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Abstract. Drawback of code-based public-key cryptosystems is that their public-
key size is lage. It takes some hundreds KB to some MB for typical parameters.
While several attempts have been conducted to reduce it, most of them have failed
except one, which is Quasi-Dyadic (QD) public-key (for large extention degrees).
While an attack has been proposed on QD public-key (for small extension de-
grees), it can be prevented by making the extension degreem larger, specifically
by makingq(m(m−1)) large enough whereq is the base filed and for a binary
code,q= 2. The drawback of QD is, however, it must holdn<< 2m− t (at least
n ≤ 2m−1) wheren and t are the code lenght and the error correction capabil-
ity of the underlying code. If it is not satisfied, its key generation fails since it
is performed by trial and error. This condition also prevents QD from generat-
ing parameters for code-based digital signatures since without makingn close to
2m− t, 2mt/

(n
t

)
cannot be small. To overcome these problems, we propose “Flex-

ible” Quasi-Dyadic (FQD) public-key that can even achieven= 2m− t with one
shot. Advantages of FQD include 1) it can reduce the public-key size further, 2)
it can be applied to code-based digital signatures, too.
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1 Introduction

Public-key cryptosystems (PKCs) can be divided into the categories1 shown in Fig. 1
and 2, respectively. Almost all of the currently deployed ones are based only on a small
class of hard problems, namely Integer Factoring Problem (IFP) or Discrete Logarithm
Problem (DLP). They are referred to as number theoretic problems. The number the-
oretic problem based PKCs have the following disadvantages that should be solved in
short term and long term, respectively. The long term problem is the lack of quantum
tolerance. The number theoretic problems are closely related to a problem to determine
the cycle (hence they may be referred to as a cyclic problem) and they will be solved in
(probabilistic) polynomial-time after the emergence of quantum computers [24] though

1 Multivariate polynomial based ones may be included, but all of them have been broken and no
relief method is known so far.



Integer Factoring Based:
– RSA
– Rabin
– Okamoto-Uchiyama
– Paillier

Discrete Logarithm Based:
– Diffie-Hellman
– ElGamal
– ECC
– XTR
– Cramer-Shoup
– Kurosawa-Desmedt

Fig. 1. Examples of PKCs Based on Num-
ber Theoretic (Cyclic) Problem

Code Based:
– McEliece
– Niederreiter

Lattice Based:
– NTRU
– Ajtai-Dwork
– Goldreich-Goldwasser-Halevi
– Ajtai
– Regev
– Peikert

Subset Sum Based:
– Okamoto-Tanaka-Uchiyama

Fig. 2. Examples of PKCs Based on Com-
binatorial Problem

several breakthroughs are needed to realize quantum computers. The short term prob-
lem is the requirement of heavy multiple precision modular exponentiations that are not
easy to deploy with low cost on low-computational power devices, such as RFID (Radio
Frequency Identity), sensors and SCADA (Supervisory Control And Data Acquisition)
devices.

On the other hand, combinatorial-problems are quantum tolerant and only small
arithmetic units, e.g. addition in a small field or ring, are required for encryption and sig-
nature verification. Furthermore, among the combinatorial-problem based PKCs, code-
based PKCs are advantageous in redundancy, i.e. (Plaintext Size)− (Ciphertext Size),
and in the arithmetic unit, i.e. encryption and signature verification consists mostly
on exclusive-ors that are highly parallelizable. Hence, code-based PKCs are suitable
for heterogeneous applications where one side may have a reasonable computational
power, but that of the other side is limited such as privacy-preserving RFID [8] and
lightweight broadcast authentication for emergency. Other than them, code-based prim-
itives can be utelized to construct ZKIP (Zero Knowledge Interactive Proof) [26], hash
functions [2], OT (Oblivious Transfer) [17, 11] and so on.

The strongest security notion of a PKC, IND-CCA2 (Indistinguishability against
Adaptive Chosen Ciphertext Attack), can be achieved by applying “appropriate” con-
version scheme to the primitive code-based PKEs as long as it satisfies OW-CPA (One-
Wayness against Chosen Plaintext Attack). For the McEliece primitive PKC, specific
conversion scheme [15] makes the redundancy smallest while maintaining provable se-
curity in the random oracle model. For the Niederreiter primitive PKC, either OAEP++
[14] for a long plaintext or OAEP+ [25] for a small plaintext can achieve them. Not only
in the random oracle model, provable security of IND-CPA and IND-CCA2 have been
achieved in the standard model in [23] and [10] respectively even though the construc-
tions in the standard model are less efficient compared to those in the random oracle
model. Anyway, secure constructions are available as long as the underlying primi-
tive code-based PKCs satisfy OW-CPA and the parameters meeting OW-CPA are esti-
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mated in [12] against the most powerful attacks (Optimized) Information Set Decoding
(OISD2) and Generalized Birthday Attack (GBA).

