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Abstract. In the context of secure point-to-point message transmission in networks with minimal
connectivity, previous studies showed that feedbacks from the receiver to the sender can be used to
reduce the requirements of network connectivity. We observe that the way how feedbacks were used
in previous work does not guarantee perfect privacy to the transmitted message, when the adversary
performs a Guessing Attack. In this paper, we shall describe our new Guessing Attack to some existing
protocols (in fact, we are the first to point out a flaw in the protocols of Desmedt-Wang’s Eurocrypt’02
paper and of Patra-Shankar-Choudhary-Srinathan-Rangan’s CANS’07 paper), and propose a scheme
defending against a general adversary structure. In addition, we also show how to achieve almost
perfectly secure message transmission with feedbacks when perfect reliability or perfect privacy is not
strictly required.
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1 Introduction

Secure point-to-point communication requires both private and reliable message transmission from
a sender A to a receiver B, despite the possibility that some parties on the channels between them
are corrupted. Dolev et al. [8] initialized the problem of secure message transmission by showing
that secure communication is possible in a network graph that is not complete. The interplay of
the network connectivity and secure communication has been studied extensively [7, 11, 2, 4, 8, 9, 5,
14, 6, 26, 24, 15].

The general setting of this problem assumes an active Byzantine adversary, who has unlimited
computational power (not only a passive listener). An adversary X can be characterized as threshold
(k-bounded) or non-threshold (general adversary structure). In the initial studies, Dolev [7] and
Dolev et al. [8] showed that 2k+ 1 connectivity is required for reliable message transmission, and if
all communication links are one-way, then the system’s network needs to be 3k+1 connected. Some
further studies on threshold adversaries have been done by Franklin and Wright [9], Srinathan and
Rangan [26], Shankar et al. [24], and Kurozawa and Suzuki [15]. Furthermore, in the presence of a
general adversary structure [12], Kumar et al. [14] gave the necessary and sufficient conditions for
perfectly secure message transmission in bi-direction networks (all links are two-way), and later,
Desmedt et al. [6] extended the research and provided some results on all-one-way linked networks.

Although the concerning problem may seem trivial, it is far from straightforward. Many so-
lutions on the topic of secure message transmission require careful examination. For instance, in
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Crypto 04, Srinathan et al. [25] proposed an optimal (in transmission rate) protocol for all-two-
way communication. However, that protocol was later proved not perfectly reliable as originally
claimed, by Agarwal et al. [1]. Their work appeared in Crypto 06. Similarly, in this work, we show
that perfect privacy can be breached in many schemes that use the so-called feedback channels (e.g.
some protocols of Desmedt and Wang [5] in Eurocrypt’02).

Given a sender A and a receiver B in a network. The channel that A uses to transmit a message
to B is called the forward channel, and the channel that B transmits feedbacks to A is called the
feedback channel. In an all-two-way linked network, the forward channels and the feedback channels
have the same connectivity (symmetric). That is, if B can reliably receive message from A, then
A can reliably receive feedbacks from B. However, this is only a special case of using feedbacks.
In general, the feedbacks that A receives may not be reliable. That is, the feedback channels may
have less connectivity than the forward channels do. Desmedt and Wang [5] motivated this with
the following scenarios: a channel from A to B is cheap, but a channel from B to A is expensive;
in another scenario, A has access to more resources than B does.

Some studies have been done concerning this network setting (with unreliable feedback chan-
nels). This problem was initialized by Desmedt and Wang [5] in Eurocrypt’02. In their paper they
showed that if there are u directed node-disjoint paths from B to A, then it is sufficient to have
3k+ 1−u > 2k+ 1 directed node-disjoint paths from A to B against a k-active adversary. Another
study has been done by Patra et al. [20], in which they extended the previous results and considered
a general adversary structure.3 However, we observe that all the protocols in these papers are not
so perfectly secure as they claimed, as those protocols actually leak some information about the
message to the adversary X, when X corrupts the feedback channel and acts on it. Thus we shall
show how X can attack those protocols in this paper.

Our contributions. In our work we study the use of the feedback channels in depth. Particularly,
we observe that the major functionality of the feedback channels is to be used by the receiver B
for reliable message transmission purpose when faulty messages are received, but this may under-
mine perfect privacy of the transmitted messages. We will describe a new Guessing Attack that the
adversary may perform on many existing protocols that work in networks with feedback channels.

Next we show how to construct a perfectly secure message transmission protocol that withstands
the Guessing Attack and any other attack. In this paper we consider a general adversary structure,
thus our results can be applied in more general cases. In addition, we study almost perfectly
secure message transmission. First we show that the network connectivity required for achieving
almost perfectly private message transmission is exactly the same as that for achieving perfect
privacy. Next, we study almost perfectly reliable message transmission tolerating a general adversary
structure, and propose a protocol, which is a generalization of the result in [5].

Organization of this paper. We describe our model in Section 2. In Section 3 we propose our Guessing
Attack that breaches perfect privacy of some existing protocols. Section 4 is devoted to present the
necessary and sufficient conditions for perfectly secure message transmission, and we shall give our
main protocol that tolerates the Guessing Attack in this section. In Section 5, we show our result
on almost perfectly private message transmission, and in Section 6, we discuss almost perfectly
reliable message transmission.

3 We noticed that some recent studies have been done considering this network setting (see [18, 19]). However, those
results are less relative to our concern.
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2 Model and background

Basic definitions. We abstract away the concrete network structure and model a network by a
directed graph G(V,E), whose nodes are the parties in the network and edges are point-to-point
secure communication links, where all the edges in E have directions. We also denote F as the finite
field that both A and B agree on, and M⊆ F as the message space that A chooses message from.
Let S be a set, we write |S| to denote the number of elements in S, and a ∈R S to indicate that a is
chosen from S with respect to the uniform distribution. Let a ∈ R. We write bac ∈ Z to denote the
integer part of a. Let a, b,M ∈ F. We employ an authentication function auth(M ; a, b) := aM + b,
by which each authentication key key = (a, b) can be used to authenticate one message M without
revealing any information about the authentication key (see [10, 22, 21, 9]).

Throughout the paper, we assume that A,B ∈ V , and use P as the set of all the directed paths
from A to B and Q as the set of all the directed paths from B to A (the directed paths are not
necessarily node-disjoint). Let Z ⊆ V , we write PZ to denote the set of all paths in P that pass
through nodes in Z, and write P̄Z to denote the set of all paths in P that are free of nodes in Z.
Similarly, we denote QZ and Q̄Z .

Secret sharing. We define a (k + 1)-out-of-n ε-private secret sharing scheme ((k + 1, n, ε)-SSS).

Definition 1 Let ε < 1. A (k+ 1, n, ε)-SSS is a probabilistic function S : F→ Fn such that for any
m ∈ F and (v1, ..., vn) = S(m),
property-1 m can be recovered from any k + 1 entries of (v1, ..., vn) with probability 1, and
property-2 m can also be recovered from any r ≤ k entries with probability at most ε.

