
From Passive to Covert Security at Low Cost

Ivan Damg̊ard, Martin Geisler, and Jesper Buus Nielsen

Dept. of Computer Science, University of Aarhus, Denmark
{ivan,mg,jbn}@cs.au.dk

Abstract. Aumann and Lindell defined security against covert attacks,
where the adversary is malicious, but is only caught cheating with a
certain probability, where the idea is that in many real-world cases, a
large probability of being caught is sufficient to prevent the adversary
from trying to cheat. In this paper, we show how to compile a passively
secure protocol for honest majority into one that is secure against covert
attacks, again for honest majority and catches cheating with probability
1/4. The cost of the modified protocol is essentially twice that of the
original plus an overhead that only depends on the number of inputs.

1 Introduction

When studying cryptographic protocols, the behavior of the adversary has tradi-
tionally been categorized as being either semi-honest (passive) or malicious (ac-
tive). A semi-honest adversary will only listen in on the network communication
and spy passively on the internal state of the corrupted protocol participants. At
the other end of the spectrum, a malicious adversary can make corrupted parties
behave arbitrarily and will try to actively disrupt the computation in order to
gain extra information and/or cause incorrect results.

Aumann and Lindell [2] introduces a third type of adversary called a covert
adversary. This is intuitively an adversary which is able to do an active attack,
but will behave correctly if the chance of being caught is sufficiently large—even
if that chance is not essentially 1. The argument for studying covert adversaries is
that there are many real world situations where the consequences of being caught
out-weights the benefit of cheating—even a small but non-negligible risk of being
caught is a deterrent. An example could be companies that agree to conduct
an auction using secure multiparty computation. If a company is found to be
cheating it may be subject to fines and it will hurt its long-term relationships
with customers and other companies.

In the standard simulation-based definition of secure multiparty computation
a protocol is said to securely evaluate a function f if no attack against the proto-
col can do better than an attack on an ideal process where an ideal functionality
evaluates f and hands the result to the parties.

Aumann and Lindell [2] give three different models of what a covert adversary
can do by defining two different ideal functionalities that may compute f as
usual, but may also act differently, depending on what the adversary does. They
also define what it means for a protocol to implement an ideal functionality

securely, this is a fairly standard simulation-based definition for sequentially
composable protocols.

Thus, the special ingredient in the model that allows to accommodate covert
attacks is only in the definition of the functionalities, which correspond to dif-
ferent levels of security, which are called Explicit Cheat Formulation (ECF) and
Strong Explicit Cheat Formulation (SECF).1 The basic idea in both cases is that
the adversary may decide to try to cheat and must inform the functionality about
this. The functionality then decides if the cheating is detected which happens
with probability ε, where ε is the deterrence factor. In this case all parties are
informed that some specific corrupt party cheated. Otherwise, with probability
1−ε, the cheating is undetected, and there is no security guarantee anymore, the
functionality gives all inputs to the adversary and lets him decide the outputs.
The difference between the two variants is that for ECF, the adversary gets the
inputs of honest parties and decides their outputs immediately when he decides
to cheat. For SECF, this only happens if the cheat is not detected.

Thus, with ECF, the adversary is caught with probability ε, but will learn
the honest parties’ inputs even if he is caught. With SECF, he must try to cheat
and succeed to learn anything he was not supposed to.

1.1 Our Contribution

In this paper we propose a new construction that “compiles” a passively secure
protocol into a new protocol with covert security. The approach is generic, but for
concreteness we describe the idea starting from the classical BGW protocol [6]
for evaluating arithmetic circuits, and only give the full compiler in the appendix.

We assume honest majority and synchronous communication with secure
point-to-point channels. We also assume a poly-time adversary, as we use cryp-
tographic tools.

The basic idea is to first use a protocol with full active security to do a small
amount of computation. Here, we will prepare two sets of (secret-shared) inputs
to the passively secure protocol. However, only one set of sharings contains the
actual inputs, while the other—the dummy shares—contain only zeros. Initially,
it is unknown which set is the dummy one. Then we run the passively secure
protocol on both sets of inputs until parties hold shares of the outputs, which
they must commit to. Now we reveal which sharings contained dummy values,
and everything concerning the dummy execution can be then made available to
check that no cheating occurred here. If no cheating was detected, we open the
outputs of the real execution.