The drawback of code-based PKCs is, however, that the publick-key size is large,
which isk(n−k) bits if a binary code of lengthn with information ratek/n is used. To
overcome this problem, several attempts have been conducted. They are summarized as
follows.

(Potential approaches for reducing public-key size for code-based PKCs)
Enhancement of error correction capability:

– Capacity Approaching Codes
• LDPC codes
• QC-LDPC codes [3]

– List Decoding
• Exhaustive search
• List decoding for Goppa Code [6]

– Error expansion/hold [18]
Compression of public-key:

– Quasi-Cyclic Construction [4]
– Quasi-Dyadic Construction [21]
– Flexible-Quasi-Dyadic Construction (proposal)

Unfortunately, LDPC (Low-Density Parity Check) code approach has been broken
in [22, 13] where [22] works if the density of the random nonsingular secret matrixS is
low and [13] works for anyS. Error expansion/hold approach has been broken in [16].
Quasi-Cyclic and QC-LDPC approaches have been broken in [1, 28]. Quasi-Dyadic
approach has been broken in [28], but only for small extension degrees [20]. Hence the
remaining approaches are list decoding and Quasi-Dyadic approach for large extension
degrees. While list decoding works, its effect is small since it can correct only a couple
of more errors for practical parameters within practical decoding complexity. Hence the
last resort is the quasi-dyadic approach with large extension degrees.

2 Quasi-Dyadic Construction

I will skip the preliminary of code-based PKCs, but you can find a lot of contents to
explain them, e.g. in the surveys section of [5] or in [9].

Quasi-Dyadic construction was proposed in [21]. It uses the inter section between
dyadic matrices and Goppa codes in Cauchy form. A 2v×2v dyadic matrixM is in this
form:

M =

[
A B
B A

]
(1)

whereA andB are 2v−1×2v−1 dyadic matrices, respectively. The advantage of a dyadic
matrix is that the whole matrix can be constructed from its one row or one column. This
is the trick to reduce the public matrix.

2 In [12], it is referred to as ISD but in this paper we call it OISD to distinguish it from classical
ISDs.
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Table 1.Sample parameters of plain code-based PKE estimated in [12]

BWF Public-key
m t n OISD (p.l) size Plaintext/Ciphertext

11 32 2,048 286.8 (4,24) 72.9KB 233/352 [bits]
12 41 4,098 2128.5 (10.54) 216.5KB 327/492 [bits]

Table 2.Sample parameters of Quasi-Dyadic (QD) code-based PKE [21]

BWF Public-key
m t n OISD (p.l) size Plaintext/Ciphertext

16 64 2,560 291.3 (1,12) 3.0KB 427/1024 [bits]
16 64 3,072 2108.0 (2,17) 4.0KB 445/1024 [bits]
16 128 4,096 2135.8 (2,18) 4.0KB 817/1024 [bits]

Due to the following Theorem, it is possible to make a parity check matrix of the
Goppa code Cauchy from.

Theorem 1 (Goppa Codes in Cauchy Form [27, 19])The Goppa code generated by
a monic polynomial g(x) = (x−z0) · · ·(x−zt−1) without multiple zeros admits a parity-
check matrix H whose i-th row and j-th column is Hi j = 1/(zi −L j) for 0≤ i < t and
0≤ j < n.

The Cauchy matrix can be dyadic by choosing distinctzi andL j meeting the following
conditions:

1
hi⊕ j

=
1
hi

+
1
h j

+
1
h0

(2)

zi =
1
hi

+ω (3)

L j =
1
h j

+
1
h0

+ω (4)

The construction algorithm proposed in [21] generates a sequence ofhi for 0≤ i ≤ N
wheren < N at random meeting (2) to (4). If they are not satisfied, it discardshi and
regenerates them until the conditions are satisfied. Using the generatedhi , aN×N full
dyadic matrix can be constructed. It finally picks up at × n sub-matrix from the full
N×N dyadic matrix.

This algorithm is, however, restrictive on its parameter choice, i.e.n << 2m− t
must hold otherwise it eventually fails to generate a distinct set ofzi andL j , or takes
a lot of time since it generates them by trial-and-error. This restriction prevents it from
generating parameters for digital signatures since in digital signatures 2mt/

(n
t

)
must be

small enough and without makingn close to 2m− t, 2mt/
(n

t

)
cannot be small.

