
Hidden Vector Encryption Fully Secure Against

Unrestricted Queries

No query left unanswered

Angelo De Caro Vincenzo Iovino
Giuseppe Persiano

Dipartimento di Informatica ed Applicazioni,
Università di Salerno, 84084 Fisciano (SA), Italy.
{decaro,iovino,giuper}@dia.unisa.it.

Abstract

Predicate encryption is an important cryptographic primitive (see [3, 6, 11, 14]) that enables
fine-grained control on the decryption keys. Roughly speaking, in a predicate encryption scheme
the owner of the master secret key Msk can derive secret key SkP , for any predicate P from a
specified class of predicates P. In encrypting a message M , the sender can specify an attribute
vector ~x and the resulting ciphertext X̃ can be decrypted only by using keys SkP such that
P (~x) = 1.

Our main contribution is the first construction of a predicate encryption scheme that can
be proved fully secure against unrestricted queries by probabilistic polynomial-time adversaries
under non-interactive constant sized (that is, independent of the length ` of the attribute vectors)
hardness assumptions on bilinear groups of composite order.

Specifically, we consider hidden vector encryption (HVE in short), a notable case of predicate
encryption introduced by Boneh and Waters [6] and further developed in [24, 13, 22]. In a HVE
scheme, the ciphertext attributes are vectors ~x = 〈x1, . . . , x`〉 of length ` over alphabet Σ, keys
are associated with vectors ~y = 〈y1, . . . , y`〉 of length ` over alphabet Σ ∪ {?} and we consider
the Match(~x, ~y) predicate which is true if and only if, for all i, yi 6= ? implies xi = yi. Previous
constructions restricted the proof of security to adversaries that could ask only non-matching
queries; that is, for challenge attribute vectors ~x0 and ~x1, the adversary could ask only for keys
of vectors ~y for which Match(~x0, ~y) = Match(~x1, ~y) = false.

Our proof employs the dual system methodology of Waters [26], that gave one of the first
fully secure construction in this area, blended with a careful design of intermediate security
games that keep into account the relationship between challenge ciphertexts and key queries.

Keywords: predicate encryption, full security, pairing-based cryptography.

1 Introduction and related work

Predicate encryption is an important cryptographic primitive (see [3, 6, 11, 14]) that enables fine-
grained control on the decryption keys. Roughly speaking, in a predicate encryption scheme for a
class P of `-ary predicates, the owner of the master secret key Msk can derive secret key SkP for any
predicate P ∈ P. In encrypting a message M , the sender can specify an attribute vector ~x of length
` and the resulting ciphertext X can be decrypted only by using keys SkP such that P (~x) = 1.
Thus a predicate encryption scheme enables the owner of the master secret key to delegate the
decryption of different types of ciphertexts to different entities by releasing the appropriate key.

Our main contribution is the first construction of a predicate encryption scheme that can be
proved fully secure against unrestricted queries from probabilistic polynomial-time adversaries under
non-interactive constant sized (that is independent of `) hardness assumptions on bilinear groups
of composite order.

More specifically, we consider hidden vector encryption (HVE in short), a notable case of
predicate encryption introduced by [6]. In a HVE scheme, the ciphertext attributes are vectors
~x = 〈x1, . . . , x`〉 of length ` over alphabet Σ and predicates are described by vectors ~y = 〈y1, . . . , y`〉
of length ` over alphabet Σ∪{?}. The class P of predicates for HVE consists of all predicates Match~y
defined as follows: Match~y(~x) is true if and only if, for all i, yi 6= ? implies xi = yi. In the rest of
the paper we will adopt the writing Match(~x, ~y) instead of Match~y(~x).

We model our security notion by means of a game between a challenger C and a PPT adversary
A that sees the public key (thus we depart from the selective model of security), is allowed to ask
for keys of vectors ~y of his choice and gives two challenge vectors ~x0 and ~x1. A then receives a
challenge ciphertext (an encryption of a randomly chosen challenge vectors) and has to guess which
of the two challenge vectors has been encrypted. The adversary A is allowed to ask queries even
after seeing the challenge ciphertext. Unlike previous work, we only require the adversary A to
ask for keys of vectors ~y that do not discriminate the two challenge vectors; that is, for which
Match(~x0, ~y) = Match(~x1, ~y). It can be readily seen that this condition is necessary. Previous con-
structions restricted the proof of security to adversaries that could ask only non-matching queries;
that is, ask for keys of vectors ~y such that Match(~x0, ~y) = Match(~x1, ~y) = 0. Thus our construction
is the first to be proved fully secure against unrestricted PPT adversaries A.

Besides being one of the first predicates for which constructions have been given, HVE can be
used as building block for several other predicates. Specifically in [6], it is shown that HVE implies
predicate encryption schemes for conjunctions, comparison, range queries and subset queries. For
completeness, in Appendix H, we describe also constructions of secure predicate encryption for
Boolean predicates that can be expressed as k-CNF and k-DNF (for any constant k).

We also stress that the two computational assumptions on which we base our proof of security
are very natural. Specifically, our two assumptions posit the difficulty of a subgroup decision
problem and of a problem that can be seen as the generalization of Decision Diffie-Hellman to
groups of composite order.
Related Work. The first implementation of HVE is due to [6] that proved the security of their
construction under assumptions on bilinear groups of composite order in the selective model. In
this security model (introduced by [7] in the context of IBE), the adversary must commit to its
challenge vectors before seeing the public key of the HVE scheme. In a recent series of papers Waters
[26] and Lewko and Waters [18] introduced the concept of a dual system encryption scheme that
was used to construct efficient and fully secure Identity Based Encryption (IBE) and Hierarchical
IBE from simple assumptions. Previous fully secure construction of these primitives either used a

1

partitioning strategy (see [2],[25]) or used complexity assumptions of non-constant size (see [9],[10]).
Partitioning strategy and the approaches of [9] and [10] do not seem to be helpful in proving full
security of more complex primitives like HVE.

For HVE, fully secure constructions of HVE can can be derived, via the reduction given in [14],
from the fully secure constructions for inner-product encryption given by [17, 19]. The resulting
constructions are proved secure against adversaries that are allowed to ask only non-matching key
queries; that is, key queries for vectors ~y such that Match(~x0, ~y) = Match(~x1, ~y) = 0. We call
queries for vectors ~y such that Match(~x0, ~y) = Match(~x1, ~y) = 1 matching. Our construction poses
no restriction on the queries that adversaries can ask. The limitation of having security against
non-matching adversaries was already pointed out in [14] and [23] described a scheme secure against
non-matching adversaries that was not secure against unrestricted adversaries. Our security notion
is game-based. Recently, Boneh et al. [5] and O’Neill [20] investigated simulation-based security
notions for IBE and predicate encryption.
Proof technique. Our result is based on the dual system encryption methodology introduced by
Waters [26] and gives extra evidence of the power of this proof technique. However, to overcome
the difficulty of having to deal also with matching queries, we have to carefully look at the space
of matching queries and at how they relate to the challenge vectors. This enables us to craft a new
security game in which the challenge ciphertext is constructed in a way that guarantees that keys
obtained by the adversary give the expected result when tested against the challenge ciphertext
and, at the same time, the challenge ciphertext is independent from the challenge vector used to
construct it. Then we show, by means of a sequence of intermediate security games, that the real
security game is computationally indistinguishable from this new game. It is not immediate to
obtain a similar relation between matching queries and challenge vectors for other predicates (e.g.,
inner product) that would make our approach viable.

2 Hidden Vector Encryption

In this section we give formal definitions for Hidden Vector Encryption (HVE) and its security
properties. For sake of simplicity, we present predicate-only definitions and constructions for HVE
instead of full-fledged ones. In Appendix G we will briefly discuss how to extend our scheme to
the full-fledged version. For the same reason, we give our definitions and constructions for binary
alphabets. In Appendix C we discuss how to extend our work to general alphabets.

Following standard terminology, we call a function ν(λ) negligible if for all constants c > 0 and
sufficiently large λ, ν(λ) < 1/λc and denote by [n] the set of integers {1, . . . , n}. Moreover the
writing “a← A”, for a finite set A, denotes that a is randomly and uniformly selected from A.

2.1 Hidden Vector Encryption

Let ~x be a binary vector of length ` and ~y a vector of the same length over {0, 1, ?}. We remind that
predicate Match(~x, ~y) is defined to be true if and only if the two vectors agree in all positions i where
yj 6= ?. A Hidden Vector Encryption scheme is a tuple of four efficient probabilistic algorithms
(Setup, Encrypt, KeyGen, Test) with the following semantics.

Setup(1λ, 1`): takes as input a security parameter λ and a length parameter ` (given in unary),
and outputs the public parameters Pk and the master secret key Msk.

2

KeyGen(Msk, ~y): takes as input the master secret key Msk and a vector ~y ∈ {0, 1, ?}`, and
outputs a secret key Sk~y.

Encrypt(Pk, ~x): takes as input the public parameters Pk and a vector ~x ∈ {0, 1}` and outputs a
ciphertext Ct.

Test(Pk,Ct, Sk~y): takes as input the public parameters Pk, a ciphertext Ct encrypting ~x and a
secret key Sk~y and outputs Match(~x, ~y).

For correctness we require that, for pairs (Pk,Msk) output by Setup(1λ, 1`), it holds that for
all vectors ~x ∈ {0, 1}` and ~y ∈ {0, 1, ?}`, we have that Test(Pk,Encrypt(Pk, ~x),KeyGen(Msk, ~y)) =
Match(~x, ~y) except with negligible in λ probability.

2.2 Security definitions for HVE

In this section we formalize our security requirement by means of a security game GReal between a
probabilistic polynomial time adversary A and a challenger C. GReal consists of a Setup phase and
of a Query Answering phase. In the Query Answering phase, the adversary can issue a polynomial
number of Key Queries and one Challenge Construction query and at the end of this phaseA outputs
a guess. We stress that key queries can be issued by A even after he has received the challenge from
C. In GReal the adversary is restricted to queries for vectors ~y such that Match(~y, x0) = Match(~y, x1).

More precisely, we define game GReal in the following way.

Setup. C runs the Setup algorithm on input the security parameter λ and the length parameter
` (given in unary) to generate public parameters Pk and master secret key Msk. C starts the
interaction with A on input Pk.

Key Query Answering(~y). C returns the key for ~y computed by executing KeyGen(Msk, ~y).

Challenge Query Answering(~x0, ~x1). C picks random η ∈ {0, 1} and returns the challenge
ciphertext computed by executing Encrypt(Pk, ~xη).

Winning Condition. Let η′ be A’s output. We say that A wins the game if η = η′ and for
all ~y for which A has issued a Key Query, it holds Match(~x0, ~y) = Match(~x1, ~y).

We define the advantage AdvAHVE(λ) of A in GReal to be the probability of winning minus 1/2.

Definition 1. An Hidden Vector Encryption scheme is secure if for all probabilistic polynomial
time adversaries A, we have that AdvAHVE(λ) is a negligible function of λ.

It is trivial to observe that an adversary that possesses a secret key for a vector ~y such that
Match(~y, ~x0) 6= Match(~y, ~x1) has probability 1 of guessing η.

3 Complexity Assumptions

We work with symmetric bilinear groups of composite order. Our construction can be adapted to
the asymmetric setting in a straightforward way. Composite order bilinear groups were first used
in Cryptography by [4] (see also [1]). We suppose the existence of an efficient group generator algo-
rithm G which takes as input the security parameter λ and outputs a description I = (N,G,GT , e)
of a bilinear setting, where G and GT are cyclic groups of order N , and e : G2 → GT is a map with
the following properties:

1. (Bilinearity) ∀ g, h ∈ G and a, b ∈ ZN it holds that e(ga, hb) = e(g, h)ab.