The intuition is that the adversary has to decide whether to cheat without
knowing which execution is the dummy one, and therefore we can catch him with
probability 1

2 if he cheats at all, so one would expect this to give a deterrence
factor of 1

2 .

1 They also have a so called Failed Simulation definition which is weaker and which
we do not use here.

However, while the intuition is straightforward, there are several non-trivial
technicalities to take care of to make this work. We need parties to be able to
prove that they really sent/received a given message earlier, and we have to
do the check at the end without introducing too much overhead. After solving
these problems, we obtain a protocol with deterrence factor 1

4 whose complexity
is essentially twice that of the passive protocol plus the overhead involved in
preparing the inputs (which does not depend on the size of the computation).

We note that we focus on the complexity we get when there is no deviation
from the protocol. In our construction, the adversary can slow things down by
a factor linear in the number of parties by deviating, but the protocol is still
secure, the adversary can only make it fail if he runs the risk of actually cheating
and hence of being caught. Now, the spirit of covert security is that the adversary
is to some extent rational, he does not cheat because it does not pay off to do
so. It seems to us that there is little benefit in practice for the adversary in only
slowing things down, while he cannot learn extra information or influence the
result. So we believe that the complexity in practice can be expected to be what
we get when there is no deviation.

We show our protocol is secure by showing that it implements Aumann and
Lindell’s functionality in the UC model [9], i.e., we do not use their simulation
notion. The only difference this makes is that we get a stronger composition
property for our protocol.

We show that the classical passively secure protocol by Ben-Or et al. [6]
can be compiled to give a protocol with SECF security. Our approach can be
used in a more general way, to compile any passively secure protocols into a
covert protocol, if the original protocol satisfies certain reasonable conditions.
The conditions are essentially as follows. The protocol should be based on secret
sharing and consist of a computation phase and a reconstruction phase.
Computation phase: The computation phase starts from sharings of the in-

puts and produces sharings of the outputs, where the view of t < n/2 pas-
sively corrupted parties is independent of the inputs being computed on.

Reconstruction phase: The reconstruction phase consists of a single message
from each party to each other party—i.e., it is non-interactive.

Passive security: Suppose uniformly random sharings of the inputs are dealt
by an ideal functionality. Consider the protocol that executes the computa-
tion phase on these sharings and then the reconstruction phase. This protocol
should be passively secure against t < n/2 statically corrupted parties.

The approach to obtaining covert security is basically the same as described
above. The details are described in Appendix A. If the computation phase leaks
no information, even under active attack (as is the case for the BGW protocol),
we get SECF security, otherwise ECF security is obtained.

1.2 Related Work and Discussion

Goyal et al. [14] improve Aumann and Lindell’s 2-party protocol and also give
a general multiparty computation protocol with covert security for the case of
dishonest majority.

Our work focuses instead on honest majority. The skeptical reader may ask
whether this is really interesting: the motivation for covert security is to settle
for less than full robustness in return for more efficient protocols, and it may
seem that we already know how to have great efficiency with honest majority
and full active security. For instance, in [5, 10], it is shown that unconditionally
secure evaluation of a circuit C for n parties and t < n/3 corruptions can be
done in complexity O(|C|n) plus an overhead that only depends on the depth of
the circuit, and in [12], it is shown under a computational assumption that this
can be reduced to O(|C|) except for logarithmic factors plus an overhead that is
independent of the circuit. Here, the security threshold can be arbitrarily close
to 1

2 .
How could we hope to be better than that? There are two answers to this:

First, the previous protocols are not as efficient as it may seem: the result
from [12] only works asymptotically for a large number of parties and very large
computations, it makes non black-box use of a pseudo-random function and is,
in fact, very far from being practical. [5, 10] use only cheap information theoretic
primitives, but the security threshold in non-optimal and there is an overhead
implying that deep circuits are expensive.

However, these protocols can all become much simpler and more practical if
we assume the adversary is passive. For instance, when the adversary is passive
the protocols from [5, 10] can tolerate t < n/2 and no longer have an overhead
that depends on the circuit depth. Our compiler works for any “reasonable” pro-
tocol that is based on secret sharing, so we can use it on these simpler passively
secure protocols and get a protocol with covert security, but with efficiency and
security threshold similar to the passively secure solutions.