Therefore, the classic Shamir’s scheme [23] is a (k + 1, n, 0)-SSS, and Blakely’s scheme [3] is a
(k + 1, n, ε)-SSS (almost perfectly private). The set of all possible (v1, ..., vn) can be viewed as a
code and its elements codewords. When there is no ambuiguity, we view S(m) as a subset of this
code. We say a (k+ 1, n, ε)-SSS can detect d errors if given any codeword (v1, ..., vn) and any tuple
(u1, ..., un) such that 0 < |i : ui 6= vi, 1 ≤ i ≤ n| ≤ d, one can detect that (u1, ..., un) is not
a codeword; a (k + 1, n, ε)-SSS can correct c errors if given (v1, ..., vn) ∈ S(m), from any tuple
(u1, ..., un) such that |i : ui 6= vi, 1 ≤ i ≤ n| ≤ c, one can recover the secret m. It has been proved
that a (k+ 1, n, 0)-SSS can detect n− k− 1 errors and correct (not simultaneously) b(n− k− 1)/2c
errors using error-correcting code [16, 17].

Adversary model. We consider an adversary X who is characterized by an adversary structure Z
that consists of all sets of parties that X can corrupt. A definition of an adversary structure was
given by Hirt and Maurer [12] (see also [13]): Given a party set P , an adversary structure Z on
P is a family of subsets Z ⊂ 2P such that: Z ∈ Z, Z ′ ⊆ Z ⊆ P ⇒ Z ′ ∈ Z. A set Z ∈ Z is called
maximal if Z ′ ⊃ Z ⇒ Z ′ /∈ Z, and we use Z̃ as the set of all maximal sets in Z.

Throughout the paper we use Zx ∈ Z to denote the set of parties that the adversary X chooses
to control. We allow an active, or Byzantine, adversary, who has unlimited computational power
and resources. The adversary X can read the traffic of Zx and perform any local computation on Zx.
In this paper we only consider a static adversary, whose choice of Zx does not change throughout
the protocol.

Message transmission protocol. Let Π be a message transmission protocol. A starts with a message
MA drawn from a message space M with respect to a certain probability distribution. At the end
of the protocol Π, B outputs a message MB ∈ M. For any execution of the protocol Π, let adv
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be the adversary X’s view of the entire protocol. We write adv(M, r) to denote X’s view when
MA = M and when the sequence of coin flips used by X is r (follows [9, 6]).
Privacy: Π is ε-private if, for any two messages M0,M1 ∈M and every r,∑

c |Pr[adv(M0, r) = c]− Pr[adv(M1, r) = c]| ≤ 2ε.
Reliability: Π is δ-reliable if, with probability at least 1−δ (0 ≤ δ < 1

2), B terminates MB = MA.
Security: Π is (ε, δ)-secure if it is ε-private and δ-reliable.

We say Π is a perfectly secure message transmission protocol if it is (0, 0)-secure. In this paper,
we also discuss (0, δ)-secure and (ε, 0)-secure message transmissions, which are almost perfectly
secure.
In the presence of an adversary structure Z, Kumar et al. [14] showed that in a bi-direction network,
the necessary and sufficient condition for (0, 0)-secure message transmission from A to B is that
PZa∪Zb ( P for any Za, Zb ∈ Z. In the case that all communication links are one-way without
feedback, Desmedt et al. [6] proved that 0-reliable message transmission from A to B can be
achieved if and only if PZa∪Zb ( P for any Za, Zb ∈ Z, and (0, 0)-secure message transmission is
possible if and only if PZa∪Zb∪Zc ( P for any Za, Zb, Zc ∈ Z. Furthermore, we will discuss the case,
in which the feedback channels exist, in Section 4.

3 Attack on feedback channels

In this section we propose a Guessing Attack that takes advantage of how the feedback channels
are normally used. In most protocols that work on networks with feedback channels, the feedbacks
are used by the receiver B to seek for help from A when B does not have enough information to
recover the message (i.e., for reliability purpose). In our attack, we propose the following. Since the
adversary X can choose to corrupt some feedback paths, it can simulate how B uses the feedback
channels and learn from A the information it needs to recover the message with better probability
than guessing. This allows X to breach perfect privacy, as we describe now in more detail.

Here we give an example of how Guessing Attack breaches perfect privacy of one of Desmedt
and Wang’s protocols in [5]. This DW protocol (the protocol corresponding to [5, Theorem 5]) is
for (0, 0)-secure message transmission against a threshold adversary. First we shall sketch the DW
protocol before we show that it is not 0-private.

Condition for the DW protocol: there are 3k ≥ 2k+ 1 directed node-disjoint paths from A to
B and one directed node-disjoint path from B to A.4

Sketch of the DW protocol Let p1, ..., p3k be the directed paths from A to B and q be the
directed path from B to A.
Step 1 ...
Step 2 A chooses a keyA ∈R F and constructs (k + 1, 3k, 0)-secret-shares v = (s1, ..., s3k) of

keyA. For each 1 ≤ i ≤ 3k, A sends si to B via path pi.
Step 3 Let vB = (sB1 , ..., s

B
3k) be the shares B receives. If B finds that there are at most k − 1

errors (using error-correcting code), B recovers keyB from the shares, sends ‘stop’ to A
via path q; otherwise, B sends vB to A via path q.

Step 4 If A receives vA = (sA1 , ..., s
A
3k) from path q, A broadcasts P = {i : sAi 6= si} (|P | = k)

via all paths p1, ..., p3k; otherwise, A broadcasts ‘stop’.
4 This condition is sufficient for (0, 0)-secure message transmission from A to B, but is stronger than the necessary

condition. See [5] for more detail.
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The k-active adversary X chooses to control paths p1, ..., pk−1 and path q. Thus X is able to get
shares (s1, ..., sk−1) in Step 2. With these k − 1 shares, X performs the following:
X chooses a share sXk ∈R F and two keys keyX1 , key

X
2 ∈R F (keyX1 6= keyX2 ). Corresponding to

keyX1 , X assumes that (s1, ..., sk−1, s
X
k ) are k shares of keyX1 , thus using Lagrange interpolation,

X gets another k shares (sXk+1, ..., s
X
2k) of keyX1 . Similarly, corresponding to keyX2 , X assumes that

(s1, ..., sk−1, s
X
k ) are k shares of keyX2 , and gets another k shares (sX2k+1, ..., s

X
3k) of keyX2 . X sets

vX = (s1, ..., sk−1, s
X
k , ..., s

X
3k).

In each execution step of the DW protocol, X acts passive on paths p1, ..., pk−1. Thus B sends ‘stop’
to A in Step 3. On the feedback path q that X corrupts, X ignores what B sends and forwards
vX to A. Then in Step 4, if A finds exactly k errors in vA = vX , A broadcasts P = {i : sXi 6= si},
according to which X recovers keyA = keyXj (j ∈ {1, 2}); otherwise, A broadcasts ‘stop’, and X

randomly guesses a keyX .

Fig. 1. Guessing Attack to the DW protocol.

Step 5 ...
Step 6 A broadcasts keyA +MA via all paths p1, ..., p3k, where MA is the actual message.
Step 7 ...