3

2. (Non-degeneracy) ∃ g ∈ G such that e(g, g) has order N in GT .

We assume that the group descriptions of G and GT include generators of the respective cyclic
subgroups. We require that the group operations in G and GT as well as the bilinear map e are
computable in deterministic polynomial time in λ. In our construction we will make hardness
assumptions for bilinear settings whose order N is product of four distinct primes each of length
Θ(λ). For an integer m dividing N , we let Gm denote the subgroup of G of order m. From the fact
that the group is cyclic, it is easy to verify that if g and h are group elements of co-prime orders
then e(g, h) = 1. This is called the orthogonality property and is a crucial tool in our constructions.

We are now ready to give our complexity assumptions.

Assumption 1. The first assumption is a subgroup-decision type assumption for bilinear settings.
Specifically, Assumption 1 posits the difficulty of deciding whether an element belongs to one of
two specified subgroups, even when generators of some of the subgroups of the bilinear group are
given. More formally, we have the following definition.

First pick a random bilinear setting I = (N = p1p2p3p4,G,GT , e) ← G(1λ) and then pick
A3 ← Gp3 , A13 ← Gp1p3 , A12 ← Gp1p2 , A4 ←∈ Gp4 , T1 ← Gp1p3 , T2 ← Gp2p3 , and set D =
(I, A3, A4, A13, A12). We define the advantage of an algorithm A in breaking Assumption 1 to be

AdvA1 (λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|

Assumption 1. We say that Assumption 1 holds for generator G if for all probabilistic polynomial-
time algorithms A, AdvA1 (λ) is a negligible function of λ.

Assumption 2. Our second assumption can be seen as the Decision Diffie-Hellman Assumption
for composite order groups. Specifically, Assumption 2 posits the difficult of deciding if a triple of
elements constitute a Diffie-Hellman triplet with respect to one of the factors of the order of the
group, even when given, for each prime divisor p of the group order, a generator of the subgroup
of order p. Notice that for bilinear groups of prime order the Diffie-Hellman assumption does not
hold. More formally, we have the following definition.

First pick a random bilinear setting I = (N = p1p2p3p4,G,GT , e)← G(1λ) and then pick A1 ←
Gp1 , A2 ← Gp2 , A3 ← Gp3 , A4, B4, C4, D4 ← Gp4 , α, β ← Zp1 , T2 ← Gp1p4 , and set T1 = Aαβ1 · D4

and D = (I, A1, A2, A3, A4, A
α
1 ·B4, A

β
1 ·C4). We define the advantage of an algorithm A in breaking

Assumption 2 to be

AdvA2 (λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|

Assumption 2. We say that Assumption 2 holds for generator G if for all probabilistic polynomial-
time algorithms A, AdvA2 (λ) is a negligible function of λ.

In Appendix E, we prove that Assumption 1 and 2 hold in the generic group model.

4 Constructing HVE

In this section we describe our HVE scheme. To make our description and proofs simpler, we add
to all vectors ~x and ~y two dummy components and set both of them equal to 0. We can thus
assume that all vectors have at least two non-star positions.

4

Setup(1λ, 1`): The setup algorithm chooses a description of a bilinear group I = (N = p1p2p3p4,
G,GT , e) with known factorization by running a generator algorithm G on input 1λ. The setup
algorithm chooses random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 , and, for i ∈ [`] and b ∈ {0, 1},
random ti,b ∈ ZN and random Ri,b ∈ Gp3 and sets Ti,b = g

ti,b
1 ·Ri,b.

The public parameters are Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] and the master secret key is Msk =
[g12, g4, (ti,b)i∈[`],b∈{0,1}], where g12 = g1 · g2.

KeyGen(Msk, ~y): Let S~y be the set of indices i such that yi 6= ?. The key generation algorithm
chooses random ai ∈ ZN for i ∈ S~y under the constraint that

∑
i∈S~y

ai = 0. For i ∈ S~y, the
algorithm chooses random Wi ∈ Gp4 and sets

Yi = g
ai/ti,yi
12 ·Wi.

The algorithm returns the tuple (Yi)i∈S~y
. Here we use the fact that S~y has size at least 2.

Encrypt(Pk, ~x): The encryption algorithm chooses random s ∈ ZN . For i ∈ [`], the algorithm
chooses random Zi ∈ Gp3 and sets

Xi = T si,xi · Zi,

and returns the tuple (Xi)i∈[`].

Test(Ct, Sk~y): The test algorithm computes T =
∏
i∈S~y

e(Xi, Yi). It returns TRUE if T = 1, FALSE
otherwise.

Correctness In Appendix B we prove that the above scheme is correct.

5 Security of our HVE scheme

We start by giving an informal description of the ideas behind our proof of security and show how
we overcome the main technical difficulty of having to deal with adversaries that possess keys that
match the challenge ciphertext.
The first step of our proof strategy consists in projecting the public key (and thus the ciphertexts
the adversary constructs by himself) to a different subgroup from the one of the challenge ciphertext.
Specifically, we defined a new security game GPK in which the ti,b’s are encoded in the Gp2 part of the
Ti,b’s from the public key (instead of the the Gp1 part as in the real game). The challenge ciphertext
and the answers to the key queries are instead constructed as in the real security game GReal. Thus,
ciphertexts constructed by the adversary are completely independent from the challenge ciphertext
(as they encode information in two different subgroups). We observe that since keys are constructed
as in the real security game, they carry information about ~y both in the Gp1 and Gp2 parts. Thus
when the adversary tests a ciphertext he has constructed by using the public key against a key
obtained by means of a query, he obtains the expected result because of the information encoded
in the Gp2 part of the key and of the ciphertext. The same holds for the challenge ciphertext but
in this case thanks to the Gp1 part of the key. The only difference between the two games is in the
public key but, under Assumption 1 (a natural subgroup decision hardness assumption), we can
prove that the two games are indistinguishable.
The second step proves that the keys obtained from queries do not help the adversary. Since the
challenge ciphertext carries information about the randomly selected challenge vector ~xη in its Gp1

5

Game GPK(λ, `)

Setup. C chooses a description of a bilinear group I = (N = p1p2p3p4, G,GT , e) with known
factorization by running a generator algorithm G on input 1λ. C chooses random g1 ∈ Gp1 , g2 ∈
Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 and sets g12 = g1 · g2. For each i ∈ [`] and b ∈ {0, 1}, C chooses

random ti,b ∈ ZN and Ri,b ∈ Gp3 and sets T ′i,b = g
ti,b
1 · Ri,b and Ti,b = g

ti,b
2 · Ri,b. Then C sets

Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}], Pk
′ = [N, g3, (T

′
i,b)i∈[`],b∈{0,1}], and Msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}].

Finally, C starts the interaction with A on input Pk.

Key Query Answering(~y). C returns the output of KeyGen(Msk, ~y).

Challenge Query Answering(~x0, ~x1). Upon receiving the pair (~x0, ~x1) of challenge vectors, C
picks random η ∈ {0, 1} and returns the output of Encrypt(Pk′, ~xη).

Winning Condition. Like in GReal(λ, `).

Figure 1: A formal description of GPK.

part, in this informal discussion when we refer to key we mean its Gp1 part. The Gp2 parts of the
keys are always correctly computed.

In our construction, testing a ciphertext against a non-matching key gives a random value (from
the target group) whereas testing it against a matching key returns a specified value (the identity of
the target group). If we had to prove security against an adversary that asked only non-matching
queries we could consider the experiment in which key queries were replied by returning a key with
random Gp1 parts. Such a game can be proved indistinguishable from GPK (under an appropriate
complexity assumption) and it is easy to prove that it gives no advantage to an adversary. This
approach fails for matching queries as such a key will return the wrong answer with high probability
when tested against the challenge ciphertext. Instead we modify the construction of the challenge
ciphertext in the following way: the challenge ciphertext is well-formed in all the positions where
the two challenge vectors are equal and random in all the other positions. We observe that testing
such a challenge ciphertext against matching and non-matching keys always gives the correct answer
and that no adversary (even an all powerful one) can guess which of the two challenge vectors has
been used to construct the challenge ciphertext (see the discussion in Section 5.2.1).

5.1 The first step of the proof

We start by defining game GPK(λ, `) (see Figure 1) that differs from GReal(λ, `) as in the Setup
phase, C prepares two sets of public parameters, Pk and Pk′, and one master secret key Msk. Pk
is given as input to A, Msk is used to answer A’s key queries and Pk′ is used to construct the
challenge ciphertext.

The next lemma shows that, the advantages of an adversary in GReal(λ, `) and GPK(λ, `) are the
same, up to a negligible factor.

Lemma 2. If Assumption 1 holds, then for any PPT adversary A,
∣∣AdvA[GReal(λ, `)]− AdvA[GPK(λ, `)]

∣∣
is negligible.

The proof is found in Appendix F.1.

6

Game GBadQ(f, k)

Setup. Like in GPK. That is, C chooses a description of a bilinear group I = (N = p1p2p3p4,
G,GT , e) with known factorization by running a generator algorithm G on input 1λ. C chooses
random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 and sets g12 = g1 · g2. For each i ∈ [`] and

b ∈ {0, 1}, C chooses random ti,b ∈ ZN and Ri,b ∈ Gp3 and sets T ′i,b = g
ti,b
1 · Ri,b and Ti,b =

g
ti,b
2 · Ri,b. Then C sets Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}], Pk

′ = [N, g3, (T
′
i,b)i∈[`],b∈{0,1}], and Msk =

[g12, g4, (ti,b)i∈[`],b∈{0,1}]. Finally, C starts the interaction with A on input Pk.

Answering Key-Query for ~y = 〈y1, . . . , y`〉.
C answers the first k queries in the following way.

• If yf 6= ?, C returns a key whose Gp1 parts is random.

More specifically, C chooses, for each i ∈ S~y, random Wi ∈ Gp4 , random Ci ∈ Gp1 and

random ai ∈ ZN under the constraint that
∑

i∈Sy
ai = 0 and sets Yi = Ci · g

ai/ti,yi
2 ·Wi.

• If yf = ? then C returns the output of KeyGen(~y,Msk).

The remaining q − k queries are answered by running KeyGen(~y,Msk).

Answering Challenge Query for (~x0, ~x1). C chooses random s ∈ ZN and η ∈ {0, 1} and sets
~x = ~xη. For each i ∈ [f − 1] such that ~x0,i 6= ~x1,i, C chooses random Xi ∈ Gp1p3 . Then, for each
remaining i, C chooses random Zi ∈ Gp3 and sets Xi = T

′s
i,xi
· Zi. C returns the tuple (Xi)i∈[`].

Winning Condition. Like in GReal.

Figure 2: A formal description of game GBadQ(f, k).

5.2 The second step of the proof

We start the second step of the proof by describing in Figure 2, for 1 ≤ f ≤ `+1 and 0 ≤ k ≤ q, game
GBadQ(f, k) between the challenger C and an adversary A that asks q queries. Not to overburden
our notation, we omitted λ and ` from the name of the games. GBadQ(f, k) differs from GPK both
in the way in which key queries are answered and in the way in which the challenge ciphertext is
constructed. Specifically, in GBadQ(f, k) the first k key queries are answered by distinguishing two
cases. Queries for ~y such that yf = ? are answered by running KeyGen(Msk, ~y). Instead queries for
~y such that yf 6= ? are answered by returning keys whose Gp1 part is random for all components.
Moreover, in GBadQ(f, k), the Gp1 part of the first f − 1 components of the challenge ciphertext
corresponding to positions in which the two challenges differ are random.

