
Two-output Secure Computation With
Malicious Adversaries

abhi shelat and Chih-hao Shen

University of Virginia, Charlottesville, VA 22904
{shelat, shench}@virginia.edu

Abstract. We present a method to compile Yao’s two-player garbled
circuit protocol into one that is secure against malicious adversaries that
relies on witness indistinguishability. Our approach can enjoy lower com-
munication and computation overhead than methods based on cut-and-
choose [13] and lower overhead than methods based on zero-knowledge
proofs [8] (or Σ-protocols [14]). To do so, we develop and analyze new
solutions to issues arising with this transformation:

— How to guarantee the generator’s input consistency
— How to support different outputs for each player without adding extra

gates to the circuit of the function f being computed
— How the evaluator can retrieve input keys but avoid selective failure

attacks
— Challenging 3/5 of the circuits is near optimal for cut-and-choose

(and better than challenging 1/2)

Our protocols require the existence of secure-OT and claw-free functions
that have a weak malleability property. We discuss an experimental im-
plementation of our protocol to validate our efficiency claims.

Keywords: Witness indistiguishability, Yao garbled circuits, signature schemes

1 Introduction

Yao [23] proposed a method that allows two honest-but-curious players—a gen-
erator (denoted by P1) with secret input x, and an evaluator (denoted by P2)
with secret input y—to jointly compute a function f(x, y) such that P1 receives
nothing and P2 receives f(x, y).1 In this paper, we propose an approach for
transforming Yao’s garbled circuit protocol for honest-but-curious players into a
protocol that is secure against malicious players. Our main goal is to improve the
efficiency of this transformation and to do so using more general assumptions.

There are two well-known methods to achieve this transformation: the commit-
and-prove and cut-and-choose. The commit-and-prove method suggested by Gol-
dreich, Micali, and Widgerson [6] only requires the weak general assumption of
zero-knowledge proofs of knowledge. However, this approach requires costly NP-
reductions, which have never been implemented. On the other hand, an efficient

1 A thorough description of this protocol can be found in Lindell and Pinkas [13].

transformation based on the cut-and-choose method was recently proposed by
Lindell and Pinkas [13] and implemented by Pinkas et al. [20]. The general idea in
cut-and-choose is for P1 to prepare multiple copies of the circuit to be evaluated.
A randomly selected set of the circuits (called check-circuits) are then opened
to show if they were constructed correctly. Finally, the unopened circuits (called
evaluation-circuits) are evaluated by P2 and the majority of the results is taken
as the final output. This approach has only constant round complexity, but the
replication incurs both communicational and computational overhead.

The starting point for our work is the cut-and-choose method. A natural
question we aim to study is to understand the fundamental limitations (in terms
of efficiency) of the cut-and-choose method. This method does not require NP-
reductions; however, it faces other efficiency problems stemming from the new
security problems introduced by evaluating e out of s copies of the circuit. In this
paper, we address several of these issues: (1) ensuring input consistency, (2) han-
dling two-output functions, (3) preventing selective failure attacks, and (4) de-
termining the optimal number of circuits to open versus evaluate. Moreover, we
identify weak and generic properties that admit efficient solutions to these issues.
In several of the cases, using witness indistinguishable protocols suffice. Thus, in
the case of input consistency, we are able to use an extremely efficient protocol as
long as claw-free functions with a minimal malleability property exist (they do
under the standard algebraic assumptions). We will later demonstrate the bene-
fits of our approach by both asymptotic analysis of complexity and experimental
results from an implementation. We now give an overview of our contributions.

1.1 Generator’s input consistency

According to the cut-and-choose method, P1 needs to send e copies of her garbled
input to P2. Since the circuits are garbled, P1 could cheat by sending different
inputs for the e copies of the garbled circuit. For certain functions, there are sim-
ple ways for P1 to extract information about P2’s input (§ 3 of [13]). Therefore,
the protocol must ensure that all e copies of P1’s input are consistent.

Related work Let n be P1’s and P2’s input size, and let s be a statistical security
parameter for the cut-and-choose method. Mohassel and Franklin [16] proposed
the equality-checker scheme, which has O(ns2) computation and communication
complexity. Woodruff [22] later suggested an expander-graph framework to give a
sharper bound to P1’s cheating probability. The asymptotic complexity is O(ns),
however, in practice, the constant needed to construct the expander graphs is
prohibitively large. Lindell and Pinkas [13] develop an elegant cut-and-choose
based construction that enjoys the simulation-based security against malicious
players. This approach requires O(ns2) commitments to be computed and ex-
changed between the participants. Although these commitments can be imple-
mented using lightweight primitives such as collision-resistant hash functions,
communication complexity is still an issue. Jarecki and Shmatikov [8] presented
an approach that is based on commit-and-prove method. Although only a single
circuit is constructed, their protocol requires hundreds of heavy cryptographic

operations per gate, whereas approaches based on the cut-and-choose method re-
quire only such expensive operations for the input gates. Nielsen and Orlandi [18]
proposed an approach with Lego-like garbled gates. Although it is also based on
the cut-and-choose method, via an alignment technique only a single copy of P1’s
input keys is needed for all the e copies of the garbled circuit. However, similar
to Jarecki and Shmatikov’s approach, each gate needs several group elements
as commitments resulting both computational and communicational overhead.
Lindell and Pinkas propose a Diffie-Hellman pseudorandom synthesizer tech-
nique in [14]; their approach relies on finding efficient zero-knowledge proofs for
specifically chosen complexity assumptions, which is of complexity O(ns).

Our approach to consistency We solve this problem not by explicitly using zero-
knowledge protocols (or Σ-protocols) but by communicating merely O(ns) group
elements. Our novel approach is to first observe that witness indistinguishable
proofs suffice for consistency, and to then use claw-free functions2 that have a
weak malleability property to generate efficient instantiations of such proofs.

Intuitively, P1’s input is encoded using elements from the domain of the
claw-free collections which can later be used to prove their consistency among
circuits. The elements are hashed into random bit-strings which P1 uses to con-
struct keys for garbled input gates. The rest of the gates in the circuit use
fast symmetric operations as per prior work. A concrete example is to instanti-
ate the claw-free functions under the Discrete Logarithm assumption by letting
fb(m) = gbhm for some primes p and q such that p = 2q+ 1, and distinct group
elements g and h of Z∗p such that 〈g〉 = 〈h〉 = q. It is well-known that such
a pair of functions have efficient zero-knowledge proofs. An example instanti-
ation of our solution built on this pair of claw-free functions works as follows:
P1 samples [m0,1, . . . ,m0,s] and [m1,1, . . . ,m1,s] from f0 and f1’s domain Zq.
The range elements [hm0,1 , . . . , hm0,s] and [ghm1,1 , . . . , ghm1,s] are then used to
construct garbled circuits in the way that gbhmb,j is associated with P1’s input
bit value b in the j-th garbled circuit. The cut-and-choose method verifies that
the majority of the evaluation-circuits are correctly constructed. Let [j1, . . . , je]
be the indices of these evaluation-circuits. At the onset of the evaluation phase,
P1 with input bit x reveals [gxhmx,j1 , . . . , gxhmx,je] to P2 and then proves that
these range elements are the commitments of the same bit x. Intuitively, by the
identical range distribution property, P2 with fx(mx,i) at hand has no infor-
mation about x. Furthermore, after P1 proves the knowledge of the pre-image
of [fx(mx,j1), . . . , fx(mx,je)] under the same fx, by the claw-free property, P1

proves the consistency of his input keys for all the evaluation-circuits.

Furthermore, in the course of developing our proof, we noticed that witness
indistinguishable proofs suffice in place of zero-knowledge proofs. Even more
generally, when the claw-free collection has a very weak malleability property

2 Loosely speaking, a pair of functions (f0, f1) are said to be claw-free if they are
(1) easy to evaluate, (2) identically distributed over the same range, and (3) hard to
find a claw. A claw is a pair of elements, one from f0’s domain and the other from
f1’s domain, that are mapped to the same range element.

(which holds for all known concrete instantiations), sending a simple function of
the witness itself suffices. We will get into more details in §2.1.

It is noteworthy that both the committed-input scheme in [16] and Diffie-
Hellman pseudorandom synthesizer technique in [14] are special cases of our ap-
proach, and thus, have similar complexity. However, the committed-input scheme
is not known to enjoy simulation-based security, and the pseudorandom synthe-
sizer technique requires zero-knowledge proofs that are unnecessary in our case,
which means that our approach is faster by a constant factor in practice.

1.2 Two-output Functions

It is not uncommon that both P1 and P2 need to receive outputs from a secure
computation, that is, the goal function is f(x, y) = (f1, f2) such that P1 with
input x gets output f1, and P2 with input y gets f2.3 In this case, the security
requires that both the input and output are hidden from the other player. When
both players are honest-but-curious, a straightforward solution is to let P1 choose
a random number c as an extra input, convert f(x, y) = (f1, f2) into a new
function f∗((x, c), y) = (λ, (f1⊕c, f2)), run the original Yao protocol for f∗, and
instruct P2 to pass the encrypted output f1⊕c back to P1, who can then retrieve
her real output f1 with the secret input c chosen in the first place. However,
the situation gets complicated when either of the players could potentially be
malicious. Note that the two-output protocols we consider are not fair since P2

may always learn its own output and refuse to send P1’s output. However, they
can satisfy the notion that if P1 accepts output, it will be correctly computed.

Related work One straightforward solution is for the players to run the single-
output protocol twice with roles reversed. Care must be taken to ensure that
the same inputs are used in both executions. Also, this approach doubles the
computation and communication cost. Other simple methods to handle two-
output functions also have subtle problems. Suppose, for example, P1 encrypts
all copies of her output and has P2 send these s random strings (or encryptions)
in the last message. In a cut-and-choose framework, however, a cheating P1 can
use these random strings to send back information about the internal state of
the computation and thereby violate P2’s privacy. As an example, the cheating
P1 can make one bad circuit in which P1’s output bit is equal to P2’s first input
bit. If P2 sends all copies of P1’s output bit back to P1, then with noticeable
probability, the cheating P1 can learn P2’s first input bit. The problem remains
if instead of sending back all bits, only a randomly chosen output bit is sent.
Besides, P1 should not be convinced by a cheating P2 with an arbitrary output.

As described in [13], the two-output case can be reduced to the single-output
case as follows: (1) P1 randomly samples a, b, c ∈ {0, 1}n as extra input; (2) the
original function is converted into f∗((x, a, b, c), y) = (λ, (α, β, f2)) where α =
f1 ⊕ c is an encryption of f1 and β = a · α + b is the Message Authentication
code (MAC) of α, and (3) P2 sends (α, β) back to P1, who can then check the

3 Here f1 and f2 are abbreviations of f1(x, y) and f2(x, y) for simplicity purpose.

authenticity of the output α = f1⊕c. However, this transformation increases the
size of P1’s input from n bits to 4n bits. As a result, the complexity of P1’s input
consistency check is also increased. A second drawback is that the circuit must
also be modified to include extra gates for computing the encryption and MAC
function. Although a recent technique [12] can be used to implement XOR gates
“for free,” the MAC function a · α + b still requires approximately O(n2) extra
gates added to the circuit. Since all s copies of the circuit have to be modified,
this results in additional communication of O(sn2) encrypted gates. Indeed, for
simple functions, the size of this overhead exceeds the size of the original circuit.

