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Abstract. The SFLASH signature scheme stood for a decade as the
most successful cryptosystem based on multivariate polynomials, before
an e�cient attack was �nally found in 2007. In this paper, we review its
recent cryptanalysis and we notice that its weaknesses can all be linked
to the fact that the cryptosystem is built on the structure of a large
�eld. As the attack demonstrates, this richer structure can be accessed
by an attacker by using the speci�c symmetry of the core function being
used. Then, we investigate the e�ect of restricting this large �eld to a
purely linear subset and we �nd that the symmetries exploited by the
attack are no longer present. At a purely defensive level, this de�nes
a countermeasure which can be used at a moderate overhead. On the
theoretical side, this informs us of limitations of the recent attack and
raises interesting remarks about the design itself of multivariate schemes.
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1 Introduction

Multivariate schemes are asymmetric primitives based on hard computa-
tional problems involving multivariate polynomials. Reference problems
are for instance solving a system of multivariate polynomial equations,
or deciding whether two sequences of multivariate polynomials are iso-
morphic. The research for such schemes originates from Matsumoto and
Imai's work in the early 80s, but has really been active for a decade. The
practical interest for considering such schemes, besides the obvious diver-
si�cation e�ort, comes from their usual high performances which make
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them well-suited for implementation on small devices. On the other side,
the area is young and much cryptanalytic e�ort is still to be done to
understand well what their security might rely on.

Multivariate schemes are all based on a construction method inspired
from McEliece [11]: an easy-to-invert multivariate vectorial function is
transformed into a random-looking one by applying secret linear bijec-
tions on both variables and coordinates. Of course, such a linear hiding
has the nice feature to be very easy to undo by the legitimate user, but it
also has the drawback of leaking the invariant properties of the internal
function. Whenever such invariant properties can be used in order to de-
vise a cryptanalytic attack (e.g. elimination properties enhancing Gröbner
basis computation), one uses additional transformations to destroy them.

SFLASH is a signature scheme proposed by Patarin, Goubin and Cour-
tois [16], following a design they had introduced at Asiacrypt'98 [14]. The
easy-to-invert internal function of SFLASH is de�ned from a single vari-
able polynomial over some �eld extension Fqn and turned into a function
from (Fq)n to itself by using the linear structure of Fqn over Fq. To allow
e�cient inversion, this function has a speci�c shape as a polynomial over
Fqn , namely this is a monomial which is inverted by raising to the inverse
exponent, like in RSA. The basic McEliece-type hiding, i.e. using two lin-
ear bijections, of such a function was the initial proposal � known as the
C* cryptosystem � of Matsumoto and Imai [10], but it was later seen by
Patarin [13] that the hidden monomial structure implies some algebraic
properties of the public function which can be exploited for an attack.
However, Patarin, Goubin and Courtois later showed [14] that algebraic
attacks can be very easily avoided by using an additional transformation
initially used by Shamir [15] which consists in simply deleting a few co-
ordinates of the public function. Schemes obtained from the application
of minus to C* are termed C*� schemes; they are suitable for signature.
SFLASH is a C*� scheme chosen as a candidate for the selection organized
by the NESSIE European consortium [1], and accepted in 2003 [12].

Recently, Dubois, Fouque, Shamir and Stern discovered a new prop-
erty of C* monomials which is almost not a�ected by the minus trans-
formation, and which can be used to recover missing coordinates of the
public function [4,3]. As a consequence, all practical parameters choices
for C*� schemes, including those of SFLASH, were shown insecure. The
attack found by Dubois et al. is the most e�ective development of a new
kind of cryptanalysis which targets geometrical properties of multivari-
ate functions. Consequences of this attack are of course a reevaluation
of related cryptosystems and a more careful study of the properties of
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the internal functions being used. However it seems that the mere design
principle of multivariate schemes is here in question : can we e�ectively
hide a particular function such as a C* monomial using linear maps ?