The second answer is that general circuit evaluation is not the only applica-
tion. There are many special purpose protocols that are designed for a passive
adversary but where obtaining active security comes at a significant cost. One
example is the protocol by Algesheimer et al. [1] for distributed RSA key gen-
eration. Another is the auction application described in [8]. In both cases the
protocols do not go via evaluation of a circuit for the desired function, but gets
significant optimizations by taking other approaches. We can use our construc-
tion here to get covert security at a cost essentially a factor of two.

2 Preliminaries

Aumann and Lindell [2] present three successively stronger notions of security in
the presence of covert adversaries, of which we consider the two strongest ones,
where the adversary is forced to decide whether to cheat without knowledge of
the honest parties’ inputs. As mentioned, these are called ECF and SECF and
are defined by specifying two (very similar) ideal functionalities.

For convenience, we give the ECF and SECF functionalities here. The only
differences from [2] is that we do not include an option for the adversary to abort
the protocol, and also, if no cheating is detected, the adversary cannot stop the

functionality from giving outputs to the honest parties. This gives a stronger
notion of security, and we can obtain it as we assume an honest majority.

Another difference is that we relax the requirements on the detection mech-
anism slightly. In [2] it is required that only one corrupted party is detected and
that the honest parties agree on that party. We allow that several corrupted
parties are detected and allow that different honest parties detect different sets
of corrupted parties. The only requirement is that there is at least one corrupted
party which is detected by all honest parties. In the presence of an honest ma-
jority, the stronger detection requirement in [2] can then be implemented using
a Byzantine agreement at the end of the protocol on who should take the blame.
We prefer to see this negotiation as external to the protocol and thus allow the
more relaxed detection. See Fig. 1.

Let f be a function with n inputs and n outputs, where n is the number of parties.
The ECF functionality Ff

ecf for function f with deterrence factor ε works as follows:

Inputs: Any honest party Pi sends input xi to Ff
ecf, while the adversary A sends

input on behalf of the corrupted parties.
Cheat detection: Let C ⊂ {1, . . . , n} denote the indices of the corrupted parties

and let H = {1, . . . , n} \ C be the honest parties. The adversary can at any
time instruct Ff

ecf to give outputs of the form (corrupt, j) for j ∈ C to Pi with
i ∈ H. For i ∈ H, let Ji ⊂ C be the set of j for which Pi output (corrupt, j).

Attempted cheat: If Ff
ecf receives (cheat) from A, it will send (x1, . . . , xn) to

A. It then decides randomly if the cheating was detected or not:
Undetected: With probability 1− ε, Ff

ecf sends (undetected) to the adver-
sary. Then A specifies for each i ∈ H an output yi and Ff

ecf outputs yi to
Pi for i ∈ H.

Detected: With probability ε, Ff
ecf sends (detected) toA. In this caseA also

gets to decide the output yi for i ∈ H, but must ensure that ∩i∈HJi 6= ∅
at the end of the execution.

Output generation: If A did not attempt to cheat, Ff
ecf computes outputs

(y1, . . . , yn) = f(x1, . . . , xn) and gives yi to Pi.

Fig. 1. Functionality Ff
ecf

The functionality Ffsecf is defined exactly as Ffecf, except that when the
adversary sends a cheat message, the functionality does not send the inputs of
honest parties to the adversary. This only happens if the cheating is undetected.
We can now define security:

Definition 1. Protocol π computes f with ε-ECF (SECF) security and thresh-
old t if it implements Ffecf (Ffsecf) in the UC model, securely against poly-time
adversaries corrupting at most t parties.

This definition naturally extends to a hybrid UC model where certain func-
tionalities are assumed to be available. By the UC composition theorem and
given implementations of the auxiliary functionalities, a protocol follows that
satisfy the above definition without auxiliary functionalities.

In the following, we will consider secure evaluation of an arithmetic circuit C
over some finite field K. We assume that each input and output of C is assigned

to some party, whence C induces in a natural way a function fC of the form
considered above. In the following, “computing C securely” will mean computing
fC securely in the sense of the above definition.

We will denote the participants in the protocol by P1, . . . , Pn for a total
of n parties. Shamir secret sharing of a ∈ K with threshold t results in a set of
shares denoted by [a]t or simply [a] when the threshold is clear from the context.
The share held by Pi is denoted ai.