This single feedback channel protocol is the basis of the main protocols in [5]. We observe that this
DW protocol is 0-reliable, so in the above sketch we did not describe how B recovers the message
(see [5] for the entire protocol). Now we show that using our Guessing Attack, the adversary X can
learn the message MA with probability better than guessing.

Theorem 1 This DW protocol is not a 0-private message transmission protocol from A to B.

Proof. Due to the fact that keyA ∈R F, if this DW protocol is 0-private, then the probability that
the adversary X guesses keyA is 1

|F| . That is, X learns nothing from the shares it gets, and can only
guess a uniformly random number keyX ∈ F, and with probability 1

|F| , key
X = keyA. We call this

a random guess. Now we show a Guessing Attack by which X can learn keyA with a probability
better than 1

|F| (see Fig.1).
In this Guessing Attack, X guesses a share sXk and two keys keyX1 and keyX2 . It is straightforward

that A will broadcast P if and only if A finds exactly k errors in vX , and the k errors can only be
either (sXk+1, ..., s

X
2k) or (sX2k+1, ..., s

X
3k). That is, the guess is successful if sXk = sk and one of the two

keys is correct (i.e., keyXi = keyA, i ∈ {1, 2}). Thus the probability T that the guess is successful is

T =
1
|F|
×
(

2× 1
|F|

)
=

2
|F|2

.

If the guess fails, then X will use a random guess with probability 1
|F| to get keyX = keyA. Thus,

the total probability G that X learns keyA by performing Guessing Attack is

G = T + (1− T )× 1
|F|

>
1
|F|
.

Therefore, X can learn keyA with a probability better than 1
|F| and simultaneously recover MA

with probability better than guessing.5 Hence we proved that the DW protocol is not 0-private. ut
5 Although MA can be chosen with respect to any probability distribution (not necessarily uniform), more knowledge

of the key keyA gives better probability of getting MA.
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Note that in journal paper [27], Wang and Desmedt provided a new protocol that uses induction
when A receives tuples of shares in feedbacks (the case that Guessing Attack may happen). When
A notices that Guessing Attack may happen according to the feedbacks it receives, it uses an
induction and re-sends the message without revealing the message to the adversary (0-private).
The property of the threshold adversray, t-bounded, allows the induction to be continued until the
message is transmitted 0-reliably. Thus the protocol in [27] enables perfect security. For details of
the (0, 0)-secure message transmission protocol tolerating a threshold adversary, we refer to [27,
Theorem 4.2].

As we showed in the above example, the basic idea of Guessing Attack is to replace the feedbacks
from B to A on the feedback channel with something that may reveal the message. There is some
probability associated with this guessing of being successful.

Besides the Desmedt-Wang protocols, we observe that all protocols given by Patra et al. in [20]
that tolerate either threshold or non-threshold adversaries do not guarantee perfect privacy when
the Guessing Attack takes place, and hence they are not (0, 0)-secure. We show our Guessing
Attacks to Protocol I, Protocol II and Secure Protocol from [20] in Appendix A.

4 (0, 0)-secure message transmission

In this section, we address the question of perfectly secure message transmission, for which both 0-
private and 0-reliable message transmissions are required. That is, we shall provide a new protocol
that tolerates the Guessing Attack. We focus on a (0, 0)-secure message transmission against a
general adversary structure (as Wang and Desmedt [27] recently provided a (0, 0)-secure protocol
for the threshold case), hence our protocol can be used in more general cases. Before we show our
protocol, we generalize the following theorem based on the result by Patra et al. [20].

Theorem 2 Let G(V,E) be a directed graph, Z be an adversary structure on V \ {A,B}, and
Q 6= ∅. The necessary and sufficient conditions (CONs) for (0, 0)-secure message transmission
from A to B are:
CON-1 for any two sets Za, Zb ∈ Z: PZa∪Zb ( P, and
CON-2 for any three sets Za, Zb, Zc ∈ Z, if PZa∪Zb∪Zc = P, then out of the three sets, there is at

most one Zi (i ∈ {a, b, c}) such that QZi = Q.

We also employ a lemma from [20] for a simpler protocol, as using this lemma, we only need to
consider a set Ỹ of size 3 that contains the set Zx ∈ Z̃ that the adversary X chooses to control.

Lemma 1 (see [20]) Let Z be an adversary structure on V \ {A,B}. (0, 0)-secure message trans-
mission from A to B tolerating Z is possible if: for any monotone subset Y ⊆ Z such that |Ỹ| = 3
and Zx ∈ Ỹ, there is a (0, 0)-secure message transmission protocol from A to B tolerating Ỹ.

In [20], Patra et al. proposed a Secure Protocol tolerating Ỹ. However, the Secure Protocol is
vulnerable to Guessing Attack, and hence is not 0-private (see Appendix A for the proof).

Now we show a (0, 0)-secure message transmission protocol (PSP) under CONs tolerating such
a sub-structure Ỹ and defending Guessing Attack. First we let Ỹ = {Z1, Z2, Z3}. The case that
PZ1∪Z2∪Z3 ( P has been proved in [6]. Now we consider the case that PZ1∪Z2∪Z3 = P. Here we
employ the similar settings to the proof to [20, Theorem 10]; that is, due to CON-1, three forward
paths p1 ∈ P̄Z2∪Z3 , p2 ∈ P̄Z1∪Z3 and p3 ∈ P̄Z1∪Z2 exist to transmit messages from A to B. This
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implies that, since Zx ∈ Ỹ, the adversary X can corrupt at most one pi (1 ≤ i ≤ 3). Thus if A
sends a value via all three paths p1, p2, p3, then B can recover this value using a majority vote. In
our protocol we say that A reliably sends a value to B to indicate this kind of transmission.

Based on CON-2, we assume that QZ1 ( Q, QZ2 ( Q and QZ3 ⊆ Q. Moreover, due to CON-2,
two feedback paths q1 ∈ Q̄Z1 and q2 ∈ Q̄Z2 exist to transmit feedbacks from B to A.

In our protocol, we use 0 as default received value. That is, when A is sending to B, if B receives
nothing on path p ∈ P, then B assumes that 0 is received on path p. Similarly if A receives nothing
on path q ∈ Q from B, then A assumes that 0 is received on path q.

Underlying idea. Our protocol runs a loop. In each round of the loop, the feedback paths q1 and q2

are used to transmit only one bit: either 0 or 1. This prevents the Guessing Attack from happening at
the first place. If in a round of the loop, B found that one of the forward paths p1, p2 or p3 transmits
a faulty message, then B will send 0 via the feedback paths. If A receives 0 on qj (j ∈ {1, 2}), then A
will reliably send the message to B again, so B will then know which path pf (1 ≤ f ≤ 3) is faulty.
In the rest of the protocol, B will only recover the message on pi and pj (i, j ∈ {1, 2, 3} \ {f}), and
will not send 0 as feedback again. Therefore, if A receive 0 on qj (j ∈ {1, 2}) more than once, then
A knows that qj is faulty, and will not consider the feedbacks received on qj again in the rest of the
protocol. In our protocol, we let A use err1 and err2 to count the numbers of 0’s received on paths
q1 and q2 respectively. Furthermore, if in a round of the loop, A does not receive 0 on the feedback
path(s) that A considers not faulty, then A will not send any information about the message again,
and A knows that the message has been transmitted 0-privately. A sets a variable pri = 1 in this
case. We let the loop halt when A finds both q1 and q2 are faulty (i.e., err1 > 1 and err2 > 1), or
when A concludes that the message has been transmitted 0-privately (i.e., pri = 1). Based on this
idea, we give a (0, 0)-secure message transmission protocol (PSP) that tolerates Guessing Attack
to transmit a message mA (see Fig.2).