Our results. In this paper, we review the recent cryptanalysis of SFLASH
and we notice that its weaknesses can all be linked to the fact that the
cryptosystem is built on the structure of a large �eld. As the attack demon-
strates, this richer structure can be accessed by an attacker by using the
speci�c symmetry of the internal C* function that can be perceived from
even a small number of public polynomials. Note that, since the large �eld
structure is only necessary to perform the secret operations, it needs not
be encapsulated in the public key. Then, we study the e�ect of restricting
this large �eld to a purely linear subset, and we �nd that the symmetries
exploited by the attack are no longer present. Indeed the symmetries of
the C* monomial are fundamentally linked to the large �eld multiplication
and do not hold when restricted to a non-multiplicative subset; we provide
mathematical proofs for the target cases explaining this phenomenon in
detail. As we will see, this result conveys additional perspective on the
general design of multivariate schemes.

Organization of the Paper. In Section 2, we give a brief introduction to
SFLASH. In Section 3, we review its recent cryptanalysis [4,3]. In Sec-
tion 4, we show that the geometrical properties which are exploited by
the attack do not hold when restricting the internal function to a proper
subspace of the large �eld. In Section 5, we de�ne a modi�ed family of
schemes which resist the attack. We discuss our results in Section 6.

2 The SFLASH Scheme

2.1 The C* scheme

The C* scheme was proposed by Matsumoto and Imai in 1988. It uses a
monomial over Fqn : F (x) = x1+qθ

, x ∈ Fqn , where x can be identi�ed with
an n coordinates vector over Fq by �xing some basis of Fqn . The exponent
1 + qθ is chosen invertible modulo qn − 1 and raising to its inverse is
inverting F . Since 1 + qθ has q-weight 2, F corresponds to a multivariate
function from (Fq)n into itself of degree 2. On the other hand, the inverse
of 1+qθ has very high q-weightO(n) for prescribed values of θ [10], and the
inverse of F then corresponds to a multivariate function from (Fq)n into
itself with very high degree O(n). A C* scheme is built by transforming
F with randomly chosen linear bijections S and T : P = T ◦ F ◦ S.
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The resulting function P has the same multivariate properties as F , but
the twisting provided by S and T hides the single variable representation
which allows fast inversion. Unfortunately, Patarin showed in 1995 [13]
that although the plaintext x is a high degree function in term of the
ciphertext y, the pairs (x, y) satisfy many low degree algebraic relations,
whose degree is independent of the security parameter n. This implies
vulnerability to algebraic attacks.

2.2 SFLASH
To avoid an attacker to possibly reconstruct existing algebraic relations
on the pairs (x, y), a simple idea is not to provide the entire description
of how these variables are related. The most easy way to realize this
was used by Shamir in 1993 [15] and consists in simply removing a few
coordinate-polynomials of the public key, say the last r ones where r is an
additional parameter. Furthermore, Patarin, Goubin and Courtois showed
in 1998 [14] that for a C* scheme, the degree of algebraic relations between
x and the partial y is quickly growing with the parameter r. Of course,
the resulting scheme is no longer bijective but it can still be used for
signature at no performance loss. These schemes were introduced as C*�
by Patarin, Goubin and Courtois [14]. A public key consists of the n− r
�rst coordinates of an initial C* public key P = T ◦ F ◦ S with T and
S as the secret key. A rationale for the parameter r is provided in [14];
choosing r with qr ≥ 280 is then required for a 280 security level. Besides,
no algebraic attack is expected to succeed when r is not too small in
regards to n, the initial number of polynomials. SFLASH is a C*� scheme
chosen by Patarin et al. for the NESSIE selection. For the recommended
parameters q = 27, n = 37, θ = 11 and r = 11, the signature length is 239
bits and the public key size is 15 Kbytes.

3 The Symmetry in SFLASH

The design of SFLASH was aimed at resisting algebraic attacks and stood
challenging for almost ten years. However, in the last four years, a new
kind of cryptanalysis for multivariate schemes has been developed based
on geometrical properties of the so-called di�erential [8,5,6]. As de�ned
in the initial paper by Fouque, Granboulan and Stern [8], the di�erential
transforms a quadratic function P (x) into its bilinear symmetric associate,
denoted DP (a, b). The di�erential of P can be obtained by substituting
monomials xixj by aibj + ajbi in the expression of P (if P is not homo-
geneous, terms of degree 1 and 0 are discarded). The interest of doing so
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is that DP is linear separately in a and b and its properties relatively
to these variables can then be described in terms of linear algebra. Fur-
thermore, when considering a multivariate scheme P = T ◦ F ◦ S, these
properties are isomorphic to those of F since S and T are linear bijections.

