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Abstract
In this paper, we propose a grouping-proof protocol
for RFID tags based on secret sharing. Our proposed
protocol addresses the scalability issue of the previous
protocols by removing the need for an RFID reader to
relay messages from one tag to another tag. We also
present a security model for a secure grouping-proof
protocol which properly addresses the so called mafia
fraud atttack. Mafia fraud attack (sometimes called dis-
tance fraud) is a simple relay attack suggested by Yvo
Desmedt. Any location-based protocol including RFID
protocols is vulnerable to this attack even if cryptog-
raphy is used. One practical countermeasure to mafia
fraud attack is to employ a distance-bounding protocol
into a location-based protocol. However, in the light of
work by Chandran et al., mafia fraud attack cannot be
theoretically prevented. Therefore, we need to take hits
fact into account in order to make sense about security
notion for secure grouping-proof protocols.

Keywords RFID Security, Yoking-Proof, Grouping-
Proof, Scalability

1. Introduction
Grouping-proof protocols allow multiple RFID tags to
be scanned at once such that their co-existence is guar-
anteed. One typical application of a grouping-proof
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protocol is to scan tags that are supposed to stay to-
gether. For example, RFID tags attached on differ-
ent parts of a car should be located near each other.
Juels [2] proposed the first protocol of this kind which
is called yoking-proof. The protocol allows an RFID
reader to produce a co-existence proof of two RFID
tags. The proof can then be verified by a verifier which
holds all the secret keys of tags. Unfortunately, Saito
and Sakurai [5] showed that yoking-proof is vulnera-
ble to replay attack and proposed a timestamp-based
version of yoking-proof to withstand the attack. A true
grouping-proof protocol which supports simultaneous
scanning of more than two tags was also proposed in
[5]. However, this protocol requires a pallet tag to act as
a proxy between a reader and other regular tags. Other
improved variants of yoking-proof were also proposed
in [7, 8, 10].

In this paper, we first point out that all of the previ-
ous grouping-proof protocols in [2, 5, 7, 8, 10] suffer
from a scalability problem. More specifically, a reader
has to relay messages from one tag to another tag which
makes it difficult to scan a large number of tags at
the same time. Our proposed protocol aims to solve
this problem by removing the need to relay messages
among tags.

An important part of designing a secure protocol
is to define a security model in which the term se-
cure correctly captures our intuition about real-world
security of the protocol. We argue that this task has
not been done adequately in previous works. In par-
ticular, no previous work addresses mafia fraud attack
presented in [1]. Mafia fraud attack is simply a relay
attack where an attacker relays messages exchanged
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between a reader and tags. As noted in [13], all of
grouping-proof protocols for RFID are inherently in-
secure against this attack because the attacker can re-
lay messages exchange between a reader and tags that
are out of the communication range of the reader. The
result is an invalid proof that contains tags not in the
communication range of the reader at the time of in-
terrogation. Indeed, a security model that does not ad-
dress this issue cannot be a proper security model for
grouping-proof protocols because it would be impossi-
ble to prove the security. In practice, we can somehow
mitigate this attack by using a distance bounding pro-
tocol [3] so that a relay attacker does not have enough
time to relay messages out of the communication range
of the reader. Indeed, some of previous protocols [5, 8]
make use of timestamp which is actually used to defeat
replay attack. However, this prevention method works
only if an interrogation session lasts as short as possi-
ble. Since a reader has to relay messages among tags in
previous protocols, a protocol session can be prolonged
which makes mafia fraud attack more feasible. There-
fore, it is also important to solve the scalability prob-
lem in order to defeat mafia fraud attack. Note that,
the use of timestamp does not mean that we do not
need to take mafia attack into account when defining
a security notion for secure grouping-proof protocols.
After all, mafia fraud attack is always possible from a
theoretical point of view. In fact, in [12], Chandran et
al. showed that it is impossible to securely verify the
geographic location of a device. Another issue when
defining a security model for grouping-proof protocol
is that the verifier has no knowledge of what or how
many tags are actually in the communication range of
a reader. Therefore, we cannot achieve security at all
if a reader is allowed to behave maliciously in an arbi-
trary way. For example, a reader can deliberately avoid
scanning some tags resulting in an invalid co-existence
proof. In this paper, we present a secure model for se-
cure grouping-proof protocols which takes the above
issues into account. In particular, we put the following
assumptions in our security model:

