
Cryptographic Accumulators for Authenticated Hash Tables∗

Charalampos Papamanthou† Roberto Tamassia‡ Nikos Triandopoulos§

December 18, 2009

Abstract

Hash tables are fundamental data structures that optimally answer membership queries.
Suppose a client stores n elements in a hash table that is outsourced at a remote server. Au-
thenticating the hash table functionality, i.e., verifying the correctness of queries answered by
the server and ensuring the integrity of the stored data, is crucial because the server, lying
outside the administrative control of the client, can be malicious.

We design efficient and secure protocols for optimally authenticating (non-)membership
queries on hash tables, using cryptographic accumulators as our basic security primitive and
applying them in a novel hierarchical way over the stored data. We provide the first construc-
tion for authenticating a hash table with constant query cost and sublinear update cost, strictly
improving upon previous methods.

Our first solution, based on the RSA accumulator, allows the server to provide a proof
of integrity of the answer to a membership query in constant time and supports updates in
O (nǫ log n) time for any fixed constant 0 < ǫ < 1, yet keeping the communication and verifica-
tion costs constant. It also lends itself to a scheme that achieves different trade-offs—namely,
constant update time and O(nǫ) query time.

Our second solution uses an accumulator that is based on bilinear pairings to achieve O(nǫ)
update time at the server while keeping all other complexities constant. Both schemes apply to
two concrete data authentication models and an experimental evaluation shows good scalability.

∗A preliminary version of this work was presented at the 15th ACM Conference on Computer and Communications
Security (CCS), Alexandria, VA, 2008.

†Department of Computer Science, Brown University. Email: cpap@cs.brown.edu.
‡Department of Computer Science, Brown University. Email: rt@cs.brown.edu.
§Department of Computer Science, Boston University and Department of Computer Science, Brown University.

Email: nikos@cs.bu.edu. Research performed primarily while the author was with the Department of Computer
Science at Aarhus University, Denmark.

1

Contents

1 Introduction 3
1.1 Our contributions . 5
1.2 Related work . 6
1.3 Organization of the paper . 7

2 Preliminaries 7
2.1 Hash tables . 7
2.2 The RSA accumulator . 8
2.3 The bilinear-map accumulator . 10
2.4 Set-membership authentication schemes . 12

3 Scheme based on the RSA accumulator 13
3.1 The accumulation tree . 13
3.2 System setup . 15
3.3 Main authenticated data structure . 15
3.4 Authenticating static sets . 17
3.5 Authenticating dynamic hash tables . 20
3.6 Two-party model . 26
3.7 A more practical scheme . 29

4 Scheme based on the bilinear-map accumulator 31
4.1 System setup . 31
4.2 Main authenticated data structure . 31
4.3 Authenticating static sets . 33
4.4 Three-party model . 35
4.5 Two-party model . 36

5 Analysis and evaluation 38
5.1 Hash table using the RSA accumulator . 38
5.2 Hash table using the bilinear-map accumulator . 40
5.3 Comparison . 41

6 Conclusions and future work 42

2

1 Introduction

Online storage of data (e.g., Amazon’s S3 storage service) is becoming increasingly popular for both
corporations and consumers. Clients create virtual drives consisting of online storage units that
are operated by remote and geographically dispersed servers. In addition to being a convenient
solution for data archiving or backups, remote storage allows for load-balanced distributed data
management (e.g., database outsourcing). Indeed, large data volumes can become available to end
applications through high-bandwidth connections to the data-hosting servers, which can rapidly
answer queries arriving at high rates. Hence, data sources need to be online only when they wish
to update their published data.

In several settings, the ability to check the integrity of remotely stored data is an important
security property. Namely, we would like to detect both data corruption caused by a faulty server
(e.g., because of hardware issues or software errors) and data tampering performed by an attacker
that compromises the server (e.g., deliberate deletion or modification of files). Without some kind
of verification mechanism, errors and attacks cannot be detected, no matter what trust relations
the client and the server may a priori share. Thus, it is desirable that operations on remote data
be authenticated. That is, answers to client queries should be verified and either validated to be
correct or rejected because they do not reflect the true state of the client’s outsourced data.

In this paper, we study a fundamental data authentication problem, where we wish to authenti-
cate membership queries over a dynamic set of n data elements stored in a hash table maintained by
an untrusted server. Used by numerous applications, hash tables are simple and efficient data struc-
tures for answering set-membership queries optimally, in expected constant time—it is therefore
important in practice, and also theoretically interesting, to authenticate their functionality.

Following a standard approach, we augment the hash table with an authentication structure
that uses a cryptographic primitive to define a succinct (e.g., a few bytes long) and secure digest,
a “fingerprint” of the entire stored set. Computed on the correct data, this digest will serve as a
secure set description subject to which the answer to a (non-)membership query will be verified
at the client by means of a corresponding proof that is provided by the server. Our main goal
is to design protocols that implement this methodology both securely, against a computationally
bounded server, and efficiently, with respect to any communication and computation overheads
incurred due to the hash-table authentication.

In particular, we wish to minimize the amount of authentication information sent by the data
source to the server to perform an update and also the size of the proof sent by the server to the
client to demonstrate the correctness of the answer—ideally, we would like to keep both complexities
constant. Analogously, since client-side applications may connect to the server from mobile devices
with limited computing power and slow connectivity (e.g., cell-phones), we would like to make the
verification computation performed by the client as efficient as possible, ideally with complexity
that is independent of the size of set. More importantly, we wish to preserve the optimal query
complexity of the hash table, while keeping the costs due to set updates sublinear in the set’s size:
ideally, the server should authenticate (non-)membership queries in constant time, or otherwise we
lose the optimal property that hash tables offer!

Developing secure protocols for hash tables that authenticate (non-)membership queries in
constant time has been a long-standing open problem [32]. Using cryptographic (collision resistant)
hashing and Merkle’s tree construction [30] to produce the set digest, (non-)membership queries
in sets can be authenticated with logarithmic costs (e.g., [7, 21, 32, 37, 42]), which is optimal
for any hash-based approach, as it has been shown in [41]. Breaking this logarithmic barrier,
therefore, requires employing an alternative cryptographic primitive. One-way accumulators and
their dynamic extensions [4, 6, 10, 11, 34] are constructions for accumulating a set of n elements

3

into a short value, subject to which each accumulated element has a short witness (proof) that
can be used to verify in constant time its membership in the set. Although this property, along
with precomputed element witnesses, clearly allows for set-membership verification in O(1) time,
it has not been known how this can lead to practical schemes: indeed, straightforward techniques
for recomputing the correct witnesses after element updates require at least linear work (O(n) or
O(n logn) depending on the accumulator), thus resulting in high update costs at the server.

In our main result we show how to use two different accumulator schemes (e.g., [11, 34]) in a hi-
erarchical way over the set and the underlying hash table, to securely authenticate both membership
and non-membership queries and fully achieve our complexity goals. That is, in our authentication
schemes communication and verification costs are constant, the query cost is constant and the
update cost is sublinear, realizing the first authenticated hash table with this performance. Our
scheme strictly improves upon previous schemes based on accumulators. We base the security of
our protocols on two widely accepted assumptions, the strong RSA assumption [4] and the q-strong
Diffie-Hellman assumption [8].

Moreover, aiming at authentication solutions that cover a wide application area, we instantiate
our core authentication scheme—without sacrificing its performance guarantees—to two concrete,
widely-used data authentication models, which we call the three-party and two-party authentication
models, both closely related to our remote-storage setting.

The three-party model has been used to define the concept of authenticated data structures [32,
40] and involves a trusted source that replicates a data set to one or more untrusted servers, as
well as one or more clients that access this data set by querying one of the servers. Along with
the answer to a query, a server provides the client with a proof that when combined with the
(authentic) data-set digest can verify the correctness of the answer. This digest is, periodically or
after any update, produced, time-stamped (to defeat replay attacks) and signed by the source (a
PKI is assumed), and is forwarded to the server(s) to be included in any answer sent to a client.
This model offers load-balancing and computation outsourcing for data publication applications,
therefore the source typically keeps the same data set and authentication structure as the server;
this can potentially allow the source to facilitate the server’s task by communicating appropriate
update authentication information after set updates.

The two-party model, instead, involves a client that, being simultaneously the data source and
the data consumer, fully outsources the data set to an untrusted server, keeping locally only the
data-set digest (of constant size), subject to which any operation (update or query, executed by
the server) on the remotely stored data is verified, again using a corresponding proof provided by
the server. This model offers both storage and computation outsourcing, but only the data owner
has access to the stored set. Here, the main challenge is to maintain at all times a state (digest)
that is consistent with the history of updates, typically requiring more involved authentication
structures. This model is related to the memory-checking model [7, 33]. For a detailed description
of the models we refer to [19, 21, 37]. Note that in both models (three-party and two-party) we
assume the existence of a public key pk (see Section 2.4) that contains public information available
to both the client and the untrusted server (and also to the source for the case of the three-party
model). Moreover, in the three-party model, where PKI is used, pk also contains the public key
of the signature scheme used by the source, which is used by the client for verification. Finally we
note that this public key does not come along with a respective “private” key, as it happens with
signature schemes. It just refers to information that is publicly available (to which the adversary
has access), as opposed to information that is crucial for the security of the system and is therefore
kept secret from the adversary, such as the trapdoor information.

Finally, to meet the needs of different data-access patterns, in our solution based on RSA ac-
cumulators, we extend both our three-party and our two-party authentication schemes to achieve

4

Table 1: Comparison of existing schemes for membership authentication in a set of size n w.r.t.
used techniques and various complexity measures. Here, 0 < ǫ < 1 is a fixed constant, NA stands
for “not applicable”, DH for “Diffie-Hellman”, exp for “exponentiation” and BM for “bilinear map”.
All complexity measures refer to n (not the security parameter) and are asymptotic expected val-
ues. Allowing sublinear updates and extensions for different update/query trade-offs, our schemes
perform better than existing ones. Update costs in our schemes are expected amortized values. In
all schemes, the server uses O(n) space and the client uses O(1) space. In the 3-party model an
additional signature cost is incurred (signed digest).

reference model assumption proof update query update verify crypto
size info. time time time oper.

[7, 21, 29, 32, 37] both collision resistance logn 1 logn log n logn hashing

[3] 2-party strong RSA 1 NA 1 NA 1 exp

[11, 39] both strong RSA 1 1 1 n log n 1 exp

[34] both strong DH 1 1 1 n 1 exp, BM

[20] 3-party strong RSA 1 nǫ nǫ nǫ 1 exp

main scheme (a) both strong RSA 1 1 1 nǫ logn 1 exp

main scheme (b) both strong DH 1 1 1 nǫ 1 exp, BM

extension both strong RSA 1 1 nǫ 1 1 exp

a reverse performance, i.e., sublinear query cost, but constant update cost. Also, aiming at prac-
tical solutions, we perform a detailed evaluation and performance analysis of our authentication
schemes, discussing many implementation details and showing that, under concrete scenarios and
certain standard assumptions related to cryptographic hashing, our protocols achieve very good
performance, scalability and a high degree of practicality.

1.1 Our contributions

1. We propose a new cryptographic construction for set-membership verification that is based
on combining accumulators in a nested way over a tree of constant depth. We instantiate our
solution with two different accumulators, namely the RSA accumulator [4] and the bilinear-
map accumulator [34] and formally prove the security of our new schemes based only on
widely accepted and used cryptographic assumptions, namely the strong RSA assumption [4]
and the q-strong Diffie-Hellman assumption [8];

2. We introduce authenticated hash tables and we show how to exploit the efficiency of hash
tables to develop an authenticated data structure supporting both membership and non-
membership queries on sets drawn from general (ordered) universes. We give solutions for
authenticating a hash table both in the two-party and three-party authentication models;

3. We improve the complexity bounds of previous work while still being provably secure. Let
0 < ǫ < 1 be a fixed constant. For the RSA accumulator solution, we reduce the query
time and the size of the update authentication information from O(nǫ), as it appears in [20],
(previously, the best known upper bound for authenticating set-membership queries using
RSA accumulators) to O(1), keeping the update time sublinear (i.e., O (nǫ log n)). This
answers an open problem posed in [32]. Also, we extend our scheme to get a different trade-
off between query and update costs, namely constant update time with O(nǫ) query time (see
Table 1). For the bilinear-map accumulator solution we improve the update time from O(n),
as it appears in [34], to O(nǫ), while keeping all the other complexity measures constant;

5

4. We give a practical evaluation of our schemes using state-of-the-art software [1, 2] for primi-
tive operations (namely, modular exponentiations, multiplications, inverse computations and
bilinear maps);

5. We propose studying lower bounds for authenticated set-membership queries using crypto-
graphic accumulators.

1.2 Related work

There has been a lot of work on authenticating membership queries using different algorithmic and
cryptographic approaches. A summary and qualitative comparison can be found in Table 1.

Several authenticated data structures based on cryptographic hashing have been developed for
membership queries (e.g., [7, 21, 29, 32, 37]), both in the two-party and three-party authentication
models. These data structures achieve O(log n) proof size, query time, update time and verification
time. As shown in [41], these bounds are optimal for hash-based methods. Variations of this
approach and extensions to other types of queries have also been investigated (e.g., [9, 18, 23, 42]).

Solutions for authenticated membership queries in various settings using another cryptographic
primitive, namely one-way accumulators, were introduced by Benaloh and de Mare [6]. Based on
the RSA exponentiation function, this scheme implements a secure one-way function that satisfies
quasi-commutativity, a useful property that common hash functions lack. This RSA accumulator
is used to securely summarize a set so that set-membership can be verified with O(1) overhead.
Refinements of the RSA accumulator are also given in [4], where except for one-wayness, collision
resistance is achieved, and also in [17, 39]. Dynamic accumulators (along with protocols for zero-
knowledge proofs) were introduced in [11], where, using the trapdoor information (these protocols
are secure, assuming an honest prover), the time to update the accumulated value or a witness is
independent on the number of the accumulated elements.

A first step towards a different direction, where we assume that we cannot trust the prover
and therefore the trapdoor information (e.g., the group order φ(N)) is kept secret, but where the
resulting schemes are applicable only to the three-party model, was made in [20]; in this work,
general O(nǫ) bounds are derived for various complexity measures such as query and update time.
An authenticated data structure that combines hierarchical hashing with the accumulation-based
scheme of [20] is presented in [22], and a similar hybrid authentication scheme appears in [35].

Accumulators using other cryptographic primitives (general groups with bilinear pairings) the
security of which is based on other assumptions (hardness of strong Diffie-Hellman problem) are
presented in [10, 34]. However, updates in [34] are inefficient when the trapdoor information is not
known: individual precomputed witnesses can each be updated in constant time, thus incurring
a linear total cost for updating all the witnesses after an update in the set. Also in [10], the
space needed is proportional to the number of elements ever accumulated in the set (book-keeping
information of considerable size is needed), or otherwise important constraints on the range of
the accumulated values are required. Efficient dynamic accumulators for non-membership proofs
are presented in [26]. Accumulators for batch updates are presented in [44] and accumulator-like
expressions to authenticate static sets for provable data possession are presented in [3, 16]. The
work in [38] studies efficient algorithms for accumulators with unknown trapdoor information.
Finally in [15] and simultaneously with our work, logarithmic lower bounds as well as constructions
achieving query-update cost trade-offs that are similar to our work, have been studied in the
memory-checking model.

6

1.3 Organization of the paper

In Section 2, we introduce some necessary cryptographic and algorithmic ideas needed for the
development of our construction. We also give the security definition of our schemes. In Section 3,
we develop our first solution based on the RSA accumulator and present the main proof of security.
In Section 4, we present our second solution that is based on bilinear maps. In Section 5, we provide
an evaluation and analysis of our authentication methods showing their practicality, and finally in
Section 6, we conclude with future work and interesting open problems.

2 Preliminaries

In this section we describe some algorithmic and cryptographic primitives and other useful concepts
that are used in our approach.