3 Auxiliary Functionalities

We will employ some ideal functionalities in order to make the presentation
more clear. They represent sub-protocols which we show how to implement in
Section 5.

Message Transmission Functionality We will make use of a functionality
Ftransmit that is an enhancement of the standard model for secure point-to-
point channels. It essentially allows to prove to third parties which messages one
received during the protocol, and to further transfer such revealed messages.
It does not commit the corrupted parties to what they sent to each other. See
Fig. 2 for details.

The ideal functionality Ftransmit works with message identifiers mid encoding a
sender s(mid) ∈ {1, . . . , n} and a receiver r(mid) ∈ {1, . . . , n}. We assume that no
mid is used twice. The functionality works as follows:

Secure transmit: When receiving (transmit, mid, m) from Ps(mid) and receiving
(transmit, mid) from all (other) honest parties, store (mid, m), mark it as
undelivered, and output (mid, |m|) to the adversary. If Ps does not input a
(transmit, mid, m) message, then output (corrupt, s(mid)) to all parties.

Synchronous delivery: At the end of each round, deliver each undelivered
(mid, m) to Pr(mid) and mark (mid, m) as delivered.

Reveal received message: On input (reveal, mid, i) from a party Pj which at
any point received the output (mid, m), output (mid, m) to Pi.

Do not commit corrupt to corrupt: If both Pj and Ps are corrupt, then the
adversary can ask Ftransmit to output (mid, m′) to any honest Pi for any m′

and any mid with s(mid) = s.

Fig. 2. Ideal Functionality Ftransmit

This functionality will be used for all private communication in the following,
and provides a way to reliably show what was received at any earlier point in
the protocol. This is used when the dummy execution is checked for consistency.

Input Functionality For notational convenience we assume that each Pi has
one input xi ∈ K. The input functionality runs as in Fig. 3. Note that we let
the adversary pick the dummy inputs, which is done simply not to decide at this
abstract level on any specific set of dummy inputs, like x(i,d) = 0.

The ideal functionality Finput is parametrized by a secret sharing scheme, sss, and
works as follows.

1. Receive an input xi from each Pi and an input (d1, . . . , dn) from the adversary.
The adversary also inputs xi for i ∈ C.

2. Flip a uniformly random bit d ∈R {0, 1}.
3. Let e = 1− d. Let x(i,d) = di be the dummy inputs and let x(i,e) = xi be the

enriched inputs.
4. For j = 1, . . . , n and c = 0, 1, sample [x(j,c)]← sss(x(j,c)).

5. Output (x
(j,0)
i)n

j=1 and (x
(j,1)
i)n

j=1 to Pi.

6. On a later input (reveal, i, k), output d and (x
(j,d)
i)n

j=1 to Pk.

Fig. 3. Ideal Functionality Finput

Commitment Functionality We use a flavor of commitment where the com-
mitter cannot avoid that a commitment is revealed. The details are given in
Fig. 4.

The functionality Fcommit uses commitment identifiers encoding the sender s(cid)
of the commitment. It works as follows:

Commit: On input (commit, cid, m) from Ps(cid) and input (commit, cid) from
all (other) honest parties, store (cid, m) and output (commit, cid, |m|) to the
adversary.

Reveal: On input (reveal, cid, r) from all honest parties, where (cid, m) is stored,
give (cid, m) to Pr.

Fig. 4. Ideal Functionality Fcommit

Coin-Flip Functionality We use the coin-flip functionality given in Fig. 5.

The functionality FB
flip is parametrized by a positive integer B and works as follows:

1. Sample a uniformly random k ∈R {0, . . . , B − 1}.
2. When the first honest party inputs (flip), output k to the adversary.
3. If in the round where the first honest party inputs (flip) there is some party

Pi which does not input (flip), then output (corrupt, i) to all parties.

Fig. 5. Ideal Functionality FB
flip

4 Protocol

Having defined the necessary ideal functionalities, we will now describe how we
use them to compile the classical passively secure protocol by Ben-Or et al.
[6] based on Shamir secret-sharing into one with covert security. This protocol
computes an arithmetic circuit C with passive security. Assuming the inputs
to the arithmetic circuit have been secret shared, the protocol does addition by
having parties add their shares locally, and multiplication by local multiplication
of shares followed by a re-sharing by each parties of the local products. Due to
space constraints, we assume the details are known to the reader.