3 Flexible-Quasi-Dyadic Construction

To overcome the problems in QD, we propose a more flexible and efficient construction,
which we call Flexible-Quasi-Dyadic (FQD) construction. FQD does not use trial-and-
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Table 3.Sample parameters of Flexible-Quasi-Dyadic (FQD) code-based PKE (proposal)

BWF Public-key
m t n OISD (p.l) UL size Plaintext/Ciphertext

11 32 2,016 286.0 (4,24) - 2.2KB 224/352 [bits]
11 37 1,984 290.3 (4,24) - 2.1KB 262/407 [bits]
11 64 1,984 2103.1 (4,25) - 1.7KB 404/704 [bits]
11 96 1,920 291.0 (2,16) - 1.2KB 546/1056 [bits]
11 112 1,920 280.0 (2,16) - 0.92KB 546/1056 [bits]

12 19 4,064 281.0 (8,44) - 5.6KB 171/228 [bits]
12 23 4,064 291.4 (8,44) - 5.5KB 202/276 [bits]
12 32 4,064 2111.6 (10,53) - 5.4KB 266/384 [bits]
12 42 4,032 2129.3 (9,49) - 5.2KB 333/504 [bits]
12 64 4,032 - 2157.4 4.8KB 470/768 [bits]
12 128 3,968 - 2156.4 3.6KB 811/1536 [bits]
12 186 3,840 - 2155.9 2.4KB 1069/2232 [bits]
12 256 3,840 291.3 (1,13) - 1.1KB 1352/3072 [bits]
12 256 3,728 280.0 (1,13) - 0.96KB 1340/3072 [bits]

Table 4.Sample parameters of plain code-based signature (CFS signature [7])

BWF Public-key
m t n GBA OISD (p.l) size Iteration Signature Size

19 11 524,288 283.6 - 13,370.7KB 225.3 209(234.3) [bits]
15 12 32,768 281.5 - 716.0KB 228.8 180(208.8) [bits]
15 13 32,768 284.8 - 775.4KB 232.5 195(227.5) [bits]
14 14 16,384 - 284.0 (11,66) 387.3KB 236.4 196(232.4) [bits]
14 15 16,384 - 289.2 (11,67) 414.6KB 240.3 210(250.3) [bits]
13 16 8,192 - 283.5 (9,52) 202.7KB 244.3 208(252.3) [bits]

error approach and generates distinctzi andL j with one shot even forn= 2m− t. FQD
does not have any restriction such asn<< 2m− t.

FQD construction is as follows. It firstly generates one smallu×u dyadic matrix
usingδi for 0≤ i < log2u. We call them “inner delta” since they define the inner struc-
ture of theu× u full dyadic matrix. Then FQD generates the otheru× u full dyadic
matrices by duplicating the inner structure of the firstu×u full dyadic matrix but shift-
ing them using both∆ j1 and∆ ′

i1
for 0 ≤ j1 < ⌈n/u⌉ and 1≤ i1 < ⌈t/u⌉, respectively.

We call∆ j1 and∆ ′
i1

“outer delta” since they define the relationship among the fullu×u
dyadic matrices. FQD can also remove the block-wise permutation and removal in the
key generation phase of QD since the choice of∆ j1 andn already includes them. This
is another advantage of FQD.
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Table 5.Sample parameters of Flexible-Quasi-Dyadic (FQD) code-based digital signature (pro-
posal)

BWF Public-key
m t n GBA OISD (p.l) size Iteration Signature Size

19 11 524,272 283.6 - 1,215.5KB 225.3 209(234.3) [bits]
15 12 32,752 281.5 - 59.6KB 228.8 180(208.8) [bits]
15 13 32,752 284.8 - 59.6KB 232.5 195(227.5) [bits]
14 14 16,368 284.1 - 27.6KB 236.4 196(232.4) [bits]
14 15 16,368 - 289.2 (11,67) 27.6KB 240.3 210(250.3) [bits]
13 16 8,176 - 283.4 (9,52) 12.6KB 244.3 208(252.3) [bits]

I will explain how to chooseδi , ∆ j1 and∆ ′
i1

later on, but once they are determined,
zi andL j are given as follows:

zi0 =⊕log2 u−1
b=0 i0[b] ·δb for 0≤ i0 < u (5)

zi1·u+i0 = zi0 ⊕∆ ′
i1 for 1≤ i1 < ⌈t/u⌉ (6)