Lemma 2 PSP is a (0, 0)-secure message transmission protocol from A to B.

Proof. First we show that PSP is 0-private. That is, the adversary X cannot learn mA throughout
the protocol. We consider the following two cases:

1. When while loop halts, err1 > 1 and err2 > 1. As we discussed before, this case means that
both paths q1 and q2 are faulty, and X can corrupt both paths only if X chooses Z3 to control.
Thus A knows that p3 is faulty and only transmits mA

2 via path p1. It is straightforward that
X is not able to learn mA without knowing mA

2 .
2. When while loop halts, pri = 1. This case only happens when A receives 1 on each path qj

where j ∈ {1, 2} and errj ≤ 1, and A will then reliably send ‘OK’ to B. Thus the adversary X
who chooses Zx and corrupts px can get only one share sAx , and hence cannot recover mA

1 , and
simultaneously cannot learn mA.

Thus, we showed that in both cases, mA is transmitted 0-privately.
Next, we prove that PSP is 0-reliable. That is, B is guaranteed to recover mB = mA. It is

straightforward that if X keeps passive on path px (1 ≤ x ≤ 3) that it corrupts, then B can reliably
recover mB

1 = mA
1 . Now we show that if X forwards faulty shares on px, then B can get f = x (i.e.,

pf = px). When f = 0 and B finds error in the received shares in Step 2, B sends 0 to A via paths
q1 and q2. Then in Step 4, if B reliably receives mA

1 , then B can work out which path transmitted
the faulty share in the previous Step 2, thus B gets f = x; else if B reliably receives ‘OK’, then it
is straightforward that f = x = 3. Thus, B can always identify which path pf = px is faulty, and
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A sets err1 := 0, err2 := 0, pri := 0;
B sets f := 0, flag := 0;a

while (err1 ≤ 1 or err2 ≤ 1) and pri = 0 loop
A chooses an mA

1 ∈R F and constructs (2, 3, 0)-secret-shares (sA1 , s
A
2 , s

A
3 ) of mA

1 ;
Step 1 For each 1 ≤ i ≤ 3, A sends sAi to B via path pi;
Step 2 B receives three shares (sB1 , s

B
2 , s

B
3 );

if f 6= 0 then
B recovers mA

1 from shares sBi and sBj where i, j ∈ {1, 2, 3} \ {f};
B sends 1 to A via path q1 and path q2;

else if B detectsb 1 error in (sB1 , s
B
2 , s

B
3 ) then

B sends 0 to A via path q1 and path q2, and sets flag := 1;
else if B detects 0 error in (sB1 , s

B
2 , s

B
3 ) then

B recovers mA
1 from (sB1 , s

B
2 , s

B
3 ), and sends 1 to A via path q1 and path q2;

end if;
Step 3 A receives fdb1 ∈ {0, 1} on path q1 and fdb2 ∈ {0, 1} on path q2;

if err1 > 1 or err2 > 1 then
A only considers fdbh where h ∈ {1, 2} and errh ≤ 1;
if fdbh = 0 then
A sets errh := errh + 1, and reliably sends mA

1 to B;
else if fdbh = 1 then
A sets pri := 1, and reliably sends ‘OK’ to B;

end if;
else if err1 ≤ 1 and err2 ≤ 1 then

if fdb1 = fdb2 = 1 then
A sets pri := 1, and reliably sends ‘OK’ to B;

else then
A sets errh := errh + 1 for each 1 ≤ h ≤ 2 such that fdbh = 0;
A reliably sends mA

1 to B;
end if;

end if;
Stepc 4 if flag = 1 then

if B reliably receives mB
1 := mA

1 then
B sets f := l such that sBl is not a correct share of mB

1 ;
else if B reliably receives ‘OK’ then
B sets f = 3,d and recovers mB

1 from sB1 and sB2 ;
end if;

end if;
end loop; - while

a Later in PSP, if B concludes that a path pi (1 ≤ i ≤ 3) is faulty, then B sets f := i to mark the faulty path pf .
b As we mentioned in Section 2, a (k + 1, n, 0)-SSS can detect n− k − 1 errors using error-detecting code. Thus B

can detect 1 error with the (2, 3, 0)-secret-shares.
c B does not come to Step 4 unless B sent 0 as feedback in Step 2.
d In this case, B knows that A did not receive 0, so B concludes that both paths q1 ∈ Q̄Z1 and q2 ∈ Q̄Z2 are faulty.

Thus B knows that Z3, and hence p3, are faulty.

Fig. 2. Perfectly Secure Protocol (PSP). (continued on next page)
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A reliably sends ‘err1 > 1 and err2 > 1’ or ‘pri = 1’ to B;
B then halts the loop and keeps the last mB

1 ;
A sets mA

2 := mA −mA
1 ;

if err1 > 1 and err2 > 1 then
A sends mA

2 to B via paths p1;e

B receives mB
2 on path p1, and recovers mB = mB

1 +mB
2 ;

else if pri = 1 then
A reliably sends mA

2 to B;
B reliably receives mB

2 = mA
2 , and recovers mB = mB

1 +mB
2 ;

end if; - end PSP

e In this case, A concludes that both paths q1 ∈ Q̄Z1 and q2 ∈ Q̄Z2 are faulty. Thus A knows that Z3 is faulty, so
p1 ∈ P̄Z2∪Z3 is honest.

Fig. 2. Perfectly Secure Protocol (PSP). (continued)

recover mB
1 = mA

1 with the shares received on the other two paths. Since it is straightforward that
B can reliable receive mB

2 = mA
2 , B can recover mB = mA. Thus PSP is 0-reliable. ut

5 (ε, 0)-secure message transmission

In this section, we show that the necessary and sufficient conditions for achieving (ε, 0)-secure
message transmission are the same to those for achieving (0, 0)-secure message transmission. That
is, lowering privacy level does not reduce the requirement of network connectivity. Before we prove
this, we first show some results on (k + 1, n, ε)-SSS where 0 ≤ ε < 1.6 It has been discussed that a
(k + 1, n, 0)-SSS can detect n − k − 1 errors and correct b(n − k − 1)/2c errors (see [16, 17, 5]). In
the following we show that a (k + 1, n, ε)-SSS can do just the same.

Lemma 3 Let m be a secret, S be a (k+1, n, ε)-SSS and (v1, ..., vn) ∈ S(m), then any k+1 entries
of (v1, ..., vn) are unique to the codeword of S(m).