In the proofs, we will use the shorthand GBadCh(f) to denote the game GBadQ(f, 0) in which
only the challenge ciphertext is modified whereas all the replies to the key queries are correctly
computed. Moreover, we define GBadQ2(f, k), for 1 ≤ f ≤ ` and 0 ≤ k ≤ q, as a game in which the
setup phase is like in GBadQ(f, k), key queries are answered like in GBadQ(f, k) and the challenge
ciphertext is constructed like in GBadQ(f + 1, k).

5.2.1 Some simple observations about GBadQ and GBadQ2

Observation 3. GPK = GBadQ(1, 0) = GBadCh(1).

7

Straightforward from the definitions of the games.

Observation 4. GBadQ(f, q) = GBadQ2(f, q) for f = 1, . . . , `.
From the definitions of the two games, it is clear that all key queries are answered in the same way
in both the games and all components Xi for i 6= f of the challenge ciphertext are computed in the
same way. Let us now look at Xf and more precisely to its Gp1 part. In GBadQ(f, q), the Gp1 part
of Xf is computed as T

′s
f,xf

which is exactly how it is computed in GBadQ2(f, q) when x0,f = x1,f .
On the other hand, when x0,f 6= x1,f , the Gp1 part of Xf is chosen at random. However, observe
that exponents tf,0 mod p1 and tf,1 mod p1 have not appeared in the answers to key queries since
every query has either a ? in position f (in which case position f of the answer is empty) or a
non-? value in position f (in which case the Gp1 part of the position f of the answer is random
since k = q). Therefore, we can conclude that the Gp1 part of the component Xf of the answer to
the challenge query is also random in Gp1 .

Observation 5. GBadQ2(f, 0) = GBadQ(f + 1, 0) for f = 1, . . . , `− 1.
Indeed, in both games all key queries are answered correctly, and the challenge query in
GBadQ2(f, 0) is by definition answered in the same way as in GBadQ(f + 1, 0).

Observation 6. For f = 1, . . . , `− 1, if x0,f = x1,f , GBadCh(f) = GBadCh(f + 1).
By definition, in GBadCh(f) = GBadQ(f, 0) the f -th component of the challenge ciphertext is well
formed, namely Xf = T

′s
f,xf
· Zf . This is the same in GBadCh(f + 1) = GBadQ(f + 1, 0) under the

condition that x0,f = x1,f .

Observation 7. All adversaries have no advantage in GBadCh(`+ 1) = GBadQ(`+ 1, 0).
This follows from the fact that, for positions i such that x0,i 6= x1,i, the Gp1 part of Xi is random.
Thus the challenge ciphertext of GBadCh(`+ 1) is independent from η.

Overview of the second step of the proof. Consider the sequence

GPK = GBadCh(1),GBadCh(2), . . . ,GBadCh(`),GBadCh(`+ 1)

of `+ 1 experiments. By Observation 7, if an adversary A has a non negligible advantage in GPK
then it must be the case that there exists 1 ≤ f ≤ ` such that the difference between A’s advantages
in GBadCh(f) and GBadCh(f +1) is non-negligible. Moreover, by Observation 6, for this to happen
it must be the case that A has non-negligible probability to output two challenges that differ in
the f -th component. Then, if A makes q key queries, consider the following sequence

GBadCh(f)
=

GBadQ(f, 0) . . .GBadQ(f, q − 1) GBadQ(f, q) = GBadQ2(f, q) GBadQ2(f, q − 1) . . .GBadQ2(f, 0)
=

GBadCh(f + 1)

of 2q + 1 games. If the difference in advantage between GBadCh(f) and GBadCh(f + 1) is non-
negligible, then there must exist k such that the difference in advantage between either GBadQ(f, k)
and GBadQ(f, k − 1) or between GBadQ2(f, k) and GBadQ2(f, k − 1) is non-negligible.

Now it seems that we are stuck as, for all f and k, games GBadQ(f, k−1) and GBadQ(f, k) can
be distinguished by an adversary A using the following simple strategy. A prepares two challenges

8

~x0 and ~x1 that coincide in the f -th component and asks as k-th key query the key Y for a vector
~y(k) such that ~y(k)

f = x0,f = x1,f and Match(~x0, ~y(k)) = Match(~x1, ~y(k)) = 1. Let X be the challenge
ciphertext. Now, in GBadQ(f, k − 1), the answer Y received by A to its k-th query is well-formed
and thus Test(X,Y) = 1. Instead in GBadQ(f, k), Y is random and thus Test(X,Y) = 0 except
with negligible probability. The above strategy requires the two challenges to coincide in the f -th
component. Indeed, if x0,f 6= x1,f then for ~y(k) to be matching it must the case that yf = ? but
then in this case Y is well-formed in both games. This perfectly fits our strategy as we have to
prove that GBadQ(f, k) is indistinguishable from GBadQ(f, k − 1) only for f for which A has a
non-negligible probability of outputting two challenges that differ in the f -th component. Exactly,
the same reasoning holds for GBadQ2.

In the next section we describe a simulator S that takes as input the pair of integers f and k
and an instance of Assumption 2 and, provided that the adversary does not output two challenges
that coincide in the f -th component, simulates with some non-negligible probability GBadQ(f, k) or
GBadQ(f, k− 1) depending on the nature of the challenge. A similar simulator can be constructed
for games GBadQ2(f, k) and GBadQ2(f, k− 1). For the rest of the proof of security it is convenient
to refer to the alternative and equivalent description of our HVE found in Section A.

5.2.2 Description of simulator S

Input to S. Integers 1 ≤ f ≤ ` + 1 and 0 ≤ k ≤ q, and a randomly chosen instance (D,T) of

Assumption 2; recall that D = (I, A1, A2, A3, A4, A
α
1 ·B4, A

β
1 ·C4) and T = T1 = Aαβ1 ·D4 or T = T2

random in Gp1p4 .

Setup. To simulate the Setup phase S executes the following steps.
1. S sets g1 = A1, g2 = A2, g3 = A3, g4 = A4 and g12 = A1 ·A2.
2. For each i ∈ [`] and b ∈ {0, 1},
S chooses random vi,b ∈ ZN and Ri,b ∈ Gp3 , and sets Ti,b = g

vi,b
2 ·Ri,b.

3. S sets Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}].

4. S picks random ̂ ∈ [`] and b̂ ∈ {0, 1} and sets ĉ = 1− b̂.
5. For each i ∈ [`] \ {̂} and b ∈ {0, 1},
S chooses random ri,b ∈ ZN and R′i,b ∈ Gp3 .

S sets T ′i,b = g
ri,b
1 ·R′i,b.

6. S chooses random r̂,ĉ ∈ ZN and R′̂,ĉ ∈ Gp3 .

S sets T ′̂,ĉ = g
r̂,ĉ
1 ·R′̂,ĉ, T ′̂,b̂ =⊥ and r̂,b̂ =⊥.

7. S sets Pk′ = [N, g3, (T
′
i,b)i∈[`],b∈{0,1}] and Msk = [g12, g4, (ri,b, vi,b)i∈[`],b∈{0,1}].

Notice that the values r̂,b̂ and T ′
̂,b̂

are unspecified and thus Pk′ and Msk are incomplete. As we

shall see below, in answering key queries, S will implicitly set r̂,b̂ = 1/β. Here β is the exponent

of A1 in Aβ1 ·C4 from instance D of Assumption 2 and we stress that S does not have access to the
actual value of β.
S starts the interaction with A on input Pk.

Answering Key Query for ~y = 〈y1, . . . , y`〉.

• First k − 1 key queries.

We distinguish the following two mutually exclusive cases.

9

Case A.1: yf 6= ?. In this case, S outputs a key whose Gp1 part is random. More precisely,
S executes the following steps. For each i ∈ S~y, S chooses random a′′i such that

∑
i∈S~y

a′′i = 0,
random Ci ∈ Gp1 , and random Wi ∈ Gp4 . Then, for each i ∈ S~y, S sets

Yi = Ci · g
a′′i /vi,yi
2 ·Wi.

Case A.2: yf = ?. In this case, S outputs a key that has the same distribution induced by
algorithm KeyGen on input ~y and Msk. We observe that if ŷ = ĉ then Msk includes all the

ri,yi ’s and vi,yi ’s that are needed. If instead ŷ = b̂, then Msk is missing r̂,b̂. In this case S
computes Ŷ by using Aβ1 · C4 from the challenge D of Assumption 2 received in input.

More precisely, for each i ∈ S~y, S picks random Wi ∈ Gp4 and random a′i, a
′′
i ∈ ZN under the

constraint that
∑

i∈S~y
a′i =

∑
i∈S~y

a′′i = 0. Then for each i 6= ̂, S sets

Yi = g
a′i/ri,yi
1 · ga

′′
i /vi,yi

2 ·Wi.

Moreover, if ŷ = ĉ, S sets

Ŷ = g
a′̂/r̂,ĉ
1 · g

a′′̂ /v̂,ĉ

2 ·Ŵ

otherwise, if ŷ = b̂, S sets

Ŷ = (Aβ1 · C4)a
′
̂ · g

a′′̂ /v̂,b̂

2 ·Ŵ = g
a′̂β

1 · g
a′′̂ /v̂,b̂

2 · (C
a′̂
4 ·Ŵ).

Notice that this setting implicitly defines r̂,b̂ = 1/β which remains unknown to S.

• k-th query.

Let ~y(k) = (y(k)

1 , . . . , y(k)

`) be the k-th key query. We have three cases.

Case B.1: y(k)

f = ?. S performs the same steps of Case A.2.

Case B.2: y(k)

f 6= ? and y(k)

̂ 6= b̂. In this case, S aborts.

Case B.3: y(k)

f 6= ? and y(k)

̂ = b̂. Let S = S~y \ {̂, h}, where h is an index such that y(k)

h 6= ?.
Such an index h always exists since we assumed that each query contains at least two non-?
entries. Then, for each i ∈ S, S chooses random Wi ∈ Gp4 and random a′i, a

′′
i ∈ ZN and sets

Yi = g
a′i/ri,y(k)

i
1 · g

a′′i /vi,y(k)
i

2 ·Wi.

S then chooses random a′′̂ ∈ ZN and Ŵ,Wh ∈ Gp4 and sets

Ŷ = T · g
a′′̂ /v̂,b̂

2 ·Ŵ and Yh = (Aα1B4)
−1/r

h,y
(k)
h · g

−s′/r
h,y

(k)
h

1 · g
−(s′′+a′′̂)/v

h,y
(k)
h

2 ·Wh,

where s′ =
∑

i∈S a
′
i and s′′ =

∑
i∈S a

′′
i .

This terminates the description of how S handles the k-th key query.

10

• Remaining q − k queries.

S handles the remaining q− k queries as in Case A.2, independently from whether yf = ? or
yf 6= ?.

More precisely, if ŷ = ĉ then S runs KeyGen on input ~y and Msk and all the needed ri,yi ’s

and vi,yi ’s are found in Msk. On the other hand, if ŷ = b̂, S can use Aβ1 · C4 from D.

This terminates the description of how S answers key-queries.

Answering Challenge Query for (~x0, ~x1). S picks random η ∈ {0, 1} and sets ~x = ~xη.
Then S tries to construct the challenge ciphertext by running algorithm Encrypt on input the

challenge vector ~x, public parameters Pk′ and by randomizing the Gp1 part of all components Xi

for i < f such that x0,i 6= x1,i. However, Pk′ is incomplete since it is missing T ′
̂,b̂

and thus S might

have to abort.
More precisely, If x̂ = b̂, S aborts. Else (that is, if x̂ = ĉ) S chooses random s ∈ ZN . For

each i ∈ [f − 1] such that x0,i 6= x1,i, S sets ri equal to a random element in ZN and ri = 1 for all
remaining i’s. Then, for each i ∈ [`], S picks random Zi ∈ Gp3 and sets Xi = T ′srii,xi

·Zi, and returns
the tuple (Xi)i∈[`].