2.1 Hash tables

The main functionality of the hash table data structure is to support look-ups of elements that
belong to a general set (i.e., not necessarily ordered). Different ways of implementing hash tables
have been extensively studied (e.g., [14, 24, 25, 27, 31]). Suppose we wish to store n elements from
a universe U in a data structure so that we can have expected constant look-up time. For totally
ordered universes and by searching based on comparisons, it is well known that we need Ω(logn)
time. Hash tables, however, achieve better efficiency as follows.

• Set up an one-dimensional table T [1 . . .m] where m = O(n);

• Pick a function h : U → {1, . . . ,m}, called hash function, randomly selected from a family of
two-universal hash functions (also used in Lemma 1). Thus, for any two elements e1, e2 ∈ U ,
we have Pr [h(e1) = h(e2)] ≤

1
m ;

• Store element e in slot T [h(e)] of the table.

The probabilistic property that holds for hash function h implies that for any slot of the table,
the expected number of elements mapped to it is O(1). Also, if h can be computed in O(1) time,
looking-up an element takes expected constant time.

But the above property of hash tables comes at some cost. The expected constant-time look-up
holds when the number of elements stored in the hash table does not change, i.e., when the hash
table is static. In particular, because of insertions, the number of elements stored in a slot may
grow and we cannot assume anymore that is expected to be constant. A different problem arises
in the presence of deletions as the number n of elements may become much smaller than the size
m of the hash table. Thus, we may no longer assume that the hash table uses O(n) space.

In order to deal with updates, we periodically update the size of the hash table by a constant
factor (e.g., doubling or halving its size). This is an expensive operation since we have to rehash
all the elements. Therefore, there might be one update (over a course of O(n) updates) that takes
O(n) rather than O(1) time. Thus, hash tables for dynamic sets typically have expected O(1) query
time O(1) expected amortized time. Methods that vary the size of the hash table for the sake of
maintaining O(1) query time, fall into the general category of dynamic hashing.

The above discussion is summarized in the following theorem.

Theorem 1 (Dynamic hashing [13]) For a set of size n, dynamic hashing can be implemented
to use O(n) space and have O(1) expected query time for (non-)membership queries and O(1)
expected amortized cost for elements insertions or deletions.

7

Before we define some cryptographic primitives, it is useful to give the definition of a negligible
function, where k denotes the security parameter.

Definition 1 (Negligible function) We say that a real-valued function ν(k) over natural num-
bers is negligible if for any positive polynomial p, there exists integer m such that ∀n > m,
|ν(n)| < 1

p(n) . We refer to a negligible function ν(k) also by saying that ν(k) is neg(k).

2.2 The RSA accumulator

We now give an overview of the RSA accumulator, which will be used for the construction of our
first solution.

Prime representatives. For security and correctness reasons that will soon become clear, in our
construction we extensively use the notion of prime representatives of elements. Initially introduced
in [4], prime representatives provide a solution whenever it is necessary to map general elements
to prime numbers. In particular, one can map a k-bit element ei to a 3k-bit prime xi using two-
universal hash functions [12].

We say that a family of functions H = {h : A→ B} is two-universal if, for all w1 6= w2 and for
a randomly chosen function h from H, we have

Pr[h(w1) = h(w2)] ≤
1

|B|
.

In our context, set A is the set of of 3k-bit boolean vectors, B is the set of k-bit boolean vectors,
and we use the two universal function

h(x) = Fx ,

where F is a k×3k boolean matrix. Since the linear system h(x) = Fx has more than one solutions,
one k-bit element is mapped to more than one 3k-bit elements. We are interested in finding only
one such solution which is prime; this can be computed efficiently according to the following result:

Lemma 1 (Prime representatives [17, 20]) Let H be a two-universal family of functions map-
ping {0, 1}3k to {0, 1}k and let h ∈ H. For any element ei ∈ {0, 1}

k, we can compute a prime
xi ∈ {0, 1}

3k such that h(xi) = ei by sampling O(k2) times with high probability from the set of
inverses h−1(ei).

Lemma 1 implies that we can compute prime representatives in expected constant time, since
the dimension of our problem is the number n of the elements in the hash table. Also, solving the
k × 3k linear system in order to compute the set of inverses can be performed in polynomial time
in k by using standard methods (e.g., Gaussian elimination). Finally, we note that, in our context,
prime representatives are computed and stored only once. Indeed, using the above method multiple
times for computing the prime representative of the same element will not yield the same prime as
output, for Lemma 1 describes a randomized process. From now on, given a k-bit element x, we
denote with r(x) the 3k-bit prime representative that is computed as described above.

The RSA accumulator. We now give an overview of the RSA accumulator [4, 6, 11], which
provides an efficient technique to produce a short (computational) proof that a certain element
is a member of a set. The RSA accumulator works as follows. Suppose we have the set of k-bit
elements E = {e1, e2, . . . , en}. Let N be a k′-bit RSA modulus (k′ > 3k), namely N = pq, where p,
q are strong primes [11]. We can represent E compactly and securely with an accumulation value,
which is a k′-bit integer, as follows

f(E) = gr(e1)r(e2)...r(en) mod N ,

8

where g ∈ QRN and r(ei) is a 3k-bit prime representative. Note that the RSA modulus N ,
the exponentiation base g and the two-universal hash functions comprise the public key pk, i.e.,
information that is available to the adversary. Subject to the accumulation f(E), every element ei
in set E has a membership witness (or proof), namely the value

Aei
= g

Q

ej∈E:ej 6=ei
r(ej)

mod N .

Given the accumulation value f(E) and a witness Aei
, membership of ei in E can be verified by

computing A
r(ei)
ei mod N and checking that this equals f(E).

The above representation has also the property that any computationally bounded adversary
A who does not know φ(N) cannot find another set of elements E ′ 6= E such that f(E ′) = f(E),
unless A breaks the strong RSA assumption [4], which is stated as follows:

Definition 2 (Strong RSA assumption) Given an RSA modulus N and a random element x ∈
ZN , it is hard (i.e., it can be done with probability that is neg(k), which is negligible in the security
parameter k) for a computationally bounded adversary A to find y > 1 and a such that ay = x
mod N .

The security of our RSA-accumulator solution is based on the following result. To assist the reader,
we also recall the proof of that Lemma, originally given in [4].

Lemma 2 (Security of the RSA accumulator [4]) Let k be the security parameter, h be a
two-universal hash function that maps 3w-bit integers to w-bit integers and N be a (3w + 1)-bit
RSA modulus. Given a set of elements E, the probability that a computationally bounded adversary
A, knowing only N and g, can find a set E ′ 6= E with the same accumulation as E (i.e, f(E ′) = f(E))
is neg(k).

Proof: Suppose A finds such a set E ′. That means that A finds another set {e′1, e
′
2, . . . , e

′
n′} 6=

{e1, e2, . . . , en} such that

gr(e1)r(e2)...r(en) = gr(e
′
1)r(e′2)...r(e′

n′) mod N .

By the way we construct the prime representatives, it is not possible that a prime representative
can be associated with two different elements. Therefore, it also holds {r(e1), r(e2), . . . , r(en)} 6=
{r(e′1), r(e

′
2), . . . , r(e

′
n′)} which implies that the adversary can find a value A and an index j such

that
Ar(ej) = gr(e

′
1)r(e′2)...r(e′

n′) mod N ,

where
A = g

Q

i6=j r(ei) mod N .

Let now e = r(ej) and r = r(e′1)r(e
′
2) . . . r(e

′
n′). The adversary can now compute the e-th root

of g as follows: A computes a, b ∈ Z such that ar + br(ej) = 1 by using the extended Euclidean
algorithm, since r(ej) is a prime. Let now y = Aagb. It is

ye = Aar(ej)gbr(ej) = gar+br(ej) = g mod N

and, therefore, A can break the strong RSA assumption which occurs with probability ν(k), where
ν(k) is neg(k). 2

Using the same proof arguments, the following corollary holds.

9

Corollary 1 Let k be the security parameter, h be a two-universal hash function mapping 3w-bit
integers to w-bit integers and N be a (3w + 1)-bit RSA modulus. Given a set of elements E and
h, the probability that a computationally bounded adversary A, knowing only N and g, can find A
and x /∈ E such that Ar(x) = f(E) is neg(k).

2.3 The bilinear-map accumulator

We next give an overview of the bilinear-map accumulator which will be used for the construction
of our second solution.

Bilinear pairings. Before presenting the bilinear-map accumulator we describe some basic ter-
minology and definitions about bilinear pairings. Let G1, G2 be two cyclic multiplicative groups
of prime order p, generated by g1 and g2 and for which there exists an isomorphism ψ : G2 → G1

such that ψ(g2) = g1. Here, GM is a cyclic multiplicative group with the same order p and
e : G1 ×G2 → GM is a bilinear pairing with the following properties:

1. Bilinearity: e(P a, Qb) = e(P,Q)ab for all P ∈ G1, Q ∈ G2 and a, b ∈ Zp;

2. Non-degeneracy: e(g1, g2) 6= 1;

3. Computability: There is an efficient algorithm to compute e(P,Q) for all P ∈ G1 and Q ∈ G2.

In our setting we have G1 = G2 = G and g1 = g2 = g. A bilinear pairing instance generator is a
probabilistic polynomial time algorithm that takes as input the security parameter 1k and outputs
a uniformly random tuple t = (p,G,GM , e, g) of bilinear pairings parameters. Later we are going
to see that the security of the bilinear-map accumulator is based on an assumption that is related
to the bilinear pairings.

The bilinear-map accumulator. Similarly with the RSA accumulator, the bilinear-map accu-
mulator [34] is an efficient way to provide short proofs of membership for elements that belong to
a set. The bilinear-map accumulator works as follows. It accumulates elements in Z∗

p (where p is a
prime) and the accumulated value is an element in G. Given a set of n elements E = {e1, e2, . . . , en}
the accumulation value f ′(E) is defined as

f ′(E) = g(e1+s)(e2+s)...(en+s) ,

where g is a generator of group G of prime order p and s ∈ Z∗
p is a randomly chosen value that

constitutes the trapdoor in the scheme (in the same way that φ(N) was the trapdoor in the RSA
accumulator). The proof of membership for an element ei that belongs to set E will be the witness

Aei
= g

Q

ej∈E:ej 6=ei
(ej+s)

.

Accordingly, a verifier can test set membership for ei by computing A
(ei+s)
ei and checking that this

equals f ′(E).
Here we have to make an important observation: The group G is generic. That means that its

elements are not simple integers and doing operations between two elements of G can be compli-
cated. We are going to refer to the implementation of G later in the paper. Also the operations in
the exponent of elements of G are performed modulo p, since this is the order of the group G. The
security of the bilinear pairings accumulator is based on the q-strong Diffie-Hellman assumption
which can be stated as follows:

10

Definition 3 (q-strong Diffie-Hellman assumption) Given a uniformly randomly generated
tuple t = (p,G,GM , e, g) of bilinear pairings parameters and the elements of GM g, gs, gs

2
, . . . , gs

q

for some s chosen at random from Z∗
p, it is hard (i.e., it can be done with probability that is neg(k),

which is negligible in the security parameter k) for a computationally bounded adversary A to find
c ∈ Zp and output (c, g1/(s+c)).

We now recall the main security claim for the bilinear pairings accumulator, i.e., that it provides
collision resistance:

Lemma 3 (Security of the bilinear-map accumulator [34]) Let k be the security parameter
and t = (p,G,GM , e, g) be a uniformly randomly generated tuple of bilinear pairings parameters.
Given a set of elements E, the probability that a computationally bounded adversary A, knowing
only g, gs, gs

2
, . . . , gs

q

(q ≥ |E|) for some s chosen at random from Z∗
p and t, can find a set E ′ 6= E

(q ≥ |E ′|) such that f ′(E ′) = f ′(E) is neg(k).

Proof: Suppose A finds such a set E ′. That means that A finds another set {e′1, e
′
2, . . . , e

′
n′} 6=

{e1, e2, . . . , en} such that

g(e1+s)(e2+s)...(en+s) = g(e′1+s)(e′2+s)...(e′
n′+s)

which implies that
A(e′j+s) = g(e1+s)(e2+s)...(en+s) ,

where
A = g

Q

i6=j(e
′
i+s)

for some e′j that does not belong to the original set. Note now that the quantity

Πn = (e1 + s)(e2 + s) . . . (en + s)

can be viewed as a polynomial in s of degree n. Since e′j /∈ E , we have that (e′j + s) does not divide
Πn and therefore A can find c and P such that Πn = c+ P (e′j + s). Therefore

A = gP gc/(e
′
j+s)

which gives g1/(x+s) = [A[gP]−1]c
−1

and the adversary can break the q-strong Diffie-Hellmann as-
sumption which occurs with probability that is neg(k). 2

Here we note that the public key pk in the case of the bilinear-map accumulator is comprised
by the exponentiation base g and the elements g, gs, gs

2
, . . . , gs

q

(see Lemma 3). As before, we can
now state the following corollary:

Corollary 2 Let k be the security parameter and t = (p,G,GM , e, g) be a uniformly randomly
generated tuple of bilinear pairings parameters. Given a set of elements E, the probability that a
computationally bounded adversary A, knowing only g, gs, gs

2
, . . . , gs

q

(q ≥ |E|) for some s chosen
at random from Z∗

p and t, can find can find A and x /∈ E such that Ax+s = f ′(E) is neg(k).

11

2.4 Set-membership authentication schemes

We now continue with the definition of set-membership authentication schemes and their main
security property, which captures the security requirements of authenticated hash tables. Suppose
S is a set for which we wish to authenticate membership of elements (i.e., queries of type “does x
belong to S?”) and let pk be the public key. A set-membership authentication scheme consists of
three algorithms update, query, verify, and associated data structures, for respectively updating S,
querying S to produce a corresponding set-membership proof, and verifying an answer to a query.
In general, these algorithms are:

1. {S′, d′} ← update(upd, S), where d′ is the new digest of S after the update (we recall that the
digest of S is a short description of S, e.g., the root hash of a Merkle tree), upd is an update
supported by the data structure and S, S′ are the old and new (updated) sets respectively;

2. Π(x)← query(x, S), where Π(x) is the proof returned to a query for membership of element x
in S;

3. {accept, reject} ← verify(x,Π(x), d), where d is the current digest of S and Π(x) is the proof,
both used for verifying membership of x in S.

We require that a set-membership authentication scheme (update, query, verify) is correct, i.e.,
for any x ∈ S it holds that accept← verify(x, query(x, S), d).

With respect to the security of the scheme, we assume that the adversary is given oracle access
to all these algorithms for updating and querying S and also for verifying answers. The formal
security definition, which is an adaptation to our setting of the security definition for dynamic
accumulators presented in [11], for a membership authentication scheme of a set S is as follows:

Definition 4 (Security) Suppose k is the security parameter and A is a computationally bounded
adversary that is given the public key pk. Set S is initially empty and S = S0. First, in the update
stage, the adversary A chooses and issues a series of t+ 1 updates

updi ∈ {ins(xi), del(xi)} for i = 0, . . . , t ,

which yields a series of sets derived from S and corresponding digests

{Si+1, di+1} ← update(updi, Si) ,

where d0 is the digest of an empty set and t is polynomially dependent on the security parameter
k. After the update stage, A possesses the new set St+1 and the corresponding digest dt+1. Next,
adversary A enters the attack stage where he chooses an element y /∈ St+1 and computes a proof
Π(y) for y. We say that the set-membership authentication scheme (update, query, verify) is secure
if the probability that accept← verify(y,Π(y), dt+1) is neg(k).

Remarks on Definition 4. We make the following observations about the security requirements
given in Definition 4.