Proof. Assume there are some k + 1 entries that also belong to the codeword of S(m′), where
m′ 6= m. Then with these k + 1 entries, one cannot distinguish whether m or m′ is shared, so m
cannot be recovered with probability 1. This contradicts to property-1 of the (k + 1, n, ε)-SSS. ut

Lemma 4 Let m be a secret, S be a (k + 1, n, ε)-SSS and (v1, ..., vn) ∈ S(m). For any k such
entries vl1 , ..., vlk (1 ≤ l1 < ... < lk ≤ n), there exists a secret m′ 6= m such that (v′1, ..., v

′
n) ∈ S(m′)

and for each 1 ≤ i ≤ k : v′li = vli.

Proof. Assume that there are k entries vl1 , ..., vlk that belong to a codeword in S(m), but not to
any in S(m′), where m′ 6= m. That is, these k entries are unique to the codeword of S(m), so
m can be recovered from these k entries with probability 1. This contradicts to property-2 of the
(k + 1, n, ε)-SSS. ut

Theorem 3 A (k + 1, n, ε)-SSS can detect n− k − 1 errors, but not more.

6 See Definition 1 in Section 2 for the definition of (k + 1, n, ε)-SSS.
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Proof. Let S be a (k + 1, n, ε)-SSS and (v1, ..., vn) ∈ S(m) be a codeword. First we show that if
there is a tuple T = (u1, ..., un) such that |{i : ui 6= vi, 1 ≤ i ≤ n}| = d and 0 < d ≤ n− k− 1, then
one can detect that T is not a codeword. Since n− d ≥ n− (n− k − 1) = k + 1, there are at least
k+ 1 entries ul1 , ..., ulk+1

(1 ≤ l1 < ... < lk+1 ≤ n) such that for each 1 ≤ i ≤ k+ 1 : uli = vli . Thus
according to Lemma 3, ul1 , ..., ulk+1

are unique to the codeword of S(m). Since the d errors are not
in the codeword of S(m), it is easy to show that T is not a codeword.

Next we show that if d ≥ n − k, then the tuple T can also be a codeword of a secret m′ 6= m.
Since n − d ≤ n − (n − k) = k, there are at most k entries ul1 , ..., ulk (1 ≤ l1 < ... < lk ≤ n) such
that for each 1 ≤ i ≤ k : uli = vli . According to Lemma 4, there exists a secret m′ such that the
n − d entries belong to the codeword of S(m′), and it is possible that the d errors are also in the
codeword of S(m′). Thus T can be codeword, and hence one cannot detect d ≥ n− k errors. ut

Theorem 4 A (k + 1, n, ε)-SSS can correct b(n− k − 1)/2c errors, but not more.

Proof. Let S be a (k + 1, n, ε)-SSS and (v1, ..., vn) ∈ S(m) be a codeword. First we show that if
there is a tuple T = (u1, ..., un) such that |{i : ui 6= vi, 1 ≤ i ≤ n}| = c and c ≤ b(n − k − 1)/2c,
then one can recover the secret m from T . To correct c errors, one selects n− c entries from T and
put them into a new tuple T ′ of length n− c. Since n− c ≥ k + 1, T ′ is a corrupted codeword of a
(k+1, n−c, ε)-SSS that shares m, with at most c errors. According to Theorem 3, a (k+1, n−c, ε)-
SSS can detect

n− c− k − 1 ≥ n− b(n− k − 1)/2c − k − 1 ≥ b(n− k − 1)/2c ≥ c

errors. With at most c errors in T ′, one can detect if T ′ is a codeword. If one finds that T ′ is not a
codeword, it uses exhaustive search until it finds a T ′ that is a codeword (i.e., the c errors are not
entries in T ′), and finally recovers the secret m from T ′.

Next we show that if c > b(n− k − 1)/2c, then one cannot correct c errors and recover m from
T . We will construct the tuple T , in a way we explain further. Assume that c = b(n−k−1)/2c+ 1.
Since |{i : ui = vi, 1 ≤ i ≤ n}| = n − c ≥ k, according to Lemma 4, there exists a secret m′ 6= m
such that some k error-free entries in T not only belong to a codeword (v1, . . . , vn) ∈ S(m), but also
belong to a codeword of (v′1, . . . , v

′
n) ∈ S(m′). Let us analyze the remaining n−k entries of T . They

consist of c errors and c′ = n− k− c error-free entries, i.e., c′ entries identical to the corresponding
ones in (v1, . . . , vn). We now observe that:

c′ = n− k − c = n− k − (b(n− k − 1)/2c+ 1)
≤ 2× b(n− k − 1)/2c+ 2− (b(n− k − 1)/2c+ 1)
= b(n− k − 1)/2c+ 1
= c.

We are now in a position to prove our claim. We first explain how we construct the c entries ui in T
that differ from (v1, . . . , vn). We let these correspond to the corresponding c entries in (v′1, . . . , v

′
n).

Now since c′ ≤ c, observe that given the tuple T , one cannot distinguish whether the secret m is
shared and the c entries are errors, or the secret m′ is shared and the c′ entries are errors. Thus
cannot recover m with probability 1. ut

Now we show that the conditions for achieving (ε, 0)-secure message transmission are the same to
those for achieving (0, 0)-security.
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Theorem 5 The CONs of Theorem 2 are also necessary and sufficient for (ε, 0)-secure message
transmission.

Proof. The sufficiency of CONs is straightforward, and Patra et al.’s Secure Protocol in [20] is
actually an (ε, 0)-secure protocol. Now we prove the necessity of CONs, using a method similar
to [5, 6].

It is straightforward that CON-1 is necessary for 0-reliable message transmission from A to B.
Now we show that CON-2 is also necessary. For a contradiction, we assume that there are three
sets Z1, Z2, Z3 ∈ Z such that QZ1 ( Q, QZ2 = QZ3 = Q and PZ1∪Z2∪Z3 = P. We assume an
(ε, 0)-secure message transmission protocol Π, and show how a non-threshold adversary X can
defeat this protocol Π.

Let mA be the message that A wants to send to B. X will simulate the possible behaviors of
A and B by executing Π to transmit another message m̂A ∈ M. The strategy of X is to flip two
coins c ∈ {00, 01, 10, 11}:

- c = 00. X re-flips.
- c = 01. X chooses Z1 to control, and acts passive on all paths in PZ1 and QZ1 .
- c = 10 (or c = 11). X chooses Z2 (or Z3) to control. On all paths in PZ2 (or PZ3), X ignores

what A sends in each step of Π and simulates what A would send to B if A was sending m̂A. On
all paths in QZ2 = Q (or QZ3 = Q), X ignores what B sends in each step of Π and simulates
what B would send to A if c = 01.

