4.1 Higher Order Differentials of KASUMI

Here, we describe higher order differential characteristics of KASUMI. First, we
present Theorem 1 from [19] for KASUMI. In this theorem, α and β denote fixed
and variable 16-bit sub-blocks, respectively.

Theorem 1 Given a 16th order differential in the form of plaintext P ∈ (α, α, β, α)
in KASUMI, intermediate data X3

L satisfies Eq. (10).

∆(16)X3
L[24− 16] = 0 (10)

Theorem 2 can be obtained by adding 1 round to the upper side of Theorem 1
characteristics. However, Theorem 2 is only satisfied from the 2nd to 5th rounds
since the even round function is not equal to the odd round function.
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Theorem 2 Given a 48th order differential in the form of 2nd-round input X2 ∈
(β, α, β, β) in KASUMI, intermediate data X5

L satisfies Eq. (11).

∆(48)X5
L[24− 16] = 0 (11)

The 48th order differential of 4-round KASUMI is illustrated in Fig. 2.

Proof. Data X1
L is equal to X2

R since KASUMI is the Feistel structure. The
higher order differential characteristic is, therefore, unchanged. In addition, though
216 values of random data are output from the FL2 function,X2

L can be given ex-
haustively by giving 2nd-round input X1

R, exhaustively. Thus, since the value of
the 16th order differential of Eq. (10) appears 232 times in the intermediate data
X5

L according to Theorem 1, its total sum is zero. �

(β,α) (β,β)

( ) [ ] 01624548 =−∆ LX

FO4 FL4

FL5 FO5

FO2 FL2

FL3 FO3

Fig. 2. The 48th order differential of 4-round KASUMI

4.2 Derivation of Attack Equation

In this section we explain the derivation of the attack equation using the 48th
order differential characteristic described in section 4.1. The structure of 6-round
KASUMI targeted by this attack is shown in Fig. 3.
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Fig. 3. Six-round KASUMI

We can derive Eq. (12) as the attack equation from Fig. 3 and Eq. (11).⊕
A∈V (48)

{ FO7(FL7(CR;KL7);KO7,KI7)[24− 16]⊕ CL[24− 16] }

= ∆(48)X5
L[24− 16] = 0 (12)

To solve attack equation (12), we denote the function G9 for obtaining X5
L[24−

16] from the 41 bits of the ciphertext C and the 82 bits of the subkey SK =
{KO71,KO72,KI712,KI722,KL7} relevant to the attack equation as:

X5
L[24− 16] = G9(C;SK) . (13)

We get the attack equation (14) from Eq. (12) and (13).⊕
A∈V (48)

G9(C(X ⊕A);SK) = 0 (14)

4.3 Complexity of the Attack

In this section, we perform a detailed estimation of the amount of data and time
complexity required for solving the attack equation presented in section 4.2.

First, we express Eq. (14) as a polynomial on GF (2) by formula manipu-
lation using a mathematical software (Mathematica) and derive the number of
unknown coefficients Li. We also derive the number of unknown coefficients L′i
for the equivalent subkey obtained by the same modification in [18, 19]. The
values of Li and L′i obtained in this way are listed in Table 2.
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Table 2. Number of unknown coefficients in the attack equation

Bit position, No. of unknowns for the No. of unknowns for the
i original subkey, Li equivalent subkey, L′i

16th bit 34007 32321
17th bit 34086 31998
18th bit 32425 30583
19th bit 32213 30499
20th bit 32684 30852
21st bit 34285 32435
22nd bit 33309 31265
23rd bit 33927 31403
24th bit 36078 33616

Total 67746 62958

The number of plaintexts D required to collect the linear equations for 9
bits of Eq. (14) can be obtained by substituting the total number of unknown
coefficients, L′i, into Eq. (8). Furthermore, there is no guessing key bits for
solving Eq. (14), so s1 = 0. Accordingly, from the condition for eliminating false
keys, 2−m+s1 << 1, if we let m = 10,1 we have

D = 248 ×
⌈
62958 + 10

9

⌉
≈ 260.78 . (15)