This ends the description of S.

The simulator S described will be used to prove properties of games GBadQ. We can modify the
simulator S so that, on input f and k, the challenge ciphertext is constructed by randomizing the
Gp1 part also of the f -th component. The so modified simulator, that we call S2, closely simulates
the work of games GBadQ2 and will be used to prove properties of these games.

5.2.3 Properties of simulator S

A sanity check. We verify that S cannot test the nature of T and thus break Assumption 2. Indeed
to do so, S should use T to generate a key for ~y and ciphertext for ~x such that Match(~x, ~y) = 1.
Then, if T = T1 the Test procedure will have success; otherwise, it will fail. In constructing the
key, S would use T to construct the ̂-th component (which forces ŷ = b̂) and then it would need
r̂,b̂ = 1/β to construct the matching ciphertext. However, S does not have access to this value as
part of the challenge. If we modify Assumption 2 to include such a value as part of the challenge,
the resulting assumption is easily seen not to hold.

Why we need aborts. The aim of S is to use the value T from the challenge to simulate either
GBadQ(f, k− 1) or GBadQ(f, k) and it does so by embedding T in the ̂-th component of the reply
to k-th key query. Suppose yf 6= ? and thus the two games are supposed to differ in the reply to
the k-th key query. If y(k)

̂ = ? then the ̂-th component is empty. Moreover, if y(k)

̂ = ĉ then the
̂-th component can be computed using 1/r̂,ĉ which is known to S but independent from T . Thus

in both case S’s plan fails and consequently S aborts (see Case B.2). Moreover, if x̂ = b̂ then S
should use T ′

̂,b̂
which is missing from Pk′. Thus in this case S aborts too.

Notation. We use NotAbortA1,S(f, k) to denote the event that S does not abort while computing
the answer to the k-th query in an interaction with A on input f and k. This is equivalent to the
event that the k-th key query y(k) of adversary A is such that y(k)

f = ? or y(k)

̂ = b̂. In addition,

we use NotAbortA2,S(f, k) to denote the event that S does not abort while computing the challenge
ciphertext in an interaction with A on input f and k. This is equivalent to the event that adversary
A outputs challenge vectors ~x0 and ~x1 such that xη,̂ = ĉ.

11

For a game G between the challenger C and the adversary, we modify C so that C picks ̂ and
b̂ just like S does. This modification makes the definitions of events NotAbortA1,G and NotAbortA2,G
meaningful. Notice however that, unlike the simulator S, C never aborts its interaction with A
and that this modification does not affect A’s view. We write NotAbortA2 as a shorthand for
NotAbortA2,GPK.

The proof of the following lemma is found in Appendix F.2.

Lemma 8. Suppose event NotAbortA1,S(f, k) occurs. If T = T1 then A’s view up to the Challenge
Query in the interaction with S running on input (f, k) is the same as in GBadQ(f, k − 1). If
instead T = T2 then A’s view up to the Challenge Query in the interaction with S running on input
(f, k) is the same as in GBadQ(f, k).

Moreover, suppose events NotAbortA1,S(f, k) and NotAbortA2,S(f, k) occur. If T = T1 then A’s
total view in the interaction with S running on input (f, k) is the same as in GBadQ(f, k − 1). If
instead T = T2 then A’s total view in the interaction with S running on input (f, k) is the same as
in GBadQ(f, k).

Next we define event EAf as the event that in game GPK, the adversary A declares two challenge
vectors that differ in the f -th component. When the adversary A is clear from the context we will
simply write Ef .

Lemma 9. Suppose there exists an adversary A and integers 1 ≤ f ≤ ` + 1 and 1 ≤ k ≤ q such
that

∣∣AdvA [G]− AdvA [H]
∣∣ ≥ ε, where G = GBadQ(f, k − 1), H = GBadQ(f, k) and ε > 0. Then,

there exists a PPT algorithm B with AdvB2 ≥ Prob[Ef] · ε/(2 · `2)− ν(λ), for a negligible function ν.

The proof is found in Appendix F.3. The following Lemma can be proved by referring to
simulator S2. We omit further details since the proof is essentially the same as the one of Lemma 9.

Lemma 10. Suppose there exists an adversary A and integers 1 ≤ f ≤ `+ 1 and 1 ≤ k ≤ q such
that

∣∣AdvA [G]− AdvA [H]
∣∣ ≥ ε, where G = GBadQ2(f, k−1), H = GBadQ2(f, k) and ε > 0. Then,

there exists a PPT algorithm B with AdvB2 ≥ Prob[Ef] · ε/(2 · `2)− ν(λ), for a negligible function ν.

5.2.4 The advantage of A in GPK

In this section we prove that, under Assumption 2, every PPT adversary A has a negligible
advantage in GPK = GBadCh(1) by proving that it is computationally indistinguishable from
GBadCh(` + 1) that, by Observation 7, gives no advantage to any adversary. We state the
lemma and postpone its proof to Appendix F.4.

Lemma 11. If Assumption 2 holds, then, for any PPT adversary A, AdvA[GPK] is negligible.
Specifically, if there is an adversary A with AdvA[GPK] = ε then there exists an adversary B
against Assumption 2 such that AdvB2 ≥ ε2

2q`4
− ν(λ), for some negligible function ν.

5.3 Wrapping up

By combining Lemma 2 and Lemma 11 we obtain our main result.

Theorem 12. If Assumption 1 and 2 hold, then the HVE scheme described in Section 4 is secure
(in the sense of Definition 1).

12

6 Conclusions and future directions

In this paper we have presented the first fully secure construction for a predicate encryption that
is secure against unrestricted adversarial key queries by giving a construction for HVE. Our work
shows that there is no need to restrict the querying power of the adversary to obtain a fully
secure construction for a predicate encryption. We base our proof of security on natural hardness
assumptions on groups of composite orders. Our proof technique stems from the dual system
encryption methodology of Waters [26] which is augmented with a careful design of the intermediate
security games based on observations on the relationship between the challenge ciphertexts and
matching and non-matching queries.

We see two complementary directions for future work. The first one concentrates on the design
of more efficient schemes and this can be achieved by reducing the size of keys and ciphertexts along
the line of [22, 21, 15]. Along the second direction, one would like to design predicate encryption
schemes for richer classes of predicates. The main and most challenging open problem in this area
though remains to have a general result about predicates with poly-size circuits.

13

References

[1] Dan Boneh. Bilinear groups of composite order. In Tsuyoshi Takagi, Tatsuaki Okamoto, Eiji
Okamoto, and Takeshi Okamoto, editors, Pairing-Based Cryptography - Pairing 2007, First
International Conference. Prooceedings, volume 4575 of LNCS, pages 39–56, Tokyo, Japan,
July 2–4, 2007. Springer-Verlag, Berlin, Germany.

[2] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles.
In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 443–459, Santa
Barbara, CA, USA, August 15–19, 2004. Springer-Verlag, Berlin, Germany.

[3] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key
encryption with keyword search. In Christian Cachin and Jan Camenisch, editors, EURO-
CRYPT 2004, volume 3027 of LNCS, pages 506–522, Interlaken, Switzerland, May 2–6, 2004.
Springer-Verlag, Berlin, Germany.

[4] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In
TCC 2005, volume 3378 of LNCS, pages 325–341, Cambridge, MA, USA, February 10–12,
2005. Springer-Verlag, Berlin, Germany.

[5] Dan Boneh, Amit Sahai, and Brent Waters. Functional Encryption: Definitions and challenges.
Technical Report 2010-543, Cryptology ePrint Archives, 2010. http://eprint.iacr.org/

2010/543/.

[6] Dan Boneh and Brent Waters. Conjunctive, subset and range queries on encrypted data. In
Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 535–554, Amsterdam, The
Netherlands, February 21–24, 2007. Springer-Verlag, Berlin, Germany.

[7] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based
encryption. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 207–222, Interlaken, Switzerland, May 2–6, 2004. Springer-Verlag, Berlin,
Germany.

[8] David Mandell Freeman. Converting pairing-based cryptosystems from composite-order groups
to prime-order groups. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS,
pages 44–61, French Riviera, France, May 10 –June 3, 2010. Springer-Verlag, Berlin, Germany.

[9] Craig Gentry. Pratical identity-based encryption without random oracles. In Serge Vaudenay,
editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 445–464, St. Petersburg, Russia,
May 28 –June 1, 2006. Springer-Verlag, Berlin, Germany.

[10] Craig Gentry and Shai Halevi. Hierarchical identity based encryption with polynomially many
levels. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 437–456, San
Francisco, CA, USA, 2009. Springer-Verlag, Berlin, Germany.

[11] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-Based Encryption for
Fine-Grained Access Control for Encrypted Data. In ACM CCS 06, pages 89–98, Alexandria,
VA, USA, October 30 - November 3, 2006. ACM Press.

14

http://eprint.iacr.org/2010/543/
http://eprint.iacr.org/2010/543/

[12] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In
Nigel Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432, Istanbul,
Turkey, April 13–17, 2008. Springer-Verlag, Berlin, Germany.

[13] Vincenzo Iovino and Giuseppe Persiano. Hidden-vector encryption with groups of prime or-
der. In Steven D. Galbraith and Kenneth G. Paterson, editors, Pairing-Based Cryptography
- Pairing 2008, Second International Conference. Prooceedings, volume 5209 of LNCS, pages
75–88, Egham, UK, September 1–3, 2008. Springer-Verlag, Berlin, Germany.

[14] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate Encryption Supporting Disjunction,
Polynomial Equations, and Inner Products. In Nigel Smart, editor, EUROCRYPT 2008,
volume 4965 of LNCS, pages 146–162, Istanbul, Turkey, April 13–17, 2008. Springer-Verlag,
Berlin, Germany.

[15] Kwangsu Lee and Dong Hoon Lee. Improved hidden vector encryption with short ciphertexts
and tokens. Des. Codes Cryptography, 58(3):297–319, 2011.

[16] Allison Lewko. Tools for simulating features of composite order bilinear groups in the prime
order setting. Technical Report 2011-490, Cryptology ePrint Archives, 2011. http://eprint.
iacr.org/2011/490/.

[17] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters.
Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner prod-
uct encryption. In Henri Gilbert, editor, EUROCRYPT 2010, pages 62–91, French Riviera,
France, May 10 –June 3, 2010. Springer-Verlag, Berlin, Germany.

[18] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully
secure hibe with short ciphertexts. In Daniele Micciancio, editor, TCC 2010, volume 5978
of LNCS, pages 455–479, Zurich, Switzerland, February 9–11, 2010. Springer-Verlag, Berlin,
Germany.

[19] Tatsuaki Okamoto and Katsuyuki Takashima. Fully Secure Functional Encryption with Gen-
eral Relations from the Decisional Linear Assumption. In Tal Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 191–208, Santa Barbara, CA, USA, August 15–19, 2010. Springer-
Verlag, Berlin, Germany.

[20] Adam O’Neill. Definitional issues in functional encryption. Technical Report 2010-556, Cryp-
tology ePrint Archives, 2010. http://eprint.iacr.org/2010/556/.

[21] Jong Hwan Park and Dong Hoon Lee. A hidden vector encryption scheme with constant-size
tokens and pairing computations. IEICE Transactions, 93-A(9):1620–1631, 2010.