Kiraz and Schoenmakers [11] present a fair two-party computation protocol
in which a similar issue for two-output functions arises. In their approach, P2

commits to P1’s garbled output. Then P1 reveals the two output keys for each of
her output wires, and P2 finds one circuit GCr which agrees with “the majority
output for P1.” The index r is then revealed to P1. However, informing P1 the
index of the majority circuit could possibly leak information about P2’s input. As
an anonymous reviewer has brought to our attention an unpublished follow-up
work from Kiraz [9], which elaborated this issue (in § 6.6 of [9]) and further fixed
the problem without affecting the overall performance. Particularly, in the new
solution, the dominant computational overhead is an OR-proof of size O(s), and
the dominant communicational overhead is the commitments to P1 output keys,
where the number of such commmitments is of order O(ns). Their techniques
favorably compare to our approach, but we do not have experimental data to
make accurate comparisons with our implementation.

Our approach to two-output functions We present a method to evaluate two-
output function f without adding non-XOR gates to the original circuit for f .

In order for P2 to choose one output that agrees with the majority, similar
to Kiraz and Schoenmakers’ approach in [11], we add extra bits to P1’s input as
a one-time pad encryption key by changing the function from f(x, y) = (f1, f2)
to f∗((c, x), y) = (λ, (f1 ⊕ c, f2)), where x, c, y, f1, f2 ∈ {0, 1}n. With this extra
random input c from P1, P2 is able to do the majority function on the evaluation
output f1 ⊕ c without knowing P1’s real output f1. Next, P2 needs to prove the
authenticity of the evaluation output f1 ⊕ c that she has given to P1. Here, our
idea is that P1’s i-th output gate in the j-th garbled circuit is modified to output
0||σsk(0, i, j) or 1||σsk(1, i, j) instead of 0 or 1, where σsk(b, i, j) is a signature
of the message (b, i, j) signed by P1 under the signing key sk. In other words,
the garbled gate outputs P1’s output bit b and a signature of b, bit index i, and
circuit index j. Therefore, after the circuit evaluation, P2 hands f1 ⊕ c to P1

and proves the knowledge of the signature of each bit under the condition that
the j-index for all signatures are the same and valid (among the indices of the
evaluation-circuits). Naively, this proof would have been a proof of O(ns) group
elements. However, we will show that a witness indistinguishable proof suffices,
which reduces the complexity by a constant factor. Furthermore, by using the
technique of Camenisch, Chaabouni, and Shelat for efficient set membership
proof [4], we are able to reduce the complexity to O(n+ s) group elements.

1.3 The problem of Selective Failure

Another problem with compiling garbled circuits occurs during the Oblivious
Transfer (OT) phase, when P2 retrieves input keys for the garbled circuits. A
malicious P1 can attack the protocol with selective failure, where the keys used
to construct the garbled circuit might not be the ones used in the OT so that
P2’s input can be inferred according to her reaction after OT. For example, a
cheating P1 could use (K0,K1) to construct a garbled circuit but use (K0,K

∗
1)

instead in the corresponding OT, where K1 6= K∗1 . As a result, if P2’s input bit
is 1, she will get K∗1 after OT and cannot evaluate the garbled circuit properly.
In contrast, if her input bit is 0, P2 will get K0 from OT and complete the
evaluation without complaints. P1 can therefore infer P2’s input. This issue is
identified by both Mohassel and Franklin [16] and Kiraz and Schoenmakers [10].

Related work Lindell and Pinkas [13] replace each of P2’s input bits with s addi-
tional input bits. These s new bits are XOR’ed together, and the result is used
as the input to the original circuit. Such an approach makes the probability that
P2 must abort due to selective failure independent of her input. This approach,
however, increases the number of input bits for P2 from n to ns. Woodruff later
pointed out that the use of clever coding system can reduce the overhead to
max(4n, 8s). To be sure, Lindell, Pinkas, and Smart [15] implement the method
described in [13] and empirically confirm the extra overhead from this step. In
particular, a 16-bit comparison circuit that originally needs fifteen 3-to-1 gates
and one 2-to-1 gate will be inflated to a circuit of several thousand gates af-
ter increasing the number of inputs. Since the number of inputs determines the
number of OT operations, an approach that keeps the number of extra inputs
small is preferable. In fact, we show that increasing the number of inputs and
number of gates in the circuit for this problem is unnecessary.

Independent of our work, Lindell and Pinkas [14] propose to solve this prob-
lem by cut-and-choose OT. This new solution indeed provides a great improve-
ment over [13] and shares roughly the same complexity with our solution. Fur-
thermore, both the cut-and-choose OT and our solution can be built upon the
efficient OT proposed by Naor and Pinkas [17] or Peikert, Vaikuntanathan, and
Waters [19]. However, the particular use the latter OT in [14] needs two inde-
pendently chosen common reference strings, while our solution needs only one.

Our approach to selective failure Inspired by the idea of committing Oblivious
Transfer proposed by Kiraz and Schoenmakers [10], we solve the problem of
selective failure by having the sender (P1 in Yao protocol) of the OT post-facto
prove that she ran the OT correctly by revealing the randomness used in the OT.
Normally, this would break the sender-security of the OT. However, in a cut-
and-choose framework, the sender is already opening many circuits, so the keys
used as inputs for the OT are no longer secret. Thus, the idea is that the sender
can prove that he executed the OT correctly for all circuits that are opened by
simply sending the random coins used in the OT protocol for those instances.
We stress that not every OT can be used here. Intuitively, a committing OT

is the OT with the binding property so that it is hard for a cheating sender to
produce random coins different from what she really used.

A critical point with this approach is that in order to simulate a malicious
P2, we need to use a coin-flipping protocol to pick which circuits to open. Con-
sequently, P1 cannot open the circuits to P2 until the coin-flipping is over; yet
the OT must be done before the coin-flipping in order to guarantee a proper
cut. So the order of operations of the protocol is critical to security. An efficient
committing OT based on Decisional Diffie-Hellman problem is presented in §2.3.

1.4 Optimal Cut-and-Choose Strategy

We find that most cut-and-choose protocols open s/2 out of the s copies of the
garbled circuit to reduce the probability that P1 succeeds in cheating. We show
that opening 3s/5-out-of-s is a better choice than s/2-out-of-s. In particular,
when s circuits are used, our strategy results in security level 2−0.32s in contrast
to 2−s/17 from [13] and 2−0.31s from [14]. Although the difference with the latter
work is only 1% less, we show the optimal parameters for the cut-and-choose
method in Appendix A, thereby establishing a close characterization of the limits
of the cut-and-choose method.

1.5 Comparison of Communication Complexity

We attempt to compare communication efficiency between protocols that use a
mix of light cryptographic primitives (such as commitments instantiated with
collision-resistant hash functions) and heavy ones (such as group operations that
rely on algebraic assumptions like discrete logarithm). To meaningfully do so,
we consider asymptotic security under reasonable assumptions about the growth
of various primitives with respect to the security parameter k. We assume that:

1. light cryptographic primitives have size Θ(k);
2. heavy cryptographic operations that can be instantiated with elliptic curves

or bilinear groups take size õ(k2).
3. heavy cryptographic operations that require RSA or prime order groups over

Z take size õ(k3).

The size assumption we make is quite conservative. It is based on the ob-
servation that in certain elliptic curve groups, known methods for computing
discrete logarithms of size n run in time Ln(1, 1/2). Thus, to achieve security
of 2k, it suffices to use operands of size õ(k2) by which we mean a value that
is asymptotically smaller than k2 by factors of log(k). The computation bound
follows from the running time analysis of point multiplication (or exponentia-
tion in the case of Z∗p) algorithms. As we discuss below, for reasonable security
parameters, however, the hidden constants in this notation make the difference
much smaller. Let k be a security parameter for cryptographic operations, let
s be a statistical security parameter, and let |C| be the number of gates in the
base circuit computing f : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n.

– Jarecki and Shmatikov [8]: For each gate, the number of the communicated
group elements is at least 100, including the commitments of the garbled
values for input wires, the commitments of the doubly-encrypted entries,
and the ZK proof for the correctness of the gate. Moreover, for each input
or output wires, a ZK proof for conjunction/disjunction is required. Each
of the ZK proofs needs constant number of group elements. Finally, this
protocol assumes the decisional composite residuosity problem in an RSA
group; thus, each group element is of size õ(k3).

– Kiraz [9]: This approach uses an equality-checker framework that requires
O(ns2) commitments for checking P1’s input consistency. They solve the
selective failure attack with committing OT as we do. Moreover, to deal with
two-output functions, they add n extra bits to P1’s input, commit to all of
P1’s output keys, which include 2ns commitments and 2ns decommitments,
and a zero-knowledge OR-proof of size O(s).

– Lindell and Pinkas [13]: Each of the garbled gates requires 4k space for
four doubly-encrypted entries. Thus, for this approach, the communication
analysis is as follows: (1) s copies of the base circuit itself require s|C| gates;
(2) each of P1’s n input bits requires s2 light commitments for the consistency
check; (3) P2’s n input bits require max(4n, 8s) OT’s. Also, the MAC-based
two-output function computation add additional O(n2) gates to each of the
s copies of the circuit and additional 3n bits to P1’s input. Thus, the overall
communication cost to handle two-output function is O(n2sk + ns2k).

communication
Base circuit P1’s input P2’s input Two-output

JS07 |C| · õ(k3) n · õ(k3) n OT’s n · õ(k3)
Ki08 Θ(|C| · sk) Θ(ns2k) n OT’s Θ(nsk) +Θ(s) · õ(k2)
LP07 Θ(|C| · sk) Θ(ns2k) max(4n, 8s) OT’s Θ(n2sk + ns2k)
LP11 Θ(|C| · sk) Θ(ns) · õ(k2) n OT’s Θ(n2sk + ns2k)

Our work Θ(|C| · sk) Θ(ns) · õ(k2) n OT’s Θ(ns) · õ(k2)

Table 1: Asymptotic Analysis of various two-party secure computation.

The recent work of [14] also considers a more efficient way to implement two-
party computation based on cut-and-choose OT and specific security assump-
tions. They report 13sn exponentiations and communication of 5sn+ 14k + 7n
group elements. (Note we count bits above to compare commitments versus other
primitives.) Concretely, these parameters are similar to our parameters but rely
on more specific assumptions, and do not consider two-party outputs.

2 Building Blocks

For clarity purpose, the standard checks that are required for security have been
omitted. For example, in many cases, it is necessary to verify that an element
that has been sent is indeed a member of the right group. In some cases, it is
implicit that if a player detectably cheats in a sub-protocol, then the other player
would immediately abort execution of the entire protocol.

2.1 Consistency Check for the Generator’s Input

The cut-and-choose approach to compiling Yao circuits ensures that P1 submits
consistent input values for each copy of the evaluation-circuits. Recall that there
are e copies of the circuit which must be evaluated. Thus, for each input wire,
P1 must send e keys corresponding to an input bit 0 or 1. It has been well-
documented [16,10,22,13] that in some circumstances, P1 can gain information
about P2’s input if P1 is able to submit different input values for the e copies
of this input wire. The main idea of our solution is inspired by the claw-free
collections4 defined as follows:

Definition 1 (Claw-Free Collections in [7]). A three-tuple of algorithms
(G,D,F) is called a claw-free collection if the following conditions hold

1. Easy to evaluate: Both the index selecting algorithm G and the domain
sampling algorithm D are probabilistic polynomial-time, while the evaluating
algorithm F is a deterministic polynomial-time.