The protocols in this section use the auxiliary functionalities we defined.
Thus the actual complexity of our construction depends on the implementation
of those auxiliary functionalities. It turns out that the overhead incurred includes
a contribution coming from the cryptographic primitives we use, this overhead
does not depend on the communication complexity of protocol we compile. In
addition, the adversary can choose to slow down FTransmit by a factor of n, but
since he cannot make it fail, a covert adversary is unlikely to make such a choice
as discussed in the introduction.

We begin with a simple construction which has a rather poor computational
complexity. Following that, we show how the simple protocol can be adapted to
yield a better complexity.

Theorem 1. The protocol in Fig. 6 computes C with 1
2 -SECF security and

threshold t < n/2 in the (Ftransmit,Finput,Fcommit,Fflip)-hybrid world against a
static adversary.

Proof. Initially S is given the inputs of the corrupt parties. It passes them on
to A and simulates the protocol execution up until the point where the bit d
is revealed and it is determined which of the two executions were the dummy
execution. S does this by inventing random shares whenever A would expect to
see a share from an honest party. A will always see only t shares and any subset
of size t look completely random in the real protocol execution. S can therefore
simulate them perfectly by giving A random values.

During the protocol, A is observed by S and it can thus be determined if A
ever sends an incorrect intermediate result to one of the honest parties.

– If A did not cheat at all, or if A cheated in both executions, then S simply
follows the protocol. In the first case FfCsecf will give S the outputs for the
corrupt parties, which S can pass along to A unchanged. In the second case,
A will be caught with certainty before seeing anything which depend on
the honest parties inputs. S can therefore simulate the protocol execution
towards A using random shares only.

– If A cheats in execution d′ (first or second execution), S will send (cheat)
to F . The functionality then determines if the cheat was successful:
Detected: The simulator must now ensure that A believes he cheated in

the dummy execution.
A will want to query Finput for the value of d and the shares of the
dummy inputs. In response, S sends a response with d = d′, which means
that A cheated in the dummy execution. S must also send back shares
of the inputs {x(j,d) = dj}nj=1 consistent with the shares A has already
seen. At this point A has only seen random values for an non-qualified
subset of the parties in response to its call to Finput. S can therefore
choose polynomials that agree with these values and at the same time
correspond to a sharing of the inputs dj , and compute consistent shares
of the honest parties using these polynomials.
If Pj were the first corrupt party who send an incorrect message to an
honest party, S will send (corrupt, j) to FfCsecf.

In general, if any of the ideal functionalities output (corrupt, j) to Pi, then Pi

also outputs (corrupt, j). Not mentioning this further, the protocol proceeds in
five steps:

1. All parties provide input to Finput. In return they obtain shares of secret
sharings [x(j,0)] and [x(j,1)] for j = 1, . . . , n. Nobody knows which sharings are
dummy at this point.

2. Each party Pi generates random keys K0
i and K1

i and commit to them using
Fcommit twice.

3. The passively secure protocol is run on both input sets {[x(j,0)]}nj=1 and

{[x(j,1)]}nj=1. This evaluates the circuit C twice. The parties use Fcommit to
commit to their shares of the output. All randomness used in the first and
second protocol run come from pseudo-random generators seeded by K0

i and
K1

i , respectively.
4. The parties query Finput for the random bit d and the shares of {[x(j,d)]}nj=1.

They then use Fcommit to reveal the key Kd
i used for the pseudo-random gener-

ator for all Pi. Knowing the initial inputs and the seed for the pseudo-random
generator used, the entire message trace of all parties is fixed. The parties also
open the commitments to the dummy output shares.