L j1·u+ j0 = zj0 ⊕∆ j1 for 0≤ j1 < ⌈n/u⌉ (7)

where⊕ denotes exclusive-or,i[b] and j[b] denote(b+1)-th bit of i and j in the binary
form, respectively. One can easily verify thathi, j = 1/(zi ⊕L j) makes a quasi-dyadic
matrix. Whent ≤ u, zi1·u+i0 can be ignored. When⌈t/u⌉ ·u> t and/or⌈n/u⌉ ·u> n, by
removing⌈t/u⌉ ·u− t rows and⌈n/u⌉ ·u−n columns respectively, the size can bet×n.
Another option is to add removedzi asL j . This is useful to achieven = 2m− t when
t ̸= 2x for any positive integerx.

The variablesδi , ∆ j1 and∆ ′
i1

must be chosen at random while making all thezi for
0≤ i < t andL j for 0≤ j < n distinct, i.e.

zi ⊕zi′ ̸= 0 for i ̸= i′ (8)

L j ⊕L j ′ ̸= 0 for j ̸= j ′ (9)

zi ⊕L j ̸= 0 (10)

These conditions are equivalent to the following conditions:

1. δb for 0≤ b< log2u are linearly independent.
2. ∀r ∈ {0,1}log2 u,

∆ ′
i1,∆ j1,(∆

′
i1 ⊕∆ j1),(∆

′
i1 ⊕∆ ′

i′1
),(∆ j1 ⊕∆ j ′1

) ̸∈ ⊕log2 u−1
b=0 r[b] ·δb (11)

wherer[b] denotes the(b+1)-th bit of r in the binary form.
δb, ∆ ′

i1
and∆ j1 satisfying the above conditions can be generated by the following

algorithm:

1. Generate am×m random binary nonsingular matrixM.
2. Let the(b+1)-th row from the top ofM denoteδb for 0≤ b≤ (log2u)−1.
3. Choose distinct∆ ′

i1
and ∆ j1 from a linear combination of the bottomm− log2u

rows ofM.
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The cardinality of a nonsingular matrixM is around 0.289·2m2
, which is one of the se-

crets of FQD construction. Other secrets include permutation among∆ j1, random scalar
multiplication with eachu×u full dyadic block and multiplication of non-singular ran-
dom dyadic matrixS.

We show some sample parameters for binary codes in Table 1 to 5, but the idea of
FQD construction can easily be extended to non-binary codes, too. In these tables,m,
t andn are parameters of the underlying code.m is the extension degree,t is the error
correction capability andn is the code length. In plain (non-quasi-dyadic) schemes,n=
2m or n< 2m, in QD,n<< 2m− t and in FQD,n= 2m− t (or n< 2m− t ). BWF is the
minimal binary workfactor to break the system, which is either Optimized Information
Set Decoding (OISD), Generalized Birthday Attack (GBA) or the attack in [28] on
QD/FQD (we call it UL attack). The values of OISD and GBA follow the estimation in
[12]. p and l are optimum parameters for OISD. In [28], the BWF of UL, BWFUL is
estimated asq2× (log2q2)3(v2+3v+b)2v(v+b) wherev= log2u andb= ⌈n/u⌉, but
this estimation is form= 2. Form≥ 2, it is

BWFUL = qm(m−1)× (log2q2)3(v2+3v+b)2v(v+b) (12)

In the columns of BWF “-” means the corresponding attack is less powerful. In the
column of public-key size, KB= 1024×8 bits. Plaintext/Ciphertext is the plaintext size
and the ciphertext size in bits in the Niederreiter form. Iteration shows the signature
generation cost, i.e. the number of trials to decode an error pattern corresponding to
given syndromes. The signature size in() is when the error pattern is expressed as the
positions oft errors. This increases the signature size but decreases the signature veri-
fication cost compared with the case where an error pattern is expressed as an integer
between 0 and

(n
t

)
− 1. The signature size can be reduced further by using the same

technique in [7], i.e. by removing some error positions in the signature even though this
increases the verification cost.

4 Conclusion

We proposed Flexible Quasi-Dyadic (FQD) construction, which can make the Quasi-
Dyadic (QD) construction more flexible. FQD can achieve the maximum code length
n = 2m− t with one shot whereas QD must holdn << 2m− t and its key generation
is performed by trial and error. FQD’s ability to maken close to 2m− t is crucial for
code-based digital signatures since without this ability 2mt/

(n
t

)
cannot be small and

code-based digital signatures cannot be constructed. FQD can maken close to 2m− t
and can even be used to reduce the signature-verification-key size of code-based digital
signatures.
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