2. Identical range distribution: Let f bI (x) denote the output of F on input
(b, I, x). For any I in the range of G, the random variable f0I (D(0, I)) and
f1I (D(1, I)) are identically distributed.

3. Hard to form claws: For every non-uniform probabilistic polynomial-time
algorithm A, every polynomial p(·), and every sufficiently large n’s, it is true
that Pr[I ← G(1n); (x, y)← A(I) : f0I (x) = f1I (y)] < 1/p(n).

With the claw-free collections, our idea works as follows: P2 first generates
I by invoking the index generating algorithm G(1k), where k is a security pa-
rameter. For each of her input bits, P1 invokes sampling algorithms D(I, 0) and
D(I, 1) to pick [m0,1, . . . ,m0,s] and [m1,1, . . . ,m1,s], respectively. P1 then con-
structs s copies of garbled circuit with range elements [f0I (m0,1), . . . , f0I (m0,s)]
and [f1I (m1,1), . . . , f1I (m1,s)] by associating f bI (mb,j) with P1’s input wire of bit
value b in the j-th garbled circuit. Let [j1, . . . , je] denote the indices of the garbled
circuits not checked in the cut-and-choose (evaluation-circuits). During the eval-
uation, P1 reveals [f bI (mb,j1), . . . , f bI (mb,je)] to P2 and proves in zero-knowledge
that P1 gets f bI (mb

j1
) and f bI (mb

ji
) via the same function f bI , for 2 ≤ i ≤ e.

However, in the course of developing our solution, we noticed that witness
indistinguishable proofs suffice in place of zero-knowledge proofs. For example,

4 It is well known that claw-free collections exist under either the Discrete Logarithm
assumption or Integer Factorization assumption [7].

consider the claw-free collection instantiated from the Discrete Logarithm as-
sumption, that is, let f bI (m) = gbhm, where I = (g, h, p, q) includes two primes
p and q such that p = 2q + 1, and distinct generators g and h of Z∗p such that

〈g〉 = 〈h〉 = q. After revealing [gbhmb,j1 , . . . , gbhmb,je] to P2, it is a natural so-
lution that P1 proves in zero-knowledge to P2 the knowledge of (mb,ji −mb,j1)
given common input gbhmb,ji (gbhmb,j1)−1 = hmb,ji−mb,j1 , for 2 ≤ i ≤ e. The
key insight here is that it is unnecessary for P1 to hide (mb,ji −mb,j1) from P2

since [mb,j1 , . . . ,mb,je] are new random variables introduced by P1 and b is the
only secret needed to be hidden from P2. Simply sending (mb,ji −mb,j1) to P2

will suffice a proof of checking P1’s input consistency without compromising P1’s
privacy. In other words, given [gbhmb,j1 , . . . , gbhmb,je ,m′2, . . . ,m

′
e], if P2 confirms

that gbhmb,j1 = gbhmb,ji · hm′i for 2 ≤ i ≤ e, then either P1’s input is consistent
so that m′i = mb,ji −mb,j1 , or P1 is able to come up with a claw.

Note that extra work is only done for the input gates—and moreover, only
those of P1. All of the remaining gates in the circuit are generated as usual, that
is, they do not incur extra commitments. So, unlike solutions with committed
OT such as [8], asymmetric cryptography is only used for the input gates rather
than the entire circuit. To generalize the idea, we introduce the following notion.

Definition 2 (Malleable Claw-Free Collections). A four-tuple of algorithms
(G,D,F,R) is a malleable claw-free collection if the following conditions hold.

1. A subset of claw-free collections: (G,D,F) is a claw-free collection, and
the range of D and F are groups, denoted by (G1, ?) and (G2, �) respectively.

2. Uniform domain sampling: For any I in the range of G, random variable
D(0, I) and D(1, I) are uniform over G1, and denoted by D(I) for simplicity.

3. Malleability: R : G1 → G2 runs in polynomial time, and for b ∈ {0, 1}, any
I in the range of G, and any m1,m2 ∈ G1, f bI (m1 ?m2) = f bI (m1) �RI(m2).

Consider the claw-free collection constructed above under the Discrete Log-
arithm assumption, we know that it can become a malleable claw-free collection
simply by letting G1 = Zq, G2 = Z∗p, and RI(m) = hm for any m ∈ G1.

2.2 Two-Output Functions

To handle two-output functions, we want to satisfy the notion that it might
be unfair in the sense that P2 could abort prematurely after circuit evaluation
and she gets her output. However, if P1 accepts the output given from P2, our
approach guarantees that this output is genuine. Namely, P2 cannot provide an
arbitrary value to be P1’s output. In particular, P2 cannot learn P1’s output
more than those deduced from P2’s own input and output.

Recall that it is a well-accepted solution to convert the garbled circuit com-
puting f(x, y) = (f1, f2) into the one computing g((x, p, a, b), y) = ((α, β), f2),
where α = f1 + p as a ciphertext of f1 and β = a · α + b as a MAC for the
ciphertext. Since P2 only gets the ciphertext of P1’s output, she does not learn
anything from the ciphertext. Also, given (α, β), P1 can easily verify the au-
thenticity of her output. However, we are not satisfied with the additional O(s2)

gates computing the MAC (s is the statistical security parameter) to each of
the s copies of the garbled circuit, which results in O(s3) extra garbled gates in
total. Indeed, the number of extra gates can easily exceed the size of the origi-
nal circuit when f is a simple function. Hence, we propose another approach to
authenticate P1’s output without the extra gates computing the MAC function.

While our approach also converts the circuit to output the ciphertext of P1’s
output, that is, from f(x, y) = (f1, f2) to f∗((c, x), y) = (λ, (f1⊕c, f2)), we solve
the authentication problem by the use of the public-key signature scheme and its
corresponding witness-indistinguishable proof. Each bit value of the output of
P1’s output gates is tied together with a signature specifying the value and the
location of the bit. On one hand, P2 can easily verify the signature during the
cut-and-choose phase (to confirm that the circuits are correctly constructed). On
the other hand, after the evaluation and giving P1 the evaluation result (f1⊕ c),
P2 can show the authenticity of each bit of the result by proving the knowledge
of its signature, that is, the signature of the given bit value from the right bit
location. Note that a bit location includes a bit index and a circuit index. In other
words, a bit location (i, j) indicates P1’s i-th output bit from the j-th garbled
circuit. While the bit index is free to reveal (since P1 and P2 have to conduct the
proof bit by bit anyway), the circuit index needs to be hidden from P1; otherwise,
P1 can gain information about P2’s input as we discussed above. We stress that
it is critical for P2 to provide a signature from the right location. Since during
the cut-and-choose phase, many properly signed signatures are revealed from
the check-circuits, if those signatures do not contain location information, they
can be used to convince P1 to accept arbitrary output.

Normally, an OR-proof will suffice the proof that the signature is from one of
the evaluation-circuits. Nevertheless, an OR proof of size O(s) for each bit of P1’s
n-bit output will result in a zero-knowledge proof of size O(ns). We therefore
adopt the technique from [4] in order to reduce the size of the proof to O(n+ s).
Let S = {j1, . . . , je} be the indices of all the evaluation-circuits. The idea is for P1

to send a signature of every element in S, denoted by [δ(j1), . . . , δ(je)]. By reusing
these signatures, P2 is able to perform each OR proof in constant communication.
More specifically, after the evaluation, P2 chooses one evaluation-circuit, say the
jl-th circuit, the result of which conforms with the majority of all the evaluation-
circuits. LetM = [m1, . . . ,mn] be P1’s output from the jl-th circuit. Recall that
P2 has both mi and the signature to (mi, i, jl), denoted by σ(mi, i, j), due to the
way the garbled circuits were constructed. To prove the authenticity of mi, P2

sends mi to P1, blinds signature δ(jl) and σ(mi, i, jl), and proves the knowledge
of “σ(mi, i, j) for some j ∈ S.” In other words, P2 needs to prove the knowledge
of σ(mi, i, j) and δ(j∗) such that j = j∗ for i = 1, . . . , n. The complete proof is
shown in Protocol 1. Due to the nonforgeability property of signature schemes,
P2 proves the knowledge of the signature and thus the authenticity of M.

One particular implementation of our protocol can use the Boneh-Boyen
short signature scheme [2] which is briefly summarized here. The Boneh-Boyen

signature scheme requires the q-SDH (Strong Diffie-Hellman) assumption5 and
bilinear maps6. Based on these two objects, the Boneh-Boyen signature scheme
includes a three-tuple of efficient algorithms (G,S, V) such that

1. G(1k) generates key pair (sk, vk) such that sk = x ∈ Z∗p and vk = (p, g,G1, X),
where G1 is a group of prime order p, g is a generator of G1, and X = gx.

2. S(sk,m) signs the message m with the signing key sk by σ(m) = g1/(x+m).
3. V (vk,m, σ) verifies the signature σ with vk by calculating e(σ, gmX). If the

result equals e(g, g), V outputs valid; otherwise, V outputs invalid.

Protocol 1: Proof of P1’s output authenticity

Common Input: ciphertext of P1’s output f1 ⊕ c = [m1, . . . ,mn], the indices
of the evaluation-circuits S = {j1, . . . , je} and the public
key (p,G, g,X, Y) of the Boneh-Boyen signature scheme. In
particular, X = gx, and Y = gy.

P1 Input: the corresponding private key (x, y) of the signature scheme.
P2 Input: the signature vector [σ(b1, 1, jl), . . . , σ(bn, n, jl)] such that

σ(b, i, j) = g1/(bx+iy+j) and jl ∈ S.

P1
Z,{δ(j)}j∈S- P2 P1 picks another generator h of G and a random z ∈ Z∗p.

Then P1 sends [Z, δ(j1), . . . , δ(je)] to P2 such that

Z = hz and δ(j) = h1/(z+j).

P1
U1,...,Un,V� P2 P2 picks u1, . . . , un, v ∈ Zp and computes Ui ← σ(bi, i, jl)

ui

and V ← δ(jl)
v. Then [U1, . . . , Un, V] is sent to P1.

P1
a1,...,an,b� P2 P2 picks α, β1, . . . , βn, γ ∈ Zp and sends [a1, . . . , an, b] to P1,

where ai ← e(Ui, g)αe(g, g)βi and b← e(V, h)αe(h, h)γ .
P1

c - P2 P1 picks c ∈ Zp at random and sends it to P2.

P1
zα,{zβi},zγ� P2 P2 sends zα ← α+c·jl, zβi ← βi−c·ui, and zγ ← γ−c·v back

to P1, who checks ai
?
= e(Ui, X

miY i)c · e(Ui, g)zα · e(g, g)zβi

for i = 1, . . . , n and b
?
= e(V,Z)c · e(V, h)zα · e(h, h)zγ . P1

aborts if any of the checks fails.

2.3 Committing Oblivious Transfer

The oblivious transfer (OT) primitive, introduced by Rabin [21], and extended
by Even, Goldreich, and Lempel [5] and Brassard, Crépeau and Robert [3] works

5 q-SDF assumption in a group G of prime order p states that given g, gx, gx
2

, . . . , gx
q

,
it is infeasible to output a pair (c, g1/(x+c)) where c ∈ Z∗p.