1. The security definition captures the setting where an adversary tries to forge proofs for el-
ements that do not belong to the existing set, which is the main attack we wish to guard
against. Additionally, as in [11], we allow the adversary to choose his own updates and choose
his own elements to forge, which provides a stronger notion of security, as the authentication
scheme defeats attacks independently of the history of updates in the set;

12

2. This security definition is applicable to both our concrete authentication models of interest
(two-party and three-party) in the sense that in both models security is defined subject to
the correct digest defined over the current set, that is, set-membership authentication is
guaranteed assuming that the verification algorithm takes as input this (correct and fresh)
digest. As we will see, this assumption will however be achieved with different methods: In
the three-party model a time-stamped signature on the digest (produced by the source) is
used by the client to verify the validity of the digest, whereas in the two-party model the client
engages in a protocol with the server that allows him to locally update the digest correctly
with non-negligible probability;

3. Modeling the information given to the adversary through oracle access is not restrictive; in
our concrete schemes and at all times, the information that the server stores and maintains
is completely characterized by invocation of algorithms update, query, verify (or equivalently
by polynomial-time functions on the current set and the public key pk). Finally, we note that
in essence the above security definition captures the case where the adversary performs an
attack in some older state S′

t, t
′ < t, of the data set than the current one St, that is, when

the attack phase includes some set updates. This is the case exactly because all the new
information that the adversary gets between t′ and t is a polynomial-time function of pk.

3 Scheme based on the RSA accumulator

In this section, we describe how we can use the RSA accumulator in order to implement authenti-
cated hash tables, that is, set-membership authentication schemes that authenticate the function-
ality of hash tables.

We make our solution applicable to two concrete data authentication models, the two-party
model and the three-party model that were briefly described in Section 1. We recall that the two-
party model refers to the data outsourcing scenario, where a client relocates all of its data to an
untrusted server, the client being the party that issues both queries and updates to the outsourced
data. The three-party model refers to a slightly different scenario, where a trusted source makes its
data available to an untrusted server that answers queries submitted by a client, the source being
the party that issues updates and the client being the party that issues queries. In both settings,
the goal is to design secure and efficient protocols for verifying that the untrusted server correctly
manages the outsourced data.

In Section 3.1 we describe accumulation trees, the main data structure behind our solution,
which is also used in Section 4. In Section 3.2, we describe the setup that is needed for our
solution in both models. In Section 3.3 we describe the main authenticated data structure used
in our authentication schemes. Focusing on the three-party model, in Section 3.4 we show how
our construction applies to the special case of static data, providing some intuition for the general
dynamic solution (authenticated hash tables) that follows in Section 3.5. In Section 3.6 we apply
our results to the two-party model and in Section 3.7 we show how to achieve a more practical
scheme by using random oracles.

3.1 The accumulation tree

In this section we describe the main construction for authenticating set-membership in a hash table.
Initially we present a general scheme which can be extended in order to achieve better complexity
bounds for the hash table.

13

Let S = {e1, e2, . . . , en} be the set of elements we would like to authenticate. Given a constant
ǫ < 1 such that 0 < ǫ < 1, the accumulation tree of S, denoted T (ǫ), is a rooted tree with n leaves
defined as follows:

1. The leaves of T (ǫ) store the elements e1, e2, . . . , en;

2. T (ǫ) consists of exactly l =
⌈

1
ǫ

⌉

levels;

3. All the leaves are at the same level;

4. Every node of T (ǫ) has O(nǫ) children;

5. Level i in the tree contains O(n1−iǫ) nodes, where the leaves are at level 0 and the root is at
level l.

d

r

gfe p

7 2 9 3

a b c

Figure 1: The accumulation tree of a set of 64 elements for ǫ = 1
3 : every internal node has 4 = 64

1
ǫ

children, there are 3 = 1
ǫ levels in total, and there are 641−i/3 nodes at level i = 0, 1, 2, 3.

We note that the levels of the accumulation tree are numbered from the leaves to the root of
the tree, i.e., the leaves have level 0, their parents level 1 and finally the root has level l. The
structure of the accumulation tree, which for a set of 64 elements is shown in Figure 1, resembles
that of normal “flat” search trees, in particular, the structure of a B-tree. However there are some
differences: First, every internal node of the accumulation tree, instead of having a constant upper
bound on its degree, it has a bound that is a function of the number of its leaves, n; also, its
depth is always maintained to be constant, namely O

(

1
ǫ

)

. Note that it is simple to construct the
accumulation tree when nǫ is an integer (see Figure 1). Else, we define the accumulation tree to be
the unique tree of degree ⌈nǫ⌉ (by assuming a certain ordering of the leaves). This maintains the
degree of internal nodes to be O(nǫ).

Using the accumulation tree and search keys stored at the internal nodes, one can search for an
element in O(nǫ) time and perform updates in O(nǫ) amortized time. Indeed, as the depth of the
tree is not allowed to vary, one should periodically (e.g., when the number of elements of the tree
doubles) rebuild the tree spending O(n) time. Actually, by using individual binary trees to index
the search keys within each internal node, queries could be answered in O(logn) time and updates
could be processed in O(logn) amortized time. Yet, the reason we build this flat tree is not to use
it as a search structure, but rather to design an authentication structure for defining the digest of
S that matches the optimal querying performance of hash tables. The idea is as follows: we wish
to hierarchically employ the RSA accumulator over the subsets (of accumulation values) defined by
each internal node in the accumulation tree, so that membership proofs of size proportional to the
depth of the tree (hence of constant size) are defined with respect the root digest (accumulation
value of the entire set).

14

3.2 System setup

Towards employing the RSA accumulator hierarchically over the accumulation tree, we now describe
the initial setup of our authentication schemes.

Let k be the security parameter. In the two-party model, the client initially picks constant
0 < ǫ < 1 and l = ⌈1/ǫ⌉ RSA moduli Ni = piqi (i = 1, . . . , l), where pi, qi are strong primes [11].
The length of the RSA modului is defined by the recursive relation

|Ni+1| = 3|Ni|+ 1 ,

where |N1| = 3k + 1 and i = 1, . . . , l − 1. Note that since l is constant all the RSA moduli have
asymptotically the same dependence on the security parameter k. For i = 1, . . . , l, the client reveals
Ni to the untrusted server but keeps φ(Ni) = (pi − 1)(qi − 1) secret. The client also picks l public
bases gi ∈ QRNi

to be used for exponentiation. Finally, given l families of two-universal hash
functions H1, H2, . . . , Hl, the client randomly picks one function hi ∈ Hi and reveals hi to the
server (to be used for computing multiple prime representatives). The function hi is such that it
maps (|Ni|−1)-bit primes to ((|Ni| − 1)/3)-bit integers. Also, the choice of the domains and ranges
of functions hi and of the lengths of moduli Ni is due to the requirement that prime representatives
should be smaller numbers than the respective moduli (see [39]). As we will see in Section 5, using
ideas from [4] it is possible to avoid the increasing size of the RSA moduli and instead use only
one size for all Ni’s. By doing so, however, we are forced to prove security in the random oracle
model (using cryptographic hash functions), which is fine for practical applications. It is crucial
that φ(Ni) is not revealed to the untrusted server, since otherwise the security of the whole system
collapses, as the server would be able to compute inverses and, as it will become clear, forge proofs.
Note that since 1/ǫ is constant, the client needs constant space.

In the three-party model, the setup is exactly as above, but now all the public information (RSA
moduli, two-universal hash functions) and the secret information (factorization φ) is generated by
the source; also, the client now gets only the public information.

3.3 Main authenticated data structure

We next present the main component of our authentication schemes, an authenticated data struc-
ture that is based on the accumulation tree. This structure is stored at all times at the server; in
the three-party model the structure is also stored by the source. Let S be the set we would like
to authenticate. Our authenticated data structure is defined with respect to the accumulation tree
as follows. By hierarchically employing the RSA accumulator over set S, we augment the accu-
mulation tree with a collection of corresponding accumulation values. That is, assuming the setup
parameters are in place, for any node v in the accumulation tree we define its accumulation value
χ(v) recursively along the tree structure, as a function of the accumulation value of its children (in
a similar way as in a Merkle tree). In particular, let h1, h2, . . . , hl, l =

⌈

1
ǫ

⌉

, be two-universal hash
functions, where hi maps wi-bit elements to 3wi-bit primes, i = 1, . . . , l. For every leaf node v in
tree T (ǫ) that lies at level 0 and stores element e, we set χ(v) = e, while for every non-leaf node v
in T (ǫ) that lies in level 1 ≤ i ≤ l, we set:

χ(v) = g

Q

u∈N(v) ri(χ(u))

i mod Ni , (1)

where ri(χ(u)) is a prime representative of χ(u) computed using function hi, N(v) is the set
of children of node v and gi ∈ QRNi

. Additionally, we store at each node v at level i of the
accumulation tree the prime representative ri+1(χ(v)) of its accumulation value χ(v) (except for

15

the root of the tree that lies at level l where we do not need a prime representative since its χ()
value is the digest of the set).

We call the above authenticated data structure an augmented accumulation tree built on top of
S, but often, for simplicity and when it is clear from the context, we refer to it as the accumulation
tree T (ǫ). Given these accumulation values, the augmented accumulation tree can be seen as a
systematic way to define a digest over an underlying set.

Definition 5 Given a set S = {e1, e2, . . . , en} of n elements, l RSA moduli N1, N2, . . . , Nl, l two-
universal functions h1, h2, . . . , hl and the accumulation tree T (ǫ) built on top of S, we define the
RSA digest of node v of the accumulation tree to be equal to χ(v), also denoted with χ(Sv), where
Sv ⊆ S is the set of elements associated with the subtree rooted at v. The RSA digest of the set S
is equal to χ(r), where r is the root of tree T (ǫ).

Note that, given a set S, the RSA digest χ(S) depends on the elements in S, the used RSA
moduli and two-universal functions, but not on the structure of the tree, because the structure of
T (ǫ), for a given ǫ, is deterministic and the RSA exponentiation function is quasi-commutative.
We next show the main security property of our new authenticated data structure.

Theorem 2 (Collision resistance) Let k be the security parameter and U = {u1, u2, . . . , un} a
set of n elements. Given the associated accumulation tree T (ǫ) built on top of U , under the strong
RSA assumption, the probability that a computationally bounded adversary A, knowing only the
RSA moduli Ni and gi, 1 ≤ i ≤ l (l = ⌈1/ǫ⌉), can find another set V 6= U such that χ(V) = χ(U)
is neg(k).

Proof: We are going to prove the following claim by induction: Given an accumulation tree of l
levels, it is difficult for a computationally bounded adversary to find two different sets U, V such
that χl(U) = χl(V), where χl(S) is the RSA digest that is computed using an l-level accumulation
tree on set S. For the base case l = 1 the claim trivially holds by Lemma 2; in particular, we have
that for any sets U 6= V it holds:

Pr[χ1(U) = χ1(V) ∧ U 6= V] ≤ ν(k) ,

where ν(k) is the appropriate negligible function that we get from Lemma 2. Suppose the claim
holds for l = i, i.e., for any sets U 6= V for the inductive case we have

Pr[χi(U) = χi(V) ∧ U 6= V] ≤ ν(k) .

Let now
χi+1(U) = g

ri+1(χi(U1))ri+1(χi(U2))...ri+1(χi(Ut))
i+1 mod Ni+1

for U1, U2, . . . , Ut ⊆ U and

χi+1(V) = g
ri+1(χi(V1))ri+1(χi(V2))...ri+1(χi(Vt′))
i+1 mod Ni+1

for V1, V2, . . . , Vt′ ⊆ V . Consider now the set of prime numbers

P (U) = {ri+1(χi(U1)), ri+1(χi(U2)), . . . , ri+1(χi(Ut))}

and
P (V) = {ri+1(χi(V1)), ri+1(χi(V2)), . . . , ri+1(χi(Vt′))} .

16

We want to compute the probability Pr[χi+1(U) = χi+1(V) ∧ U 6= V]. The event χi+1(U) =
χi+1(V) ∧ U 6= V can be written as

[χi+1(U) = χi+1(V) ∧ P (U) = P (V) ∧ U 6= V] ∨ [χi+1(U) = χi+1(V) ∧ P (U) 6= P (V) ∧ U 6= V]

and therefore by the union bound and by the fact that Pr(A ∩ B) ≤ Pr(A) we can derive the
following inequalities:

Pr[χi+1(U) = χi+1(V) ∧ U 6= V]

≤ Pr [χi+1(U) = χi+1(V) ∧ P (U) = P (V) ∧ U 6= V]

+ Pr [χi+1(U) = χi+1(V) ∧ P (U) 6= P (V) ∧ U 6= V]

≤ Pr [χi+1(U) = χi+1(V) ∧ P (U) = P (V) ∧ U 6= V] + Pr [χi+1(U) = χi+1(V) ∧ P (U) 6= P (V)]

≤ Pr [χi+1(U) = χi+1(V) ∧ P (U) = P (V) ∧ U 6= V] + ν(k)

≤ Pr [P (U) = P (V) ∧ U 6= V] + ν(k) .

Note that Pr [χi+1(U) = χi+1(V) ∧ P (U) 6= P (V)] ≤ ν(k) trivially holds from Lemma 2. Beginning
now from the event P (U) = P (V) ∧ U 6= V and for some permutation f of the elements in set
P (V), we can derive the following implications:

P (U) = P (V)∧U 6= V ⇒
t

∧

j=1

χi(Uj) = χi(Vf(j))∧U 6= V ⇒ χi(Ua) = χi(Vf(a))∧Ua 6= Vf(a) . (2)

This is because for two prime representatives r1(x1), r2(x2) of x1, x2 we have that r1(x1) = r2(x2)⇒
x1 = x2 and because there has to be some a such that Ua 6= Vf(a) since for all i it is Ui ⊆ U and
Vi ⊆ V and also U 6= V . Since for all events A,B such that A ⇒ B it is Pr(A) ≤ Pr(B), we have
that

Pr [P (U) = P (V) ∧ U 6= V] + ν(k) ≤ Pr[χi(Ua) = χi(Vf(a)) ∧ Ua 6= Vf(a)] + ν(k) ,

for some index a. By the inductive step we have Pr[χi(Ua) = χi(Vf(a)) ∧ Ua 6= Vf(a)] ≤ ν(k) and
therefore

Pr[χi+1(U) = χi+1(V) ∧ U 6= V] ≤ 2ν(k) ,

which completes the proof. 2

3.4 Authenticating static sets

We now describe how we can use our accumulation-tree based structure to optimally verify mem-
bership in a static set in constant time. The following methods will also form the basis for our
main authentication schemes for the three-party model in Section 3.5.

Let S = {e1, e2, . . . , en} be the static set that is outsourced to an untrusted server. As we saw
in Section 3.2, the RSA moduli Ni and bases gi, 1 ≤ i ≤ l, are public. The server stores set S and
builds the (augmented) accumulation tree T (ǫ) on top of S. We recall that for every node v of T (ǫ)
that lies at level i (0 ≤ i ≤ l− 1), the server stores the prime representative ri+1(χ(Sv)) along with
the RSA digest χ(Sv). Having access only to the set digest d = χ(S), the client should be able to
verify membership in S. We next describe how this is possible.

Queries. We show how the server constructs a proof that is used to validate an element x ∈ S.
Let v0, v1, . . . , vl be the path from x to the root of T (ǫ), r = vl. Let B(v) denote the set of siblings
of node v in T (ǫ). The proof Π(x) is the ordered sequence π1, π2, . . . , πl, where πi is a tuple of a

17

prime representative and a “branch” witness, i.e., a witness that authenticates every node of the
path from the queried node to the root of the tree, vl. Thus, item πi of proof Π(x) (i = 1, . . . , l) is
defined as:

πi =

(

ri(χ(vi−1)), g

Q

u∈B(vi−1) ri(χ(u))

i mod Ni

)

. (3)

For simplicity, we set αi = ri(χ(vi−1)) and

βi = g

Q

u∈B(vi−1) ri(χ(u))

i mod Ni . (4)

For example in Figure 1, the proof for element 2 consists of 3 tuples:

π1 =
(

r1(2), g
r1(7)r1(9)r1(3)
1 mod N1

)

,

π2 =
(

r2(χ(a)), g
r2(χ(b))r2(χ(c))r2(χ(d))
2 mod N2

)

,

π3 =
(

r3(χ(f)), g
r3(χ(e))r3(χ(g))r3(χ(p))
3 mod N3

)

.