Note that the simulation of X on the feedback channel Q when c = 10 or c = 11 may not
succeed, since B may send something that X fails to catch. However, there is a non-zero probability
that the simulation succeeds, given X knows the protocol and can always guess. This non-zero
probability can breach the 0-reliability, as we show next. It is straightforward that, when the
simulation succeeds, despite what the outcome of c is, the feedbacks that A receives are the same.
That is, according to the feedbacks, A will always learn that B has reliably received mA without
an error happening on the forward channel. At the end of the protocol, the view viewB of B could
be divided into three parts viewZ1 , viewZ2 and viewZ3 , where viewZi (i = 1, 2, 3) consists of all
information that paths in PZi have learned (see [6]). Since the view viewA of A is the same despite
which set of Z1, Z2 or Z3 that X chooses, and Π is ε-private, mA can be recovered from any single
viewZi with probability at most ε (ε < 1). Thus we regard (viewZ1 , viewZ2 , viewZ3) as shares of mA

in a (2, 3, ε)-SSS. Next, since Π is a 0-reliable, B should be able to recover the message mA from
two of the views (viewZ1 , viewZ2 , viewZ3) with probability 1. That is, when c = 10 or c = 11, B
should be able to distinguish which view of viewZ2 or viewZ3 contains faulty information. To sum
up, (viewZ1 , viewZ2 , viewZ3) is a (2, 3, ε)-SSS that can correct 1 error (either viewZ2 or viewZ3).
According to Theorem 4, a (2, 3, ε)-SSS can only correct b(3 − 1 − 1)/2c = 0 error. We have a
contradiction, which concludes the proof. ut

Straightforwardly, using the result of Theorem 4 and similar proof to Theorem 5, we give the
following corollary:

Corollary 1 Let 0 ≤ δ < 1
2 and 0 ≤ ε1 < ε2 < 1. In any network model and any adversary model,

the network connectivity required for (ε1, δ)-secure message transmission is the same as that for
(ε2, δ)-secure message transmission.
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for 1 ≤ i ≤ t loop
Step 1 For each pj ∈ P̄Zi , A chooses (aAi,j , b

A
i,j , c

A
i,j) ∈R F3 and sends the 3-tuple (aAi,j , b

A
i,j , c

A
i,j)

to B via path pj;
Step 2 For each pj ∈ P̄Zi , B receives (aBi,j , b

B
i,j , c

B
i,j) on path pj;

For each qj ∈ Q̄Zi , B chooses (dBi,j , e
B
i,j , f

B
i,j) ∈R F3 and sends the 3-tuple (dBi,j , e

B
i,j , f

B
i,j)

to A via path qj;
Step 3 For each qj ∈ Q̄Zi , A receives (dAi,j , e

A
i,j , f

A
i,j) on path qj;

A computes CA :=
∑

pj∈P̄Zi
aAi,j +

∑
qj∈Q̄Zi

dAi,j , D
A :=

∑
pj∈P̄Zi

bAi,j +
∑

qj∈Q̄Zi
eAi,j ,

EA :=
∑

pj∈P̄Zi
cAi,j +

∑
qj∈Q̄Zi

fAi,j;
A sends the 2-tuple (MA + EA, auth(MA + EA;CA, DA)) to B via all paths in P̄Zi;

Step 4 For each pj ∈ P̄Zi , B receives (gBi,j , h
B
i,j) on path pj;

if (gBi,j , h
B
i,j) = (gBi,k, h

B
i,k) for all pj , pk ∈ P̄Zi then

B computes CB :=
∑

pj∈P̄Zi
aBi,j +

∑
qj∈Q̄Zi

dBi,j , D
B :=

∑
pj∈P̄Zi

bBi,j +
∑

qj∈Q̄Zi
eBi,j ,

EB :=
∑

pj∈P̄Zi
cBi,j +

∑
qj∈Q̄Zi

fBi,j;
if hBi,j = auth(gBi,j ;C

B, DB) then
B recovers the message MB := gBi,j − EB, and terminates the protocol;

end if;
end if;

end loop; - end APRP

Fig. 3. Almost Perfectly Reliable Protocol (APRP)

6 (0, δ)-secure message transmission

In this section we discuss (0, δ)-secure message transmission. Achieving probabilistic reliability has
been studied extensively in the presence of a threshold adversary (see [5, 26, 24]). We use the same
network model to that in [5]. Thus our result is a generalization of the results in [5], only that we
consider a more general adversary structure.

Theorem 6 Let G(V,E) be a directed graph, Z be an adversary structure on V \ {A,B}, and
Q 6= ∅. The necessary and sufficient conditions for (0, δ)-secure (0 < δ < 1

2) message transmission
from A to B are:

(i) for any set Za ∈ Z: PZa ( P, and
(ii) for any two sets Za, Zb ∈ Z: PZa∪Zb ∪QZa∪Zb ( P ∪Q.

Proof. First we show that the conditions are necessary. It is straightforward that condition (i) must
be satisfied, since it must be ensured that at least one path can transmit the correct message from
A to B. To prove condition (ii) is also necessary, we assume that there are two sets Z1, Z2 ∈ Z such
that PZ1∪Z2 = P and QZ1∪Z2 = Q, and there is a (0, δ)-secure (0 < δ < 1

2) message transmission
protocol Π. Let MA be the message A transmits, and the adversary X chooses a faulty message
M̂A. The strategy of X is to flip a coin and decide which set of Zx (x ∈ {1, 2}) to control. In each
execution step of Π, X causes each path in PZx to follow the protocol as if the transmitted message
is M̂A; if x = 1, then on each path in QZ1 (if such path exists), X simulates what B will send if B
had received the faulty message M̂A from paths in PZ2 and received the actual message MA from
the other paths; else if x = 2, then on each path in Q̄Z1 (if such path exists), X simulates what B
will send if B had received M̂A from paths in PZ1 and received MA from the other paths.
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Therefore, at the end of the protocol, A receives the same feedbacks despite whether x = 1 or
x = 2. The view viewB of B could divided into two parts viewZ1 and viewZ2 , where viewZr (r ∈
{1, 2}) consists of all information that the nodes in Zr have learned (see similar proof in [6]). Due
to the fact that the forward channel is not reliable for message transmission, B cannot distinguish
whether x = 1 or x = 2, neither. Since Π is 0-private, MA must not be recovered from any single
viewZr . Since Π is δ-reliable, B should be able to recover the MA from one of the two views viewZ1

or viewZ2 with high probability. Thus we have a contradiction.
Next we show that the conditions are sufficient. Let Z̃ = {Z1, ..., Zt}, and MA ∈ M be the

message A wants to transmit to B. We shall construct a (0, δ)-secure message transmission protocol
(APRP), which is similar to that in [5, Theorem 3] (see Fig.3).

Due to condition (ii), X cannot corrupt all paths in P̄Zi∪Q̄Zi for any Zi ∈ Z̃. Thus it is obvious
that X cannot learn CA, DA and EA in any round i of for loop, and hence cannot recover the
message MA. Thus APRP is 0-private.