[22] Saeed Sedghi, Peter van Liesdonk, Svetla Nikova, Pieter H. Hartel, and Willem Jonker. Search-
ing keywords with wildcards on encrypted data. In Juan A. Garay and Roberto De Prisco,
editors, SCN 10, volume 6280 of LNCS, pages 138–153, Amalfi, Italy, September 13–15, 2010.
Springer-Verlag, Berlin, Germany.

[23] Elaine Shi, John Bethencourt, Hubert Chan, Dawn Song, and Adrian Perrig. Multi-
Dimensional Range Query over Encrypted Data. In 2007 IEEE Symposium on Security and
Privacy, Oakland, CA, May 20–23, 2007. IEEE Computer Society Press.

15

http://eprint.iacr.org/2011/490/
http://eprint.iacr.org/2011/490/
http://eprint.iacr.org/2010/556/

[24] Elaine Shi and Brent Waters. Delegating capabilities in predicate encryption systems. In Luca
Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and
Igor Walukiewicz, editors, ICALP 2008, volume 5126 of LNCS, pages 560–578, Reykjavik,
Iceland, July 7–11, 2008. Springer-Verlag, Berlin, Germany.

[25] Brent Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127, Aarhus, Denmark, May 22–
26, 2005. Springer-Verlag, Berlin, Germany.

[26] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 619–636,
Santa Barbara, CA, USA, August 16–20, 2009. Springer-Verlag, Berlin, Germany.

16

A An alternative description of our HVE

In this section we give an alternative albeit equivalent description of the HVE algorithms that will
make our proof of security simpler.

We start from the simple observation that the exponent arithmetic is performed modulo the
order of the base. For sake of concreteness, let us look at the KeyGen algorithm that sets Yi equal
to

Yi = (g1 · g2)ai/ti,yi ·Wi,

for ai, ti,yi ∈ ZN . This is equivalent to computing Yi as

Yi = g
a′i/ri,yi
1 · ga

′′
i /vi,yi

2 ·Wi

for a′i, a
′′
i , ri,yi , vi,yi ∈ ZN satisfying the following system of modular equations

a′i ≡ ai (mod p1) ri,yi ≡ ti,yi (mod p1)

a′′i ≡ ai (mod p2) vi,yi ≡ ti,yi (mod p2)

Conversely, computing Yi = g
a′i/ri,b
1 · ga

′′
i /vi,b

2 for a′i, a
′′
i , ri,b, vi,b ∈ ZN is equivalent to computing

g
ai/ti,b
1 · gai/ti,b2 for ai, ti,b ∈ ZN satisfying the above system of modular equations (in the unknowns
ai and ti,b). By the Chinese remainder theorem the above systems have solutions in ZN provided
that N is a multiple of p1 · p2. Moreover, for all values of ri,b and vi,b, and of a′i and a′′i the systems

above have the same number of solutions. Therefore, the distributions of Yi = g
ai/ti,b
12 for random

ai, ti,b ∈ ZN and the distribution of Yi = g
a′i/ri,b
1 · ga

′′
i /vi,b

2 for random a′i, a
′′
i , ri,b, vi,b ∈ ZN coincide.

In view of the above observation, we can describe the Setup and KeyGen algorithms in the
following way.

Setup(1λ, 1`): The setup algorithm chooses a description of a bilinear group I = (N = p1p2p3p4,
G,GT , e) with known factorization by running a generator algorithm G on input 1λ. The setup
algorithm chooses random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 , and, for i ∈ [`] and b ∈ {0, 1},
random ri,b, vi,b ∈ ZN and random Ri,b ∈ Gp3 and sets Ti,b = g

ri,b
1 ·Ri,b.

The public parameters are Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] and the master secret key is Msk =
[g12, g4, (ri,b, vi,b)i∈[`],b∈{0,1}], where g12 = g1 · g2.

KeyGen(Msk, ~y): Let S~y be the set of indices i such that yi 6= ?. The key generation algorithm
chooses random a′i ∈ ZN for i ∈ S~y and random a′′i ∈ ZN for i ∈ S~y under the constraint that∑

i∈S~y
a′i =

∑
i∈S~y

a′′i = 0. For i ∈ S~y, the algorithm chooses random Wi ∈ Gp4 and sets

Yi = g
a′i/ri,yi
1 · ga

′′
i /vi,yi

2 ·Wi.

The algorithm returns the tuple (Yi)i∈S~y
.

B Correctness of our HVE scheme

Lemma 13. The HVE scheme presented in Section 4 is correct.

17

Proof. Suppose that Ct = (Xi)i∈[`] is a ciphertext for attribute vector ~x and that Sk~y = (Yi)i∈S~y

is a key for vector ~y such that Match(~x, ~y) = 1. We show that Test(Ct,Sk~y) returns TRUE. By
definition we have that Test(Ct,Sk~y) computes the following product∏

i∈S~y

e(Xi, Yi) =
∏
i∈S~y

e(T si,xi · Zi, g
ai/ti,yi
12 ·Wi) (1)

=
∏
i∈S~y

e(g
ti,xis

1 , g
ai/ti,yi
1) (2)

=
∏
i∈S~y

e(g
ti,xis

1 , g
ai/ti,xi
1) (3)

=
∏
i∈S~y

e(g1, g1)ais (4)

= e(g1, g1)
s
∑

i∈S~y
ai

(5)

= 1. (6)

Equation 1 follows by definition of the Xi’s and Yi’s. Equation 2 follows from Equation 1 by
definition of the Ti,xi and by the orthogonality property of bilinear groups of composite order
discussed in Section 3. Equation 3 follows from Equation 2 since, if Match(~x, ~y) = 1, then, for each
i ∈ S~y, xi = yi. Equation 4 follows from Equation 3 by the bilinear property of e. Equation 5
follows from Equation 4 by simple algebraic manipulations. Equation 6 follows from Equation 5
since by construction we have

∑
i∈S~y

ai = 0. Finally, notice that if the value obtained by this

computation is 1 (the identity of the target group) then, by definition, the Test procedure returns
TRUE as expected. Suppose now that Match(~x, ~y) = 0. Let A be the set of positions i such that
xi = yi and B = S~y \A. By definition we have that Test(Ct,Sk~y) computes the following product∏

i∈S~y

e(Xi, Yi) = e(g1, g1)s
∑

i∈A ai · e(g1, g1)s
∑

i∈B aiwi (7)

Equation 7 follows by some of the facts already observed in the discussion of Equations 1-5, by
definition of A and B, and by setting wi

def
= ti,xi/ti,yi . Since that with very high probability s 6= 0

mod ZN then, by the fact that e is non-degenerate, such a product equals 1 (the unity of the target
group) if and only if ∑

i∈A
ai +

∑
i∈B

aiwi = 0. (8)

By recalling that
∑

i∈S~y
ai = 0 and by the fact that A and B are a partition of S~y, from Equation 8

follows that ∑
i∈S~y

ai +
∑
i∈B

ai(wi − 1) =
∑
i∈B

ai(wi − 1). (9)

If i ∈ B, then xi 6= yi, yi 6= ?, and thus, without loss of generality, wi = ti,0/ti,1 is distributed
randomly in ZN with very high probability since that ti,0 and ti,1 are chosen randomly and inde-
pendently from ZN . Hence, since that the set B is of cardinality exponentially smaller than N ,

18

with very high probability for each i ∈ B, wi− 1 is distributed independently and randomly in ZN .
From the fact that Match(~x, ~y) = 0 it follows that the set B is non-empty and so, from the fact
that the wi − 1’s are distributed randomly and independently in ZN , it follows that Equation 9 is
different from 0 mod N with very high probability. Thus, with very high probability, the product
computed by the Test procedure is different from the identity of the target group and so with the
same probability it returns FALSE as expected. 2

C Is the binary alphabet a limitation?

We have presented our construction for the binary alphabet. This was for the sake of presentation
and does not represent a shortcoming of our construction. Indeed one can easily observe that
an HVE scheme for a general alphabet Σ can be obtained with an expansion of log2 |Σ|: the
encryption simply encrypts bit by bit by using the binary HVE, and the key generation procedure
proceeds analogously. We stress that this reduction is black-box and does not depend on our specific
scheme. We recall that, though the known fully secure (against restricted adversaries) predicate
encryption constructions of [17, 19] directly support a large alphabet, this is at cost of a quadratic
time complexity of the encryption and key generation procedures. Finally, we stress that in some
applications the choice of the binary alphabet can be a feature and not a limitation. For example,
image that our attributes are integers, and we wish the capability to test if an encrypted integer is
even or odd. In this case we need bit-grained control of the encrypted data by design.

D Prime-order bilinear groups

Bilinear groups of composite-order introduced by [4] are a useful tool for constructing advanced
cryptosystems and secure protocols but they give constructions that are less efficient than the ones
based on prime order groups.

Even though composite-order group enjoy two properties, orthogonality (also called cancella-
tion) and projection, several constructions only use the orthogonality property by which pairing
cancels out elements from distinct subgroups. Based on this, Freeman [8] presented an elegant ab-
stract framework to instantiate composite-order cryptosystems using prime-order groups. Though
Freeman’s transformation is not a compiler, it hints at general ideas for obtaining instantiations
in prime order groups for protocols that use only the orthogonality property. On the same line,
also previous work of Groth and Sahai [12] shows that composite-order and prime-order groups
instantiations of their proof systems can be interchanged. Unfortunately, Freeman’s strategy does
not seem to apply to our construction as at some point in our proof we use the fact that G has two
subgroups with relatively prime order (see for example, our alternative description in Appendix A).
A similar problem occurs with the proof of Lewko and Waters [18]. Recently Lewko [16] explored
a general methodology for converting composite order pairing-based cryptography into the prime
order setting by employing the dual pairing vector space (DPVS) approach initiated by Okamoto
and Takashima [19] which can be used to translate composite order schemes for which the prior
techniques of Freeman were insufficient. Thus we could restate our results in the prime order
groups using these tools, but we preferred to present our results in composite order groups because
it results in shorter proofs of security and concise scheme.

19

E Generic security of our Complexity Assumptions

We now prove that, if factoring is hard, our two complexity assumptions hold in the generic
group model. We adopt the framework of [14] to reason about assumptions in bilinear groups
G,GT of composite order N = p1p2p3p4. We fix generators gp1 , gp2 , gp3 , gp4 of the subgroups
Gp1 ,Gp2 ,Gp3 ,Gp4 and thus each element of x ∈ G can be expressed as x = ga1

p1
ga2
p2
ga3
p3
ga4
p4

, for
ai ∈ Zpi . For sake of ease of notation, we denote element x ∈ G by the tuple (a1, a2, a3, a4).
We do the same with elements in GT (with the respect to generator e(gpi , gpi)) and will denote
elements in that group as bracketed tuples [a1, a2, a3, a4]. We use capital letters to denote ran-
dom variables and reuse random variables to denote relationships between elements. For example,
X = (A1, B1, C1, D1) is a random element of G, and Y = (A2, B1, C2, D2) is another random
element that shares the same Gp2 part.

We say that a random variableX is dependent from the random variables {Ai} if there exists λi ∈
ZN such that X =

∑
i λiAi as formal random variables. Otherwise, we say that X is independent

of {Ai}. We state the following theorems from [14].

Theorem 14 (Theorem A.1 of [14]). Let N =
∏m
i=1 pi be a product of distinct primes, each greater

than 2λ. Let {Xi} be random variables over G and {Yi}, T1 and T2 be random variables over GT .
Denote by t the maximum degree of a random variable and consider the following experiment in the
generic group model:

Algorithm A is given N, {Xi}, {Yi} and Tb for random b ∈ {0, 1} and outputs b′ ∈ {0, 1}. A’s
advantage is the absolute value of the difference between the probability that b = b′ and 1/2.