Using the prime representatives, the above proofs can be computed from scratch in O(1
ǫn

ǫ) time
every time there is a new query. However, as we are considering the static case, the server does not
have to compute witnesses again and again; it is more time-efficient to use precomputed witnesses,
i.e., to have the server compute the witnesses once and store them for future use.

Verification. Given the proof Π(x) = π1, π2, . . . , πl for an element x, the client verifies the
membership of x in S as follows. First the client checks if h1(α1) = x, i.e., that α1 is the prime
representative used for the queried element x; then, for i = 2, . . . , l, the client also checks that the
following relations hold

hi(αi) = β
αi−1

i−1 mod Ni−1 , (5)

thus verifying that the proof contains correct prime representatives that are correctly accumulated
(along the path corresponding to x) in the accumulation tree. Finally, the client verifies the RSA
digest (i.e., the RSA accumulation value of the root of the tree) against the locally stored digest,
namely that the following relation holds:

d = βαl

l mod Nl . (6)

The client accepts only if all the relations above hold. As we prove later, the server can forge a
proof for an element y /∈ S with negligible probability in the security parameter k.

Security. The public key pk in our scheme (see Definition 4) consists of l =
⌈

1
ǫ

⌉

, the RSA moduli
N1, N2, . . . , Nl (not φ(Ni)), the exponentiation bases g1, g2, . . . , gl and the two-universal functions
h1, h2, . . . , hl. Also the adversary is given oracle access to all the algorithms that update and query
the accumulation tree and also verify queries. The digest d that appears in Definition 4 is the root
digest of the accumulation tree. Also, for an element x, Π(x) is the set of branch witnesses as
defined in Equation 3. The following theorem describes the security of our new construction. The
security of our scheme is based on the strong RSA assumption.

Theorem 3 Our set-membership authentication scheme that combines the accumulation tree and
the RSA accumulator is secure according to Definition 4 under the strong RSA assumption.

Proof: Let A be a computationally bounded adversary. Let also S be the original set of elements
that has been accumulated with the accumulation tree. We define the events:

18

1. E1 =“A finds y /∈ S and α1 such that h1(a1) = y”;

2. Ei =“A finds αi−1, αi and βi−1 such that hi(αi) = β
αi−1

i−1 mod Ni−1” for i = 2, . . . , l;

3. El+1 =“A finds αl and βl such that βαl

l = χ(S) mod Nl”.

We want to bound the probability Pr [E1 ∩ E2 ∩ . . . ∩ El+1]. We are using induction. For l = 1,
we consider the event E1 ∩ E2 =“A finds y /∈ S and α1, β1 such that h1(a1) = y and βα1

1 = χ(S)
mod N1”. By Corollary 1, it is Pr [E1 ∩ E2] ≤ ν(k), where ν(k) is the appropriate negligible
function. For l = i, suppose now Pr [E1 ∩ E2 ∩ . . . ∩ Ei] ≤ ν(k). For l = i + 1 we write the event

Ei+1 = E
(1)
i+1 ∪ E

(0)
i+1 depending on whether hi(αi) is the RSA digest of some subset of S or not.

Therefore we have

Pr [E1 ∩ E2 ∩ . . . ∩ Ei+1] ≤ Pr
[

E1 ∩ E2 ∩ . . . ∩ E
(1)
i+1

]

+ Pr
[

E1 ∩ E2 ∩ . . . ∩ E
(0)
i+1

]

≤ Pr
[

E1 ∩ E2 ∩ . . . ∩ E
(1)
i+1

]

+ Pr
[

E
(0)
i+1

]

.

Consider now the set of RSA digests at level l, i.e., the level of the children of the root of the
accumulation tree: It is χ(S) = ga1a2...ak

i mod Ni, where hi(ai) is the RSA digest of some subset

of S. This observation combined with Corollary 1 and the definition of the event E
(0)
i+1 gives

Pr
[

E
(0)
i+1

]

≤ ν(k). Therefore Pr [E1 ∩ E2 ∩ . . . ∩ Ei+1] ≤ Pr
[

E1 ∩ E2 ∩ . . . ∩ E
(1)
i+1

]

+ ν(k). Note

now that the event E1 ∩E2 ∩ . . .∩E
(1)
i+1 implies the event E1 ∩E2 ∩ . . .∩Ei since hi(ai) is an RSA

digest of some subset of S (i.e., S′) and if y /∈ S then y /∈ S′ for all subsets S′ of S. Therefore

Pr [E1 ∩ E2 ∩ . . . ∩ Ei+1] ≤ Pr
[

E1 ∩ E2 ∩ . . . ∩ E
(1)
i+1

]

+ν(k) ≤ Pr [E1 ∩ E2 ∩ . . . ∩ Ei]+ν(k) ≤ 2ν(k) ,

which is neg(k). 2

Complexity. We can now present the main result of this section.

Theorem 4 Let 0 < ǫ < 1 be a fixed constant. Under the strong RSA assumption, we can use the
accumulation tree and the RSA accumulator with precomputed witnesses to authenticate a static set
S of n elements in the three-party model by storing a data structure of size O(n) at both the source
and the server such that:

1. Our scheme is secure according to Definition 4;

2. The expected query time is O(1);

3. The size of the proof is O(1);

4. The verification time is O(1);

5. The client keeps space O(1).

Proof: The security of our scheme is derived by Theorem 3. In the static case, we do not have to
compute the witnesses each time we query for an element. Namely, we can store all the witnesses in
the corresponding nodes of the tree. Therefore the server takes O(1) time in expectation (by using
a hash table structure) to pick the correct witness for each level and there are = O(1/ǫ) = O(1)
levels in total, which gives O(1) expected query time. The proof for an element is given by the l

19

pairs in Equation 3. Since l = O(1) and both the prime representatives and the branch witnesses
are quantities that are reduced modulo some Ni (which is independent of n), we have that the
size of the proof is O(1). Using now Equations 5 and 6, which are O(1) total, we can verify in
O(1) time, since an exponentiation is considered to be a constant time operation. In order to do
the verification, the client needs to keep the root RSA digest which has constant size. Finally
the update authentication information consists of a signature of the root RSA digest, which has
constant size. 2

Note that this result applies also in the two-party model. Also, we point out that the same
complexity result for a static set can also be achieved without using an accumulation tree and by
using a straight-forward application of the RSA accumulator. However, we present this construction
to give some intuition about the following section that refers to dynamic sets.

3.5 Authenticating dynamic hash tables

In this section we describe how to use our authentication structure that is based on the accumulation
tree to authenticate a dynamic hash table. We first describe our general algorithms and protocols
for the three-party model, and then extend our results to the two-party model.

Let 0 < ǫ < 1 be a fixed constant. The general idea behind our approach for using the
accumulation tree to authenticate hash tables is the following. Let S = {e1, e2, . . . , en} be the
set of elements we would like to authenticate. Instead of building the accumulation tree T (ǫ)
on the elements themselves, as we did in the case of static sets, we consider the elements to be
in a hash table that has O(n) buckets, where each bucket contains O(1) elements, and we build
the accumulation tree over the buckets. As in the static case, since the size of each bucket is
constant, the internal nodes of the accumulation tree have O(nǫ) children. Therefore, we overall
end up building a similarly-structured accumulation tree as before, except that now each leaf of the
accumulation tree holds the prime representative of the accumulation value of the elements in the
bucket corresponding to this leaf (instead of one corresponding element stored at this leaf before).

In particular, consider a bucket L that contains the elements x1, x2, . . . , xh, where h = O(1)
(i.e., these elements are mapped to the same bucket through the function used by the hash table to
uniformly place the elements in the buckets). The accumulated bucket value of bucket L, denoted
AL, is defined as follows:

AL = g
r1(x1)r1(x2)...r1(xh)
1 mod N1 .

The accumulated bucket value is computed for each bucket and an accumulation tree is built over
the resulting O(n) accumulated bucket values. Note that by doing so, in essence, we add one
additional level of accumulations in the accumulation tree, that is, instead of using l =

⌈

1
ǫ

⌉

levels
of accumulations, we are now using l′ = l + 1 levels. At the additional (lowest) level, the number
of elements that are accumulated is O(1).

Queries and verification. Suppose we want to construct the membership proof for an element
x ∈ S. Let v0, v2, . . . , vl′ be the path from x to the root r of the tree, r = vl′ . As before, the
proof Π(x) is the ordered sequence π1, π2, . . . , πl′ , where πi is defined in Equation 3. In order to
achieve constant-time queries we must avoid computing πi repeatedly for every separate query, and
therefore we store precomputed witnesses. Namely, for every non-leaf node v of the accumulation
tree (we consider as leaves the elements within the buckets) that lies in level 1 ≤ i ≤ l′, let N(v)
be the set of its children. For every j ∈ N(v) we store at node v the witness

A
(v)
j = g

Q

u∈N(v)−{j} ri(χ(u))

i mod Ni .

20

Therefore, when we query for x, the server follows the path v0, v1, . . . , vl′ and collects the corre-

sponding precomputed witnesses β1 = A
(v1)
j1

, β2 = A
(v2)
j2

, . . . , βl′ = A
(vl′)
jl′

for some j1, j2, . . . , jl′ and

as defined in Equation 4. Since the depth of the tree is constant
(⌈

1
ǫ

⌉

+ 1
)

, the time needed to
construct the proof and thus answer a query is O(1). (We define query time to be the time needed
to construct the proof and not the time to search for the specific element, which can however
be achieved with another hash table data structure in expected constant time.) Finally, proof
verification is performed exactly according to Equations 5 and 6 and, thus, this takes O(1) time.

Updates. We now describe how we can efficiently support updates in the authenticated hash table.
Suppose our hash table currently holds n elements and the source wants to insert an element x in
the hash table. That element is inserted into a certain bucket L. Let v0, v1, . . . , vl′ be the path from
the newly inserted element to the root of the tree. The goal of the update algorithm is twofold:

1. All the RSA digests χ(vi), 0 ≤ i ≤ l′ (note that χ(v0) = x) and respective prime representa-
tives ri(χ(vi−1)) (i = 1, . . . , l′) along the path from bucket L to the root of the tree, need to
be updated;

2. For all nodes vi, 1 ≤ i ≤ l′, we have to update the witnesses A
(vi)
j where j ∈ N(vi). This is

required to maintain the query complexity constant.

In order for the first requirement to be satisfied, whenever an update is performed, the RSA
digests can be updated by the source and sent to the server as part of the update authentication
information. The source also sends the updated (new) prime representatives too, i.e., the values
ri(χ(vi−1)) for all i = 1, . . . , l′. In this way the untrusted server does not compute them from
scratch but just replaces the old ones with the ones received. To satisfy the second requirement, we
use the following result from [39] for efficiently maintaining updated precomputed witnesses and
overall achieving constant query time.

Lemma 4 (Updating precomputed witnesses [39]) Let N be an RSA modulus. Given the
elements x1, x2, . . . , xn, N and g, without the knowledge of φ(N), we can compute Ai = g

Q

j 6=i xj

mod N for i = 1, . . . , n in O(n logn) time.

In order to compute the updated witnesses, the server uses the algorithm in [39] that provides
the above result for all nodes vi, 1 ≤ i ≤ l′ as follows. For each vi (we recall that vi is the node
on the path of the update), it uses the algorithm with inputs the elements ri(χ(j)) for j ∈ N(vi),
the RSA modulus Ni and the exponentiation base gi. In this computation the updated prime
representative ri(χ(vi−1)), where vi−1 ∈ N(vi), that was received by the source, is used. This

computation outputs the witnesses A
(vi)
j where j ∈ N(vi) (note that the witness A

(vi)
vi−1 remains the

same). Also, since it is run on O(1/ǫ) nodes v with |N(v)| = O(nǫ), we have, by Lemma 4, that
the witnesses can be updated in O(nǫ log n) time (for the complete result see Lemma 5).

However, since we are using a hash table (with O(n) buckets) we should expect that at some
point we will need to rebuild the table (i.e., rehash all the elements and reinsert them in a bigger
or smaller hash table). This is done as follows. During the evolution of the data structure, we
maintain a hash table that always can store more elements than the currently stored elements. We
call the number of the elements that can be stored in the hash table we are using “capacity” (the
capacity can also be viewed as the number of buckets of the hash table). Let Mi be the capacity
of the hash table after update i and mi be the number of the elements actually stored in the hash
table after update i. Note that whenever we have an update in the hash table, it is mi = mi−1 ± 1
and whenever update i causes a rebuilt of the hash table it is Mi 6= Mi−1. In order to ensure that
the complexity results are maintained we have to make sure that Mi

4 ≤ mi ≤ Mi. If mi violates

21

the above bounds, we have to rebuild the hash table from scratch. The general policy we follow is
given in the following definition:

Definition 6 (Rebuilding the hash table) Define αi = mi

Mi
to be the load factor of the authen-

ticated hash table after update i. If αi = 1 (full table) we double the capacity of the hash table. If
αi = 1

4 (near empty table) we halve the capacity of the hash table.

The rebuilding method described in Definition 6, adjusted to our authenticated hash table
construction is essential to get the necessary amortized results of Lemma 5 which constitutes the
main complexity result of our work (for similar methods see [13]).

Lemma 5 Let 0 < ǫ < 1 be a fixed constant. Given a hash table for n elements with O(n) buckets
of expected size O(1) and the accumulation tree T (ǫ) built on top of it, we can support updates
in O(nǫ log n) expected amortized time without the knowledge of φ(Ni) (i = 1, . . . , l′) by using the
rebuilding policy of Definition 6.

Proof: Suppose there are currently n elements in the hash table and that the capacity of the table
is M . Note than M/4 ≤ n ≤ M . As we know, there are M buckets and each bucket stores O(1)
elements in expectation. When an update takes place and no rebuilding of the table is triggered,
we have to update all the witnesses along the path of the update of the accumulation tree. By using
the algorithm described in Lemma 4, we can update the witnesses within the bucket in expected
time O(1), since the size of the bucket is an expected value. The witnesses of the internal nodes
can be updated in time O(M ǫ logM) and therefore the overall time is O(M ǫ logM) in expectation.
When a rebuilding of the table is triggered then the total time needed is O(M logM) since there
is a constant number of levels in the accumulation tree, the time we need to spend at each node
is O(nǫ logn) (since the degree of any internal node is O(nǫ)) and the maximum number of nodes
that lie in any level is O(n1−ǫ). Therefore the actual cost of an update is expected O(M ǫ logM),
when no rebuilding is trigerred and O(M logM) otherwise. We are interested in the expected value
of the amortized cost (expected amortized cost) of an update. We do the analysis by defining the
following potential function:

Fi =

{

c(2mi −Mi) logMi, αi ≥
1
2

c
(

Mi

2 −mi

)

logMi, αi <
1
2

.

The amortized cost for an update i will be equal to γ̂i = γi + Fi − Fi−1. Therefore E[γ̂i] =
E[γi] + Fi − Fi−1, since Fi is a deterministic function. To do the analysis more precise we define
some constants. Let c1 be that constant such that if the update cost C is O(M ǫ

i logMi), it is

C ≤ c1M
ǫ
i logMi . (7)

Also, let r1 be that constant such that if the rebuilding cost R is O(mi logmi), it is

R ≤ r1mi logmi . (8)

Also we note that in all cases it holds

Mi

4
≤ mi ≤Mi . (9)

We do the analysis by distinguishing the following cases:

22

1. αi−1 ≥
1
2 (insertion). For this case, we examine the cases where the hash table is rebuilt or

not. In case the hash table is not rebuilt, we have Mi−1 = Mi and mi = mi−1 + 1. Therefore
the amortized cost will be:

E[γ̂i] = E[γi] + Fi − Fi−1 ≤ c1M
ǫ
i logMi + c(2mi −Mi − 2mi−1 +Mi−1) logMi

= c1M
ǫ
i logMi + 2c logMi .