5. Each party locally simulates the entire dummy execution to determine if any
cheating took place. This amounts to checking for each party whether his
input shares of [x(j,d)] (revealed by Finput) and seed Kd

i (revealed by Fcommit)
together lead to the shares he claims to have obtained of the output (revealed
by Fcommit) if he follows the passively secure protocol on the messages that
other parties would have sent if they followed the protocol on their shares and
expanded randomness. If no discrepancies are found, the output shares of the
real execution are opened.
Otherwise, the honest parties must determine who cheated a.
The parties have already locally simulated the dummy execution so they know
the correct message trace. It is therefore simple to match this against the actual
message trace revealed by Ftransmit and pinpoint the first deviation. If Pj made
the first mistake, the honest parties output (corrupt, j) and halt.

a Note that it is possible for a corrupt party to “frame” an honest party by sending
him wrong intermediate results. The honest party cannot tell the difference
and will produce incorrect output. Ftransmit is there to safeguard honest parties
against this form of attack. The parties call it to reveal all messages that were
received in the dummy execution.

Fig. 6. Simple version

Undetected: In this case the functionality responded with (undetected)
together with the honest parties’ inputs. The simulator must therefore
make it look as if A cheated in the execution that was not opened, i.e.,
the real execution. As above, S can compute polynomials that will give
a correct sharing of inputs based on what A already know and with
d = 1− d′.
Using these inputs together with the corrupt parties’ inputs and outputs,
S can now compute the consequence of A’s cheating, i.e., the altered
outputs of the honest parties. It passes these outputs to FfCsecf as the
honest parties’ outputs.

It is clear that the above simulation matches the output of A in the hybrid
world perfectly when A did not cheat and when A was foolish enough to cheat
in both executions.

When A cheats in just one execution, S will make the honest parties output
(corrupt, j) for some corrupt Pj (if A was detected) or output normal outputs
(ifA was undetected). Each of these two cases are picked with probability exactly
1
2 by the random choice made by FfCsecf. We get the same probability distribution
in the hybrid world where Finput picks the bit d uniformly at random.

In total, we can now conclude that the protocol in Fig. 6 computes fC with
1
2 -SECF security.

The above protocol has each party execute the passively secure protocol twice
after which each party simulates the actions of all other parties in the dummy
execution. In the standard BGW protocol [6], each party has a computational
complexity of O(n) per gate. By asking every party to simulate every other party,
we increase the computational complexity to O(n2) per gate.

The communication complexity is doubled by running the passively secure
protocol twice. In the normal case where the dummy execution is found to con-
tain no errors, the communication complexity is increased no further. When
errors are detected, every party is sent the messages communicated by every
other party. This will again introduce a quadratic blowup, now in the communi-
cation complexity. We argued in the introduction that even a small fixed chance
of catching misbehavior is enough to deter the parties. Because of that, we expect
to find no discrepancies most of the time, and thus obtain the same communica-
tion complexity as the original protocol within a constant factor. We still have a
quadratic blowup in the computational complexity. However, local computations
are normally considered free compared to the communication, i.e., the network is
expected to be the bottleneck. So for a moderate number of parties, this simple
protocol can still be quite efficient.

Still, we would like to lower the complexity when errors are detected. Below
we propose a slightly more complex protocol which has only a constant overhead
in both computation and communication both when no errors are detected and
when the parties are forced to do a more careful verification.

If no errors are detected, each party does two protocol executions followed
by a check of the input/output behavior of one other party. This is clearly a
constant factor overhead compared to the passively secure protocol. When a
party is accused, all other parties must check this party. This adds only a linear
overhead to the overall protocol, and thus the protocol in Fig. 7 has a linear
overhead compared to the passively secure protocol.

It might seem as an overkill in the protocol in Fig. 7 to use Ftransmit for
communication and then also have the parties commit to their communication
using Fcommit. The reason for the commitments is to commit the corrupted
parties to what they sent among each other before it is revealed which parties
check which parties. If we do not do that, they might decide on which of them
was the deviator after the revelation of d and k and thus always pick the deviator

This is a modification of the protocol in Fig. 6. After running Step 1–3 unchanged,
it continues with:

1. All Pi use Fcommit to commit to their view of the protocol, i.e., all messages
exchanged between Pi and Pj for all j. This results in commitments comm

(i,0)

{i,j}

for the first execution and comm
(i,1)

{i,j} for the second, where comm
(m,c)

{i,j} is the
view of Pm of what was sent between Pi and Pj in execution number c.

2. The parties query Finput for the random bit d and the shares of the dummy
inputs. They then use Fn−1

flip to flip a uniformly random k ∈ {1, . . . , n−1} that
will be used when checking. Fcommit is used by all parties to reveal the key Kd

i

used for the pseudo-random generator for all Pi. Finally, the commitments to
shares in the output from the dummy execution are opened.