Suppose that T1 and T2 are independent of {Yi} ∪ {e(Xi, Xj)}. Then if A performs at most q
group operations and has advantage δ, then there exists an algorithm that outputs a nontrivial factor
of N in time polynomial in λ and the running time of A with probability at least δ −O(q2t/2λ).

Theorem 15 (Theorem A.2 of [14]). Let N =
∏m
i=1 pi be a product of distinct primes, each greater

than 2λ. Let {Xi}, T1, T2 be random variables over G and let {Yi} be random variables over GT ,
where all random variables have degree at most t.

Let N =
∏m
i=1 pi be a product of distinct primes, each greater than 2λ. Let {Xi}, T1 and T2

be random variables over G and let {Yi} be random variables over GT . Denote by t the maximum
degree of a random variable and consider the same experiment as the previous theorem in the generic
group model.

Let S := {i | e(T1, Xi) 6= e(T2, Xi)} (where inequality refers to inequality as formal polynomials).
Suppose each of T1 and T2 is independent of {Xi} and furthermore that for all k ∈ S it holds
that e(T1, Xk) is independent of {Bi} ∪ {e(Xi, Xj)} ∪ {e(T1, Xi)}i 6=k and e(T2, Xk) is independent
of {Bi} ∪ {e(Xi, Xj)} ∪ {e(T2, Xi)}i 6=k. Then if there exists an algorithm A issuing at most q
instructions and having advantage δ, then there exists an algorithm that outputs a nontrivial factor
of N in time polynomial in λ and the running time of A with probability at least δ −O(q2t/2λ).

We apply Theorem 15 to prove the security of our assumptions in the generic group model.

Assumption 1. We can express this assumption as:

X1 = (0, 0, 1, 0), X2 = (A1, 0, A3, 0), X3 = (B1, 0, B3, 0), X4 = (0, 0, 0, 1)

and
T1 = (Z1, 0, Z3, 0), T2 = (0, Z2, Z3, 0).

20

It is easy to see that T1 and T2 are both independent of {Xi} because, for example, Z3 does not
appear in the Xi’s. Next, we note that for this assumption we have S = {2, 3}, and thus, considering
T1 first, we obtain the following tuples:

C1,2 = e(T1, X2) = [Z1A1, 0, Z3A3, 0], C1,3 = e(T1, X3) = [Z1B1, 0, Z3B3, 0].

It is easy to see that C1,k with k ∈ {2, 3} is independent of {e(Xi, Xj)} ∪ {e(T1, Xi)}i 6=k. An
analogous arguments apply for the case of T2. Thus the independence requirements of Theorem 15
are satisfied and Assumption 1 is generically secure, assuming it is hard to find a nontrivial factor
of N .

Assumption 2. We can express this assumption as:

X1 = (1, 0, 0, 0), X2 = (0, 1, 0, 0), X3 = (0, 0, 1, 0),
X4 = (0, 0, 0, 1), X5 = (A, 0, 0, B4), X6 = (B, 0, 0, C4)

and
T1 = [AB, 0, 0, D4], T2 = [Z1, 0, 0, Z4].

We note that D4 and Z1 do not appear in {Xi} and thus T1 and T2 are both independent from
them. Next, we note that for this assumption we have S = {1, 4, 5, 6}, and thus, considering T1

first, we obtain the following tuples:

C1,1 = e(T1, X1) = [AB, 0, 0, 0], C1,4 = e(T1, X4) = [0, 0, 0, D4]
C1,5 = e(T1, X5) = [A2B, 0, 0, D4B4], C1,6 = e(T1, X6) = [AB2, 0, 0, D4C4]

It is easy to see that C1,k with k ∈ {4, 5, 6} is independent of {e(Xi, Xj)} ∪ {e(T1, Xi)}i 6=k. For
C1,1, we observe that the only way to obtain an element whose first component contains AB is by
computing e(X5, X6) = [AB, 0, 0, B4C4] but then there is no way to generate an element whose
fourth component is B4C4 and hence no way to cancel that term.

Analogous arguments apply for the case of T2.
Thus the independence requirement of Theorem 15 is satisfied and Assumption 2 is generically

secure, assuming it is hard to find a nontrivial factor of N .

F Proofs

F.1 Proof of indistinguishability of GReal and GPK

Remark 16. Let Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] and Msk = [g1 · g2, g4, (ti,b)i∈[`],b∈{0,1}] be a pair
of public parameter and master secret key output by the Setup algorithm and consider Pk′ =
[N, g3, (T

′
i,b)i∈[`],b∈{0,1}] and Msk′ = [ĝ1·g2, g4, (ti,b)i∈[`],b∈{0,1}] with T ′i,b = ĝ

ti,b
1 ·R′i,b for some ĝ1 ∈ Gp1

and R′i,b ∈ Gp3. We make the following easy observations.

1. For every ~y ∈ {0, 1, ?}`, the distributions KeyGen(Msk, ~y) and KeyGen(Msk′, ~y) are identical.
2. Similarly, for every ~x ∈ {0, 1}`, the distributions Encrypt(Pk, ~x) and Encrypt(Pk′, ~x) are
identical.

Lemma 2. If Assumption 1 holds, then for any PPT adversary A,
∣∣AdvA[GReal(λ, `)]− AdvA[GPK(λ, `)]

∣∣
is negligible.

21

Proof. We show a PPT algorithm B which receives (I, A3, A4, A13, A12) and T and, depending
on the nature of T , simulates GReal(λ, `) or GPK(λ, `) with A. This suffices to prove the Lemma.

Setup. B starts by constructing public parameters Pk and Pk′ in the following way. B sets g12 =
A12, g3 = A3, g4 = A4 and, for each i ∈ [`] and b ∈ {0, 1}, B chooses random ti,b ∈ ZN and sets Ti,b =

T ti,b and T ′i,b = A
ti,b
13 . Then B sets Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}], Msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}],

and Pk′ = [N, g3, (T
′
i,b)i∈[`],b∈{0,1}] and starts the interaction with A on input Pk.

Answering Key Query for (~y). B runs algorithm KeyGen on input Msk and ~y.

Answering Challenge Query for (~x0, ~x1). The challenge is created by B by picking random
η ∈ {0, 1} and running the Encrypt algorithm on input ~xη and Pk′.

This concludes the description of algorithm B.

Now suppose T ∈ Gp1p3 , and thus it can be written as T = h1 · h3 for h1 ∈ Gp1 and h3 ∈ Gp3 .
This implies that Pk received in input by A in the interaction with B has the same distribution as in
GReal. Moreover, by writing A13 as A13 = ĥ1 · ĥ3 for ĥ1 ∈ Gp1 and ĥ3 ∈ Gp3 which is possible since
by assumption A13 ∈ Gp1p3 , we notice that that Pk and Pk′ are as in the hypothesis of Remark 16

(with g1 = h1 and ĝ1 = ĥ1). Therefore the answers to key queries and the challenge ciphertext
given by B to A have the same distribution as the answers and the challenge ciphertext received
by A in GReal(λ, `). We can thus conclude that, when T ∈ Gp1p3 , C has simulated GReal(λ, `) with
A.

Let us discuss now the case T ∈ Gp2p3 . In this case, Pk provided by B has the same distribution
as the public parameters produced by C in GPK(λ, `). Therefore, C is simulating GPK(λ, `) for A.

This concludes the proof of the lemma. 2

F.2 Proof of Lemma 8

Lemma 8. Suppose event NotAbortA1,S(f, k) occurs. If T = T1 then A’s view up to the Challenge
Query in the interaction with S running on input (f, k) is the same as in GBadQ(f, k − 1). If
instead T = T2 then A’s view up to the Challenge Query in the interaction with S running on input
(f, k) is the same as in GBadQ(f, k).

Moreover, suppose events NotAbortA1,S(f, k) and NotAbortA2,S(f, k) occur. If T = T1 then A’s
total view in the interaction with S running on input (f, k) is the same as in GBadQ(f, k − 1). If
instead T = T2 then A’s total view in the interaction with S running on input (f, k) is the same as
in GBadQ(f, k).

Proof. First observe that Pk has the same distribution as the public parameters seen by A in
both games. The same holds for the answers to the first (k− 1) Key Queries and to the last (q−k)
Key Queries. Let us now focus on the answer to the k-th Key Query. We have two cases:

Case 1: y(k)

f = ?. Then the view of A in the interaction with S is independent from T (see
Case B.1) and, on the other hand, by definition, the two games coincide. Therefore the lemma
holds in this case.

Case 2: y(k)

f 6= ?. Suppose T = T1 = Aαβ1 ·D4 and that NotAbortA1,S(f, k) occurs. Therefore,

y(k)

̂ = b̂ and S’s answer to the k-th key query has the same distributions as in GBadQ(f, k − 1).
Indeed, we have that

Ŷ = g
a′̂/r̂,b̂
1 · g

a′′̂ /v̂,b̂

2 ·D4 ·Ŵ

22

with a′̂ = α and r̂,b̂ = 1/β and

Yh = g
−(a′̂+s

′)/r
h,y

(k)
h

1 · g
−(a′′̂ +s′′)/v

h,y
(k)
h

2 ·

(
B
−1/r

h,y
(k)
h

4 ·Wh

)
and thus the a′is and a′′i s are random and sum up to 0.

On the other hand if T is random in Gp1p4 and NotAbortA1,S(f, k) occurs, the Gp1 parts of the
Yi’s are random and thus the answer to the k-th query of A is distributed as in GBadQ(f, k).

For the second part of the lemma, we observe that the challenge ciphertext has the same
distribution in both games and that, if NotAbortA2,S(f, k) occurs, S properly constructs the challenge
ciphertext. 2

F.3 Lower bounding the advantage in breaking Assumption 2

Before proving Lemma 9, we prove some useful lemmata.

Lemma 17. For all f, k and A, Prob[NotAbortA1,S(f, k)] ≥ 1
` .

Proof. The probability of NotAbortA1,S(f, k) is at least the probability that y(k)

̂ = b̂. Moreover,

the view of A up to the k-th key query is independent from b̂ and ̂. Now observe that ~y(k) has at
least two non-star entry and, provided that ̂ is one of these (which happens with probability at
least 2/`), the probability that y(k)

̂ = b̂ is 1/2. 2

Lemma 18. For all f, k and A, Prob[NotAbortA2,G(f, k)] ≥ 1
2` where G = GBadQ(f, k).

Proof. NotAbortA2,G(f, k) is the event that y(k)

̂ 6= xη,̂ in the game G played by the challenger C
withA. It is easy to see that the probability that C correctly guesses ̂ and b̂ such that xη,̂ = ĉ = 1−b̂
is at least 1/(2`), independently from the view of A. 2

Next we define event EAf,G as the event that in game G the adversary A declares two challenge
vectors that differ in the f -th component. When the adversary A is clear from the context we will
simply write Ef,G. We extend the definition of Ef,G to include the game played by A against the
simulator S. Thus we denote by EAf,S(f ′, k) the event that in the interaction between A and S
on input f ′ and k, S does not abort and A declares two challenge vectors that differ in the f -th
component. If A, f ′ and k are clear from the context, we will simply write Ef,S .

Lemma 19. If Assumption 2 holds, then for k = 1, . . . , q and f = 1, . . . , ` + 1, and for all

PPT adversaries A,
∣∣∣Prob[EAf,G]−Prob[EAf,H]

∣∣∣ and
∣∣∣Prob[NotAbortA2,G]−Prob[NotAbortA2,H]

∣∣∣ are

negligible functions of λ, for games G = GBadQ(f, k − 1) and H = GBadQ(f, k).