6 Let G1 and G2 be two groups of prime order p. A bilinear map is a map e : G1×G1 7→
G2 with the following properties: (1) for any u, v ∈ G1 and a, b ∈ Z, e(ua, vb) =
e(u, v)ab; (2) for any generator g of G1, e(g, g) 6= 1; and (3) for any u, v ∈ G1, it is
easy to compute e(u, v).

as follows: there is a sender with messages [m1, . . . ,mn] and a receiver with a
selection value σ ∈ {1, . . . , n}. The receiver wishes to retrieve mσ from the sender
in such a way that (1) the sender does not “learn” anything about the receiver’s
choice σ and (2) the receiver “learns” only mσ and nothing about any other
message mi for i 6= σ. Kiraz and Schoenmakers [10] introduced another notion
of OT called committing OT in which the receiver also receives a perfectly-hiding
and computationally-binding commitment to the sender’s input messages, and
the sender receives as output the values to open the commitment. Indeed, Kiraz
and Schoenmakers introduced this notion specifically for use in a Yao circuit
evaluation context. We adopt the idea behind their construction.

Formally, a one-out-of-two committing oblivious transfer OT 2
1 is a pair of

interactive probabilistic polynomial-time algorithms sender and receiver. Dur-
ing the protocol, the sender runs with input messages ((m0, r0), (m1, r1)), while
the receiver runs with input the index σ ∈ {0, 1} of the message it wishes to
receive. At the end of the protocol, the receiver outputs the retrieved message
m′σ and two commitments comh(m0; r0), comh(m1; r1), and the sender outputs
the openings (r0, r1) to these commitments. Correctness requires that m′σ = mσ

for all messages m0,m1, for all selections σ ∈ {0, 1} and for all coin tosses of the
algorithms. Here, we use the standard notion of simulation security.

Theorem 1. [19] If the Decisional Diffie-Hellman assumption holds in group
G, there exists a protocol that securely computes the committing OT 2

1.

Protocol 2 constructively proves Theorem 1. This protocol is a simple modifi-
cation of the OT protocols designed by Peikert, Vaikuntanathan, and Waters [19]
and later Lindell and Pinkas [14]. We simply add a ZK proof of knowledge in
intermediate steps. Intuitively, the receiver-security is achieved due to the Deci-
sional Diffie-Hellman assumption and the fact that the ZK proof of knowledge
is independent of the receiver’s input. On the other hand, the sender security
comes from the uniform distributions of Xi,j and Yi,j over G given that ri,j and
si,j are uniformly chosen and that the ZK proof has an ideal-world simulator
for the verifier (or the receiver in the OT). As described in [15], it is possible
to batch the oblivious transfer operations so that all n input keys (one for each
bit) to s copies of the garbled circuit are transferred in one execution.

3 Main Protocol

Here we put all the pieces together to form the complete protocol. Note that
comh(K; t) denotes a perfectly-hiding commitment to K with opening t, and
comb(K; t) denotes a perfectly-binding commitment to K with opening t.

Common input: a security parameters k, a statistical security parameter
s, a malleable claw-free collection (Gclw, Dclw, Fclw, Rclw), a signature scheme
(Gsig, Ssig, Vsig), a two-universal hash function H : {0, 1}∗ → {0, 1}k, and the
description of a boolean circuit C computing f(x, y) = (f1, f2), where |x| = 2n
(including the extra n-bit random input) and |y| = |f1| = |f2| = n.

Protocol 2: Oblivious transfer for retrieving P2’s input keys [14]

Common: A statistical security parameter s, a group G of prime order p,
and G’s generator g0

P1 Input: Two s-tuples [K0,1, . . . ,K0,s] and [K1,1, . . . ,K1,s].
P2 Input: σ ∈ {0, 1}

P1 Output: Commitment openings {Ki,j , ri,j , si,j}i∈{0,1},1≤j≤s
P2 Output: [Kσ,1, . . . ,Kσ,s] and {comh(Ki,j ; ri,j , si,j)}i∈{0,1},1≤j≤s

P1
h0,g1,h1� P2 P2 picks y, a ∈ Zp and sends (g1, h0, h1)← (gy0 , g

a
0 , g

a+1
1) to P1.

P1
ZK PoK-� P2 P2 proves that (h0, g1, h1) satisfies (h0 = ga0) ∧ (h1

g1
= ga1).

P1
g,h� P2 P2 picks r ∈ Zp and sends g ← grσ and h← hrσ to P1.

P1
{Xi,j ,Yi,j}- P2 For i ∈ {0, 1}, 1 ≤ j ≤ s, P1 picks ri,j , si,j ∈ Zp and sends Xi,j

and Yi,j to P1, where Xi,j = g
ri,j
i h

si,j
i and Yi,j = gri,jhsi,j ·Ki,j .

P2 gets comh(Ki,j ; ri,j , si,j) = (Xi,j , Yi,j) and computes key
Kσ,j ← Yσ,j ·X−rσ,j .

Private input: P1 has the original input x1 . . . xn and the extra random input
x = xn+1 . . . x2n, while P2 has input y = y1y2 . . . yn.
Private output: P1 receives output f1(x, y), while P2 receives output f2(x, y).

1. P2 runs the index selecting algorithm I ← Gclw(1k) and sends I to P1.
2. Committing OT for P2’s input: For every 1 ≤ i ≤ n and every 1 ≤ j ≤ s,
P1 picks a random pair of k-bit strings (K0

i,j ,K
1
i,j), which is associated with

P2’s i-th input wire in the j-th circuit. Both parties then conduct n instances
of committing OT in parallel. In the i-th instance,

(a) P1 uses input ([K0
i,1, . . . ,K

0
i,s], [K

1
i,1, . . . ,K

1
i,s]), whereas P2 uses input yi.

(b) P1 gets the openings ([t0i,1, . . . , t
0
i,s], [t

1
i,1, . . . , t

1
i,s]) to both commitment

vectors, whereas P2 gets the vector of her choice [Kyi
i,1, . . . ,K

yi
i,s] and the

commitments to both vectors, ie., [comh(K0
i,1; t0i,1), . . . , comh(K0

i,s; t
0
i,s)]

and [comh(K1
i,1; t1i,1), . . . , comh(K1

i,s; t
1
i,s)].

3. Garbled circuit construction: P1 runs the key generating algorithmGsig(1k)
to generate a signature key pair (sk1, pk1) and the domain sampling algo-
rithm Dclw(I) to generate domain element mb

i,j , for b ∈ {0, 1}, 1 ≤ i ≤ 2n,
1 ≤ j ≤ s. Next, P1 constructs s independent copies of garbled version of
C, denoted by GC1, . . . , GCs. In addition to Yao’s construction, circuit GCj
also satisfies the following:

(a) Jbi,j is associated with value b to P1’s i-th input wire, where Jbi,j is ex-

tracted from group element Fclw(b, I,mb
i,j), ie., Jbi,j = H(Fclw(b, I,mb

i,j)).

(b) Kb
i,j chosen in Step 2 is associated with value b to P2’s i-th input wire.

(c) b||Ssig(sk1, (b, i, j)) is associated with bit value b to P1’s i-th output wire.

4. For b ∈ {0, 1}, 1 ≤ i ≤ 2n, 1 ≤ j ≤ s, P1 sends circuits GC1, . . . , GCs and the
commitments to Fclw(b, I,mb

i,j), denoted by comb(Fclw(b, I,mb
i,j); r

b
i,j) to P2.

5. Cut-and-choose: P1 and P2 conduct the coin flipping protocol to generate a
random tape, by which they agree on a set of check-circuits. Let T be the re-
sulting set, that is, T ⊂ {1, . . . , s} and |T | = 3s/5. For every j ∈ T , P1 sends
to P2 P1s of garbled circuit GCj , including [Kb

1,j , . . . ,K
b
n,j], [tb1,j , . . . , t

b
n,j],

[mb
1,j , . . . ,m

b
2n,j], [rb1,j , . . . , r

b
2n,j], for b ∈ {0, 1}, and the random keys asso-

ciated with each wire of GCj . P2 check the following:

(a) The commitment from Step 2 is revealed to Kb
i,j with tbi,j .

(b) The commitment from Step 4 is revealed to Fclw(b, I,mb
i,j) with rbi,j .

(c) GCj is a garbled version of C∗ that is correctly built. In particular,

– H(Fclw(b, I,mb
i,j)) is associated with value b to P1’s i-th input wire;

– Kb
i,j is associated with bit value b to P2’s i-th input wire;

– Vsig(pk1, (b, i, j), σ(b, i, j)) = valid, where σ(b, i, j) is the signature
comes along with bit value b from P1’s i-th output wire;

– the truth table of each boolean gate is correctly converted to the
doubly-encrypted entries of the corresponding garbled gate.

If any of the above checks fails, P2 aborts.
6. Consistency check for P1’s inputs: Let e = 2s/5 and {j1, . . . , je} be

the indices of evaluation-circuits. P1 then decommits to her input keys for
the evaluation-circuits by sending ([rx1

1,j1
, . . . , rx2n

2n,j1
], . . . , [rx1

1,je
, . . . , rx2n

2n,je
]) to

P2. Let [M1,j1 , . . . ,M2n,j1], . . ., [M1,je , . . . ,M2n,je] be the resulting decom-
mitments. Next, P1 proves the consistency of her i-th input bit by sending
[mxi

i,j2
? (mxi

i,j1
)−1, . . . ,mxi

i,je
? (mxi

i,j1
)−1] to P2, who then checks if

Mi,jl = Mi,j1 �Rclw(I,mxi
i,jl

? (mxi
i,j1

)−1), for l = 2, . . . , e.

P2 aborts if any of the checks fails. Otherwise, let Jxii,jl = H(Mi,jl).
7. Circuit evaluation: For every j ∈ {j1, . . . , je}, P2 now has key vectors

[Jx1
1,j , . . . , J

x2n
2n,j] (from Step 6) representing P1’s input x and [Ky1

1,j , . . . ,K
yn
n,j]

(from Step 2) representing P2’s input y. So P2 is able to do the evaluation on
circuit GCj and get P1’s output [m1,j ||σ(m1,j), . . . ,mn,j ||σ(mn,j)] and P2’s
output [n1,j , . . . ,nn,j], where mi,j ,ni,j ∈ {0, 1}. Let Mj = [m1,j , . . . ,mn,j]
and Nj = [n1,j , . . . ,nn,j] be the n-bit outputs for P1 and P2, respectively.
P2 then chooses index jl such thatMjl and Njl appear more than e/2 times
in vectors [Mj1 , . . . ,Mje] and [Nj1 , . . . ,Nje], respectively. P2 sends Mjl to
P1 and takes Njl as her final output. If no such jl exists, P2 aborts.

8. Verification to P1’s output: To convince P1 the authenticity ofMjl with-
out revealing jl, P1 generates another signature key pair (sk2, pk2). Then P1

signs the indices of all the evaluation-circuits and sends the results to P2.
In particular, P1 sends to P2 the public key pk2 and a signature vector
[δ(j1), . . . , δ(je)], where δ(j) = Ssig(sk2, j). The signature is verified by P2

by checking Vsig(pk2, j, δ(j)) = valid, for every j ∈ {j1, . . . , je}. Next, P2

proves to P1 in witness-indistinguishable sense the knowledge of σ(mi,jl , i, j)
(a signature signed with sk1) and δ(j∗) (a signature signed with sk2) such
that j and j∗ are equivalent, for 1 ≤ i ≤ n. P1 aborts if the proof is not
valid; otherwise, P1 takes Mjl ⊕ (xn+1, . . . , x2n) as her final output.