Recently, Dubois, Fouque, Shamir and Stern showed a very e�cient
cryptanalysis of C*� schemes based on a class of geometrical invariants of
the di�erential of C* [4,3]. We summarize it below.

3.1 Skew-symmetric Maps with respect to the Di�erential

The di�erential of the internal C* function is DF (a, b) = a b qθ
+ aqθ

b for
a, b ∈ Fqn . When a and b are identi�ed with n coordinates vectors over Fq,
DF is a bilinear symmetric function from (Fq)n× (Fq)n to (Fq)n. Each of
the n coordinates of DF is a multivariate polynomial in the coordinates
a1, . . . , an and b1, . . . , bn of a and b respectively, which is linear separately
in a and b, and where a and b play symmetric roles. Each such polynomial
is written on the basis of terms aibj +ajbi so it has n(n−1)/2 coe�cients.
Now, it is observed in [4] that linear maps consisting of multiplications by
some element ξ of Fqn have a speci�c action on DF . Indeed, we have

DF (ξ.a, b) + DF (a, ξ.b) = (ξ + ξqθ
).DF (a, b) (1)

For the particular elements ξ such that ξ + ξqθ
= 0 (at least 1 is solution),

the associated multiplication maps Mξ satisfy

DF (Mξ(a), b) + DF (a,Mξ(b)) = 0

that is, they are the skew-symmetric maps with respect to DF . The ex-
istence of non-trivial (i.e. not colinear to the identity) such maps is of
course very unusual and even for a C* monomial it does not happen for
all parameters. However, even when it does not happen, the initial iden-
tity can also be interpreted as a skew-symmetry property. Let us indeed
de�ne for any linear map M , the skew-symmetric action of M over DF
as the bilinear and symmetric function

Σ[M ](a, b) = DF (M(a), b) + DF (a,M(b))

Our basic identity infers that in the special case of multiplication maps,

Σ[Mξ](a, b) = Mζ ◦DF (a, b)
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where Mζ is the multiplication by ξ + ξqθ . As a consequence, for any
element ξ of Fqn , the coordinates of the bilinear and symmetric func-
tion Σ[Mξ](a, b) are linear combinations of the coordinates of DF . There-
fore, expressed in geometrical terms, multiplication maps have the speci�c
property to leave unchanged under skew-symmetric action the subspace
spanned by the coordinates of DF . Note that this property is very strong
because the subspace spanned by the n coordinates of DF has dimension
at most n while for a random linear map M , the coordinates of Σ[M ]
might be any polynomials in the whole space of bilinear symmetric poly-
nomials of dimension n(n− 1)/2 and are very unlikely to all be con�ned
in the tiny subspace spanned by the coordinates of DF .

The public key P of a C* scheme inherits of the above properties; the
only di�erence is that the linear maps that play with regards to P the role
of multiplications with regards to F are the conjugates S−1 ◦Mξ ◦S. Now,
a crucial point is : although the latter maps depend on the secret bijection
S, they can be computed from their characteristic property with regards
to the public key P . For instance, considering the simple skew-symmetry
condition, DP (M(a), b) + DP (a, M(b)) = 0, we see that this equation
is linear in M . It can be seen [4] that each coordinate of DP provides us
with n(n− 1)/2 linear conditions on the n2 coe�cients of M . Then, even
a marginal number of coordinates of the public key allows to solve the
space of skew-symmetric maps. Solving the more general skew-symmetry
condition follows similar principles although more theory is involved; we
refer the reader to the original paper [3] for the details.

3.2 Consequences
The properties described above allow an attacker to compute from a C*�
public key conjugates S−1 ◦Mξ ◦ S of multiplications maps Mξ. This of
course is very annoying because these maps depend on the secret bijection
S and were initially considered as secret information. Furthermore, it is
shown in [4] that the nature of these maps is an additional problem. We
do not consider these aspects here and focus on the initial breach i.e.
the existence of linear maps which can be computed from the public key
although they contain secret information. In the sequel, we investigate the
possibility to destroy the skew-symmetry property of C*� schemes.