It is straightforward that in round x, all values are transmitted via paths in P̄Zx ∪ Q̄Zx . It is
clear that in this round, B can recover MB = MA, since X who chooses Zx can do nothing with
the message transmission. The reliability is breached only if in a round i of APRP, X corrupts
all paths in P̄Zi (then X cannot corrupt all paths in Q̄Zi , due to condition (ii)), and X correctly
guesses the key (CA, DA) with small probability. This makes APRP δ-reliable. ut

Acknowledgement: The authors of this paper would like to thank the anonymous referees for
their helpful comments on the earlier version of the paper.
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Appendix

A Guessing Attack to Patra et al.’s Protocols

In [20], Patra et al. proposed three protocols for secure message transmission with feedbacks:
Protocol I and Protocol II were claimed to be (0, 0)-secure against a k-active threshold adversary,
and Secure Protocol was claimed to be (0, 0)-secure against a general adversary structure. Here
we show that neither of the three protocols enables 0-private message transmission when Guessing
Attack takes place. Without loss of generality, we assume that the transmitted message m ∈R F.

Since Protocol I and Protocol II are very similar, here we only show a Guessing Attack to Protocol
I. A sketch of Protocol I (PI) is as follows.

Conditions for PI There are u ≥ 1 directed node-disjoint path from B to A and n = 3k − 2u+
1 (k ≥ 2u) directed node-disjoint paths from A to B.

Sketch of PI Let p1, ..., pn be the directed paths from A to B, q1, ..., qu be the directed path from
B to A, and m be the message.

Phase I A selects a bivariate polynomial Q(x, y) =
∑k

i=0

∑k
j=0 rijx

iyj , where each rij ∈R F
and r00 = m. For each 1 ≤ i ≤ n, A sends the polynomial Q(x, i) and the values
vji = Q(i, j) for 1 ≤ j ≤ n to B via path pi.

Phase II On each pi, B receives a polynomial QB(x, i) and values vBji for 1 ≤ j ≤ n. For each
1 ≤ i, j ≤ n, if QB(j, i) 6= vBij , then B adds a 4-tuple (i, j, QB(j, i), vBij ) to a list L. B
finally sends the list L via all paths q1, ..., qu.

Phase III A receives l ≤ u distinct lists L1, ..., Ll on the feedback channels. For each list
Lt (1 ≤ t ≤ l), A creates a list Ltfault . For each 4-tuple (iA, jA, QA(jA, iA), vA

iAjA
) in
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The adversary X chooses to control paths p1, ..., pk−u and all paths q1, ..., qu. Thus X is able to
get polynomials (Q(x, 1), ..., Q(x, k − u)) and matrix V = (vji)n×(k−u) in Phase I.
The strategy of X is to act passive in Phase I of PI. In Phase II, X guesses the 3u+ 1 polynomials
transmitted on paths pk−u+1, ..., pk+2u+1.a For each 1 ≤ t ≤ u, X sets baset = {pk−u+t, pk+t},
and also X sets a set test = {pk+u+1, ..., pk+2u+1}. Thus the 3u + 1 paths pk−u+1, ..., pk+2u+1 are
divided into u sets of size 2 and a set test such that |test| = u+ 1.
For each 1 ≤ t ≤ u, let {pa, pb} = baset, X chooses at random two polynomials QX(x, a) and
QX(x, b) and guarantees QX(l, a) = val and QX(l, b) = vbl for each 1 ≤ l ≤ k − u (X knows val
and vbl on path pl (1 ≤ l ≤ k − u)). For each k + u + 1 ≤ j ≤ k + 2u + 1 (thus pj ∈ test), X
chooses two values vXaj , v

X
bj ∈R F, and adds two 4-tuples (a, j,QX(j, a), vXaj) and (b, j,QX(j, b), vXbj )

to a list LXt ). Finally, X transmits LXt (|LXt | = 2u+ 2) to A via path qi.
In Phase III, corresponding to each LXt (1 ≤ t ≤ u), A broadcasts a pair (Lt, Ltfault). If there
exists a pa ∈ baset and pa /∈ Ltfault , then X knows that all the u+1 values of QX(j, a) (k+u+1 ≤
j ≤ k + 2u + 1) are correct, thus QX(x, a) = Q(x, a); if there exists a pj ∈ test and pj /∈ Ltfault ,
then X knows that both the two values vXaj and vXbj are correct, where ({pa, pb} = baset), thus X
gets Q(j, a) and Q(j, b) that are useful for reconstructing Q(j, y).
After PI, if X gets u+1 polynomials of Q(x, i) (k−u+1 ≤ i ≤ k+u) or X gets u+1 polynomials
Q(j, y) (k + u + 1 ≤ j ≤ k + 2u + 1), then X reconstructs Q(x, y) and recovers m; otherwise, X
uses a random guess to get a m′.
a Since k ≥ 2u, we have n = 3k − 2u+ 1 ≥ k + 4u− 2u+ 1 = k + 2u+ 1, thus such paths exist.

Fig. 4. Guessing Attack to PI.

the list Lt, A checks whether QA(jA, iA) = Q(jA, iA) and whether vA
iAjA

= viAjA . If
QA(jA, iA) 6= Q(jA, iA), then A adds piA to Ltfault ; if vA

iAjA
6= viAjA , then A adds

pjA to Ltfault .
Finally, for each 1 ≤ t ≤ l, A broadcasts the pairs (Lt, Ltfault).

...

We show that PI is not 0-private (i.e., contradict to [20, Theorem 2]) by the Guessing Attack in
Fig.4.

We observe that by performing the Guessing Attack shown in Fig.4, X can recover m by the
following two ways:

W-1 X reconstructs the coefficient of x0 in the polynomial Q(x, y). That is, X needs another u+ 1
polynomials from (Q(x, k−u+1), ..., Q(x, n)). For each polynomial Q(x, i) (k−u+1 ≤ i ≤ n),
since X has already obtained the values (Q(1, i), ..., Q(k−u, i)) (i.e., (vi1, ..., vi(k−u))), it needs
only u+ 1 values of Q(j, i) (k − u+ 1 ≤ j ≤ n) to reconstruct Q(x, i);

W-2 X reconstructs the coefficient of y0 in the polynomial Q(x, y). Since on each path pj (1 ≤ j ≤
k − u), X gets Q(j, 1), ..., Q(j, n), we know that X can reconstruct the polynomial Q(j, y).
Thus X has obtained k − u polynomials (Q(1, y), ..., Q(k − u, y)) and needs another u + 1
polynomials from (Q(k − u+ 1, y), ..., Q(n, y)). For each polynomial Q(j, y) (k − u+ 1 ≤ j ≤
n), since X has already obtained the values (Q(j, 1), ..., Q(j, k − u)) from the polynomials
(Q(x, 1), ..., Q(x, k−u)), it needs only u+1 values of Q(j, i) (k−u+1 ≤ i ≤ n) to reconstruct
Q(j, y).

Therefore, X gets a Q(x, i) (k−u+1 ≤ i ≤ k+u) only if all the u+1 values of QX(j, i) (k+u+1 ≤
j ≤ k+2u+1) are correct, and since these values are independent, we have the probability P1 with
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which X gets the polynomial Q(x, i) is

P1 =
(

1
|F|

)u+1

.

We assume that X reconstructs Q(x, y) using W-1. That is, out of the 2u polynomials QX(x, i) (k−
u + 1 ≤ i ≤ k + u) that X guesses, at least u + 1 are correct. The probability P2 to correctly
reconstruct Q(x, y) is

P2 =
(

2u
u+1

)
× P u+1

1 × (1− P1)u−1

+
(

2u
u+2

)
× P u+2

1 × (1− P1)u−2 +
...
+
(

2u
2u

)
× P 2u

1 .