In case now the hash table is rebuilt (which takes O(n logn) time in total) we have Mi =
2Mi−1, mi = mi−1 + 1 and mi−1 = Mi−1 (which give mi = Mi/2 + 1 ≤ Mi/2) and the
amortized cost will be:

E[γ̂i] = E[γi] + Fi − Fi−1 ≤ r1mi logmi + c(2mi −Mi) logMi − c(2mi−1 −Mi−1) logMi−1

= r1mi logmi + c(2mi −Mi) logMi − c
Mi

2
logMi/2

≤ r1
Mi

2
logMi/2 + 2c logMi − c

Mi

2
logMi/2

≤ 2c logMi

for a constant c of the potential function such that c > r1.

2. αi−1 <
1
2 (insertion). Note that that there is no way that the hash table is rebuilt in this

case. Therefore Mi−1 = Mi and mi = mi−1 + 1. If now αi <
1
2 the amortized cost will be:

E[γ̂i] = E[γi] + Fi − Fi−1 ≤ c1M
ǫ
i logMi + c(Mi/2−mi) logMi − c(Mi−1/2−mi−1) logMi−1

= c1M
ǫ
i logMi + c(Mi/2−mi −Mi/2 +mi−1) logMi

= c1M
ǫ
i logMi − c logMi .

In case now αi ≥
1
2 the amortized cost will be:

E[γ̂i] = E[γi] + Fi − Fi−1 ≤ c1M
ǫ
i logMi + c(2mi −Mi) logMi − c(Mi−1/2−mi−1) logMi−1

= c1M
ǫ
i logMi + c(2(mi−1 + 1)−Mi−1 −Mi−1/2 +mi−1) logMi

= c1M
ǫ
i logMi + c(3mi−1 − 3Mi−1/2 + 2) logMi

= c1M
ǫ
i logMi + c(3αMi−1 − 3Mi−1/2 + 2) logMi

< c1M
ǫ
i logMi + c(3Mi−1/2− 3Mi−1/2 + 2) logMi

= c1M
ǫ
i logMi + 2c logMi .

3. αi−1 <
1
2 (deletion). Here we have mi = mi−1 − 1. In case the hash table does not have to

be rebuilt (i.e., 1
4 < αi <

1
2 and Mi = Mi−1), we have that the amortized cost of the deletion

is going to be:

E[γ̂i] = E[γi] + Fi − Fi−1 ≤ c1M
ǫ
i logMi + c(Mi/2−mi) logMi − c(Mi−1/2−mi−1) logMi−1

= c1M
ǫ
i logMi + c(Mi/2−mi −Mi/2 +mi−1) logMi

= c1M
ǫ
i logMi + c logMi .

In case now the hash table has to be rebuilt (which takes time O(mi logmi)), we have that

23

Mi = Mi−1/2, Mi = 4mi and therefore the amortized cost is:

E[γ̂i] = E[γi] + Fi − Fi−1 ≤ r1mi logmi + c(Mi/2−mi) logMi − c(Mi−1/2−mi−1) logMi−1

≤ r1mi logmi + c(Mi/2−mi) logMi − c(Mi − (mi + 1)) log 2Mi

≤ r1mi logmi − c(Mi/2− 1) logMi − c(3mi − 1)

≤ r1mi logmi − cMi/2 logMi + c logMi

≤ r1Mi logMi − (c/2)Mi logMi + c logMi

≤ c logMi ,

where c must also be chosen to satisfy c > 2r1.

4. αi−1 ≥
1
2 (deletion). In this case we have Mi−1 = Mi. If αi ≥

1
2 , the amortized cost will be:

E[γ̂i] = E[γi] + Fi − Fi−1 ≤ c1M
ǫ
i logMi + c(2mi −Mi − 2mi−1 +Mi−1) logMi

≤ c1M
ǫ
i logMi − 2c logMi .

Finally for the case that αi <
1
2 we have

E[γ̂i] = E[γi] + Fi − Fi−1 ≤ c1M
ǫ
i logMi + c(Mi−1/2−mi − 2mi−1 +Mi−1) logMi

= c1M
ǫ
i logMi + c(3Mi−1/2− (mi−1 − 1)− 2mi−1) logMi

= c1M
ǫ
i logMi + c(3Mi−1/2− 3mi−1 + 1) logMi

= c1M
ǫ
i logMi + c(3(1/αi−1)mi−1/2− 3mi−1 + 1) logMi

≤ c1M
ǫ
i logMi + c logMi .

Therefore we conclude that for all constants c > 2r1 of the potential function, the expected value
of the amortized cost of any operation is bounded by

E[γ̂i] ≤ c1M
ǫ
i logMi + 2c logMi .

By using now Equation 9 there is a constant r such that E[γ̂i] ≤ rm
ǫ
i logmi which implies that the

expected value of the amortized cost of any update (insertion/deletion) in an authenticated hash
table containing n elements is O(nǫ log n) for 0 < ǫ < 1. 2

Note that so far the results we have presented refer to positive hash table queries (i.e., hash
table queries made for elements that exist in our set). We describe now how we can support non-
membership queries as well. We are going to do that by using positive membership queries: In each
bucket L, we maintain all elements yi ∈ L sorted—in case elements are drawn from an unordered
universe, we first apply a cryptographic hash function to impose some order on the elements. Let
y1, y2, . . . , y|L| be the elements stored in a bucket L in increasing order. Instead of computing
prime representatives of yi we compute prime representatives of the |L| + 1 intervals (yi, yi+1) for
i = 0, . . . , |L|, where y0 and y|L|+1 denote −∞ and +∞, respectively. The proof of non-membership
for an element x ∈ (yi, yi+1) is equivalent to the proof of membership for interval (yi, yi+1). As
the bucket size is maintained to be O(1) the query complexity is maintained expected O(1) for
non-membership queries as well (note that in general, this construstion adds an O(log k) overhead
in the update time for k-sized buckets but in our case it does not matter since the buckets are of
constant size). Note that we do not impose an ordering across all the elements stored in the hash
table. A total ordering would increase the complexity and would not take advantage of the fact
that we are using a hash table.

The main result of this section (for the three-party model) is as follows:

24

Theorem 5 Let 0 < ǫ < 1 be a fixed constant. Under the strong RSA assumption, we can use the
accumulation tree and the RSA accumulator with precomputed witnesses to authenticate a dynamic
hash table of n elements in the three-party model by storing a data structure of size O(n) at both
the source and the server such that:

1. Our scheme is secure according to Definition 4;

2. The expected amortized update time at the server is O(nǫ log n);

3. The expected amortized update time at the source is O(1);

4. The expected query time is O(1);

5. The size of the proof is O(1);

6. The verification time is O(1);

7. The client keeps space O(1);

8. The update authentication information has size O(1).

Proof: The security of our scheme is derived by Theorem 3. The complexity of the update time
at the server is derived by the amortized analysis in Lemma 5. For the update time at the source
(which involves computation of the new RSA digests and prime representatives along the path of
the update), we are using the fact that the source knows φ(Ni) in order to derive the constant
amortized time: Suppose the source wants to insert/delete element x in bucket L. Let d1, d2, . . . , dl
be the RSA digests along the path from x to the root (d1 is the RSA digest of the certain bucket
and dl is the root RSA digest). The source first computes the new value of the bucket d′1 by ex-
ponentiating d1 to r1(x) (insertion) or to r1(x)

−1 (deletion) and then reducing modulo N1. Note
that this is always feasible to compute, since the source knows φ(N1). Next, for each i = 2, . . . , l,
the source computes d′i by exponentiating di to the product ri(di−1)

−1ri(d
′
i−1) (where ri(d

′
i−1) is

the new prime representative computed and which will be sent to the server) and then reducing
modulo Ni. Therefore, the total update time is O(1) since l is O(1). However, rebuilding the hash
table is needed and the expected amortized time will be in this case O(1) (we can prove that by
using a potential function that does not contain the logarithmic factor of the potential function
used in Lemma 5). The query time at the server is expected O(1) since the server can use another
hash table (note that the update time of this hash table does not influence the amortized analysis
of Lemma 5) to pick the correct witness at every node of the accumulation tree. (5), (6) and (7) are
derived as in Theorem 4. The update authentication information contains all the RSA digests along
the path of the update, the respective new prime representatives and a constant size signature of
the root RSA digest: The size of the path is constant and each RSA digest/prime representative
is a number reduced modulo Ni, which occupies O(1) space. Therefore the update authentication
information is O(1). Finally, in order to implement a complete authenticated hash table, we have to
authenticate non-membership queries as well. We do that by keeping elements sorted in the buckets
which as we saw before, does not increase the complexity due to the constant-sized buckets. 2

Finally, note that if we restrict ourselves to the three-party model, we can achieve constant
expected amortized update time at the untrusted server too, by keeping the update authentication
information constant and increasing the query time to expected O(nǫ):

25

Theorem 6 Let 0 < ǫ < 1 be a fixed constant. Under the strong RSA assumption, we can use
the accumulation tree and the RSA accumulator without precomputed witnesses to authenticate a
dynamic hash table of n elements in the three-party model by storing a data structure of size O(n)
at both the source and the server such that:

1. Our scheme is secure according to Definition 4;

2. The expected amortized update time at the server is O(1);

3. The expected amortized update time at the source is O(1);

4. The expected query time is O(nǫ);

5. The size of the proof is O(1);

6. The verification time is O(1);

7. The client keeps space O(1);

8. The update authentication information has size O(1).

Proof: (1), (3), (5), (6), (7) and (8) are derived as in Theorem 5. The server, whenever there is
an update, does not have to do anything: It just receives the updated digests and prime represen-
tatives from the source and uses them to overwrite the previous ones. Therefore the update time
for the server is the same with the update time for the source. As for the query time, the server
computes the witnesses online, i.e., it performs O(nǫ) exponentiations for the internal nodes of the
accumulation tree and O(1) exponentiations (in expectation) for the buckets. Therefore the query
time is expected O(nǫ). 2

As we will see next, Theorem 6 also applies to the two-party model provided we add and extra
round of communication between the client and the server. Finally, we note that we can choose
the scheme being best suited for the application of interest: in particular, we can use the scheme
of Theorem 5 for applications where updates are rare and queries are frequent, whereas we can use
the scheme of Theorem 6 for applications where updates are much more frequent than queries (e.g.,
auditing).

3.6 Two-party model

We now describe how we can implement an authenticated hash table using the accumulation tree
with precomputed witnesses in the two-party model. We recall that the two-party model has the
following main differences from the three-party model:

1. The client locally stores (and updates) the RSA digest and does not receive a signed RSA
digest from the trusted source, as it happens in the three party model;

2. The client is not issuing only queries to the untrusted server but is also issuing updates;

3. There is no trusted party and no PKI is used.

In the two-party model the untrusted server also computes the new prime representatives whenever
there is an update. This is possible since the information used to compute prime representatives
is included in the public key pk. We also recall that, as we discussed at the end of Section 2.4,
it is very important, after the client issues an update transforming the set of elements from S to

26

S′, that the client correctly updates the local digest to a new one that is consistent with the new
set S′. This is crucial for the security of a set-membership authentication scheme; and although
this can be trivially achieved in the three-party model where the source computed the new digest
over the new locally stored set S′, it is more challenging to achieve in the two-party model where
the client does not locally store the data set.

Consider now the case where the untrusted server stores the current set S and the augmented
accumulation tree built on it which in particular includes the prime representatives of all the RSA
digests. Assuming that the client stores the correct RSA digest d(S) of the set S and that the
server uses precomputed witnesses at every node of the accumulation tree, it is easy to see that
set-membership queries for any given element can be answered and verified exactly in the same
way as in the three-party model; namely, a query takes O(1) expected time and a verification takes
O(1) time. Thus we only need to describe how updates are handled and, in particular, how the
client can correctly update the set digest, thus maintaining the invariant that at all times the client
locally stores the correct set digest, i.e., a digest that corresponds to the exact history of updates
in the set. In what follows, we give the details on updates in the two-party model.

Updates. Suppose the client issues the update delete(x) to set S resulting in set S′, and let
v0, v1, . . . , vl′ be the nodes of the accumulation tree from the node v0 that stores x to the root of
the accumulation tree. The update protocol needs to achieve two goals: the server needs to perform
the update and the client needs to compute the new digest and verify the update performed by the
server. While the server performs the update, it also constructs a consistency proof that is given
to the client in order for the client to perform its digest update and verification.

In particular, the server initially treats the update as a membership query for element x and
constructs the membership proof for x as defined in Equations 3 and 4, i.e., the pairs of prime
representatives and branch witnesses (αi, βi) for i = 1, . . . , l′. Then the server performs the update
as in the three-party model (i.e., computing new witnesses, RSA digests and prime representatives
along the update path). Let α′

i for i = 2, . . . , l′ be the new prime representatives computed by
the server (note that since x has been removed there is no new prime representative for x). The
consistency proof that the server sends to the client, which corresponds to the performed update,
consists of the following two components:

1. The set of pairs (αi, βi) for i = 1, . . . , l′, which is a verification proof for x in S (i.e., the set
before the update);

2. The set of new prime representatives α′
i for i = 2, . . . , l′.

We distinguish between the two kinds of proofs returned by the server: After a query, as we
have seen also in the three-party model the server returns a verification proof; after an update,
the server returns a consistency proof which in fact includes a verification proof for the updated
element (plus the new prime representatives along the update path).

After receiving the consistency proof, the client performs the following. First, it verifies the
verification proof as in Equations 5 and 6. If the verification accepts, the client, apart from knowing
that x ∈ S, can also compute the correct RSA digests of nodes v1, . . . , vl′ by setting

χ(vi) = βαi

i mod Ni ,

for all i = 1, . . . , l′. Note that these are the correct RSA digests corresponding to S, i.e., the set
before the removal of x. These digests must be updated to reflect the removal of x and thus locally
replace the old RSA digest χ(v′l) with the new RSA digest χ′(v′l) of the root of the accumulation
tree corresponding to S′. In order to compute and verify this new digest the client uses the prime

27

representatives α′
i, for i = 2, . . . , l′ and the old already verified RSA digests χ(vi), for i = 1, . . . , l′,

as follows. One-by-one, and since the client knows the trapdoor information φ(Ni) for i = 1, . . . , l′,
the client can efficiently update χ(vi) to χ′(vi) first by setting

χ′(v1) = χ(v1)
α−1

1 mod N1 , (10)

therefore computing the correct updated RSA digest of node v1. Then the client sets

χ′(vi) = χ(vi)
α−1

i α′
i mod Ni , (11)

for i = 2, . . . , l′. In Equation 11, since χ(vi) and αi have been verified to be the correct corresponding
values of the accumulation tree before the update, it suffices for the client to verify that α′

i is the
correct new prime representative after the update. To achieve that, the client firstly verifies that
α′
i is a 3|Ni| − 1-bit prime number (this is feasible with an efficient primality check) and also that

hi(α
′
i) = χ′(vi−1) , (12)

for i = 2, . . . , l′. By the fact that χ′(v1) is provably correct by Equation 10, the client can verify
the correctness of α′

2 by Equation 12 for i = 2, and therefore verify the correctness of χ′(v2) by
Equation 11. By following this chain of computations the client ends up computing the provably
correct updated digest χ′(v′l) with non-negligible probability (due to the security of the verification
test), as required by the security definition, i.e., the client, after any update provably possesses
the correct updated digest with non-negligible probability. The insertion of an element can be
performed similarly.