• Relaying messages out of the communication range
of a reader is not possible. We address this assump-
tion by restricting the adversary’s access to the tag
oracle during the last phase of an experiment in
which the adversary interacts with a set of oracles,
receives a challenge and attempts to solve the chal-

lenge. We shall discuss this in more details in Sec-
tion 4.
• The reader is trusted to execute the protocol fruit-

fully but it may report an invalid co-existence proof
to the verifier. In particular, before reporting a valid
proof to the verifier, a dishonest reader may try to
remove a tag from the proof, replace a tag in the
proof with another tag or add another tag to the
proof. In practice, the protocol can be implemented
in a tamper-proof chip whereas a proof is assem-
bled and sent to the verifier by the reader in software
(and therefore is subject to malicious behaviors of a
reader).

It is important to note that, none of previous proto-
col appears to be secure in a weaker assumption. We
then propose a grouping-proof protocol for RFID by
using a (n, n)-secret sharing scheme (also referred to
as unanimous consent control in [14]). The goal of us-
ing a (n, n)-secret sharing scheme in our protocol is
to let n tags sign n different challenges. The n chal-
lenges are n shared secrets of a number which is ran-
domly chosen by the verifier. The threshold property of
a (n, n)-secret sharing scheme guarantees that n signed
challenges are tied together. We then prove the security
of our protocol.

The rest of this paper is organized as follows: in Sec-
tion 2, we review previous works on grouping-proof
protocols for RFID. We then discuss the scalability
problem of previous protocols in Section 3. The Sec-
tion 4 is dedicated to the presentation of our security
model for a secure grouping-proof protocol. Next, we
describe our grouping-proof protocol followed by secu-
rity analysis in Sections 4 and 5, respectively. Finally,
we conclude in Section 6.

2. Related Works
In this section, we briefly review existing grouping-
proof protocols. We will use the notations summarized
in Table 1.

2.1 Yoking-Proof for RFID Tags
Yoking-proof [2] enables an RFID reader to produce a
proof that two RFID tags are present within the com-
munication range of the reader. The proof can then be
verified by the verifier which knows secret keys of the
two tags. In the yoking-proof protocol, a tag proves
its presence by signing a random number generated by
another tag. A message authentication code (MAC for
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Notation Description
Ki Secret key of tag Ti

MACK [.] Message authentication code with secret key K
P A co-existence proof of multiple tags
R Reader

SKK [.] Symmetric encryption with secret key K
TS Timestamp

T1, T2, · · · , Tn n RFID tags
V Verifier (Back-end Database)

Table 1. Notations

short) algorithm can be used as a signing mechanism.
The reader is in charge of forwarding the random num-
bers and collecting the MACs to form a proof of co-
existence. The resulting co-existence proof can be veri-
fied by checking the validity of the MACs. The protocol
proceeds as follows:

1. R → T1: request.

2. T1 → R: T1, r1 where r1 is chosen at random.

3. R → T2: r1.

4. T2 → R: T2, r2,m2 =MACK2 [r1] where r2 is
chosen at random.

5. R → T1: r2.

6. T1 → R: m1 =MACK1 [r2].

7. R → V: P = (T1, r1,m1, T2, r2,m2).

2.2 Saitoh-Sakurai’s Grouping-Proof for RFID
Tags

Saitoh and Sakurai [5] showed that yoking-proof is vul-
nerable to replay attack. The reason is that the two mes-
sages m1 and m2 are not guaranteed to be generated
in the same session. As a result, an attacker can reuse
m2 in another session which results in a forged proof.
To prevent the attack, Saitoh and Sakurai proposed a
timestamp-based yoking-proof which requires an on-
line verifier to issue a timestamp TS for each session.
TS is included in each co-existence proof and needs to
be signed by both T1 and T2. The online verifier ac-
cepts a proof only if it is received within the expected
lifespan of one interrogation session.

In [5], the authors also proposed another protocol
which allows the simultaneous scanning of more than
two tags. The protocol is called grouping-proof and
requires an additional entity called pallet tag. The pallet
tag has more computational resource than an RFID tag
and acts as a representative of all RFID tags that are in
the same package with the pallet tag.