In addition, the time complexity required for calculating the coefficients of
the linear equation is obtained by substituting the sum of the numbers of un-
known coefficients, L′i, into Eq. (9). Furthermore, as explained in section 3.3, the
calculations must be performed 2d times to determine the unknown coefficients
of linearized equations. However, in the case that the unknown coefficients of
the linearized equations can be calculated independently, it is known that time
complexity T can be reduced provided that the size of data required for calcu-
lating the unknown coefficients is w bits and the relation w < d is satisfied [8].
Specifically, it was shown in [8] that calculations for a value that appears an even
number of times can be omitted since performing an exclusive-OR operation on
the same value an even number of times results in a value of 0. With this tech-
nique, only the values of w-bit data that appear an odd number of times need
to be used to calculate the unknown coefficients. As a result, time complexity T
as expressed by Eq. (9) takes on the form of Eq. (16) when the relation w < d
is satisfied.2

T = 2s1+w−1 ×
⌈
L+m

n

⌉
× (L+ 1) (16)

1 10−3 << 1
2 There are about 2w−1 instances of ciphertext data on average for which the w-bit
value appears an odd number of times.



10 Teruo Saito

Here, d = 48 and w = 41, so the condition w < d is satisfied, we have

T = 20+41−1 ×
⌈
62958 + 10

9

⌉
× (62958 + 1) ≈ 268.72 . (17)

This time complexity signifies the number of times one round function is per-
formed.

Furthermore, in the estimation of time complexity below, we assumed that
the processing times for one S-box lookup and for two logical operations are the
same.3 On the basis of this assumption, the estimated processing time of the one
round function including the exclusive-OR of the Feistel structure is 55 logical
operations. The required calculations of the FO7 function are illustrated in Fig.
4. In Fig. 4, EKI means the equivalent keys of KI7. From Fig. 3 and Fig. 4,
determining the coefficients of linearized equation (14) requires the calculation of
the FL7 function, the 6 S-box lookups and 13 exclusive OR operations including
the exclusive-OR of the Feistel structure. Thus, converting T to a number of 6-
round encryptions, we get

T ≈ 268.72 × 6 + 2× 6 + 13

55
× 1

6
≈ 265.31 . (18)
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Fig. 4. The required calculations of the FO7 function

3 We assumed that an S-box lookup can be achieved by two instructions for calculating
an address and loading data. This assumption overestimates the time complexity
described in this paper.
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5 Conclusion and Future Work

This paper reports the higher order differential attack of 6-round KASUMI. This
attack requires 260.8 data and 265.4 encryption time. The type of our attack is
categorized as a single-key attack. This type of attack is considered to be a more
practical attack than a related-key attack. Our attack is not a direct threat to
full KASUMI, but to the best of our knowledge, the attack proposed in this
paper is the most powerful single-key attack in terms of time complexity.

In another interesting topic, the comparison between MISTY1 and KASUMI
was described in [6]. The authors of [6] argued that the transition from MISTY1
to KASUMI led to a much weaker cryptosystem. However, this argument is
appropriate for only a situation in which related-key attacks can be mounted.
The comparison had to be done on the same situation. The best attacks on
MISTY1 and KASUMI are listed in Table 3.

Table 3. The best attacks on MISTY1 and KASUMI

Cipher No. of rounds Type of attacks Data Time Method

MISTY1 7 Single-key 254.1 2120.6 HOD attack [23]
KASUMI 6 (2-7) Single-key 260.8 265.4 HOD attack (this paper)

MISTY1 7 (2-8) Related-key 254 255.3 RKAB attack [12]
KASUMI 8 Related-key 226 232 RKS attack [6]

HOD attack : Higher order differential attack
RKAB attack : Related-key amplified boomerang attack
RKS attack : Related-key sandwich attack

From Table 3, the security margin of KASUMI, which is the modified ver-
sion of MISTY1, is greater than that of MISTY1 regarding single-key attacks.
However, the security margin of KASUMI is less than that of MISTY1 regard-
ing related-key attacks because the key schedule of KASUMI is too simple to
be secure against related-key attacks. Therefore, KASUMI is still stronger than
MISTY1 in practical use.

Finally, we suggest future work. It is known that the amount of data and time
complexity can be reduced if any of the L unknown coefficients have a linear sum
relation in the linearized equations [7]. In section 4.3, we could not calculate the
rank of L× (L+2) coefficient matrix because of the computational difficulty to
perform the Gaussian elimination. If we can derive the upper bound of rank by
dividing the attack equation to multiple linearized equations, the data and time
complexity must be reduced.
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