Finally we note that when the server rebuilds the hash table, the client has to receive all the
elements, verify them, rebuild the hash table by computing new prime representatives and send
everything over to the server. This will provide the amortized results in Theorem 7. We present
now the main result for the two-party model:

Theorem 7 Let 0 < ǫ < 1 be a fixed constant. Under the strong RSA assumption, we can use the
accumulation tree and the RSA accumulator with precomputed witnesses to authenticate a dynamic
hash table of n elements in the two-party model by storing a data structure of size O(n) such that:

1. Our scheme is secure according to Definition 4;

2. The expected amortized update time at the server is O(nǫ log n);

3. The amortized update time at the client is O(1);

4. The expected query time is O(1);

5. The size of the verification proof is O(1);

6. The amortized size of the consistency proof is O(1);

7. The verification time is O(1);

8. The client keeps space O(1).

Proof: The security in the two-party model is derived by Theorem 3 and by the fact that we
provide a way for the client to update the digest whenever he issues an update, with non-negligible
probability (see the protocol in the above description). The update time at the server is derived by

28

Lemma 5 (use of precomputed witnesses). Verification time, verification proof size and query time
are derived as in Theorem 5. The consistency proof has O(1) amortized size, since there will be an
update by the client that will trigger a rebuilding of the hash table, thus making the server send
all the elements over to the client. This also makes the update time at the client to be amortized
O(1), by following a similar amortized analysis as in Lemma 5. 2

We now present the result that uses on-line witness computation in the two party model:

Theorem 8 Let 0 < ǫ < 1 be a fixed constant. Under the strong RSA assumption, we can use
the accumulation tree and the RSA accumulator without precomputed witnesses to authenticate a
dynamic hash table of n elements in the two-party model by storing a data structure of size O(n)
such that:

1. Our scheme is secure according to Definition 4;

2. The expected amortized update time at the server is O(1);

3. The amortized update time at the client is O(1);

4. The expected query time is O(nǫ);

5. The size of the verification proof is O(1);

6. The amortized size of the consistency proof is O(1);

7. The verification time is O(1);

8. The client keeps amortized space O(1).

Proof: The security in the two-party model is derived by Theorem 3. In this scenario we assume
that the server always keeps the digests updated and therefore, he can compute witnesses on-line
in expected O(nǫ) time. Again, the query time is expected due to the expected bound on the
capacity of the buckets. We describe now the extension in the communication protocol so that the
update time at the server is constant. Whenever the client issues an update, the server sends back
a consistency proof as in Theorem 7. However, the server does not do the update as before. After
the client verifies the proof, he computes new prime representatives along the path (note that this
can be done in constant time) of the update and sends the new digests to the server. The server,
just receives the digests and overwrites the old ones in constant time. That keeps the update time
constant and introduces another round of communication between the client and the server. 2

3.7 A more practical scheme

The solution we have presented so far uses different RSA moduli for each level of the tree, where
as we move higher in the tree, each new RSA moduli has a bit-length that is three times longer
than the bit-length of the previous-level RSA moduli. Therefore, computations corresponding to
higher levels in the accumulation tree are more expensive, since they involve modular arithmetic
operations over longer elements. This increase in the lengths of the RSA moduli is due to the need
to compute, for the elements stored at every level in the tree, prime representatives of size that is
three times as large as the size of the elements (see Lemma 1). Although from a theoretical point
of view this is not a concern as the number of the levels of the tree is constant (i.e., 1/ǫ), from a
practical point of view this can be really prohibitive for efficiently implementing our schemes.

29

To overcome this complexity overhead, we want to use the same RSA modulus for each level
of the tree, and to achieve this, we present a heuristic inspired by a similar method originally used
in [4]. Instead of using two-universal hash functions to map (general) integers to primes of increased
size, the idea is to employ random oracles [5] for consistently computing primes of relatively small
size. In particular, given a k-bit integer x, instead of mapping it to a 3k-bit prime, we can map it
to the value 2t2bg(x)+d, where g(x) is the output of length b of a random oracle (which in practice
is the output of a cryptographic hash function) at the end of which we append b zeros so that we
make this number large enough, t is a value that equals to the number of bits we are shifting 2bg(x)
to the left, and d = 1, 3, . . . , 2t− 1 is a number we are adding so that 2t2bg(x) + d is a prime. Note
that we require that t is related to b according to Equation 13 of Theorem 9.

In the following, we denote by q(x) a prime representative of x computed by the above procedure,
i.e., the output of a procedure that transforms a k-bit integer into a k′-bit prime, where k′ < k.
Note that the above procedure (i.e., the computation of q(x)) cannot map two different integers
to the same prime. This can be derived by the random oracle property, namely that for x1 6= x2,
w.h.p. it is g(x1) 6= g(x2). This implies that the intervals [2t2bg(x1), 2

t2bg(x1) + 2t − 1] and
[2t2bg(x2), 2

t2bg(x2) + 2t − 1] are disjoint. Finally we show that we can make sure that with high
probability we will always be able to find a prime within the specified interval.

Theorem 9 Let x be a k-bit integer and let a = 2bg(x) be the output of a b-bit random oracle with
b zeros appended at the end. The interval [2ta, 2ta + 2t − 1] contains a prime with probability at
least 1− 2−b provided

b ≤
⌊

log(1 +
√

2t + 4e2t−1)− 1
⌋

. (13)

Proof: By the Prime Distribution Theorem we have that the number of primes less than n is
approximately n

lnn . Therefore, we want to compute the probability

Pr

[

2ta+ 2t − 1

ln(2ta+ 2t − 1)
−

2ta

ln(2ta)
≥ 1

]

= Pr

[

a ≤
e2

t−1

2t

]

,

by assuming ln(2ta+ 2t− 1) ≃ ln(2ta) since a > 2b >> 2t. By the random oracle property we have
that

Pr

[

a ≤
e2

t−1

2t

]

= Pr

[

2bg(x) ≤
e2

t−1

2t

]

=
e2

t−1

2b+t
1

2b
.

Note that
e2

t−1

2b+t
1

2b
≥ 1−

1

2b
⇔

1−
√

2t + 4e2t−1

2
≤ 2b ≤

1 +
√

2t + 4e2t−1

2
,

which gives b ≤
⌊

log(1 +
√

2t + 4e2t−1)− 1
⌋

since b is a positive integer. This completes the proof.
2

Using Theorem 9, we can pick the length of the output of the random oracle to ensure hitting a
prime with high probability. For example, for t = 9 we get b ≤ 368, which is true for most practical
hash functions used today (e.g., SHA-256).

Using the above method, we can still accumulate primes in the exponent but this time without
having to increase the size of the RSA moduli at any level of the tree. The only conditions we need
in order to securely use the RSA accumulator are:

1. the safe accumulation of primes that map to unique integers (i.e., each accumulated prime
can only represent one integer), and

30

2. the bit-length of accumulated primes is smaller than the bit-length of the used RSA modulus.

Thus, we can apply our new procedure for computing prime representatives to all of the con-
structions in Section 3 with one important efficiency improvement: the same RSA moduli and
exponentiation bases are used at all levels of the accumulation tree. With this heuristic, we overall
get the same security and complexity results as before, but now we have a more practical accumu-
lator with security that is now based on both the strong RSA and the random oracle assumptions.

4 Scheme based on the bilinear-map accumulator

In this section we use the bilinear-map accumulator to construct authenticated hash tables. We
use exactly the same methodology as the one used in Section 3, that is, nested invocations of
accumulators in a constant-depth tree, to overall obtain similar complexity and security results
with the solution presented before. Accordingly, we use the same structure in presenting and
proving our results.

4.1 System setup

The setup for this solution is simpler than the authenticated hash tables based on the RSA ac-
cumulator. As we will see, at every level, the digests are elements of the same group and not
of different groups as it was the case with the nested applications of the RSA accumulators. To
achieve that, we are going to use a collision resistant hash function h that takes as input elements
of the multiplicative cyclic group and outputs an element in Z∗

p.
Therefore, in the two-party model, the client picks an exponentiation base g that is a generator

of a multiplicative cyclic group G of prime order p. Then the client randomly picks a number s ∈ Z∗
p

and keeps that secret (trapdoor information). The generator g is used as the exponentiation base
in all the levels as well. All the above are chosen uniformly at random as indicated by Definition 3
(basically the client has to generate the tuple t = (p,G,GM , e, g)). Finally, the client decides on an
upper bound q of the total number of elements that will be accumulated and sends the numbers
g, gs, gs

2
, . . . , gs

q

to the untrusted server.
In the three-party model, we have the same setup with the difference that the source is respon-

sible for choosing p, G, GM , e, g and s. Everything is made public (both to the servers and to the
client) except for the trapdoor information s, which is crucial for the security of the scheme.

Finally, in both models, we are using a collision resistant hash function h : G → Z∗
p. In this

way we make sure that the output accumulated value can be used as input to the next level of
accumulation, since we can only accumulate elements of Z∗

p and not elements of G. The collision
resistance hash function h serves as the respective “prime representative” function we used in
Section 3, with the difference that there is no constraint that the output should be a prime number:
it suffices that the output is a number in Z∗

p.

4.2 Main authenticated data structure

Let S be the set we would like to authenticate. The elements of the set are integers belonging to Z∗
p.

Similarly with the RSA construction, we can hierarchically employ the bilinear-map accumulator
over set S. Therefore, for any tree node v we define an accumulation value ψ(v) of node v, recursively
along the tree structure: For every leaf node v in tree T (ǫ) that stores element e, we set ψ(v) = e,
while for every non-leaf node v in T (ǫ) that lies in level 1 ≤ i ≤ l, we set:

ψ(v) = g
Q

u∈N(v)(h(ψ(u))+s), (14)

31

where ψ(u) is the bilinear digest of node u (which is an element of the multiplicative cyclic group
G), N(v) is the set of children of node v, g is the generator of the multiplicative group G, s is
the trapdoor information that is kept secret and h(ψ(u)) ∈ Z∗

p is a cryptographic hash of ψ(u),
computed with the collision resistant hash function h that we introduced before.

Definition 7 Given a set S = {e1, e2, . . . , en} of n elements in Z∗
p, a multiplicative group G of

prime order p and the accumulation tree T (ǫ) built on top of them, we define the bilinear digest of
any node v of the accumulation tree to be equal to ψ(v), also denoted with ψ(Sv), where Sv is the
set that is defined by the subtree rooted at v. The bilinear digest of the set S is equal to ψ(r), where
r is the root of tree T (ǫ).

For simplicity, we use both ψ(Sv) and ψ(v) to denote the bilinear digest of node v, Sv being
the set of elements contained in the subtree rooted at node v. In the following we prove the main
collision-resistance property of the above authentication structure.

Theorem 10 (Collision resistance) Let k be the security parameter and U = {u1, u2, . . . , un} a
set of n elements. Given the associated accumulation tree T (ǫ) built on top of U , under the q-strong
Diffie-Hellman assumption, the probability that a computationally bounded adversary A, knowing
only the bilinear pairings parameters t = (p,G,GM , e, g) and the elements of GM g, gs, gs

2
, . . . , gs

q

(q ≥ n) for some s chosen at random from Z∗
p, can find another set V 6= U such that ψ(V) = ψ(U)

is neg(k).

Proof: As in Theorem 2, we prove the following claim by induction: Given an accumulation tree
of l levels, it is difficult for a computationally bounded adversary to find two different sets U, V
such that ψl(U) = ψl(V), where ψl(S) is the bilinear digest that is computed using an l-level
accumulation tree on set S. For the base case l = 1 the claim trivially holds by Lemma 3; in
particular, we have that for any sets U 6= V it holds:

Pr[ψ1(U) = ψ1(V) ∧ U 6= V] ≤ ν(k) ,

where ν(k) is the appropriate negligible function that we get from Lemma 3. Suppose the claim
holds for l = i, i.e., for any sets U 6= V for the inductive case we have

Pr[ψi(U) = ψi(V) ∧ U 6= V] ≤ ν(k) .

Let now
ψi+1(U) = g(h(ψi(U1))+s)(h(ψi(U2))+s)...(h(ψi(Ut))+s)

for U1, U2, . . . , Ut ⊆ U and

ψi+1(V) = g(h(ψi(V1))+s)(h(ψi(V2))+s)...(h(ψi(Vt′))+s)

for V1, V2, . . . , Vt′ ⊆ V . Consider now the set of element in Z∗
p

P (U) = {h(ψi(U1)) + s, h(ψi(U2)) + s, . . . , h(ψi(Ut)) + s}

and
P (V) = {h(ψi(V1)) + s, h(ψi(V2)) + s, . . . , h(ψi(Vt′)) + s} .

We want to compute the probability Pr[ψi+1(U) = ψi+1(V)∧U 6= V]. By following the same logic
as in the proof of Theorem 2 we have that

Pr[ψi+1(U) = ψi+1(V) ∧ U 6= V] ≤ Pr [P (U) = P (V) ∧ U 6= V] + ν(k) .

32

Beginning now from the event P (U) = P (V)∧U 6= V and for some permutation f of the elements
in set P (V), we can derive the following implications:

P (U) = P (V) ∧ U 6= V ⇒
t

∧

j=1

[

h(ψi(Uj)) + s = h(ψi(Vf(j))) + s
]

∧ U 6= V

⇒ ψi(Ua) = ψi(Vf(a)) ∧ Ua 6= Vf(a) .

This is because we are using a collision resistance hash function h such that h(x1) = h(x2)⇒ x1 =
x2 with probability 1 − neg(k) (we can apply a union bound here and be even more formal by
adding another ν(k), i.e., the probability of finding a collision in h, to the final bound) and because
there has to be some a such that Ua 6= Vf(a) since for all i it is Ui ⊆ U and Vi ⊆ V and also U 6= V .
Since for all events A,B such that A⇒ B it is Pr(A) ≤ Pr(B), we have that

Pr [P (U) = P (V) ∧ U 6= V] + ν(k) ≤ Pr[ψi(Ua) = ψi(Vf(a)) ∧ Ua 6= Vf(a)] + ν(k) ,

for some index a. By the inductive step we have Pr[ψi(Ua) = ψi(Vf(a)) ∧ Ua 6= Vf(a)] ≤ ν(k) and
therefore

Pr[ψi+1(U) = ψi+1(V) ∧ U 6= V] ≤ 2ν(k) ,

which completes the proof. 2

4.3 Authenticating static sets

Similarly with the RSA accumulator, the construction of a proof for an element x is done as follows.
Let v0, v1, . . . , vl be the path from x to the root of T (ǫ), r = vl. Let B(v) denote the set of siblings
of node v in T (ǫ). The proof Π(x) is the ordered sequence π1, π2, . . . , πl, where πi is a tuple of an
element of G, hash value and a “branch” witness (that is also an element of G), i.e., a witness that
authenticates the missing node of the path from the queried node to the root of the tree, vl. Thus,
item πi of proof Π(x) (i = 1, . . . , l) is defined as:

πi =
(

ψ(vi−1), g
Q

u∈B(vi−1)(h(ψ(u))+s)
)

. (15)

Now we set αi = ψ(vi−1) and βi = g
Q

u∈B(vi−1)(h(ψ(u))+s)
. For the verification, given the proof

Π(x) = π1, π2, . . . , πl for an element x, the client verifies the membership of x in S as follows. Since
the client does not know the trapdoor information s (unless we are in the two-party model), the
client has to use the bilinear map as follows. First, the client checks to see if α1 = x. Then, for
i = 2, . . . , l, the client verifies that the following relation holds:

e(αi, g) = e(βi−1, g
s+h(αi−1)) . (16)

Note that the client can easily compute gs+h(αi−1) (since gs is public) and also that, by the bilinear
mapping properties, we have

e(βi−1, g
s+h(αi−1)) = e(β

s+h(αi−1)
i−1 , g) ,

and therefore verifying Equation 16 is equivalent with checking if β
s+h(αi−1)
i−1 = ai holds, which is

exactly what we want. Also, the client verifies the global bilinear digest against the locally stored
digest d, namely that the relation e(d, g) = e(βl, g

s+h(αl)) holds. The client accepts only if all the

33

relations above hold. As we prove later, the server can forge a proof for an element y /∈ S with
negligible probability in the security parameter k.

Security. Concerning security, the public key pk in our scheme (see Definition 4) consists of the
bilinear pairings parameters t = (p,G,GM , e, g) and the elements of GM g, gs, gs

2
, . . . , gs

q

for some
s chosen at random from Z∗

p. The adversary behaves in the same way as in the description of the
security of the RSA accumulator.

Theorem 11 There exists a set-membership authentication scheme that combines the accumula-
tion tree and the bilinear-map accumulator for authenticating a set of n elements that is secure
under the q-strong Diffie-Hellman assumption and according to Definition 4.