Theorem 2. Let f : {0, 1}n×{0, 1}n → {0, 1}n×{0, 1}n be any function. Given
a secure committing oblivious transfer protocol, a perfectly-hiding commitment
scheme, a perfectly-binding commitment scheme, a malleable claw-free family,
and a pseudo-random function family, the Main protocol securely computes f .

We have omitted the standard simulation-based definition of “securely computes
f” for space. Roughly, this definition requires a simulator for the corrupted eval-
uator, and a simulator for the corrupted generator that is able to generate tran-
scripts given only oracle access to either the evaluator or generator (respectively)
that are indistinguishable from the transcripts produced in real interactions be-
tween the corrupted generator and honest evaluator or honest generator and
corrupted evaluator. (A simulator for when both parties are corrupted is also
required but trivial.) The proof of Theorem 2 is omitted for space.

4 Experimental Results

We produced an implementation of our protocol to demonstrate its practical
benefits. Our implementation takes the boolean circuit generated by Fairplay
compiler as input. The encryption function used to construct garbled gates is
defined as EncJ,K(m) = (m⊕SHA-256(J)⊕SHA-256(K))1...k, where |J | = |K| =
|m| = k, and S1...k denotes the least significant k bits of S. Here SHA-256 is
modeled as a pseudorandom function. The choice of SHA-256 is to make a fair
comparison as it is used in [20].

Gates Time (s) Totals
Base Overhead Non-XOR Precomp OT Calc Time (s) KBytes

(f1, f2) 531 2,250 278 117 16 39 172 140,265
Ours (on slower) 531 6 237 35 15 21 71 5,513
Ours (on fast) 531 6 237 27 11 15 53 5,513

(λ,AESx(y)) 33,880 12,080 11,490 483 34 361 878 406,010
Ours (on slower) 33,880 0 11,286 138 58 69 265 190,122
Ours (on fast) 33,880 0 11,286 98 44 50 192 190,122

Table 2: The performance comparison with [20].

Following Pinkas et. al [20], we set the security level to 2−40 and the security
parameter k (key length) to 128-bit. In the first experiment, P1 and P2 hold a 32-
bit input x = (x31x30 . . . x0)2 and y = (y31y30 . . . y0)2, respectively. They want
to compute f(x, y) = (f1, f2) such that after the secure computation, P1 receives

f1 =
∑31
i=0 xi⊕ yi, and P2 receives f2 as the result of comparison between x and

y. The 6 gates of overhead we incur in the first experiment relate to our method
for two-output functions. In the second experiment, P2 has a 128-bit message
block while P1 has a 128-bit encryption key. They want to securely compute the
AES encryption, and only P2 gets the ciphertext.

We ran our experiments on two machines: slower and fast, where slower

runs OS X 10.5 with Intel Core 2 Duo 2.8 GHz and 2GB RAM, and fast runs
CentOS with Intel Xeon Quad Core E5506 2.13 GHz and 8GB RAM. slower
is not as powerful as the machine used in [20] (Intel Core 2 Duo 3.0 GHz, 4GB
RAM), and fast is the next closest machine that we have.

Table 2 reports the best numbers from [20]. We note that [20] applies the
Garbled Row Reduction technique so that even non-XOR gates can save 25% of
the communication overhead. A future version of our protocol can also reap this
25% reduction since the technique is compatible with our protocol.

Our implementation involves a program for P1 and one for P2. For the pur-
pose of timing, we wrote another program that encapsulates both of these pro-
grams and feeds the output of one as the input of the other and vice versa.
Timing routines are added around each major step of the protocol and tabu-
lated in Table 3. This timing method eliminates any overhead due to network
transmission, which we cannot reliably compare. The reported values are the
averages from 5 runs.

We implemented our solution with the PBC (Pairing Based Cryptography)
library [1] for testing. The components of our protocol, including the claw-free
collections, the generator’s input consistency check, and the generator’s output
validity check, are built on top of the elliptic curve y2 = x3+3 over the field Fq for
some 80-bit prime q. We have made systems-level modifications to the random
bit sampling function of the PBC library (essentially to cache file handles and
eliminate unnecessary systems calls).

In Table 4, we list the results of the MAC-based two-output function handling
and ours. The MAC approach introduces extra 16,384 (1282) non-XOR gates to
the AES circuit, whereas the original AES circuit has only 11,286 non-XOR
gates. Since the number of non-XOR gates is almost doubled in the MAC-based
approach, their circuit construction and evaluation need time about twice as
much as ours. Moreover, the MAC-based approach has twice as many input bits
as ours so that the time for P1’s input consistency has doubled.

f(x, y) = (f1, f2) f(x, y) = (λ,AESx(y))

P1 P2 Sum (s) P1 P2 Sum (s)

Precomp Time 35.4 0.0 35.4 137.7 0.0 137.7
OT Time 7.9 6.7 14.6 31.9 26.3 58.2
Cut-and-Choose 0.0 14.7 14.7 0.0 44.4 44.4
Input Check 0.0 3.0 3.0 0.0 10.0 10.0
Eval Time 0.0 3.4 3.4 0.0 14.1 14.1
Two-output 0.1 0.0 0.1 0.0 0.0 0.0

Total (s) 43.4 27.8 71.2 169.6 94.8 264.4

Table 3: The running time (in seconds) of two experiments on machine slower.

comm. for each stage (KBytes)

Circuit construction 2, 945 53.42%
Oblivious transfer 675 12.25%
Cut-and-choose 1, 813 32.89%
P1’s input consistency 76 1.38%
P1’s output validity 3 0.01%

Total communication 5,513 100.00%

(a)

Semi-honest Adversaries

This work [20]

No. of gates 531 531
Comm. (KBytes) 23 22

Malicious Adversaries

No. of gates 537 2, 781
Comm. (KBytes) 5, 513 167, 276

(b)

Fig. 3: (a) Communication cost for Experiment 1 by stages for our solution given
statistical security parameter s = 125 and security parameter k = 128. (b) The
circuit size and communication cost comparison with [20] (which also ensures
the cheating probability is limited below 2−40).

comm. for each stage (KBytes)

Circuit construction 99, 408 52.29%
Oblivious transfer 2, 699 1.42%
Cut-and-choose 87, 585 46.16%
P1’s input consistency 256 0.13%
P1’s output validity 0 0.00%

Total communication 190,122 100.00%

(a)

Semi-honest Adversaries

This work [20]

No. of gates 33, 880 33, 880
Comm. (KBytes) 795 503

Malicious Adversaries

No. of gates 33, 880 45, 960
Comm. (KBytes) 190, 122 406, 010

(b)

Fig. 4: (a) Communication cost for Experiment 2 by stages for our solution given
statistical security parameter s = 125 and security parameter k = 128.

References

1. Pairing-Based Cryptography Library (2006), http://crypto.stanford.edu/pbc/
2. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles and the SDH

Assumption in Bilinear Groups. Journal of Cryptology 21, 149–177 (2008)
3. Brassard, G., Crépeau, C., Robert, J.M.: All-or-Nothing Disclosure of Secrets. In:

Odlyzko, A. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer (1987)
4. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient Protocols for Set Membership

and Range Proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer (2008)

5. Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts.
Communications of ACM 28, 637–647 (1985)

6. Goldreich, O., Micali, S., Wigderson, A.: How to Play ANY Mental Game. In: 19th
Annual ACM Symposium on Theory of Computing. pp. 218–229. ACM (1987)

7. Goldreich, O., Kahan, A.: How to Construct Constant-Round Zero-Knowledge
Proof Systems for NP. Journal of Cryptology 9, 167–189 (1996)

http://crypto.stanford.edu/pbc/

MAC two-output approach Our two-output approach

P1 P2 Subtotal P1 P2 Subtotal

Precomp Time 498.9 0.0 498.9 294.1 0.0 294.1
OT Time 32.0 26.3 58.3 31.9 26.2 58.1
Cut-and-Choose 0.0 158.6 158.6 0.0 185.3 185.3
Input Check 0.0 40.4 40.4 0.0 19.8 19.8
Eval Time 0.0 50.6 50.6 0.0 24.4 24.4
Two-output 0.0 0.0 0.0 0.7 0.6 1.3

Total 530.9 275.9 806.8 326.7 256.3 583.0

Table 4: Computation time (in seconds) of f(x, y) = (AESx(y), λ) running on
machine slower under different two-output handling methods.

8. Jarecki, S., Shmatikov, V.: Efficient Two-Party Secure Computation on Commit-
ted Inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114.
Springer (2007)

9. Kiraz, M.: Secure and Fair Two-Party Computation. Ph.D. thesis, Technische Uni-
versiteit Eindhoven (2008)

10. Kiraz, M., Schoenmakers, B.: A Protocol Issue for The Malicious Case of Yao’s
Garbled Circuit Construction. In: 27th Symposium on Information Theory in the
Benelux. pp. 283–290 (2006)

11. Kiraz, M., Schoenmakers, B.: An Efficient Protocol for Fair Secure Two-Party
Computation. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 88–105.
Springer (2008)

12. Kolesnikov, V., Schneider, T.: Improved Garbled Circuit: Free XOR Gates and Ap-
plications. In: Aceto, L., Damg̊ard, I., Goldberg, L., Halldórsson, M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) ALP 2008. LNCS, vol. 5126, pp. 486–498. Springer (2008)

13. Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation
in the Presence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer (2007)

14. Lindell, Y., Pinkas, B.: Secure Two-Party Computation Via Cut-and-Choose Obliv-
ious Transfer. Crypto ePrint Archive (2010), http://eprint.iacr.org/2010/284

15. Lindell, Y., Pinkas, B., Smart, N.: Implementing Two-Party Computation Effi-
ciently with Security Against Malicious Adversaries. In: Ostrovsky, R., De Prisco,
R., Visconti, I. (eds.) SCN 2008, LNCS, vol. 5229, pp. 2–20. Springer (2008)

16. Mohassel, P., Franklin, M.: Efficiency Tradeoffs for Malicious Two-Party Compu-
tation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 458–473. Springer (2006)

17. Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener, M. (ed.)
CRYPTO 1999, LNCS, vol. 1666, pp. 791–791. Springer (1999)

18. Nielsen, J., Orlandi, C.: LEGO for Two-Party Secure Computation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer (2009)

19. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008, LNCS, vol. 5157,
pp. 554–571. Springer (2008)

20. Pinkas, B., Schneider, T., Smart, N., Williams, S.: Secure Two-Party Computation
Is Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267.
Springer (2009)

http://eprint.iacr.org/2010/284

21. Rabin, M.: How to Exchange Secrets by Oblivious Transfer. Tech. Rep. TR-81,
Harvard Aiken Computation Laboratory (1981)

22. Woodruff, D.: Revisiting the Efficiency of Malicious Two-Party Computation. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 79–96. Springer (2007)

23. Yao, A.: Protocols for Secure Computations. In: 23rd Annual Symposium on Foun-
dations of Computer Science. pp. 160–164. IEEE Computer Society (1982)

A Optimal Choice in Cut-and-Choose Strategy

According to the cut-and-choose strategy, P2 chooses e copies of the garbled
circuits and asks P1 to open the rest (s− e). After the verification, P2 evaluates
the rest e copies of the circuits and takes the majority output as her output. A
natural question is: Under the assumption that P1’s inputs are consistent, how
many circuits does P2 evaluate in order to minimize the probability for P1’s best
cheating strategy to succeed?