1. V → R: TS.

2. R → T1, T1, · · · Tn: TS.

3. Ti → R: mi =MACKi [TS], for i = 1, 2, · · · , n.

4. R → Pallet Tag: TS, m1,m2, · · · ,mn.

5. Pallet Tag→ R: CP = SKK [TS, m1,m2, · · · ,mn].

6. R → V: P =(TS, CP , T1, T2, · · · , Tn).

The proof P is subject to timestamp verification by
the online verifier in order to prevent replay attacks.
Then, the co-existence proof is verified by checking the
validity of each mi.

2.3 Other Variants of Yoking-Proof
Piramuthu proposed another variant of yoking-proof
which does not use timestamp to prevent replay attack
[7]. The main idea is to let the tag T1 sign both its own
random number r1 and the tag T2’s MAC m2. As a
result, neither of two MACs m1 nor m2 can be reused
in another session.

Lin et al. pointed out that Piramuthu’s protocol
may suffer from interference problem when multiple
readers are represent. More specifically, when a tag is
queried by two readers at the same time, the tag might
have problem determining what messages to sign if no
proper session management is present. Lin et al. also
showed that the timestamp-based yoking-proof pre-
sented in [5] is indeed not secure against replay attack.
An attacker can query the tag T1 with many different
timestamp values in the future. Then, the responses
from T1 can be used to query the tag T1 which is in
a different location and at different times. To counter
the problem, Lin et al. proposed another variant of
timestamp-based yoking proof in which the verifier en-
crypts a timestamp value before sending to a reader. Lin
et al. also proposed another grouping-proof protocol
for any number of tags but without using a pallet tag.
The protocol uses a method called timestamp-chaining.
That is, to produce a co-existence proof of n tags, the
first tag signs the hashed timestamp value TS1 from the
reader and the i-th tag signs the hash of timestamp TSi

and the (i − 1)-th tag’s MAC. The reader is in charge
of forwarding the hashes and assigning proper values
for each timestamp.

2.4 Burmester et al.’s Grouping-Proof Protocol
Burmester et al. proposed two grouping-proof pro-
tocols which employ a different approach compar-
ing to other previous works [10]. In particular, in the
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Burmester et al.’s protocols, a tag does not use MAC
to sign its challenge. However, in order to produce a
co-existence proof of two tags, Burmester et al.’s pro-
tocols assume that the two tags share a group id (de-
noted as gid) and a common secret key (denoted as
Kg). Each tag also maintains a counter variable c such
that c is increased by 1 after each successful protocol
session. We describe below only one protocol in [10].
The other protocol has the same design but provides tag
anonymity by updating the group id after each session.

1. R → T1, T2: rsys chosen at random.

2. T1, T2 → R: gid.

3. R → T1, T2: T1 and T2 are linked.

4. T1 → R: c, r1 where r1||s1 = f(rsys, c,Kg).

5. R → T2: r1, c.

6. T2 → R: t2, s2 if r1 = r2 where r2||s2 =
f(rsys, c,Kg) and t2 = f(r2, c,K2). If r1 6= r2,
T2 terminates the protocol.

7. R → T1: s2.

8. T1 → R: t1 if s1 = s2 where t1 = f(r1, c,K1). T1
also update its counter value c = c + 1. If s1 6= s2,
T1 terminates the protocol.

9. R → V: P = (rsys, gid, c, r1, t1, r2, t2).

3. Scalability Issue of Previous
Grouping-Proof Protocols

The design of yoking-proof and timestamp-based yok-
ing proof suffers from a serious scalability issue. The
reason is that a reader needs to relay messages from one
tag to another so that a tag can sign the random num-
bers that were generated by the other tags. As a result,
if the reader wants to produce a co-existence proof of n
tags, it will need to relay n(n − 1) messages among n
tags. The number of relaying messages can be reduced
to (n−1) if a proof is constructed in a chaining fashion.
That is, the first tag signs the second tag’s random num-
ber. The second tag signs the third tag’s random num-
ber and so on. However, this approach might be sub-
ject to replay attack if a protocol is not designed care-
fully. Let’s assume that a tag Ti appears in two chaining
proofs. Using Ti as a connector, an attacker might try
to connect the first half of the first proof with the sec-
ond half of the second proof to produce a forged proof.
Nevertheless, this is a significant communication over-
head compared to the traditional method of scanning

one tag at a time which requires no message to be re-
layed by the reader. This same problem also appears in
other variations of yoking-proof and in [7, 8, 10].