4 Breaking the Symmetry

As we have seen, for C*� schemes, the linear maps which are associated
to the skew-symmetry property are connected to the internal �eld struc-
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ture, namely they are multiplications by elements of Fqn . In principle,
this means that the existence of these maps is tied to the internal �eld
structure. A natural question is: would skew-symmetric maps exist if the
internal �eld structure were truncated, i.e. restricted to a subspace of it?

4.1 Projection Breaks the Skew-Symmetry Property of C*�
schemes

Suppose we consider the internal function F restricted to some proper
subspace H of Fqn . We denote FH this restriction. The skew-symmetric
maps with respect to the di�erential DFH of FH are by de�nition the
linear maps MH from H to itself which satisfy :

DFH(MH(h), k) + DFH(h,MH(k)) = 0 , h, k ∈ H (2)

We expect the solutions MH to this condition to be the restrictions to
H of the skew-symmetric maps w.r.t DF which map H to itself. When
H is an arbitrary subspace, we do not expect non-trivial multiplications
Mξ to map H into itself. Then, the only solutions to our condition should
be the scalar multiples of the Identity: MH = λ.IdH , λ ∈ Fq. Let us
now show that our expectation is correct using mathematical arguments.
First, we characterize the linear maps MH which are skew-symmetric with
respect to DFH by transforming the above condition (2) in a condition
with respect to DF . That is, we embed the above condition over H in a
condition over Fqn . We can embed MH into a linear map M̄H which is MH

over H and zero elsewhere. The same way, we can embed the Identity over
H into the projection map to H, denoted πH . Then, (2) is equivalent to:

DF (M̄H(a), πH(b)) + DF (πH(a), M̄H(b)) = 0 , a, b ∈ Fqn

Therefore, the linear maps M̄H are special solutions to the condition

DF (M(a), πH(b)) + DF (πH(a),M(b)) = 0 , a, b ∈ Fqn (3)

They are those solutions M left unchanged by composition with πH :

M = M ◦ πH = πH ◦M

Our method to determine the linear maps M̄H is then clear : we �rst �nd
the solutions M to the condition (3), and then �nd those which are left
unchanged by composition with πH .
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Before we do this, let us note an alternative characterization of the
linear maps M̄H : they are the common solutions of the two conditions

DF (M ◦ πH(a), πH(b)) + DF (πH(a), M ◦ πH(b)) = 0 ,

DF (πH ◦M(a), πH(b)) + DF (πH(a), πH ◦M(b)) = 0 ,
a, b ∈ Fqn

(4)
The �rst condition is the skew-symmetry condition with respect to DF
only considered for elements of H. The second condition is the skew-
symmetry with respect to DF (πH , πH). Both conditions have additional
degrees of freedom compared to the skew-symmetry with respect to DF ,
and are simultaneously satis�ed by the only linear maps M̄H .

The Solutions to Condition 3. As we can see, obvious solutions to
Condition 3 are the maps Mξ ◦ πH where Mξ is skew-symmetric with
respect to DF . Since our condition is greatly overdetermined, we do not
expect any other solutions. This is con�rmed experimentally. In the most
simple case when H is a hyperplane, we can give it a mathematical proof.

Lemma 1. Let H be a hyperplane of Fqn and DF be the di�erential of a
bijective C* monomial. The linear maps M which satisfy the condition

DF (M(a), πH(b)) + DF (πH(a),M(b)) = 0 , a, b ∈ Fqn

are of the form Mξ ◦πH where Mξ is skew-symmetric with respect to DF .

Proof. The idea of the proof is to replace M and πH by their expressions
as sums of q-powerings, and to express our condition as the vanishing
of a polynomial in a, b over Fqn . We have M(a) =

∑n−1
i=0 mi a

qi . The
hyperplane H is the kernel of a linear form. On the other hand, any linear
form has the form a 7→ tr(ua) for some element u in Fqn and where tr

denotes the trace operator, tr(a) =
∑n−1

i=0 aqi . Since multiplication by u is
a linear change of coordinates, one can suppose u = 1. Since a 7→ aq − a
maps Fqn to the kernel of tr, we can give the explicit form aq − a to the
elements of H. We can rewrite our condition : A(a, b)−B(a, b) = 0, where