Proof. We prove the lemma for Ef,G and Ef,H . A similar reasoning holds for NotAbortA2,G
and NotAbortA2,H . For the sake of contradiction, suppose that Prob[EAf,G] ≥ Prob[EAf,H] + ε for
some non-negligible ε. Then we can modify simulator S into algorithm B with a non-negligible
advantage in breaking Assumption 2. Algorithm B simply execute S’s code. By Lemma 17 event
NotAbort1,S occurs with probability at least 1/` and in this case B can continue the execution of
S’s code and receive the challenge vectors from A. At this point, B checks whether they differ in
the f -th component. If they do, B outputs 1; else B outputs 0. It is easy to see that, by Lemma 8,
the above algorithm has a non-negligible advantage in breaking Assumption 2. 2

The proof of the following corollary is straightforward from Lemma 19 and Observations 3-5.

23

Corollary 20. For all f = 1, . . . , `+ 1 and k = 0, . . . , q, and all PPT adversaries A, we have that,

for H = GBadQ(f, k)
∣∣∣Prob[EAf,H]− Prob[EAf]

∣∣∣ and
∣∣∣Prob[NotAbortA2,H]− Prob[NotAbortA2]

∣∣∣ are

negligible.

We define event SuccA(f, k) as

SuccA(f, k) := NotAbortA1,S(f, k) ∧ NotAbortA2,S(f, k) ∧ EAf,S(f, k). (10)

We are now ready to prove Lemma 9.

Lemma 9. Suppose there exists an adversary A and integers 1 ≤ f ≤ ` + 1 and 1 ≤ k ≤ q such
that

∣∣AdvA [G]− AdvA [H]
∣∣ ≥ ε, where G = GBadQ(f, k − 1), H = GBadQ(f, k) and ε > 0. Then,

there exists a PPT algorithm B with AdvB2 ≥ Prob[Ef] · ε/(2 · `2)− ν(λ), for a negligible function ν.

Proof. Assume without loss of generality that AdvA [G] ≥ AdvA [H]+ε and consider the following
algorithm B. B uses simulator S as a subroutine and interacts with A on input integers f and k
for which the above inequality holds, and an instance (D,T) of Assumption 2.

If event SuccA(f, k) does not occur, B outputs ⊥. Otherwise, B receives A’s output η′ and
checks if η = η′ (recall that η is the random bit chosen by S in preparing the challenge ciphertext).
If η = η′ then B outputs 1; otherwise B outputs 0. Therefore we have

Prob[B outputs 1|T = T1] = Prob[B outputs 1|T = T1 ∧ SuccA(f, k)] · (11)

Prob[SuccA(f, k)|T = T1]

By definition of event SuccA(f, k) we have

Prob[SuccA(f, k)|T = T1] = Prob[Ef,S ∧ NotAbort1,S ∧ NotAbort2,S |T = T1]

= Prob[NotAbort1,S |T = T1] · Prob[Ef,S ∧ NotAbort2,S |NotAbort1,S ∧ T = T1].

Now observe that event NotAbort1,S is determined before S uses T and thus

Prob[NotAbort1,S |T = T1] = Prob[NotAbort1,S].

Moreover, by Lemma 8, if event NotAbort1,S occurs and T = T1, the view of A up to Challenge
Query is equal to the view of A in game G and thus

Prob[Ef,S ∧ NotAbort2,S |NotAbort1,S ∧ T = T1] = Prob[Ef,G ∧ NotAbort2,G]

whence

Prob[SuccA(f, k)|T = T1] = Prob[NotAbort1,S] · Prob[NotAbort2,G ∧ Ef,G]

= Prob[NotAbort1,S] · Prob[NotAbort2,G] · Prob[Ef,G]

(NotAbort2,G and Ef,G are independent)

Finally, if T = T1 and SuccA(f, k) occures, then, by Lemma 8, A’s view is exactly as in game G,
and thus the probability that B outputs 1 is equal to the probability that A wins in game G. We
can thus rewrite Eq. 11 as

Prob[B outputs 1|T = T1] = Prob[A wins in G] ·Prob[NotAbort1,S] ·Prob[NotAbort2,G] ·Prob[Ef,G]

24

A similar reasoning yields

Prob[B outputs 1|T = T2] = Prob[A wins in H] ·Prob[NotAbort1,S] ·Prob[NotAbort2,H] ·Prob[Ef,H]

By using Corollary 20, Lemma 17 and Lemma 18, we can conclude that there exists a negligible
function ν such that we have

AdvB2 = Prob[NotAbort1,S] · Prob[NotAbort2] · Prob[Ef] ·
(

Prob[A wins in G]− Prob[A wins in H]
)
− ν(λ)

≥ ε

2`2
· Prob[Ef]− ν(λ).

2

F.4 Upper bounding the advantage in GPK

Before proving Lemma 11, we state and prove some useful observations.

Let EAf,f ′ denote the event that during the execution of GBadCh(f ′) adversary A outputs two
challenge vectors that differ in the f -th component. For an event E, we define the advantage
AdvA[G|E] of A in G conditioned on event E as AdvA[G|E] = Prob[A wins in game G|E]− 1

2 .

Observation 21. For all PPT adversaries A and all 1 ≤ f ≤ `, we have that

AdvA[GBadCh(f)|¬Ef,f] = AdvA[GBadCh(f + 1)|¬Ef,f+1].

Proof. By definition of GBadCh, if the two challenge vectors coincide in the f -th component,
then the views of A in GBadCh(f) and GBadCh(f + 1) are the same. 2

Observation 22. For all PPT adversaries A and all 1 ≤ f ≤ `, we have that

Prob[EAf,f] = Prob[EAf,f+1].

Proof. The view of A in GBadCh(f) up to the Challenge Query is independent from f . 2

Therefore we can set Prob[EAf,f] = Prob[EAf,1] = Prob[EAf].

Lemma 11. If Assumption 2 holds, then, for any PPT adversary A, AdvA[GPK] is negligible.
Specifically, if there is an adversary A with AdvA[GPK] = ε then there exists an adversary B
against Assumption 2 such that AdvB2 ≥ ε2

2q`4
− ν(λ), for some negligible function ν.

Proof. Let A be a PPT adversary such that AdvA[GPK] ≥ ε. Since GPK = GBadCh(1) and
AdvA[GBadCh(`+ 1)] = 0 there must exist f ∈ [`] such that∣∣AdvA[GBadCh(f)]− AdvA[GBadCh(f + 1)]

∣∣ ≥ ε′ = ε/`. (12)

Now recall that GBadCh(f) = GBadQ(f, 0) and GBadCh(f + 1) = GBadQ2(f, 0). Thus, there exists
k, 1 ≤ k ≤ q such that ∣∣AdvA[G]− AdvA[H]

∣∣ ≥ ε′/(2q)
where G = GBadQ(f, k) and H = GBadQ(f, k − 1) or where G = GBadQ2(f, k) and H =
GBadQ2(f, k − 1). Then by Lemma 9, in the former case, and by Lemma 10 in the latter, we
can construct an adversary B against Assumption 2, such that

AdvB2 ≥
ε

4q`3
· Prob[Ef]− ν(λ)

25

Now it remains to estimate Prob[Ef]. Notice that we can write

AdvA[GBadCh(f)] = Prob[Ef,f] · AdvA[GBadCh(f)|Ef,f]+

Prob[¬Ef,f] · AdvA[GBadCh(f)|¬Ef,f].

and
AdvA[GBadCh(f + 1)] = Prob[Ef,f+1] · AdvA[GBadCh(f + 1)|Ef,f+1]+

Prob[¬Ef,f+1] · AdvA[GBadCh(f + 1)]|¬Ef,f+1].

and, by combining Equation 12 and Observations 21 and 22, we obtain

Prob[Ef] ·
∣∣AdvA[GBadCh(f)|Ef,f]− AdvA[GBadCh(f + 1)|Ef,f+1]

∣∣ ≥ ε′.
Since no advantage is greater than 1/2, we can conclude that Prob[Ef] ≥ 2 · ε′ and thus B as
advantage

AdvB2 ≥
ε2

2q`4
− ν(λ)

2

G Full-Fledged HVE

A Full-Fledged HVE scheme is a tuple of four efficient probabilistic algorithms (Setup, Encrypt,
KeyGen, Decrypt) with the following semantics.

Setup(1λ, 1`): takes as input a security parameter λ and a length parameter ` (given in unary),
and outputs the public parameters Pk and the master secret key Msk.

KeyGen(Msk, ~y): takes as input the master secret key Msk and a vector ~y ∈ {0, 1, ?}`, and outputs
a secret key Sk~y.

Encrypt(Pk, ~x,M): takes as input the public parameters Pk and a vector ~x ∈ {0, 1}`, and a message
M in some associated message space. It outputs a ciphertext Ct.

Decrypt(Pk,Ct,Sk~y): takes as input the public parameters Pk, a ciphertext Ct encrypting attribute
vector ~x and message M , and a secret key Sk~y. It outputs plaintext M ′.

Correctness. For correctness we require that for pairs (Pk,Msk) output by Setup(1λ, 1`), it holds
that for any vectors ~x ∈ {0, 1}` and for any plaintext M and for any ~y ∈ {0, 1, ?}`, we have that

Decrypt(Pk,Encrypt(Pk, ~x,M),KeyGen(Msk, ~y)) = M

is negligibly in λ close to 1 if Match(~x, ~y) = 1 and negligibly in λ close to 0 if Match(~x, ~y) = 0.

26

G.1 Security definition

We define security by means of the following game GReal played between an adversary A and a
challenger C.

Setup. C runs the Setup algorithm on input the security parameter λ and the length parameter
` (given in unary) to generate public parameters Pk and master secret key Msk. C starts the
interaction with A on input Pk.

Key Query Answering. Upon receiving a query for vector ~y, C returns KeyGen(Msk, ~y).

Challenge Construction. Upon receiving the pair ((~x0,M0), (~x1,M1)), C picks random η ∈ {0, 1}
and returns Encrypt(Pk, ~xη,Mη).

Winning Condition. Let η′ be A’s output. We say that A wins the game if η = η′ and for all
~y for which A has issued a Key Query, it holds Match(~x0, ~y) = Match(~x1, ~y). Moreover, if A has
issued a Key Query for a vector ~y such that Match(~x0, ~y) = Match(~x1, ~y) = 1, then M0 must be
equal to M1.

We define the advantage AdvA(λ) of A in GReal as the probability of winning minus 1/2 and
for security we require the advantage to be negligible.

G.2 Full-fledged scheme for HVE

It is easy to extend our scheme for HVE to the full-fledged case in the following way. In the schemes
for Hidden Vector Encryption we add the value Ω = e(g1, g1)z for a random z to the public key
and add z to the master secret key. In constructing the secret keys, we choose that the ai’s so that
they sum up to z (instead of summing up to 0). In the encryption for a message M ∈ GT , we add
the element Ω = M ·Ωs, where s is the same random values used to compute the other components
of the ciphertext. Then it is easy to see that the blinding factor Ωs can be obtained from the keys
and the ciphertext. For completeness, we present the formal description of the full-fledged scheme.
The associated message space of the following full-fledged scheme is the target group GT . As for
the predicate-only scheme of Section 4, we assume that all vectors associated with the key have at
least two non-star positions.