Proof: The security of the new scheme that uses the bilinear-map accumulator can be proved in
the same way it was proved for the RSA accumulator (Theorem 3) by using, instead of Lemma 1,
Lemma 2. 2

Complexity. In the static case, we do not have to compute the witnesses each time we query
for an element. Namely, we can store the witnesses in the corresponding nodes of the tree and
therefore reduce the query complexity from O(nǫ) to O(1) (since the depth of the tree is constant).
We can now present the main result of this section.

Theorem 12 Let 0 < ǫ < 1 be a fixed constant. Under the q-strong Diffie-Hellman assumption,
we can use the accumulation tree and the bilinear-map accumulator with precomputed witnesses to
authenticate a static set S of n elements in the three-party model by storing a data structure of size
O(n) at both the source and the server such that:

1. Our scheme is secure according to Definition 4;

2. The expected query time is O(1);

3. The size of the proof is O(1);

4. The verification time is O(1);

5. The client keeps space O(1).

Proof: Same as Theorem 4 with the difference that for the proof of security we use Theorem 11. 2

Note that this result applies also in the two-party model, with the difference that there is no
need to use the bilinear map to do the verification (the client knows the value s). Moreover, in
the proof of the two-party model, there is no need to communicate both the hash value and the
element in G, since the bilinear map function is not used. Finally, for verification, where we use
the e(·, ·) function, we assume that the computation of e(·, ·) takes constant time (i.e., time that is
does not depend on the number of elements in the hash table).

In the following we describe how to use our bilinear-map authentication structure that is based
on the accumulation tree to authenticate a dynamic hash table. We first describe our general
algorithms and protocols for the three-party model, and then extend our results to the two-party
model, where as we will see, more work is required to get the same complexity results as in the
three-party model.

34

4.4 Three-party model

Let 0 < ǫ < 1 be a fixed constant. We use the same separation technique as before and split
the elements of the hash table into O(n) buckets, each bucket containing O(1) elements. The two
differences we have identified between the RSA accumulator and the bilinear-map accumulator that
can influence the complexity are as follows:

1. In the bilinear-map accumulator, one cannot compute witnesses on the fly with the straight-
forward method (i.e., in O(n) time by a series of exponentiations). This is because the
“on-the-fly” witnesses computation, which should be done by the untrusted server, requires
knowledge of the parameter s, which is kept secret for the sake of security;

2. Witness updates in the bilinear-map accumulator can be done in O(n) time (see Theorem 3),
as opposed to Lemma 4, where we use an O(n logn) algorithm for the witness updates in the
RSA accumulator.

We now present a useful lemma from [34], that is important in our solution.

Lemma 6 (Updating precomputed witnesses [34]) Let S = {x1, x2, . . . , xn} where xi ∈ Z∗
p.

Let V = g(x1+s)(x2+s)...(xn+s) for some s and Wi be the respective witness of xi. Then the following
hold:

1. If we add an element xn+1 to S, then for all i = 1, . . . , n+ 1 we have that

W ′
i = VW

xn+1−xi

i .

2. If we delete an element xj from S, then for all i 6= j we have that

W ′
i =

(

Wi

V ′

)
1

xj−xi

,

where V ′ is the bilinear digest of the updated set.

We recall that in the above lemma it is Wi = g
Qn

j 6=i(xj+s). Using this lemma, we can derive the
following corollary for the update time of the witnesses in the bilinear-map accumulator (since the
computation of a witness takes constant time):

Corollary 3 (Witnesses updates in O(n) time) Suppose we are given the bilinear pairings pa-
rameters t = (p,G,GM , e, g), the elements of GM g, gs, gs

2
, . . . , gs

q

for some s chosen at random
from Z∗

p and our set S = {x1, x2, . . . , xn} where xi ∈ Z∗
p, along with the witnesses Wi for all

i = 1, . . . , n. Let V be the bilinear digest of S, V ′ be the bilinear digest of S after an update has
taken place (either insertion or deletion). Then, without the knowledge of s (and only by knowing
V , V ′ and all the previous witnesses Wi), after an update, we can compute the new witnesses W ′

i

in O(n) time.

We now have the following result:

Theorem 13 Let 0 < ǫ < 1 be a fixed constant. Under the q-strong Diffie-Hellman assumption,
we can use the accumulation tree and the bilinear-map accumulator with precomputed witnesses to
authenticate a dynamic hash table of n elements in the three-party model by storing a data structure
of size O(n) at both the source and the server such that:

35

1. Our scheme is secure according to Definition 4;

2. The expected amortized update time at the server is O(nǫ);

3. The expected amortized update time at the source is O(1);

4. The expected query time is O(1);

5. The size of the proof is O(1);

6. The verification time is O(1);

7. The client keeps space O(1);

8. The update authentication information has size O(1).

Proof: The security of our scheme is derived by Theorem 11. Doing now an analysis that is exactly
the same with the analysis in Lemma 5 where instead of the O(n logn) algorithm of Lemma 4 we use
the O(n) algorithm of Theorem 3 1 and also we use a potential function that does not contain the
logarithm factor, we can derive the main complexity result for the update time at the server. For
the update time at the source, we take advantage of the fact that the source knows the trapdoor
(which in this case is the value s) and therefore can efficiently update the digests. The other
results are derived as in Theorem 5. Finally in order to implement non-membership queries, as
in Theorem 5 we accumulate the cryptographic hashes h(.) of intervals (yi, yi+1), i.e., if we have
three elements in the bucket, y1 < y2 < y3, the bilinear digest of the bucket that also supports
non-membership proofs will be

g(h((−∞,y1))+s)(h((y1,y2))+s)(h((y2,y3))+s)(h((y3,+∞))+s) .

This completes the proof. 2

4.5 Two-party model

As we saw in the previous section, in order to achieve efficient witnesses updates by using Theorem 3,
one needs to know the updated bilinear digest after the update has taken place. This was easy in the
three-party model, since the entity that computes the witnesses (i.e., the untrusted server) could
receive the updated digests from the trusted source, without increasing the update authentication
information. However, in the two party model, the untrusted server has to perform this himself,
without knowing the trapdoor information s. In the following we show how one can do that in
O(n) time, by using Viète’s formulas [43].

Suppose we have a set of elements S = {x1, x2, . . . , xn} and the respective bilinear digest
ψ(S) = g

Qn
i=1(xi+s) for some s. We recall that the server has the elements g, gs, gs

2
, . . . , gs

q

, where
q ≥ n is an upper bound to the number of elements that are going to be accumulated. Note now
that the exponent of the bilinear digest is a n-degree polynomial in s and therefore can be written

1Note that one important thing to achieve the O(n) witness updates without knowing s is that someone needs to
know the new (updated) bilinear digest in order to use it in the formulas. As we will see later, this can be computed
in O(n) time. However, this is not needed for the three-party model, since the source, that knows s can do that
in constant time. Therefore, and referring back to the accumulation tree, whenever there is an update, the source
sends to the server the updated bilinear digests along the path of the update. Then the server, knowing the previous
bilinear digests and the previous witnesses at every node, can use Lemma 6 to compute the new witnesses.

36

as bns
n + bn−1s

n−1 + . . .+ b1s+ b0 where bn = 1 and thus the bilinear digest can be expressed as
follows:

ψ(S) = g
Qn

i=1(xi+s) = gb0 × (gs)b1 ×
(

gs
2
)b2
× . . .×

(

gs
n−1

)bn−1

× gs
n

. (17)

Therefore, one way to compute the bilinear digest is by using bi and gs
i

. In this way, we can still
compute the digest without the knowledge of s. From Viète’s formulas [43], we know that

bn−k =
∑

i1,i2,...,ik:i1<i2<...<ik

xi1xi2 . . . xik .

Suppose now we are adding an element xn+1 to our set. The new coefficients of the polynomial
will be an+1, an, . . . , a0 and they can be computed in O(n) time (therefore we do not have to do it
from scratch which would very expensive) by using the previous coefficients in the iterative relation
ai = bi−1 + xn+1bi for i = 1, . . . , n. Note that a0 =

∏n+1
j=1 xj and an+1 = 1. Similarly when you

delete an element xj one can compute the coefficients of the new polynomial b0, b1, . . . , bn (from
the coefficients a0, a1, . . . , an+1) by setting bi = x−1

j (ai− bi−1) for i = 1, . . . , n, where b0 =
∏n
j=1 xj ,

which again is an O(n) computation. Finally, note that all the computations that refer to the
exponent are reduced modulo p, the order of the multiplicative cyclic group.

Therefore in the two-party model, whenever there is an update, the server updates the coeffi-
cients of the polynomial (O(n) time), then computes the new digest by using Equation 17 (O(n))
and then updates the witnesses by using Theorem 3 (O(n)). When using the accumulation tree
however, all these operations have to be performed 1/ǫ times on O(nǫ) sets. Also the server has to
store the n coefficients of the current polynomial which however does not increase the asymptotic
space needed. Therefore we have the following result:

Theorem 14 Let 0 < ǫ < 1 be a fixed constant. Under the q-strong Diffie-Hellman assumption,
we can use the accumulation tree and the bilinear-map accumulator with precomputed witnesses to
authenticate a dynamic hash table of n elements in the two-party model by storing a data structure
of size O(n) such that:

1. Our scheme is secure according to Definition 4;

2. The expected amortized update time at the server is O(nǫ);

3. The amortized update time at the client is O(1);

4. The query time is O(1);

5. The size of the verification proof is O(1);

6. The amortized size of the consistency proof is O(1);

7. The verification time is O(1);

8. The client keeps amortized space O(1).

Finally we note that all the algorithms for the update at the client side are the same with those
described in Section 3.6. However, one important difference with the three party model is the fact
that the verification can be done without the use of e(., .) function, since the client knows the value
s (which also enables him to do very efficient updates, i.e., in O(1) time). Also we note that the
server should not be holding all the elements g, gs, gs

2
, . . . , gs

q

as this can be very space inefficient.
He can receive the appropriate values from the client whenever there is an insertion (i.e., when the
set size increases from q to q + 1 the client, along with the update query, also sends gs

q+1
) and he

can delete gs
q+1

when the set size drops from q + 1 to q.

37

5 Analysis and evaluation

In this section we provide an evaluation of our two authenticated hash table structures. We analyze
the computational efficiency of our schemes by counting the number of modular exponentiations
(in the appropriate group) involved in each of the complexity measures (namely, update, query
and verification cost) and for general values of ǫ, the basic parameter in our schemes that controls
the flatness of the accumulation tree. The number of exponentiations turns out to be a very good
estimate of the computational complexity that our schemes have, mainly for two reasons. First,
because modular exponentiations are the primitive operations performed in our authentication
schemes, and, second, because there is no significant overheads due to hidden constant factors in
the asymptotic complexities of our schemes—the only constant factors included in our complexities
are well-understood functions of ǫ. We also analyze the communication complexity of our schemes
by computing the exact sizes of the verification proofs and the update authentication information.
Finally, we experimentally validate our computational and communication analysis.

We evaluate the three-party—and most complete and representative—version of our schemes,
namely the authenticated hash tables described in Theorems 5 and 13, where every complexity
measure is constant, except from the update time that is O(nǫ log n) (RSA accumulator) and
O(nǫ) (bilinear-map accumulator) respectively. For the experiments we used a 64-bit, 2.8GHz
Intel based, dual-core, dual-processor machine with 2GB main memory and 2MB cache, running
Debian Linux. For modular exponentiation, inverse computation and multiplication in the RSA-
accumulator scheme we used NTL [1], a standard, optimized library for number theory, inter-
faced with C++. For bilinear maps and generic-group operations in the bilinear-accumulator
scheme, we used the PBC library [2], a library for pairing-based cryptography, interfaced with C.
Finally, for both schemes, we used the efficient sparsehash hash table implementation from Google
(http://code.google.com/p/google-sparsehash/) for on-the-fly computation and efficient up-
dates of the witnesses during a query or an update respectively.

5.1 Hash table using the RSA accumulator

As we saw in the system setup of the RSA-accumulator authenticated hash table, the standard
scheme uses multiple RSA moduli N1, N2, . . . , Nl, where the size of each modulus is increasing with
1/ǫ. In our experimental analysis, we make use of the more practical version of our scheme that
is described in Section 3.7. That is, we restrict the input of each level of accumulation to be two
times the output of a cryptographic hash function, e.g., SHA-256, plus a constant number of extra
bits (t bits) that, when appended to the output of the hash function, give a prime number. For the
experiments we set t = 9 and we use a random oracle that outputs a value of length b = 256 bits.
Therefore, the exponent in the solution that uses the RSA accumulator is 2× 256 + 9 = 521 bits.
Note that t = 9 is the smallest value satisfying Theorem 9 for b = 256.

Primitive Operations. The main (primitive) operations used in our scheme are:

1. Exponentiation modulo N ;

2. Computation of inverses modulo φ(N);

3. Multiplication modulo φ(N);

4. SHA-256 computation over 1024-bit integers.

We have benchmarked the time needed for these operations. For 200 runs, the average time
for computing the power of a 1024-bit number to a 521-bit exponent and then reducing the result

38

modulo N was found to be T1 = 3.04ms, and the average time for computing the inverse of a 521-bit
number modulo φ(N) was T2 = 0.000105ms. Similarly, multiplication of 521-bit numbers modulo
φ(N) was found to be T3 = 0.0011ms. For SHA-256, we used the standard C implementation from
gcrypt.h and, over 200 runs, the time to compute the 256-bit digest of a 1024-bit number was found
to be T4 = 0.01ms. Finally the sparsehash query and update time was benchmarked and was found
to be ttable = 0.003ms. As expected, exponentiations are the most expensive operations.

Updates. Let f be a function that takes as input a 1024-bit integer x and outputs 521-bit prime,
as in Theorem 9. We make the reasonable assumption that the time for applying f(·) to x is
dominated by the SHA-256 computation—practically ignoring the time to perform the appropriate
shifting—and is thus equal to T4 = 0.01ms. As we saw in the proof of Theorem 6 the updates are
performed by the source as follows. Suppose the source wants to delete element x in bucket L.
Let d1, d2, . . . , dl be the RSA digests along the path from x to the root (d1 is the RSA digest of

the corresponding bucket and dl is the root RSA digest). The source first computes d′1 = d
f(x)−1

1

mod N which is the new value of the bucket. Note that this is feasible to compute, since the
source knows φ(N). Therefore so far, the source has performed one f(·) computation (actually
the source has to do this f(·) computation only during insertions, since during deletions the value
f(x) of the element x that is deleted has already been computed), one inverse computation and
one exponentiation. Next, for each i = 2, . . . , l, the source computes d′i by setting

d′i = d
f(di−1)−1f(d′i−1)

i mod N .

Since f(di−1) is precomputed, the source has to do one f(·) computation, one inverse computation,
one multiplication and one exponentiation. Therefore, the total update time at the source is

t
(source)
update = T1 + T2 + T4 + ǫ−1(T1 + T2 + T3 + T4) ,

which is not dependent on n. During an update the server has to compute the witnesses explicitly
and, therefore, perform ǫ−1nǫ log nǫ exponentiations and ǫ−1 f(·) computations in total. Addition-
ally, after the server has computed the new witnesses for each internal node of the accumulation
tree, these witnesses have to be stored in a hash table. Therefore,

t
(server)
update = (ǫ−1 + 1)(nǫ lognǫT1 + T4) + (ǫ−1nǫ + 1)ttable .

Verification. The verification is performed by doing ǫ−1 + 1 exponentiations and f(·) computa-

tions. Namely, by using f(·) to compute prime representatives, Equation 5 becomes αi = f(β
αi−1

i−1

mod N). This can be checked by cutting the last 9 bits of αi and comparing the result (from which
we also cut the last 256 0’s) with the SHA-256 digest of β

αi−1

i−1 mod N . Finally, the client has to
perform one signature verification (i.e., to verify the signed digest from the source). Therefore,

tverify = (ǫ−1 + 1)(t1 + t4) + t1 , (18)

which is also not dependent on n.