The assumption is valid due to the consistency check on P1’s input. Given
that s and e are fixed and known to P1, let b be the number of bad circuits
created by P1. A circuit is bad if either the circuit is wrongly constructed or P2’s
inputs are selectively failed via OT. The goal is to find e and b such that the
probability that P1 cheats without getting caught

(
s−b
s−e
)
/
(
s
s−e
)

is minimized.
We first claim that P1’s best cheating strategy is to produce b = be/2c + 1

bad circuits. Indeed, if b ≤ be/2c, P2’s output will not get affected since the
faulty outputs will be overwhelmed by majority good ones. Also, the more bad
circuits, the more likely that P1 will get caught since

(
s−(b−1)
s−e

)
>
(
s−b
s−e
)
. So the

best strategy for P1 to succeed in cheating is to construct as few bad circuits
as possible while the majority of evaluation circuits are bad, which justifies the
choice of b.

Our next goal is to find the e that minimizes Pr(e) =
(
s−b e2 c−1
s−e

)
/
(
s
s−e
)
. To

get rid of the troublesome floor function, we will consider the case when e is
even and odd separately. When e = 2k for some k ∈ N such that k ≤ s

2 , let

Preven(k) =
(
s−k−1
s−2k

)
/
(

s
s−2k

)
. Observer that Preven(k+1)

Preven(k)
= (2k+1)(2k+2)

(s−k−1)k . It is not

hard to solve the quadratic inequality and come to the result that

Preven(k + 1)

Preven(k)
≤ 1 when 0 < k ≤ 1

10

(
s− 7 +

√
(s− 7)2 − 40

)
def
= α.

In other words, Preven(k) ≥ Preven(k + 1) when 0 < k ≤ α; and Preven(k) <
Preven(k + 1) when α < k ≤ s

2 . Therefore, Preven is minimal when k = dαe.
Similarly, when e = 2k + 1, the probability Prodd(k) =

(
s−k−1
s−2k−1

)
/
(

s
s−2k−1

)
is

minimal when k = dβe, where β = 1
5 (s− 7). In summary,{

Preven(e) is minimal when e = 2dαe;
Prodd(e) is minimal when e = 2dβe+ 1,

and Pr(e)’s minimum is one of them.

B Security Proof for Theorem 2

Malicious evaluator P ∗
2

Recall that in this case P1 follows the Main protocol faithfully. To prove that

Real(P1(x), P ∗2 (y), 1k) ≈c Ideal(P1(x), S
P∗2 (y)
2)

for all x, y ∈ {0, 1}n, consider the following hybrid experiments and lemmas.

Hybrid1(P1(x), P ∗2 (y), 1k): This hybrid experiment is the same as the real ex-
periment Real except the oblivious transfers. During the OT, the experiment
runs the OT simulator Sot, the existence of which comes from Theorem 1. Let
y∗i be the query that Sot requests to the OT oracle in the i-th OT instance.
The experiment generates key vectors ([K0

i,1, . . . ,K
0
i,s], [K

1
i,1, . . . ,K

1
i,s]), and

uses these key vectors to answer Sot’s query so that P ∗2 gets

[K
y∗i
i,1, . . . ,K

y∗i
i,s], for 1 ≤ i ≤ n.

Lemma 1. Real(P1(x), P ∗2 (y), 1k) ≈ Hybrid1(P1(x), P ∗2 (y), 1k)

Proof. The only difference between Hybrid1 and Real is that Sot is invoked
in Hybrid1. After this step, both experiments are identical since the experi-
ment acts exactly the same as P1 does in Real. So this lemma follows from the
simulation property of the secure OT protocol in Theorem 1. In particular, the
identical distribution of key vectors and commitments is being used by Sot. ut

Hybrid2(P1(x), P ∗2 (y), 1k): This is the same as Hybrid1 except the coin-flipping
phase. In particular, instead of running the coin-flipping protocol like what
P1 and P ∗2 would do in the Main protocol, the experiment chooses a ran-
dom string ρ, and runs the coin-flipping simulator Scf(ρ, 1

k) to generate the
protocol transcript whose output is ρ.

Lemma 2. Hybrid1(P1(x), P ∗2 (y), 1k) ≈c Hybrid2(P1(x), P ∗2 (y), 1k)

Proof. Hybrid1 and Hybrid2 differ only in the way that transcripts of coin-
flipping protocol are generated. Intuitively, the lemma follows from property (3)
of Theorem ?? because the coin-flipping simulator Scf is given black-box access
to P ∗2 and input ρ. More formally, suppose that there exists a distinguisher D
that for infinitely many k, distinguishes Hybrid1 from Hybrid2 with probabil-
ity Pr(k). We use D to construct D′ that distinguishes tran(P1, Scf(ρ, 1

k)) from
tran(P1, P

∗
2) as follows:

Let x, y be inputs for which D has the greatest probability of distinguishing
Hybrid1 and Hybrid2. (These values are given as non-uniform advice for secu-
rity parameter k.) On input a transcript tran,D′ first runs Hybrid1(P1(x), P ∗2 (y), 1k)
until the point that the coin-flipping protocol occurs. Recall that tran consists of
the view of both parties of the coin-flipping protocol. This includes the random
coins of both parties and the messages exchanged. At this point, D′ extracts the

random tapes r1, r2 of both parties from tran, and splices these into the random
tapes for P1 and for P ∗2 (without loss of generality, we can assume that neither
P1 nor P ∗2 has accessed these coins yet). D′ then feeds the messages from the
transcript tran to both parties until the coin-flipping protocol completes. At this
point, D′ continues the rest of Hybrid2 to completion. Then D′ runs D on the
final transcript and echoes the result. Notice that when tran is generated by
the real coin-flipping protocol, D′ outputs Hybrid1; and when tran is generated
by the coin-flipping simulator, D′ outputs Hybrid2. Thus, D′ distinguishes the
coin-flipping simulator with probability Pr(k), which implies that Pr(k) must be
negligible and therefore establishes the lemma. ut

Hybrid3(P1(x), P ∗2 (y), 1k): This is the same experiment as Hybrid2 except
that the garbled circuits sent to P ∗2 are modified as follows: The experiment
generates a challenge set T ⊂ {1, . . . , s} where |T | = 3s/5 based on the
random tape ρ. If j ∈ T , then GCj is the garbled version of C∗ as per
Step 3 of the Main protocol; otherwise, GCj is constructed as per Claim 8
of [13] computing the constant function, which outputs N for all input x, y ∈
{0, 1}n. Recall that N is P ∗2 ’s output returned from the external oracle after
the experiment sends y∗ to it.

Lemma 3. Hybrid2(P1(x), P ∗2 (y), 1k) ≈c Hybrid3(P1(x), P ∗2 (y), 1k)

Proof. Note that the two hybrid experiments differ only in the way the garbled
circuits are constructed. Intuitively, assuming perfectly binding/hiding commit-
ments and secure symmetric encryption, this lemma follows from Claim 8 given
in [13] and copied below for convenience.

Lemma 4 (Claim 8 of [13]). Given a boolean circuit C computing function
f and an output value z, it is possible to efficiently construct a garbled circuit
GC ′ such that

1. For all inputs, the output of GC ′ is always z,
2. If z = f(x, y) for some x and y, then no non-uniform probabilistic polynomial-

time adversary can distinguish between the distribution ensemble consisting
of {GC ′,Kx′ ,Ky′} where Kx′ ,Ky′ are the garbled keys for arbitrary x′, y′,
and the ensemble consisting of {GC,Kx,Ky} where GC is a real garbled
version of C, and Kx,Ky are the garbled keys representing inputs x, y.

Formally, let [GC1, . . . , GCs] be the garbled circuits in Hybrid2 and [GC ′1, . . . , GC
′
s]

be the fake garbled circuits in Hybrid3. (Technically, only 40% among [GC ′1, . . . , GC
′
s]

are fake. In each fake circuit, only P2’s output gates are modified to output the
constant N .) Let Hybrid2,i be the same as Hybrid2 except that for the first i
elements j1, . . . , ji in the challenge set T , circuit GC ′ji is used instead of GCji .
Observe that Hybrid2,0 = Hybrid2 and Hybrid2,s = Hybrid3. Suppose that
there exists some x, y and some probabilistic polynomial-time distinguisher D
such that for infinitely many k, D distinguishes Hybrid2 from Hybrid3 with

probability Pr(k). Then by averaging, there must be some i such that D distin-
guishes Hybrid2,i from Hybrid2,i+1 with probability Pr(k)/s. With such distin-
guisher D, an algorithm D′ distinguishing {GC ′,Kx,Ky∗} from {GC,Kx,Ky∗}
can be constructed as follows: On input either {GC ′,Kx,Ky∗} or {GC,Kx,Ky∗},
D′ first simulates Hybrid2,i except that D′ uses its input for the (i+ 1)st gar-
bled circuit, and completes the rest of experiment Hybrid2,i. Then D′ runs D
on the resulting transcript and echo D’s output. D′ does a perfect simulation
of either Hybrid2,i or Hybrid2,i+1, and therefore distinguishes garbled circuits
with probability Pr(k)/s. By Lemma 4, Pr(k) must be negligible and we com-
plete the proof. Note that both Hybrid2 and Hybrid3 still use the real input
keys {Kx}. ut

Hybrid4(P1(x), P ∗2 (y)): This is the same as hybrid experiment Hybrid3 with
the exception that in the consistency check the experiment uses input 02n

instead of input (x, c).

Lemma 5. Hybrid3(P1(x), P ∗2 (y), 1k) ≈s Hybrid4(P1(x), P ∗2 (y), 1k)

Proof. Intuitively, the idea is to substitute P1’s input (x, c) with 02n bit by
bit. Each of the substitutions is indistinguishable from the previous one due to
the witness indistinguishable property of the consistency check protocol. For-
mally, let Hybrid3,i be the same experiment as Hybrid3 except 0’s are used
for the first i bits instead of x1, . . . , xi. Recall that xi is the i-th bit of P1’s
input (x, c), where |x| = |c| = n. In other words, experiment Hybrid3,i uses
(0, . . . , 0, xi+1, . . . , x2n) rather than (x1, . . . , xi, xi+1, . . . , x2n) used by Hybrid3.
Note that Hybrid3,0 = Hybrid3 and Hybrid3,2n = Hybrid4. To prove that
Hybrid3,i−1 and Hybrid3,i are statistically indistinguishable for i = 1, . . . , 2n,
observe that the only difference between these two experiments are the messages
for the i-th input bit consistency check. More specifically, in Hybrid3,i−1, P ∗2
receives

([F (xi, I,m
xi
i,j1

), . . . , F (xi, I,m
xi
i,je

)], [mxi
i,j2

? (mxi
i,j1

)−1, . . . ,mxi
i,je

? (mxi
i,j1

])−1),

whereas in Hybrid3,i, P
∗
2 receives

([F (0, I,m0
i,j1), . . . , F (0, I,m0

i,je)], [m
0
i,j2 ? (m0

i,j1)−1, . . . ,m0
i,je ? (m0

i,j1])−1).

By the identical range (for the first halves of both messages) and the uniform
domain (for the second halves) properties of the malleable claw-free collections,
the two tuples are statistically indistinguishable. Thus, the lemma holds. ut

Hybrid5(P1(x), P ∗2 (y), 1k): This is the same as experiment Hybrid4 with the
exception that experiment Hybrid5 sends abort to the external oracle if the
last proof protocol is invalid. Afterwards, S2 outputs whatever P ∗2 outputs.