For each pj ∈ test, X needs to guess two random values for each path qt (1 ≤ t ≤ u), and if
pj /∈ Ltfault , then both the guess must be correct. Thus, in total u pairs of values will be guessed
corresponding to the polynomial Q(j, y) (k + u + 1 ≤ j ≤ k + 2u + 1), and at least u + 1 correct
guesses of vXyj-s are required to reconstruct Q(j, y). Thus the probability P3 with which X gets a
Q(j, y) is

P3 =
( u
b (u+1)+1

2
c
)
×
(

1
|F|2

)b (u+1)+1
2

c
×
(

1− 1
|F|2

)(
u−b (u+1)+1

2
c
)

+
( u
b (u+1)+1

2
c+1

)
×
(

1
|F|2

)(
b (u+1)+1

2
c+1

)
×
(

1− 1
|F|2

)(
u−b (u+1)+1

2
c−1

)
+

...

+
(
u
u

)
×
(

1
|F|2

)u
.

We assume that X reconstructs Q(x, y) using W-2. That is, all the u+1 polynomials QX(j, y) (k+
u+1 ≤ j ≤ k+2u+1) that X guesses must be correct. Thus the probability P4 that X reconstructs
Q(x, y) with is

P4 = P u+1
3 .

Therefore, by using W-1 or7 W-2, the probability T that X successfully get m with is

T = P2 + P4 − P2P4.

If the guess fails, X will use a random guess to get an m′ with probability 1
|F| such that m′ = m

(without loss of generality, we assume m ∈R F). Thus the total probability G that X learns m
using the Guessing Attack is

G = T + (1− T )× 1
|F|
.

Thus we proved that PI is not 0-private.

Now, we prove that Secure Protocol (SP), which is a three phase protocol tolerating a subset B of
an adversary structure Z where |B̃| = 3, is not 0-private. To show our Guessing Attack, we first
sketch SP in the following.
7 We observe that W-1 and W-2 can be used together. E.g., the reconstruction of one Q(x, i) gives better probability

to reconstruct a Q(j, y), because X can get an extra Q(j, i) from Q(x, i), and hence needs only u values of Q(j, y)
(instead of u + 1 values) to reconstruct the polynomial Q(j, y). Since the goal here is only to show the Guessing
Attack to PI, we do not calculate this probability here.
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The adversary X chooses Z3 to control; that is, X corrupts both q1 and q2. In Phase I of SP,
X can only get Q(x, 3), with which X knows Q(1, 3) and Q(2, 3), thus it only needs the value of
Q(1, 2) to recover m. In each phase of SP, X acts passive on paths in PZ3 . Thus B does not use
the feedback channel throughout the protocol. In Phase II of SP, X chooses four distinct random
numbers vX1 , v

X
2 , v

X
3 , v

X
4 ∈R F, and transmits two 4-tuples (1, 2, vX1 , v

X
2 ) and (1, 2, vX3 , v

X
4 ) to A.

Then in Phase III, if corresponding to a value vXi (1 ≤ i ≤ 4), no appended error message “Path γ
is faulty” (γ is either p1 or p2) is broadcast by A, then X knows that vXi is correct (i.e., = Q(1, 2)),
and hence recovers m; otherwise, X uses a random guess over F \ {vX1 , vX2 , vX3 , vX4 } to get an m′.

Fig. 5. Guessing Attack to SP.

Conditions for SP Let B̃ = {Z1, Z2, Z3}. (1) there is a PRMT (perfectly reliable message trans-
mission) protocol from A to B, and (2) if PZ1∪Z2∪Z3 = P, then there exist two paths qα ∈
Q̄Zα , qβ ∈ Q̄Zβ (α, β ∈ {1, 2, 3}).

Sketch of SP Due to the existence of PRMT, there exist three paths p1 ∈ P̄Z2∪Z3 , p2 ∈ P̄Z1∪Z3 ,
and p3 ∈ P̄Z1∪Z2 (see [6]). Let m be the message that A transmits to B.

Phase I A chooses a bivariate polynomial Q(x, y) =
∑1

i=0

∑1
j=0 ri,jx

iyj uniformly at random
such that Q(0, 0) = m. Q(x, y) is symmetric; i.e., Q(i, j) = Q(j, i). A sends the
polynomial Q(x, i) to B via path pi, 1 ≤ i ≤ 3.

Phase II B receives the polynomial QBi (x) = QB(x, i) on path pi, 1 ≤ i ≤ 3. Out of the three
QBi (x)-s, at most one is corrupted. B then performs tests to determine which path
pi is faulty.8 According to the outcome of the tests:

- if B concludes that all pi-s (1 ≤ i ≤ 3) are honest, then B recovers m and
terminates the protocol;

- if B finds which pi (1 ≤ i ≤ 3) is faulty, then B recovers m and terminates the
protocol;

- if B finds one of the two paths pi and pj (1 ≤ i, j ≤ 3 and i 6= j) is faulty but
cannot distinguish which one, then B sends a 4-tuple (i, j, QBi (j), QBj (i)) to A
via paths qα and qβ.

Phase III A receives two 4-tuples: (iα, jα, viα , vjα) on path qα and (iβ, jβ, viβ , vjβ ) on path qβ.
- Corresponding to (iα, jα, viα , vjα), A checks whether viα = Q(jα, iα) and whether
vjα = Q(iα, jα). Depending on the outcome, A concludes which path piα or pjα
is faulty, and appends an error message “Path γ is faulty” (γ is either piα or pjα)
to (iα, jα, viα , vjα).

- A performs similar computation to the other 4-tuple (iβ, jβ, viβ , vjβ ).
- A broadcasts the two 4-tuples along with the appended error messages.

...

Next we show that the adversary X can learn the message m by performing Guessing Attack
(contradict to [20, Lemma 12]).

We assume there exist a path q1 ∈ Q̄Z1 and a path q2 ∈ Q̄Z2 , and q1, q2 ∈ QZ3 . We show that
by performing the Guessing Attack in Fig.5, X can learn m with probability better than 1

|F| .
In this Guessing Attack, the guess is successful if there is a vXi = Q(1, 2) = Q(2, 1) (1 ≤ i ≤ 4),

so A will broadcast the error message that indicates the value of Q(1, 2) to X. Thus the probability
T that the guess is successful is

T = 4× 1
|F|

=
4
|F|
.

8 The details of the tests are not important here. For more details see [20, Secure Protocol].
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If the guess fails, then X knows that neither of the four random numbers it chose is correct, so
it will use a random guess over F \ {vX1 , vX2 , vX3 , vX4 } and with probability 1

|F|−4 , it will learn the
message m. Thus the total probability G that X learns m using Guessing Attack is

G = T + (1− T )× 1
|F| − 4

=
4
|F|

+
(

1− 4
|F|

)
× 1
|F| − 4

=
5
|F|
.

It is straightforward that the probability that X learns m is much higher than expected (i.e., 1
|F|),

thus SP is not 0-private.

18