Queries. To answer queries using precomputed witnesses, the server has just to pick the right
witness at each level. By using an efficient hash table structure with search time ttable we have that

tquery = (ǫ−1 + 1)ttable . (19)

Communication complexity. The proof and the update authentication information consist of
ǫ−1 + 1 pairs of 1024-bit numbers and 521-bit f(·) values plus the signature of the digest from the
source. Thus,

sproof = (ǫ−1 + 1)(1024 + 521) + 1024 .

39

Finally, the update authentication information consists only of the bilinear digests that lie in the
update path plus a signature, and therefore, its size is (ǫ−1 + 1)1024 + 1024 bits.

In order to precisely evaluate the practical efficiency of our scheme, we set ǫ = 0.1, 0.3, 0.5
(modeling the cases where the accumulation tree has 10, 3, 2 levels respectively). Table 2 shows
the various cost measures expressed as functions of ǫ, and the actual values these measures take
on for a hash table that contains 100,000,000 elements and a varying value of ǫ (i.e., varying
number of levels of the RSA tree). We can make the following observations: As ǫ increases, the
verification time and the communication complexity decrease. However, update time increases since
the internal nodes of the tree become larger and more exponentiations have to be performed. In
terms of communication cost, our system is very efficient since only at most 2.25KB have to be
communicated.

Table 2: Cost expressions in our RSA-accumulator scheme for n = 100, 000, 000 and various values
of ǫ. The size n of the hash table influences only the server’s update time.

operation cost expression ǫ = 0.1 ǫ = 0.3 ǫ = 0.5

source update (ms) T1 + T2 + T4 + ǫ−1(T1 + T2 + T3 + T4) 33.56 13.22 9.15
server update (ms) (ǫ−1 + 1)(nǫ log nǫT1 + T4) + (ǫ−1nǫ + 1)ttable 184.75 8680.60 398690.00
verify (ms) (ǫ−1 + 1)(T1 + T4) + T1 36.59 16.22 12.19
query (ms) (ǫ−1 + 1)ttable 0.03 0.01 0.01
proof size (KB) (ǫ−1 + 1)(1024 + 521) + 1024 2.25 0.97 0.70
update info (KB) (ǫ−1 + 1)1024 + 1024 1.53 0.68 0.51

5.2 Hash table using the bilinear-map accumulator

For the analysis of our bilinear-accumulator scheme, we chose to use type A pairings, as described
in [28]. These pairings are constructed on the curve y2 = x3 + x over the base field Fq, where q is
a prime number. The multiplicative cyclic group G we are using is a subgroup of points in E(Fq),
namely a subset of those points of Fq that belong to the elliptic curve E. Therefore this pairing
is symmetric. The order of E(Fq) is q + 1 and the order of the group G is some prime factor p of
q + 1. The group of the output of the bilinear map GM is a subgroup of Fq2 .

In order to instantiate type A pairings in the PBC library, we have to choose the size of the
primes q and p. The main constraint in choosing the bit-sizes of q and p is that we want to make
sure that discrete logarithm is difficult in G (that has order p) and in Fq2 . Typical values are 160
bits for p and 512 bits for q. Since the accumulated elements in our construction are the output of
SHA-256 (plus the trapdoor s), we choose the size of p to be 260 bits. We use the typical value for
the size of q, i.e., 512 bits. Note that with this choice of parameters the size of the elements in G

(which have the form (x, y), i.e., points on the elliptic curve) is 1024 bits. The main operations we
benchmarked using PBC are the following:2

1. Exponentiation of an element x ∈ G to y ∈ Z∗
p, which takes t1 = 13.7ms;

2. Computation of inverses modulo p, which takes t2 = 0.0001ms;

3. Multiplication modulo p, which takes t3 = 0.0005ms;

2Note that operations related to bilinear-map accumulators take significantly more time than the respective
operations related to the RSA accumulator.

40

4. SHA-256 computation of 1024-bit integers (elements of G), which takes t4 = 0.01ms;

5. Multiplication of two elements x, y ∈ G, which takes t5 = 0.04ms;

6. Bilinear map computation e(x, y), where x, y ∈ G, which takes t6 = 13.08ms.

By following a similar method with that followed for the RSA accumulator, we are able to derive
formulas for the exact times of the bilinear-map accumulator (see Table 3). The main differences in
the cost expressions are in the server’s update time, where the witnesses are computed in a different
way (in addition to exponentiations, multiplications and inverse computations are also required)
and in the client’s verification time, where two bilinear-map computations are also performed.

Table 3: Cost expressions in our scheme bilinear-accumulator scheme for n = 100, 000, 000 and
various values of ǫ. The size n of the hash table influences only the server’s update time.

operation cost expression ǫ = 0.1 ǫ = 0.3 ǫ = 0.5

source update (ms) t1 + t2 + t4 + ǫ−1(t1 + t2 + t3 + t4) 150.82 59.41 41.13
server update (ms) (ǫ−1 + 1)[nǫ(t1 + t2 + t3) + t4] + (ǫ−1nǫ + 1)ttable 951.20 14915.00 411080.00
verify (ms) (ǫ−1 + 1)(t1 + t4 + 2t6) + T1 441.61 175.81 122.65
query (ms) (ǫ−1 + 1)ttable 0.03 0.01 0.01
proof size (KB) (ǫ−1 + 1)(1024 + 1024) + 1024 2.94 1.24 0.89
update info (KB) (ǫ−1 + 1)1024 + 1024 1.53 0.68 0.51

5.3 Comparison

As we can see from the experimental evaluation, the RSA-accumulator scheme is more efficient in
practice than the bilinear-map accumulator scheme. This is due to the costly operations of applying
the bilinear-map function e(·, ·) and the performing exponentiations in the field G. However,
asymptotically, the bilinear-accumulator scheme outperforms the RSA-accumulator scheme by a
logarithmic factor. In terms of communication efficiency, we see that there is almost no difference
since the size of the elements of the field G is 1024 bits, equal to the size of the RSA modulus
used in the RSA-accumulator scheme. We note that for a system implementation of our schemes
it would make sense to make constant ǫ as small as possible, since the update cost may become
prohibitive for large values of ǫ. In Figure 2, we can see how the update time scales with increasing
number of elements in the hash table, for both authentication schemes. Here, we observe that for
ǫ = 0.1, the RSA-accumulator scheme is far more efficient than the bilinear-accumulator scheme.

Overall, our results are primarily of theoretical interest. From the evaluation, we can see that
the cost for performing an update is much higher that the cost induced by using Merkle trees and
other structures such as skip lists (see for example [18]). However, the communication complexity
scales very well with the data set size and compares well with the hash-based methods. The
most important property of our results is that asymptotically the client can optimally authenticate
operations on hash tables with constant time and communication complexities; this makes our
scheme suitable for certain applications where verification for example should not depend on the
size of the data we are authenticating.

41

0 50,000,000 100,000,000
0

100

200

300

400

500

600

700

800

900

1000

number of elements

tim
e

(m
s)

update time for ε=0.1

bilinear−map accumulator
RSA accumulator

Figure 2: Comparison of update time for ǫ = 0.1.

6 Conclusions and future work

In this paper, we propose a new, provably secure, cryptographic construction for authenticating
the fundamental hash-table functionality. We use nested cryptographic accumulators on a tree of
constant depth to achieve constant query and verification costs and sublinear update costs. Our
results are applicable to both the two-party and three-party data authentication models. We use
our method to authenticate general set-membership queries and overall improve over previous tech-
niques that use cryptographic accumulators, reducing the main complexity measures to constant,
yet keeping sublinear update time.

An important open problem is whether one can achieve logarithmic update cost and still keep
the communication complexity constant. There has been no such solution to-date. In particular,
no method is known that can construct constant-size accumulator proofs (witnesses) in logarithmic
time. Note that achieving constant complexity for all the complexity measures is unfeasible for
the two-party model due to the Ω(logn/ log logn) memory checking lower bound [15] on query
complexity (the sum of read and write complexity). This result, however, motivates seeking better
lower bounds for set-membership authentication (as, e.g., in [15, 41]): given a cryptographic prim-
itive or authentication model, what is the best we can do in terms of complexity (and still being
provable secure)?

Finally, it would be interesting to modify our schemes to obtain non-amortized bounds for
updates using e.g., Overmar’s global rebuilding technique [36].

42

Acknowledgments

This research was supported by the U.S. National Science Foundation under grants IIS–0713403
and OCI–0724806, by the Center for Geometric Computing and the Kanellakis Fellowship at Brown
University, and by the Center for Algorithmic Game Theory at the University of Aarhus under an
award from the Carlsberg Foundation. The views in this paper do not necessarily reflect the views of
the sponsors. We thank Michael Goodrich, Anna Lysyanskaya, John Savage and Ioannis Vergados
for many useful discussions, and C. Chris Erway for providing pointers to the NTL library. We
also thank Ivan Damg̊ard for giving us important feedback on the first version of this work.

References

[1] NTL: A library for doing number theory. http://www.shoup.net/ntl/.

[2] PBC: The pairing-based cryptography library. http://crypto.stanford.edu/pbc/.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. Provable
data possession at untrusted stores. In Proc. Computer and Communication Security (CCS),
2007.

[4] N. Baric and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes without
trees. In Advances in Cryptology: Proc. EUROCRYPT, volume 1233 of LNCS, pages 480–494.
Springer-Verlag, 1997.

[5] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In Proceedings of the 1st ACM Conference on Computer and Communications
Security, pages 62–73. ACM Press, 1993.

[6] J. Benaloh and M. de Mare. One-way accumulators: A decentralized alternative to digital
signatures. In Advances in Cryptology—EUROCRYPT 93, volume 765 of LNCS, pages 274–
285. Springer-Verlag, 1993.

[7] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of
memories. Algorithmica, 12(2/3):225–244, 1994.

[8] D. Boneh and X. Boyen. Short signatures without random oracles and the SDH assumption
in bilinear groups. J. Cryptology, 21(2):149–177, 2008.

[9] A. Buldas, P. Laud, and H. Lipmaa. Accountable certificate management using undeniable
attestations. In ACM Conference on Computer and Communications Security, pages 9–18.
ACM Press, 2000.

[10] J. Camenisch, M. Kohlweiss, and C. Soriente. An accumulator based on bilinear maps and
efficient revocation for anonymous credentials. In Public Key Cryptography (PKC), pages
481–500, 2009.

[11] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revoca-
tion of anonymous credentials. In Proc. CRYPTO, 2002.

[12] I. L. Carter and M. N. Wegman. Universal classes of hash functions. In Proc. ACM Symp. on
Theory of Computing, pages 106–112, 1977.

43

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, Cambridge, MA, 2nd edition, 2001.

[14] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R. E.
Tarjan. Dynamic perfect hashing: upper and lower bounds. SIAM J. Comput., 23:738–761,
1994.

[15] C. Dwork, M. Naor, G. N. Rothblum, and V. Vaikuntanathan. How efficient can memory
checking be? In TCC, pages 503–520, 2009.

[16] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia. Dynamic provable data possession.
In Proc. ACM Int. Conference on Computer and Communications Security (CCS), 2009.

[17] R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the random
oracle. In Proc. EUROCRYPT, volume 1592 of LNCS, pages 123–139. Springer-Verlag, 1999.

[18] M. T. Goodrich, C. Papamanthou, and R. Tamassia. On the cost of persistence and authenti-
cation in skip lists. In Proc. Int. Workshop on Experimental Algorithms (WEA), pages 94–107,
2007.

[19] M. T. Goodrich, C. Papamanthou, R. Tamassia, and N. Triandopoulos. Athos: Efficient
authentication of outsourced file systems. In Proc. Information Security Conference, LNCS,
pages 80–96. Springer, 2008.

[20] M. T. Goodrich, R. Tamassia, and J. Hasic. An efficient dynamic and distributed cryptographic
accumulator. In Proc. of Information Security Conference (ISC), volume 2433 of LNCS, pages
372–388. Springer-Verlag, 2002.

[21] M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenticated dictio-
nary with skip lists and commutative hashing. In Proc. DARPA Information Survivability
Conference and Exposition II (DISCEX II), pages 68–82, 2001.

[22] M. T. Goodrich, R. Tamassia, and N. Triandopoulos. Super-efficient verification of dynamic
outsourced databases. In Proc. RSA Conference, Cryptographers’ Track (CT-RSA), volume
4964 of LNCS, pages 407–424. Springer, 2008.

[23] M. T. Goodrich, R. Tamassia, N. Triandopoulos, and R. Cohen. Authenticated data structures
for graph and geometric searching. In Proc. RSA Conference—Cryptographers’Track, pages
295–313. Springer, LNCS 2612, 2003.

[24] A. Hutflesz, H.-W. Six, and P. Widmayer. Globally order preserving multidimensional linear
hashing. In Proc. 4th Intl. Conf. on Data Engineering, pages 572–579, 1988.

[25] C. M. Kenyon and J. S. Vitter. Maximum queue size and hashing with lazy deletion. Algo-
rithmica, 6:597–619, 1991.

[26] J. Li, N. Li, and R. Xue. Universal accumulators with efficient nonmembership proofs. In
ACNS, pages 253–269, 2007.

[27] N. Linial and O. Sasson. Non-expansive hashing. In Proc. 28th Annu. ACM Sympos. Theory
Comput., pages 509–517, 1996.

[28] B. Lynn. On the implementation of pairing-based cryptosystems. PhD thesis, Stanford Uni-
versity, November 2008.

44

[29] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine. A general
model for authenticated data structures. Algorithmica, 39(1):21–41, 2004.

[30] R. C. Merkle. A certified digital signature. In G. Brassard, editor, Proc. CRYPTO ’89, volume
435 of LNCS, pages 218–238. Springer-Verlag, 1989.

[31] J. K. Mullin. Spiral storage: Efficient dynamic hashing with constant-performance. Comput.
J., 28:330–334, 1985.

[32] M. Naor and K. Nissim. Certificate revocation and certificate update. In Proc. 7th USENIX
Security Symposium, pages 217–228, Berkeley, 1998.

[33] M. Naor and G. N. Rothblum. The complexity of online memory checking. J. ACM, 56(1),
2009.

[34] L. Nguyen. Accumulators from bilinear pairings and applications. In Proc. CT-RSA 2005,
LNCS 3376, pp. 275-292, Springer-Verlag, 2005., 2005.

[35] G. Nuckolls. Verified query results from hybrid authentication trees. In DBSec, pages 84–98,
2005.

[36] M. H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notes
Comput. Sci. Springer-Verlag, Heidelberg, West Germany, 1983.

[37] C. Papamanthou and R. Tamassia. Time and space efficient algorithms for two-party authenti-
cated data structures. In Proc. Int. Conference on Information and Communications Security
(ICICS), volume 4861 of LNCS, pages 1–15. Springer, 2007.

[38] T. Sander. Efficient accumulators without trapdoor (extended abstract). In ICICS ’99: Proc.
Int. Conf. on Information and Communication Security, pages 252–262. Springer-Verlag, 1999.

[39] T. Sander, A. Ta-Shma, and M. Yung. Blind, auditable membership proofs. In Proc. Financial
Cryptography (FC 2000), volume 1962 of LNCS. Springer-Verlag, 2001.

[40] R. Tamassia. Authenticated data structures. In Proc. European Symp. on Algorithms, volume
2832 of LNCS, pages 2–5. Springer-Verlag, 2003.

[41] R. Tamassia and N. Triandopoulos. Computational bounds on hierarchical data processing
with applications to information security. In Proc. Int. Colloquium on Automata, Languages
and Programming (ICALP), volume 3580 of LNCS, pages 153–165. Springer-Verlag, 2005.

[42] R. Tamassia and N. Triandopoulos. Efficient content authentication in peer-to-peer networks.
In Proc. Int. Conf. on Applied Cryptography and Network Security (ACNS), volume 4521 of
LNCS, pages 354–372. Springer, 2007.

[43] E. B. Vinberg. A course in algebra. American Mathematical Society, Providence RI, 2003.

[44] P. Wang, H. Wang, and J. Pieprzyk. A new dynamic accumulator for batch updates. In ICICS,
pages 98–112, 2007.

45