Lemma 6. Hybrid4(P1(x), P ∗2 (y), 1k) ≈c Hybrid5(P1(x), P ∗2 (y), 1k)

This follows immediately from the soundness of the WI proof in the last step.

Lemma 7. The simulator S
P∗2
2 runs in expected polynomial time.

Proof. Since P ∗2 is a strict polynomial-time adversary, most of the steps of the
simulation are also strictly polynomial-time except the running of OT simulator
Sot, and the running of coin-flipping simulator Scf. Thus, the running time of
simulator S2 can be expressed as p(k) + rot + rcf where rot and rcf are random
variables denoting the running time of Sot and Scf. This lemma follows because
both Sot and Scf occur only once, i.e., they are never rewound or part of a
loop. Thus, the overall running time is expected polynomial time by linearity of
expectations. ut

Finally, since Ideal(P1(x), S
P∗2 (y)
2 , 1k) and Hybrid5 are syntactically similar,

by Lemma 1–7, we prove the security of the Main protocol when P2 is malicious.

Malicious generator P ∗
1 :

In this case, P2 follows the Main protocol faithfully. Let Real(P ∗1 (x), P2(y), 1k)
be P ∗1 ’s and P2’s outputs from the Main protocol with P ∗1 using x and P2 using

y. To prove that Real(P ∗1 (x), P2(y), 1k) and Ideal(S
P∗1 (x)
1 , P2(y), 1k) are indis-

tinguishable for all x, y ∈ {0, 1}n, consider the following hybrid experiments.

Hybrid1(P ∗1 (x), P2(y), 1k): This is the same as Real(P ∗1 (x), P2(y), 1k) except
that if P ∗1 passes the first cut-and-choose test, the experiment repeatedly
rewinds P ∗1 over the cut-and-choose process, including the coin-flipping pro-
tocol and the verification of the chosen circuits, until P ∗1 passes for the second
time. Let Ti be the challenge set of the i-th successful cut-and-choose, and
T = T1\T2. If over the course of these two successful cut-and-choose test
|T | = 0, then the experiment aborts.

Lemma 8. Real(P ∗1 (x), P2(y), 1k) ≈s Hybrid1(P ∗1 (x), P2(y), 1k)

Proof. The main idea behind the indistinguishability between these two exper-
iment is if P ∗1 never passes the cut-and-choose test, both Real and Hybrid1

abort right after the cut-and-choose stage. Once P ∗1 passes the test for the first
time (even with small probability), experiment Hybrid1 is able to have P ∗1 pass
another cut-and-choose test after expected polynomially many rewinds. The goal
here is to prove that Pr[|T | = 0] is negligible.

Let T be the collection of all the possible challenge sets in the cut-and-
choose test, that is, T = {A|A ⊂ {1, . . . , s} and |A| = 3s/5}. Next, let X be
a random variable over T representing the chosen challenge set and success be
the event that P ∗1 passes the cut-and-choose. Since the coin-flipping protocol
always produces independently and uniformly distribution random bits, each
rewind is independent. Moreover, between the first and the second successful

cut-and-choose tests, there might be many rewinds when P ∗1 fails the test. Thus,

Pr[|T | = 0] =
∑
t∈T

Pr[X = t & success]

(∞∑
i=0

(1− Pr[success])i · Pr[X = t & success]

)

=
∑
t∈T

Pr[X = t & success]

(
1

Pr[success]
· Pr[X = i & success]

)
=
∑
t∈T

Pr[X = t & success]

Pr[success]
(Pr[X = t] Pr[X = t & success|X = t]) .

Since X distributes uniformly over T and Pr[X = t & success|X = t] ≤ 1, we
have

Pr[|T | = 0] ≤
∑
t∈T

Pr[X = t & success]

Pr[success]
· 1

|T |
=

1

|T |
=

1(
s

3s/5

) < 2−0.4s.

Therefore, the lemma holds. ut

Hybrid2(P ∗1 (x), P2(y), 1k): This is the same as Hybrid1 except the experiment
aborts if P ∗1 ’s input cannot be extracted correctly. More specifically, recall
that for all j ∈ T , garbled circuit GCj has been opened during the first
successful cut-and-choose. However, at this step P ∗1 expects circuit GCj to
be evaluated and is supposed to reveal [M1,j , . . . ,M2n,j]. So the experiment
is able to extract P ∗1 ’s i-th bit x∗i by comparing Mi,j with the range elements
associated with P ∗1 ’s i-th bit in GCj . In particular, for j ∈ T , if Mi,j is the
range element associated with bit value 0 in GCj , then x∗i,j ← 0; else if
Mi,j is the range element associated with bit value 1 in GCj , then x∗i,j ← 1;
otherwise, the experiment aborts (Fail1). Since |T | > 0, the experiment has
|T | possible 2n-bit input for P1. The experiment aborts (Fail2) if these inputs
are inconsistent, that is, x∗i,j 6= x∗i,j′ for j 6= j′.

Lemma 9. Hybrid1(P ∗1 (x), P2(y), 1k) ≈c Hybrid2(P ∗1 (x), P2(y), 1k)

Proof. Hybrid1 and Hybrid2 differ only when the experiment continues in
Hybrid1 but aborts in Hybrid2, that is, either Fail1 or Fail2 happens. Recall
that for j ∈ T garbled circuit GCj passes the check in the first successful cut-
and-choose, and thus, the commitments to Fclw(0, I,m0

i,j) and Fclw(1, I,m1
i,j)

are correctly constructed. By the perfectly-binding commitment scheme P ∗1 is
using, the revealed Mi,j must be either Fclw(0, I,m0

i,j) or Fclw(1, I,m1
i,j). So

Fail1 cannot happen.
Next, we need to bound the probability of Fail2. If |T | = 1, then Fail2 does not

happen. On the other hand, if |T | > 1, without loss of generality, Fail2 happens
when Mi,j = Fclw(0, I,m0

i,j) and Mi,j′ = Fclw(1, I,m1
i,j′) for some j 6= j′. Recall

that it was checked that Mi,j′ = Mi,j � Rclw(I,m) for some m. In other words,
Mi,j′ = Fclw(0, I,m0

i,j)�Rclw(I,m) = Fclw(0, I,m0
i,j ?m). Hence, Fail2 happens

implies that P ∗1 found a claw (m1
i,j′ ,m

0
i,j ?m), which by the claw-free property of

the malleable claw-free collections happens only with negligible probability. ut

Hybrid3(P ∗1 (x), P2(y), 1k): This is the same as Hybrid2 except that the exper-
iment aborts if the output from the external oracle for f does not coincide
with the output from the majority of the results from garbled circuit evalu-
ation. More specifically, let (x∗, c∗) be the 2n bits extracted from P ∗1 , where
|x∗| = |c∗| = n. The experiment sends x∗ to the external oracle and gets
f1(x∗, y) in return. Then M = f1(x∗, y) ⊕ c∗ is the result from the exter-
nal oracle. Then the experiment continues to evaluate the garbled circuits
and get M′ as the majority of the results from the circuit evaluation. The
experiment aborts if M 6=M′.

Lemma 10. Hybrid2(P ∗1 (x), P2(y), 1k) ≈c Hybrid3(P ∗1 (x), P2(y), 1k).

Proof. Note that after the input consistency check, P ∗1 ’s input is consistent
among evaluation-circuits with very high probability (as long as P ∗1 does not find
a claw). Hence, M and M′ differ only when more than half of the evaluation-
circuits are corrupted. Recall that a circuit is corrupted if either P2’s input from
the committing OT is corrupted or the circuit itself is faulty. Since P ∗1 has passed
the cut-and-choose process, the event thatM andM′ differ implies that P ∗1 has
corrupted more than s/5 circuits and all of them are used in the evaluation stage,

the probability of which is at most
(
4s/5
3s/5

)
/
(

s
3s/5

)
< 2−0.32s. Hence, the lemma

holds. It is worth mentioning that
(
4s/5
3s/5

)
/
(

s
3s/5

)
< 2−0.32s <

(
3s/4
s/2

)
/
(
s
s/2

)
, which

shows that our 2s/5-out-of-s approach for cut-and-choose has a better bound
than the conventional s/2-out-of-s approach. Also note that 2−0.32s is also the
upper bound of the probability that P ∗1 cheats in our approach, which is better
than any of the prior work. ut

Hybrid4(P ∗1 (x), P2(y), 1k): This is the same as Hybrid3 except that the ex-
periment actually uses M, the output from the external oracle, instead
of M′, the output from circuit evaluation, to conduct the output authen-
ticity proof. More specifically, after the circuit evaluation, if the experi-
ment could not find a result that conforms with the majority, the exper-
iment aborts. If the experiment does get the result M′ from evaluating
circuits, it sends M′ to P ∗1 . Next, the experiment randomly chooses an
element jl from T . Recall that garbled circuit GCjl is opened in the first
successful cut-and-choose, and thus, the experiment has the knowledge of
[W 0

1,jl
, . . . ,W 0

n,jl
,W 1

1,jl
, . . . ,W 1

n,jl
].

Lemma 11. Hybrid3(P ∗1 (x), P2(y), 1k) ≈c Hybrid4(P ∗1 (x), P2(y), 1k).

Proof. Recall that in Hybrid3 the outputM′ of P ∗1 comes from the circuit GCj′l ,
the output of which conforms with the majority of the 2s/5 evaluation-circuits,
whereas in Hybrid4 the output M of P ∗1 comes from the external oracle for f
and jl is randomly chosen from T . Note that T is a subset of {1, . . . , s}\T2, the
set of evaluation-circuits. Hence, both jl and j′l are valid indices of evaluation-
circuits. SinceM′ =M, by the witness-indistinguishability property of the final
proof, Hybrid3 and Hybrid4 are indistinguishable despite the possibility that
jl may not equal j′l . ut

Hybrid5(P ∗1 (x), P2(y), 1k): This is the same as Hybrid4 except that the ex-
periment does not evaluate any of the garbled circuits.

Lemma 12. Hybrid4(P ∗1 (x), P2(y), 1k) ≈c Hybrid5(P ∗1 (x), P2(y′), 1k)

Proof. The only concern here is that Hybrid4 might abort because of not eval-
uating circuits successfully (no output appears more than s/5 times and referred
by event Fail3), whereas Hybrid5 does not evaluate the circuits, and thus, never
abort for the same reason. In other words, we need to argue that Pr(Fail3) is
negligible, which is straightforward as claimed in Lemma 10.

Hybrid6(P ∗1 (x), P2(y), 1k): This is the same as Hybrid5 except that the ex-
periment uses a random input y′ instead of y in the OT protocol.

Lemma 13. Hybrid5(P ∗1 (x), P2(y), 1k) ≈c Hybrid6(P ∗1 (x), P2(y′), 1k)

Proof. By the receiver-security property of the OT protocol (Theorem 1), these
two experiments are indistinguishable during the OT phase. We then need to ar-
gue that after the OT phase, the probability experiment Hybrid5 using y aborts
is statistically close to the probability experiment Hybrid6 using y′ aborts. In
particular, the probability of abort is independent of the choice of y.