A(a, b) = DF (M(a), b) + DF (a,M(b))
B(a, b) = DF (M(a), bq) + DF (aq,M(b))

Both expressions are written on the basis of symmetric terms of the form
aqi

bqj
+ aqj

bqi and their respective coe�cients are :

A(a, b) : coe�cient{i, 0} = mqθ

i−θ ; coe�cient{i, θ} = mi

B(a, b) : coe�cient{i, 1} = mqθ

i−θ ; coe�cient{i, θ + 1} = mi
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From the coe�cient of aqθ
b + abqθ , we �nd m0 + mqθ

0 = 0. From the
coe�cient of aqθ+1

b + abqθ+1 , we �nd mqθ

1 = m0. From the coe�cient of
aqθ+i

b + abqθ+i
, i /∈ {0, 1}, we �nd mi = 0. Denoting m0 = m1 by ξ we

have M(a) = ξ(aq − a) where ξqθ
+ ξ = 0. ut

Solutions which are Left Unchanged by Composition with the
Projection. As we have shown, the linear maps M̄H which correspond
to the skew-symmetric maps with respect to DFH , are the solutions to
Condition 3 which are left unchanged by composition with πH . As argued
in the previous section, the solutions to this condition are Mξ ◦ πH where
Mξ is multiplication by some element ξ. These maps are unchanged by
composition with πH if and only if Mξ commutes with πH , i.e. if and
only if Mξ maps H to itself. Then, since for any ξ, Mξ is bijective, we
have ξ.H = H. Our goal is to show that, except for speci�c choices of H
which are very sparse, the only ξ satisfying this property are the scalar
multiples of 1. As a �rst step, we notice that these elements ξ form a
multiplicative group, independently of the choice of H. Therefore, they
actually form a sub�eld of Fqn and H is a linear space over this sub�eld.
Finally, the subspaces H for which our property is satis�ed by non-trivial
elements ξ are subspaces over intermediate sub�elds of Fqn . As a second
step, we upperbound the probability that a random subspace H of a
prescribed dimension s is a subspace over an intermediate sub�eld of Fqn .
(In this case, we say that H is degenerate). We show that this probability
is negligible in terms of q and n.

Lemma 2. Degenerate subspaces of Fqn only exist at dimensions s not
coprime with n. In particular, degenerate hyperplanes never exist. The
proportion of degenerate subspaces in Fqn of a prescribed dimension is
always at most O(q2q−n).

Proof. When H is a subspace over Fqr , its dimension over Fq is a multiple
of r. Since r must itself be a divisor of n, degenerate subspaces only exist
at dimensions s not coprime with n. For instance, degenerate hyperplanes
never exist since n − 1 is always coprime with n. Let r be a common
divisor of s and n. It can be shown that the number of subspaces of
dimension s in a vector space of dimension n is of the order of qs(n−s) [9].
Then, the number of Fqr -subspaces of dimension s/r in Fqn is of the
order of qs(n−s)/r. The number of degenerate subspaces of dimension s
in Fqn is dominated by the latter quantity considered for the smallest
common factor r of n and s. Since the smallest possible value of r is 2,

9



the proportion of degenerate subspaces of dimension s in Fqn is at most of
the order of q−s(n−s)/2. Since s(n−s) is minimal for s = 2 (2 is a common
factor of s and n), the searched proportion is dominated by q−(n−2). ut

Application to the General Skew-Symmetry Property of C*�
schemes. In the preceding paragraphs, we have shown that restricting
the internal function F to some proper subspace H of Fqn destroys the
simple skew-symmetry property (2). In this paragraph, we consider the
general skew-symmetry property of C*� schemes. This property expresses
that there exists non-trivial linear maps which leave the space spanned
by the coordinates of DF unchanged under skew-symmetric action. The
linear maps satisfying this condition are the whole space of multiplica-
tions. Using similar techniques as before, we can show that this property
considered for the restricted function FH admits only trivial solutions. We
refer the reader to the appendix for the details.

4.2 Experimental veri�cations

We checked experimentally, for various C* parameters n and θ, the e�ect
of restricting the internal function to a randomly chosen subspace H of
various dimensions s. For instance, for parameters n = 36 and θ = 4
(which are more interesting than those of SFLASH since they are not
prime numbers), we obtain the table below for the dimension of the so-
lution space of the general skew-symmetry condition as the number of
coordinate-wise conditions grows.