The grouping-proof protocol by Saitoh and Sakurai
does not use the same design of yoking-proof. How-
ever, it requires a pallet tag which is capable of per-
forming symmetric encryption. This increases the cost
of multiple scanning of tags and might not be flexible
in practice. For example, in a retail store, items that
are scanned at a point-of-sale usually do not have an
accompanying pallet tag. In addition, the reader still
needs to relay messages from all tags to the pallet tag.
In order to to scan n tags at once, the reader needs to
relay n messages to the pallet tag.

As we pointed out earlier, the lifespan of one pro-
tocol session may affect the resilience of a grouping-
proof protocol against mafia fraud attack. We think that
it is important to solve the scalability problem of previ-
ous grouping-proof protocols, not only for the sake of
only performance but also security.

4. Security Model for A Secure
Grouping-Proof Protocol

It is important that before designing a protocol to se-
cure certain cryptographic tasks, one should clearly de-
fine the meaning of the term secure. In this paper, we
present a security model for a secure grouping-proof
protocol for RFID tags which addresses mafia fraud
attack and the level of trust on an RFID reader. We
then define what a secure grouping-proof protocol for
RFID tags is. Our security model is a conventional se-
curity model in a sense that the adversary is given ac-
cess to a set of oracles and the term secure is defined
via a game between a challenger and the adversary. In
[10], the authors proposed another security model for
secure grouping-proof protocol in the Universal Com-
posable Framework (UC framework for short). A pro-
tocol which is secure in UC framework is guaranteed
to remain secure even when running as a component
of a large system. The most important part of a secu-
rity model in the UC framework is the ideal functional-
ity which is a trusted party implementing the required
cryptographic task. The ideal functionality defined in
[10] is called Fgroup which interacts with different in-
volving parties via 5 interfaces: activate, initiate, link,
complete and verify (whereas involving parties do not
interact with each other directly). Interested readers are
referred to [10] for the description of each of Fgroup’s
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interface. The problem with Fgroup is that there is no
condition for a tag to callFgroup’s initiate. Indeed, only
tags within the communication range of a reader are
qualified to make the initiate calls to Fgroup. Unfor-
tunately, the communication range of a reader is not
modeled in Fgroup. That is probably why the full secu-
rity proofs for two protocols in [10] are not yet avail-
able. Note that, this does not mean security proofs for
lightweight authentication protocols for RFID are in-
valid. In case of an authentication protocol, the goal of
the adversary is to impersonate a tag. Simply relaying
message between a legitimate tag and a reader does not
qualify as impersonation. It is also worth mentioning
that most of previous grouping-proof protocols employ
timestamp which makes it difficult to rigorously ana-
lyze their security. We think that it is better to avoid
using a physical object in the description of a protocol
but embed it in the security model or assumption.

We now describe our security model for a secure
grouping-proof protocol. First of all, we realize that
that for a grouping-proof for RFID tags protocol, the
primary goal of an adversary is to inject some tags (pos-
sibly genuine) into a valid co-existence proof while the
tags are not actually in the communication range of the
reader. In addition, the adversary might also want re-
move some tags from a valid co-existence proof. It is
also assumed that the reader can behave maliciously
but does execute the protocol correctly. When reporting
a co-existence proof to the verifier, a malicious reader
may try to replace some tags in the proof with differ-
ent tags, add a tag to the proof or remove a tag from
the proof. One can obtain a stronger security notion by
allowing a malicious reader to deviate from the proto-
col in any fashion. However, it is impossible to achieve
security because the verifier has no knowledge of what
and how many tags are actually in the communication
range of the reader. The malicious reader can violate
the security by deliberately not scanning some tags.
This issue also appears in all of the previous protocols
in [2, 5, 7, 8, 10]. Indeed, the timestamp-chaining pro-
tocol by Lin et al. is vulnerable to malicious behaviors
of a reader even if the reader is trusted to execute the
protocol correctly. The reason is that before reporting
a co-existence proof of n tags to the verifier, the mali-
cious reader can remove some tags at the end of the
timestamp chain from the proof without invalidating
the proof. We now define a set of oracles that provide
information to the adversary:

• The reader(.) oracle: This oracle simulates a reader
during a protocol session. That it, it returns the
reader’s challenge to a tag.

• The corrupt-reader(.) oracle: This oracle corrupts
a reader and returns the current state of the reader.
The adversary is also allowed to control the reader
after this oracle is called.

• The tag(.) oracle: This oracle simulates a tag dur-
ing a protocol session. That is, it returns the tag’s
response given a challenge from a reader.