Recall that when the key received from OT does not match the key used
to construct the corresponding input gate, the garbled circuit is not evaluable.
The issue is that garbled circuit GCj may be evaluable in Hybrid5 but not
in Hybrid6. Without loss of generality, consider a specific input bit where
yi = 0 and y′i = 1. Let {K0

i,j ,K
1
i,j} be the input keys that P ∗1 uses to con-

struct GCj . If both keys are corrupted, GCj is not evaluable in both exper-
iments, and thus, Hybrid5 and Hybrid6 react in exactly the same way as
per Main protocol. In particular, a corrupt key in OT could be trash ⊥ so
that the receiver detects P ∗1 ’s cheating right after OT. Next, consider the case
that P ∗1 only corrupts one of the keys. Namely, P ∗1 uses {K0

i,j ,K
1
i,j} to con-

struct circuit GCj while uses {K∗i,j ,K1
i,j} in the OT, where K∗i,j 6= K0

i,j . After
the OT phase, by the correctness implied by the existence of the simulator
for OT sender, Hybrid5 gets {K∗i,j , comh(K∗i,j), comh(K1

i,j)}, whereas Hybrid6

gets {K1
i,j , comh(K∗i,j), comh(K1

i,j)}. If GCj is a check-circuit during the cut-and-
choose phase, by the computationally-binding property of the committing OT,
P ∗1 has to decommit comh(K∗i,j) to K∗i,j . Hence, both experiments will detect
that K∗i,j is not the right key used to contruct garble circuit GCj , and thus,
both abort. On the other hand, GCj could be one of the evaluation-circuits.
Recall that Hybrid5 does not evaluate any garbled circuits, and neither does
Hybrid6. In other words, wheather GCj is corrupted or not does not cause
Hybrid5 and Hybrid6 to abort during the circuit evaluation phase or after.
Therefore, we conclude that the case Hybrid5 aborts and the case Hybrid6

aborts are exactly the same despite the choice of y. ut

Lemma 14. The simulator S
P∗1
1 runs in expected polynomial time.

Proof. Every step of the simulator except the rewinding step finishes in ex-
pected polynomial time. Thus, it remains to analyze the time spent during the
rewinding. Let p1 be the probability that P ∗1 succeeds in opening circuits the
first time (that is, P ∗1 successfully opens the circuits specified by the result of
the coin-flipping protocol, and each circuit passes the verification checks run
by P2). With probability p1, simulator S1 will then proceed to re-execute the
coin-flipping protocol and the open step until it completes one more openings.
Since S1 uses completely random coins when re-running these steps that are in-
dependent of all prior executions, it is expected that after O(1

p1
) executions, S1

produces another successful opening with high probability. Thus, the expected
number of the rewinding is p1 · O(1

p1
) = O(1). Since each rewinding requires

polynomial time in k, the total time spent for this step is polynomial in k. ut

Finally, note that Hybrid4(P ∗1 (x), P2(y), 1k) and Ideal(S
P∗1 (x)
1 , P2(y), 1k)

are syntactically similar. In particular, P2’s input is no longer used. By Lemma 8–
14, we prove the security of the Main protocol when P1 is malicious.

Simulator 5: For P ∗2

Common input: a security parameters k, a statistical security parameter s, a mal-
leable claw-free collection (Gclw, Dclw, Fclw, Rclw), a signature scheme
(Gsig, Ssig, Vsig), a two-universal hash function H : {0, 1}∗ → {0, 1}k,
and a description of boolean circuit C computing function f(x, y) =
(f1(x, y), f2(x, y)), where |x| = |y| = |f1(x, y)| = |f2(x, y)| = n.

S2
I� P ∗2 Wait for the index I to malleable claw-free collections from P ∗2 .

S2
ot -� P ∗2 Committing OT for P2’s input: Randomly pick K0

i,j ,K
1
i,j ∈

{0, 1}k for 1 ≤ i ≤ n, 1 ≤ j ≤ s. Run the ideal-world OT simulator
Sot that corresponds to the real-world adversary represented by P ∗2
(restricted to this step of the protocol). When Sot queries the OT or-

acle for input y∗i , record y∗i and respond with [K
y∗i
i,1, . . . ,K

y∗i
i,s] and the

commitments to both input vectors ([K0
i,1, . . . ,K

0
i,s], [K

1
i,1, . . . ,K

1
i,s]),

for 1 ≤ i ≤ n. Send input y∗ = y∗1 . . . y
∗
n to the external oracle for f ,

and receive output N = f2(x, y∗).

S2 Garbled circuit construction: Transform C into a circuit C∗ com-
puting f∗((x, c), y) = (f1(x, y)⊕c, f2(x, y)), where |x| = |c| = |y| = n.
InvokeGsig(1k) to generate a signature key pair (sk1, vk1) andDclw(I)
to generate mb

i,j , for b ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ j ≤ s. Pick a random
tape ρ, based on which generate a challenge set T ⊂ {1, . . . , s} such
that |T | = 3s/5. With input keys Jbi,j = H(Fclw(b, I,mb

i,j)) and Kb
i,j ,

generate GCj as follows: if j ∈ T , GCj is a garbled version of C∗ as
described in the Main protocol; otherwise, GCj is a garbled circuit
that always outputs N as described in [13].

S2
{GCj}sj=1- P ∗2 Send P ∗2 all the garbled circuits GC1, . . . , GCs and the commitments

to Fclw(b, I,mb
i,j).

S2
coin-flip-� P ∗2 Cut-and-Choose: Run coin-flipping simulator Scf(ρ). Recall that

by Theorem ??, Scf(ρ) forces the output of the coin-flipping protocol
to be ρ, with which T is determined.

S2
{GCj}j∈T- P ∗2 For every j ∈ T , reveal circuit GCj by sending P ∗2 all the openings to

GCj and decommitting to (Fclw(0, I,m0
i,j), Fclw(1, I,m1

i,j)), for 1 ≤
i ≤ 2n.

S2
p1 input- P ∗2 Consistency check for P1’s input: Let e = 2s/5 and [j1, . . . , je]

be the indices of evaluation-circuits. Fix inputs to 0 by decommitting
to Fclw(0, I,m0

i,j) for 1 ≤ i ≤ 2n, j ∈ {j1, . . . , je}. Next, send to P ∗2
the vector [m0

i,j2 ? (m0
i,j1)−1, . . . ,m0

i,je ? (m0
i,j1)−1], for 1 ≤ i ≤ 2n, to

complete the input consistency check.

S2
M� P ∗2 Circuit evaluation: Wait forM = {m1, . . . ,mn} ∈ {0, 1}n from P ∗2 .

S2
p1 ouptut-� P ∗2 Verification to P1’s output: Invoke Gsig(1k) to generate another

signature key pair (sk2, vk2). Send to P ∗2 the public key and the
signature of [j1, . . . , je], that is, vk2 and [δ(j1), . . . , δ(je)], where
δ(jl) = Ssig(sk2, jl). Next, for every 1 ≤ i ≤ n, verify P ∗2 ’s witness-
indistinguishable proof of knowledge that P ∗2 has mi’s signature, the
j-index of which coincides with some j ∈ {j1, . . . , je}. If P ∗2 fails the
proof, sent 0 to the external oracle for f indicating “do not deliver
P1’s output”; otherwise, send 1 indicating “deliver P1’s output” and
output whatever P ∗2 outputs.

Simulator for P ∗1

Common input: a security parameters k, a statistical security parameter s, a mal-
leable claw-free collection (Gclw, Dclw, Fclw, Rclw), a signature scheme
(Gsig, Ssig, Vsig), a two-universal hash function H : {0, 1}∗ → {0, 1}k,
and a description of boolean circuit C computing function f(x, y) =
(f1(x, y), f2(x, y)), where |x| = |y| = |f1(x, y)| = |f2(x, y)| = n.

P ∗1 I� S1 Runs the index selecting algorithm I ← Gclw(1k) and sends the result
I to P ∗1 .

P ∗1 ot -� S1 Committing OT for P1’s input: Pick random y′ = y′1 . . . y
′
n ∈

{0, 1}n and use y′i as the input in the i-th committing OT instance
with P ∗1 .

P ∗1
{GCj}sj=1- S1 Garbled circuit construction: Wait for garbled circuits

[GC1, . . . , GCs] and the commitment comb(Mb
i,j) from P ∗1 , for b ∈

{0, 1}, 1 ≤ i ≤ 2n, 1 ≤ j ≤ s. Note that Mb
i,j will be a range ele-

ment of Fclw(b, I, ·) if P ∗1 is honest. Since P ∗1 could be an arbitrary
adversary, there is no assumption on Mb

i,i here.

P ∗1 coin-flip-� S1 Cut-and-choose (1st time): Run the coin-flipping protocol with
P ∗1 in order to generate a challenge set T1 ⊂ {1, . . . , s} such that
|T1| = 3s/5.

P ∗1
{GCj}j∈T1- S1 For every j ∈ T1, receive from P ∗1 the openings

to garbled circuits GCj and the decommitments to
([comb(M0

1,j), . . . , comb(M0
2n,j)], [comb(M1

1,j), . . . , comb(M1
2n,j)]).

Run all the checks like P2 does in Step 5 of the Main protocol, and
abort if any of the checks fails.

P ∗1
{GCj}j∈T2- S1 Cut-and-choose (2nd time): Rewind P ∗1 to run the cut-and-choose

process (coin-flipping plus the checking of the 3s/5 chosen circuits)
until P ∗1 passes the process for the second time. Let T2 be the challenge
set of the second successful cut-and-choose and let T = T1\T2. Abort
if |T | = 0. Note that for j ∈ T , garbled circuit GCj is a check-circuit in
the first successful cut-and-choose but an evaluation-circuit hereafter.

P ∗1
P∗1 input- S1 Consistency check for P1’s input: Let e = 2s/5 and {j1, . . . , je}

be the indices of evaluation-circuit. Note that {j1, . . . , je} =
{1, . . . , s}\T2. Receive the decommitments to P ∗1 ’s input keys
[M1,j1 , . . . ,M2n,j1], . . . , [M1,je , . . . ,M2n,je]. Note that Mi,j denotes
the decommitment to either comb(M0

i,j) or comb(M1
i,j). Next, for ev-

ery 1 ≤ i ≤ e, receive the domain elements [mi,2→1, . . . ,mi,e→1] and
confirm the consistency of P ∗1 ’s i-th input bit by checking Mi,j1 =
Mi,jl � Rclw(I,mi,l→1), for 2 ≤ j ≤ e. Abort if any of these checks
fails.

P ∗1 M� S1 Circuit evaluation: Extract P ∗1 ’s input by comparing
[M1,j , . . . ,M2n,j] with the openings of GCj , for all j ∈ T . Abort if
for any 1 ≤ i ≤ 2n, j ∈ T , Mi,j do not match the group elements
associated with P ∗1 ’s i-th input bit in garbled circuit GCj (Fail1) or
these |T | extracted 2n-bit inputs are inconsistent (Fail2). Let (x∗, x∗)
be the extracted result, where |x∗| = |x∗| = n. Send x∗ to the
external oracle and get f1(x∗, y) in return. Then M = f1(x∗, y)⊕ x∗
is sent to P ∗1 .

P ∗1 p1 output-� S1 Wait for the public signature key vk2 and a signature vector
[δ(j1), . . . , δ(je)]. Confirm the validity of these signatures by checking
Vsig(vk2, jl, δ(jl)) = valid, for 1 ≤ l ≤ e. Let jl be an element from
T and M = [m1, . . . ,mn]. Prove to P ∗1 in witness-indistinguishable
sense the knowledge of the signature of (mi, i, jl) (from GCjl) with-
out revealing jl.

	Two-output Secure Computation With Malicious Adversaries