# conditions s = 0 s = 1 s = 2 s = 3 s = 4 s = 9 s = 18

1 1296 1225 1156 1089 1024 769 324
2 708 669 632 598 564 414 207
3 168 145 124 109 104 99 90
4 36 1 1 1 1 1 1
6 36 1 1 1 1 1 1
...

...
...

...
...

...
...

...

5 Projected C*� schemes

Based on the previous results, we are led to de�ne a new family of schemes
that we call projected C*� schemes. As we will see, these schemes actually

10



consists in hiding a C* monomial using non-bijective linear maps. We next
de�ne the (ad-hoc) computational problems on which the security of these
schemes is based. Finally, we discuss possible choices of parameters and
suggest one concrete choice with performances comparable to SFLASH.

Description. A projected C*� scheme is de�ned as follows. Start from a
C* scheme F (x) = x1+qθ with secret linear maps S and T . Let r and s be
two integers between 0 and n. Let T− be the projection of T on the last
r coordinates and S− be the restriction of S on the last s coordinates.
Compute P̂ = T−◦F ◦ S−. The generated function P̂ is used as the public
key and the secret linear bijections S and T are used as the secret key.
Note that P̂ is a quadratic function from (Fq)n−s to (Fq)n−r. To �nd a
preimage by the public function of a given message m, the legitimate user
�rst pads m with a random vector m′ of (Fq)r and compute the preimage
of (m, m′) by T ◦ F ◦ S. If this element has its last s coordinates to 0,
then its n − s �rst coordinates are a valid signature for m. Otherwise,
he discards this element and tries with an other random padding m′.
When r > s, the process ends with probability 1 and costs on average qs

inversions of F . In practice, r is chosen a signi�cant fraction of n to make
the public key resistant to algebraic attacks; s can be chosen as small
as 1 to destroy symmetries arising from the internal �eld structure. As
for C*� schemes, the signi�cant value of r makes projected C*� schemes
only suitable for signature, since reviewing all possible paddings m′ is
not e�cient. Finally, we mention that projection already appeared in the
literature as a possible modi�er [17] but was never considered as a useful
measure let alone a defensive measure.

Possible Angles of Analysis. As usual for multivariate schemes, the
security relies on several ad-hoc computational problems. The �rst prob-
lem is solving the public system of quadratic equations. Since s is chosen
small, this is about as hard as solving the initial C*� system. The second
problem is recovering the functional decomposition of the public key or at
least some information on the secret maps S−, T−. There is no e�cient
strategy to solve this problem in general [7], and the attack by Dubois et
al. which falls into this category for C*� schemes is here prevented by the
projection. Remains the strategy consisting in recovering the public key
into a valid C*� public key. Showing this to be possible is actually the
new challenge opened by the new family of schemes.
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Parameters. n, θ, r are chosen following the rationales for C*� schemes.
We choose s = 1 as it induces the minimal factor q on the secret opera-
tions. The value of q can be chosen small but, at constant blocksize, this
requires a larger value of n and therefore a larger public key. As a possible
trade-o�, we propose pFLASH with q = 24, n = 74, θ = 11, r = 22 and
s = 1. Our tests have pFLASH signing at . 1 million K8/C2 cycles, in line
with expectations of ∼ 16× time of SFLASH [2]; private key size is 2× at
5.4kB. These are still attractive features for small device implementation.

6 Conclusion

In this paper, we provide additional insight on the recent cryptanalysis of
SFLASH by exhibiting a simple modi�cation which provably avoids the
attack. Our study shows that the attack against SFLASH has deeper roots
than the mere fact that it is based on a C* monomial : the attack is made
possible because the large �eld structure is embedded in the public key
and is stopped when it is no more the case. Then, we realize that, indeed,
one might not hope to hide e�ectively a particular function de�ned on
a large �eld using linear bijections; this might at most be achievable in
some security range using compressive linear maps. But then, is it still
possible to build a practical cryptosystem in this setting ? At the present
state, we can still de�ne a modi�ed family of C* -based schemes which
is of practical interest. Analysis of this most simple case would probably
yield additional understanding of the ways to distinguish a speci�cally-
built multivariate function and would provide further insight on the very
possibility to obfuscate such a function using linear maps.
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A Projection Also Breaks the General Skew-Symmetry
Property