Setup(1λ, 1`): The setup algorithm chooses a description of a bilinear group I = (N = p1p2p3p4,
G,GT , e) with known factorization by running a generator algorithm G on input 1λ. The setup
algorithm chooses random z ∈ ZN , g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 , and, for i ∈ [`] and

b ∈ {0, 1}, random ti,b ∈ ZN and random Ri,b ∈ Gp3 and sets Ti,b = g
ti,b
1 ·Ri,b. Furthermore, it sets

Ω = e(g1, g1)z. The public parameters are Pk = [N, g3,Ω, (Ti,b)i∈[`],b∈{0,1}] and the master secret
key is Msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}], where g12 = g1 · g2.

KeyGen(Msk, ~y): Let S~y be the set of indices i such that yi 6= ?. The key generation algorithm
chooses random ai ∈ ZN for i ∈ S~y under the constraint that

∑
i∈S~y

ai = z. For i ∈ S~y, the
algorithm chooses random Wi ∈ Gp4 and sets

Yi = g
ai/ti,yi
12 ·Wi.

The algorithm returns the tuple (Yi)i∈S~y
. Here we use the fact that S~y has size at least 2.

27

Encrypt(Pk, ~x,M): The encryption algorithm chooses random s ∈ ZN . For i ∈ [`], the algorithm
chooses random Zi ∈ Gp3 and sets

Xi = T si,xi · Zi.

Furthermore, it computes W = M · Ω−s. and returns the tuple (W, (Xi)i∈[`]).

Decrypt(Ct, Sk~y): The decryption algorithm computes T =
∏
i∈S~y

e(Xi, Yi). It returns M ′ =
W · T .

By adding a MAC (or some parity check code) to the plaintext M , it is possible to detect invalid
decryptions. We omit the proof of correctness and security for this scheme since they are analogous
to those for the predicate-only scheme of Section 4.

H Reductions

In this section we show how to construct an encryption scheme for the class of Boolean predicates
that can be expressed as a k-CNF or k-DNF formula and disjunctions from an HVE scheme.

We first start by giving formal definitions for the Boolean Satisfaction Problem and its security
properties.

H.1 Boolean Satisfaction Encryption

Let B = {Bn}n>0 be a class of Boolean predicates indexed by the number n of variables. We define
the Satisfy predicate as Satisfy(Φ, ~z) = Φ(~z) for ~z ∈ {0, 1}n.

An Encryption scheme for class B is a tuple of four efficient probabilistic algorithms (Setup,
Encrypt, KeyGen, Test) with the following semantics.

Setup(1λ, 1n): takes as input a security parameter λ and the number n of variables, and outputs
the public parameters Pk and the master secret key Msk.

KeyGen(Msk,Φ): takes as input the master secret key Msk and a formula Φ ∈ Bn and outputs a
secret key SkΦ.

Encrypt(Pk, ~z): takes as input the public parameters Pk and a truth assignment ~z for n variables
and outputs a ciphertext Ct.

Test(Pk,Ct, SkΦ): takes as input the public parameters Pk, a ciphertext Ct and a secret key SkΦ

and outputs TRUE iff and only if the ciphertext is an encryption of a truth assignment ~z
that satisfies Φ.

Correctness of Boolean Satisfaction Encryption. We require that for all pairs (Pk,Msk)← Setup(1λ, 1n),
it holds that for any truth assignment ~z for n variables, for any formula Φ ∈ Bn over n variables we
have that the probability that Test(Pk,Encrypt(Pk, ~z),KeyGen(Msk,Φ)) 6= Satisfy(Φ, ~z) is negligible
in λ.

28

H.2 Security definitions for Boolean Satisfaction Encryption

For Boolean Satisfaction encryption, we have a game similar to that of HVE. GReal can be described
in the following way.

Setup. C runs the Setup algorithm, (Pk,Msk)← Setup(1λ, 1n). Then C starts the interaction with
A on input Pk.

Key Query Answering. For Φ ∈ Bn, C returns KeyGen(Msk,Φ).

Challenge Construction. Upon receiving the pair (~z0, ~z1) of truth assignments over n variables,
C picks random η ∈ {0, 1} and returns Encrypt(Pk, ~zη).

Winning Condition. Let η′ be A’s output. We say that A wins the game if η = η′ and, for all
Φ for which A has issued a Key Query, it holds that Satisfy(Φ, z0) = Satisfy(Φ, z1).

We define the advantage AdvAB (λ) of A in GReal to be the probability of winning minus 1/2.

Definition 23. An Encryption scheme for class B is secure if for all PPT adversaries A, we have
that AdvAB (λ) is a negligible function of λ.

H.3 Reducing k-CNF to HVE

We consider formulae Φ in k-CNF, for constant k, over n variables in which each clause C ∈ Φ
contains exactly k distinct variables. We call such a clause admissible and denote by Cn the set of
all admissible clauses over the n variables x1, . . . , xn and set Mn = |C|. Notice that Mn = Θ(nk).
We also fix a canonical ordering C1, . . . , CMn of the clauses in Cn.

LetH = (SetupH,KeyGenH,EncryptH,TestH) be an HVE scheme and construct a k-CNF scheme
kCNF = (SetupkCNF, KeyGenkCNF,EncryptkCNF,TestkCNF) as follows:

SetupkCNF(1λ, 1n): The algorithm returns the output of SetupH(1λ, 1Mn).

KeyGenkCNF(Msk,Φ): For a k-CNF formula Φ, the key generation algorithm constructs vector
~y ∈ {0, 1, ?}Mn by setting, for each i ∈ {1, . . . ,Mn}, yi = 1 if Ci ∈ Φ; yi = ? otherwise. We
denote this transformation by y = FEncode(Φ). Then the key generation algorithm returns
SkΦ = KeyGenH(Msk, ~y).

EncryptkCNF(Pk, ~z): The algorithm constructs vector ~x ∈ {0, 1}Mn in the following way: For each
i ∈ {1, . . . ,Mn} the algorithms sets xi = 1 if Ci is satisfied by ~z; xi = 0 if Ci is not satisfied
by ~z. We denote this transformation by ~x = AEncode(~z). Then the encryption algorithm
returns Ct = EncryptH(Pk, ~x).

TestkCNF(SkΦ,Ct): The algorithm returns the output of TestH(SkΦ,Ct).

Correctness. Correctness follows from the observation that for formula Φ and assignment ~z, we
have that Match(AEncode(~z),FEncode(Φ)) = 1 if and only if Satisfy(Φ, ~z) = 1.

Security. Let A be an adversary for kCNF that tries to break the scheme for n variables and
consider the following adversary B for H that uses A as a subroutine and tries to break a H with
` = Mn by interacting with challenger C. B receives a Pk for H and passes it to A . Whenever A
asks for the key for formula Φ, B constructs ~y = FEncode(Φ) and asks C for a key Sk~y for ~y and
returns it to A. When A asks for a challenge by providing truth assignments ~z0 and ~z1, B simply

29

computes ~x0 = AEncode(~z0) and ~x1 = AEncode(~z1) and gives the pair (~x0, ~x1) to C. B then returns
the challenge ciphertext obtained from C to A. Finally, B outputs A’s guess.

First, B’s simulation is perfect. Indeed, we have that if for all A’s queries Φ we have that
Satisfy(Φ, ~z0) = Satisfy(Φ, ~z1), then all B’s queries ~y to C also have the property Match(~y, ~x0) =
Match(~y, ~x1). Thus B’s advantage is the same as A’s. By combining the above reduction with our
constructions for HVE, we have the following theorems.

Theorem 24. For any constant k > 0, if Assumption 1 and 2 hold for generator G then there exists
a secure encryption scheme for the class of predicates that can be represented by k-CNF formulae.

H.4 Reducing Disjunctions to HVE

In this section we consider the class of Boolean predicates that can be expressed as a single dis-
junction. We assume without loss of generality that a disjunction does not contain a variable and
its negated.

Let H = (SetupH,KeyGenH,EncryptH,TestH) be an HVE scheme and construct the predicate-
only scheme ∨ = (Setup∨, KeyGen∨,Encrypt∨,Test∨) for disjunctions in the following way:

Setup∨(1λ, 1n): the algorithm returns the output of SetupH(1λ, 1n).

KeyGen∨(Msk, C): For a clause C, the key generation algorithm constructs vector ~y ∈ {0, 1, ?}n
in the following way. Let ~w be a truth assignment to the n variables that does not satisfy
clause C. For each i ∈ {1, . . . , n}, the algorithms sets yi = wi if the i-th variable appears
in C; yi = ? otherwise. We denote this transformation by ~y = CEncode(C). The output is
SkC = KeyGenH(Msk, ~y).

Encrypt∨(Pk, ~z): The encryption algorithm returns Ct = EncryptH(Pk, ~z).

Test∨(SkC ,Ct): The algorithm returns 1− TestH(SkC ,Ct).

Correctness. It follows from the observation that for a clause C and assignment ~z, Satisfy(C, ~z) =
1 if and only if Match(CEncode(C), ~z) = 0.

Security. It is easy to see that if H is secure then ∨ is secure. In particular, notice that
if for A’s query C we have that Satisfy(C, ~z0) = Satisfy(C, ~z1) = ξ ∈ {0, 1}, then for B’s query
~y = CEncode(C) to C we have that Match(~y, ~z0) = Match(~y, ~z1) = 1− ξ.

Theorem 25. If Assumption 1 and 2 hold for generator G then there exists a secure encryption
scheme for the class of predicates that can be represented by a disjunction.

H.5 Reducing k-DNF to k-CNF

We observe that if Φ is a predicate represented by a k-DNF formula then its negation Φ̄ can be repre-
sented by a k-CNF formula. Therefore let kCNF = (SetupkCNF,KeyGenkCNF,EncryptkCNF,TestkCNF)
and consider the following scheme kDNF = (SetupkDNF,KeyGenkDNF,EncryptkDNF,TestkDNF). The
setup algorithm SetupkDNF is the same as SetupkCNF. The key generation algorithm SetupkDNF for
predicate Φ represented by a k-DNF simply invokes the key generation algorithm SetupkCNF for Φ̄
that can be represented by a k-CNF formula. The encryption algorithm EncryptkDNF is the same

30

as EncryptkCNF. The test algorithm TestkDNF on input ciphertext Ct and key for k-DNF formula Φ
(that is actually a for k-CNF formula Φ̄) thus TestkCNF on Ct and the key and complements the
result. Correctness and security can be easily argued as for Disjunctions.

By combining the above reduction with the construction given by Theorem 24.

Theorem 26. If Assumption 1 and 2 hold for generator G then there exists a secure encryption
scheme for the class of predicates represented by k-DNF formulae.

31

	Introduction and related work
	Hidden Vector Encryption
	Hidden Vector Encryption
	Security definitions for HVE

	Complexity Assumptions
	Constructing HVE
	Security of our HVE scheme
	The first step of the proof
	The second step of the proof
	Some simple observations about GBadQ and GBadQ2
	Description of simulator S
	Properties of simulator S
	The advantage of A in GPK

	Wrapping up

	Conclusions and future directions
	An alternative description of our HVE
	Correctness of our HVE scheme
	Is the binary alphabet a limitation?
	Prime-order bilinear groups
	Generic security of our Complexity Assumptions
	Proofs
	Proof of indistinguishability of GReal and GPK
	Proof of Lemma 8
	Lower bounding the advantage in breaking Assumption 2
	Upper bounding the advantage in GPK

	Full-Fledged HVE
	Security definition
	Full-fledged scheme for HVE

	Reductions
	Boolean Satisfaction Encryption
	Security definitions for Boolean Satisfaction Encryption
	Reducing k-CNF to HVE
	Reducing Disjunctions to HVE
	Reducing k-DNF to k-CNF