• The verify(.) oracle: This oracle takes a co-existence
proof P as input and returns 1 if P is valid and 0 oth-
erwise.

We now define the security notion for a secure
grouping-proof protocol via the following game be-
tween a challenger and an adversary.

1. The challenger first sets the verifier and a reader and
tags up to prepare for the game.

2. In the first phase of the game, the adversary collects
information via 4 oracles: reader(.), tag(.), corrupt-
reader(.) and verify(.). These oracles are simulated
by the challenger.

3. In the second phase of the game, the challenger
gives the adversary a valid proof P of n tags as a
challenge. The adversary’s goal is to either remove
a tag from P or add a new tag to P or replace a tag in
P with a different one. In this phase, the adversary
is also given access to the corrupt-reader(.) oracle
after the challenge proof P is constructed. However,
the tag(.) oracle is not provided to the adversary af-
ter the adversary has seen P . This is to reflect our
assumption that relay attack is not possible. The ad-
versary should output a new proof P ′ which satisfies
one of its goals.

4. The adversary wins the game if verify(P ′) returns 1.
That is, P ′ is a valid co-existence proof.
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Definition 1. A grouping-proof protocol is said to be
secure if the winning probability of the adversary in the
above game is negligible.

5. Our Proposed Grouping-Proof Protocol
We now propose our grouping-proof protocol for mul-
tiple RFID tags which does not suffer from the scal-
ability problem. In order to avoid relaying messages
among tags, we use a (n, n)-secret sharing scheme in
an uncoventional way. A (n, n)-secret sharing scheme
allows one to split one secret x into n of so called
shared secrets such that x can only be reconstructed
from the shared secrets only if all of n shared secrets
are provided. This property is used in our proposed pro-
tocol so that each tag can sign its own random number
to prove its existence. The random numbers are shared
secrets generated by a secret sharing scheme. If the
original secret generated by a verifier can be recovered
from signed shared secrets that were backscattered by
tags, then the proof of co-existence of tags is verified.
A (n, n)-secret sharing scheme can be implemented as
follows:

• Given a secret x, a dealer chooses (n − 1) random
numbers y1, y2, · · · , yn−1 as the first (n− 1) shared
secrets.

• The last shared secret yn is computed by yn =
x⊕ y1 ⊕ y2 ⊕ · · · ⊕ yn−1.

It is easy to see that the above protocol achieves per-
fect security since it is impossible to recover x with-
out any of y1, y2, · · · or yn. In addition, for each ran-
domly chosen x, a shared secret of x is also random.
This property is important to prevent replay attack as
a shared secret is used as a challenge in our proposed
protocol. We now describe our grouping-proof protocol
below.

1. V → R: x chosen at random. The verifier also
sets a time-to-live on x such that a co-existence
proof associated with x must be received within the
lifespan of x (which should be approximately the
time taken by one interrogation session of a reader).

2. R → Ti: x, yi for i = 1, 2, · · · , n where y1, y2, · · · ,
and yn are n shared secrets of x.

3. Ti → R: Ti,mi =MACKi [yi, x], for i = 1, 2, · · · , n.

4. R → V:P = (T1, y1,m1, T2, y2,m2, · · · , Tn, yn,mn).

5. V: The verifier verifies a proof P by checking if P is
received within the lifespan of x = y1⊕y2⊕· · ·⊕yn
and each mi is valid MAC of the tag Ti on (x, yi).

Remark 1. Note that, it is important to stress that we
do use timestamp in our protocol to prevent a mali-
cious reader from abusing x (i.e., the malicious reader
can take x and use shared secrets of x on different
tags at different locations and times). However, the way
which timestamp is used in our protocol is very differ-
ent from in previous protocols. More specifically, we do
not use timestamp as a challenge to a tag. Instead, only
the verifier maintains timestamp for each interrogation
session. This allows us to leave “time-to-live of x” to
the security model. Indeed, the fact that a co-existence
proof must be received within the lifespan of x fits in the
assumption that a reader always executes the protocol
correctly until reporting a proof to the verifier. There-
fore, we can ignore the use of timestamp in the security
proof of our protocol.

We now analyze the success probability of an ad-
versary attacking our protocol. The probability is mea-
sured in terms of the success probabilities of adver-
saries attacking the underlying MAC and secret sharing
schemes in the following theorem.