As before, we denote FH the restriction of the C* function F to a proper
subspace H of Fqn . Note that FH is a function from H to Fqn . A linear
map MH from H to itself satis�es the general skew-symmetry property
with respect to DFH if and only if there exists an associated linear map
NMH

from Fqn to itself such that

DFH(MH(h), k)+DFH(h,MH(k)) = NMH
◦DFH(h, k) , h, k ∈ H (5)

As before, we can embed this identity over H into an identity over Fqn .
We denote M̄H the linear map from Fqn to itself which is MH over H
and zero elsewhere. We denote πH the projection to H. Identity (5) is
equivalent to

DF (M̄H(a), πH(b)) + DF (πH(a), M̄H(b)) = NMH
◦DF (πH(a), πH(b))

for any a, b in Fqn . The linear maps M̄H are special solutions to the con-
dition

DF (M(a), πH(b)) + DF (πH(a),M(b)) = NM ◦DF (πH(a), πH(b)) (6)

for any a, b in Fqn . They are those solutions M which are left unchanged
by composition with πH :

M = M ◦ πH = πH ◦M

Obvious solutions to Condition (6) are the maps Mξ◦πH where Mξ is mul-
tiplication by an element ξ of Fqn . Since Condition (6) is greatly overdeter-
mined, we do not expect any parasitic solutions, and this is con�rmed in
practice. When H is a hyperplane, we can actually give it a mathematical
proof (see below). Then, the maps Mξ ◦πH left unchanged by composition
with πH are those for which H is closed by multiplication by ξ. We know
from Lemma 2 that except for negligibly sparse choices of H, the only
elements ξ which satisfy this property are the scalar multiples of 1.

Lemma 3. Let H be a hyperplane of Fqn and DF be the di�erential of a
bijective C* monomial. The linear maps M for which there exists a linear
map NM such that, for any a, b in Fqn,

DF (M(a), πH(b)) + DF (πH(a),M(b)) = NM ◦DF (πH(a), πH(b))

are the Mξ ◦ πH where Mξ is multiplication by an element ξ of Fqn .
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Proof. The proof is analogous to the proof of Lemma 1. Recall that, up
to a linear change of coordinates, elements of H have the form aq − a
for a in Fqn . Let us also recall that bijective C* monomials only exist in
characteristic 2. We rewrite our condition A(a, b) − B(a, b) = C(a, b) −
D(a, b) where A(a, b) and B(a, b) are the same as in the proof of Lemma 1,
and

C(a, b) = N(DF (aq, b)) + DF (a, bq))
D(a, b) = N(DF (aq, bq))−DF (a, b))

Both expressions are written on the basis of symmetric terms of the form
aqi

bqj
+ aqj

bqi and their respective coe�cients are, in terms of the coe�-
cients m0, . . . , mn−1 of M and n0, . . . , nn−1 of N :

A(a, b) : coe�cient{i, 0} = mqθ

i−θ ; coe�cient{i, θ} = mi

B(a, b) : coe�cient{i, 1} = mqθ

i−θ ; coe�cient{i, θ + 1} = mi

C(a, b) : coe�cient{θ + 1 + i, i} = ni ; coe�cient{θ + i, i + 1} = ni

D(a, b) : coe�cient{θ + i, i} = ni−1 − ni

From the coe�cient of aqθ
b + abqθ , we �nd

m0 + mqθ

0 = n−1 − n0.

From the coe�cient of aqθ+1
b + abqθ+1 , we �nd

mqθ

1 −m0 = n0.

From the coe�cient of aqθ+i
b + abqθ+i

, i /∈ {0, 1}, we �nd

mi = 0.

On the other hand, from the coe�cient of aqθ+1+i
bqi

+aqi
bqθ+1+i

, i 6= 0, we
�nd

ni = 0.

Denote m0 = m1 by ξ. We end up with M(a) = ξ(aq − a) and N(a) =
(ξqθ

+ ξ)a. ut
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