Theorem 1. Let α be success probability of an adver-
sary attacking the underlying MAC scheme. Let ε be
the success probability of an adversary that attacks our
proposed grouping-proof protocol, we have:

ε = O
(
α+ 2−

l
2

)
where l is the bit length x and d is the number of tags
in the tag database.

Proof. Let A be the adversary that attacks our pro-
posed grouping-proof protocol. Given a challenge P =
(T1, y1,m1, T2, y2,m2, · · · , Tn, yn,mn) and let x =
y1 ⊕ y2 ⊕ · · · ⊕ yn, A wants to achieve one of the fol-
lowing goals:

• Construct a co-existence proofP ′ = (T ∗1 , y∗1,m∗1, T ∗2 ,
y∗2,m

∗
2, · · · , T ∗n , y∗n,m∗n) such that {T1, T2, · · · , Tn}

6= {T ∗1 , T ∗2 , · · · , T ∗n }; y∗1 ⊕ y∗2 ⊕ · · · ⊕ y∗n = x; and
m∗1,m

∗
2, · · · and m∗n are valid MACs of T ∗1 , T ∗2 , · · ·

and T ∗n on (y∗1, x), (y
∗
2, x), · · · and (y∗n, x), respec-

tively. In other words, A succeeds when it can re-
place at least one tag that is actually in the commu-
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nication range of the reader by another tag. We call
this type of adversary Type-I adversary.

• Construct a co-existence proofP ′ = (T ∗1 , y∗1,m∗1, T ∗2 ,
y∗2,m

∗
2, · · · , T ∗n−1, y∗n−1,m∗n−1) such that the cardi-

nality of {T1, T2, · · · , Tn} \ {T ∗1 , T ∗2 , · · · , T ∗n−1} is
1; y∗1 ⊕ y∗2 ⊕ · · · ⊕ y∗n−1 = x; and m∗1,m

∗
2, · · · and

m∗n−1 are valid MACs of T ∗1 , T ∗2 , · · · and T ∗n−1 on
(y∗1, x), (y

∗
2, x), · · · and (y∗n−1, x), respectively. In

other words, the adversary can remove a tag from
P . We call this type of adversary Type-II adversary.

• Construct a co-existence proofP ′ = (T1, y∗1,m∗1, T2,
y∗2,m

∗
2, · · · , Tn, y∗n,m∗n, T ∗n+1, y

∗
n+1,m

∗
n+1) such y∗1

⊕ y∗2 ⊕ · · · ⊕ y∗n ⊕ y∗n+1 = x; and m∗1,m
∗
2, · · · ,m∗n

and m∗n+1 are valid MACs of T1, T2, · · · , Tn and
T ∗n+1 on (y∗1, x), (y

∗
2, x), · · · , (y∗n, x) and (y∗n+1, x),

respectively. In other words, the adversary can add
the tag T ∗n+1 to P . We call this type of adversary
Type-III adversary.

In the first phase of the attack, A are given access
to three oracles: the tag(.) oracle, the reader(.) oracle
and the verify(.) oracle. The corrupt-reader(.) oracle is
not needed asA can eavesdrop x itself from challenges
sent to tags (except that A can control the reader after
seeing the challenge P , however this does not affect the
analysis here). The tag(.) oracle is essentially a MAC
oracle as it outputs MAC on an input value together
with a tag ID. In the second phase of the attack, the
adversary can only control the reader after seeing the
challenge P . No oracle access is given in this phase.
As usual, we limit the number of calls to oracles and
running time of the adversary to be polynomial in se-
curity parameters. We analyze the success probability
of each type of the adversary below.

Type-I Adversary: We distinguish two cases of
Type-I adversary as follows:

• Case 1: none of (y∗i , x) for i = 1, 2, · · · , n has not
been asked to the tag(.) oracle. In this case,A is es-
sentially a MAC forger with m∗i is a forged MAC.
Indeed, if A can forge a MAC, then it is obvious
to attack the proposed grouping-proof protocol by
constructing a forged MAC on one of (yi, x) for
i = 1, 2, · · · , n such that the forged MAC is a valid
MAC of a tag not in {T1, T2, · · · , Tn}. Therefore,

the success probability of A is bounded by the suc-
cess probability of the MAC adversary.
• Case 2: at least one of (y∗i , x) for i = 1, 2, · · · , n

has been asked to the tag oracle. We only consider
the case that the adversary try to replace one tag
in P with another tag. But it can be easily gener-
alized to the case of replacing more than one tag.
Since A is not supposed to forge a MAC (other-
wise, it is easier to attack by executing the scenario
of the adversary in the first case) and the tag(.) or-
acle is not provided in the second phase of the at-
tack, A can only hope that its query to the tag or-
acle with (y∗i , x) results in (T ∗i ,m∗i ) such that T ∗i
is not among (T1, T2, · · · , Tn) and y∗i constitutes a
valid shared secret. However, because the underly-
ing (n, n)-secret sharing scheme is perfectly secure
and x is randomly chosen for each session, y∗i has to
be one of y1, y2, · · · , yn. In other words,A succeeds
only if one of the pairs (yi, x) for i = 1, 2, · · · , n
has been queried to the tag(.) oracle in the querying
phase such that the returned tuple (T ∗i ,m∗i ) satisfies
the adversary’s goal. As shared secrets are randomly
distributed and there are (d − n) candidate tags for
T ∗, the success probability of A is d−n

d 2−
l
2 .

Type-II Adversary: Using the same analysis for
Type-I adversary, we can see that the best option that
adversary can succeed is to forge a MAC. For exam-
ple, if the adversary wants to remove Tn from P , it can
forge a MAC of Tn−1 on (yn−1 ⊕ yn, x). The resulting
proofP ′ is (T1, y1,m1, T2, y2,m2, · · · , Tn−1, y∗n−1,m∗n−1)
where y∗n−1 = yn−1 ⊕ yn and m∗n−1 is the forged
MAC. Otherwise, the adversary would have to hope
that (yn−1⊕yn, x) was queried to the tag(.) oracle dur-
ing the querying phase. To conclude, the success prob-
ability of Type-II adversary is bounded by α+ n

d2
− l

2 .
Type-III Adversary: The success probability of

Type-III adversary can also be analyzed similarly.
In particular, if the adversary can forge a MAC, he
can add a tag T ∗n+1 to P by forging two MACs of
Tn and T ∗n+1 on (y∗n, x) and (y∗n+1, x), respectively,
such that y∗n ⊕ y∗n+1 = yn. The forged proof P ′ is
(T1, y1,m1, T2, y2,m2, · · · , Tn, y∗n,m∗n, T ∗n+1, y

∗
n+1,m

∗
n+1)

which should be correctly verified by the verifier.
Therefore, we can obtain the success probability of
Type-III adversary as 1

2α+ d−n
d 2−

l
2 .

Combing the success probabilities of three types of
the adversary, we complete the proof.
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Theorem 1 suggests that if the underlying MAC
scheme is secure, i.e., α is negligible, and l is long
enough, then the success probability of an adversary
attacking our proposed grouping-proof for RFID tags
protocol is negligible. We conclude that our scheme is
secure.

We now compare our proposed scheme with previ-
ous protocols with respects performance and security
assuming that we want to produce a co-existence proof
of n tags.

Protocol Number of Cost of
Relaying Messages Generating Proof

Yoking-Proof n(n− 1) 2n(n− 1) MACs
2nd Protocol [5] n n MACs

1 Encryption
Protocol in [7] n(n− 1) 2n(n− 1) MACs
1st Protocol [8] n(n− 1) 2n(n− 1) MACs

1 Encryption
1st Protocol in [10] n(n− 1) 4n(n-1) f(.)

Evaluations
Proposed Protocol 0 n MACs

Table 2. Comparison

6. Conclusion
In this paper, we present a grouping-proof for RFID
tags protocol based on secret sharing. Our protocol
solves the scalability issue of previous protocols by
avoiding relaying messages among tags by a reader.
We also define a security model for a secure grouping-
proof protocol. Our security model deals with the case
of un-trusted readers in a proper way. In particular, we
cannot assume that a reader is totally un-trusted. In-
stead, we assume that a reader is trusted to execute a
grouping-proof protocol correctly but may behave ma-
liciously when reporting a co-existence proof of tags to
the verifier. We also address the impact of mafia fraud
attack on the security of a grouping-proof protocol. Fi-
nally, we show that our proposed grouping-proof proto-
col satisfies the security notion defined within the pro-
posed security model.

For future work, it would be interesting to construct
a secure grouping-proof protocol that does not require
an online verifier. We suspect that this kind of protocol
might be impossible.
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