3. Each party Pi checks Pl, where l = (i− 1 + k mod n) + 1, i.e., he checks Pi+k

with wraparound from Pn back to P1.
The commitments comm

(j,d)

{l,j} and comm
(l,d)

{l,j} are opened to Pi, i.e., the com-
mitted views of Pl and Pj of what was exchanged between them. If there is a
disagreement, then Pi broadcasts a complaint and Pl and Pj must decommit
to all parties and use Ftransmit to show which messages they received from the
other. This will clearly detect at least one corrupt party among Pl and Pj if
Pi was honest, or reveal Pi as corrupt if the commitments were equal after all,
i.e., if Pi made a false accusation.
If all committed views agree, then Pi simulates the local computations done
by Pl and checks whether this leads to the shares of the dummy output opened
by Pl and the messages sent according to comm

(l,d)

{l,j}. If a deviation is found,
Pi broadcasts an accusation against Pl, and all parties check Pl as Pi did.
If they verify the deviation they output (corrupt, l), otherwise they output
(corrupt, i).

4. If no accusations were made, the output of the real execution is opened.

Fig. 7. Efficient version

to be one which is checked by a corrupted party. For an example of what can go
wrong without the commitments the interested reader can refer to Appendix B.

Theorem 2. The protocol in Fig. 7 computes C with 1
4 -SECF security and

threshold t < n/2 in the (Ftransmit,Finput,Fcommit,Fflip)-hybrid world.

Proof. The simulator for the protocol in Fig. 7 runs like the simulator for the
protocol in Fig. 6, except that it must now only output (corrupt, i) to F if it
determines that a message trace for a corrupt party Pi was checked by an honest
party, and it must do while maintaining the same probability distribution as in
the hybrid world.

As before, S will simulate A and observe the messages sent to honest parties.
As soon as an incorrect message is observed in execution d′ and all parties
committed to their communication with the other parties, we know there exists
an offset k′ ∈ {1, . . . , n − 1} for which an honest Pi would catch a corrupt Pl,
where l = (i− 1 + k′ mod n) + 1 in execution d′:

– If two parties Pl and Pj committed to comm(l,d′)
{l,j} 6= comm(j,d′)

{l,j} , then one
of them is corrupted, Pl say, and we pick k′ such that Pl is checked by an
honest Pi.

– If comm(l,d′)
{l,j} = comm(j,d′)

{l,j} for all pairs of parties, then the wrong message
sent to an honest party in execution d′ implies that some party Pl is com-
mitted to values which are not consistent with an execution of the protocol,
and we pick k′ to ensure that Pl is checked by an honest party.2

The simulator sends (cheat) to FfCsecf. We have two outcomes:

Detected: Set d = d′ and sample k at random such that Pl is checked by an
honest party.

Undetected: Set d = d′ with probability 1
3 , and d = 1− d′ otherwise. Sample

k ∈ {1, . . . , n−1} such that Pl is checked by an honest party with probability
α = 4

3 (n−tn−1 −
1
4).

If A did not cheat, S selects d and k as in the hybrid protocol. The simulation
continues as in the hybrid world with these choices for d and k.

If A did not cheat, the ideal world output clearly match the hybrid world.
When A did cheat, we will show that d and k are picked with the correct distri-
bution. First note that S pick d = d′ with probability 1

4 · 1 + 3
4 ·

1
3 = 1

2 , as in the
hybrid world.

For the selection of k, note that a cheating party will always have a unique
distance to every honest party. These distances make up a subset of {1, . . . , n−1}
of size n− t. The cheater is caught exactly when the offset is picked within this
subset. This happens with probability n−t

n−1 in the hybrid world. The simulator
picks k among the indices of honest parties with the same probability: 1

4 + 3
4α =

n−t
n−1 . We conclude that S will simulate the hybrid world.

5 Implementation of Sub-Protocols

In this section we sketch how to implement the sub-protocols described above.

Detection In all sub-protocols we will need a tool for stopping the protocol
“gracefully” when corruption is detected This is done by all parties running the
following rules in parallel.

1. If a party Pi sees that a party Pd deviates from the protocol, then Pi signs
(corrupt, d) to get signature γi and sends the signature to all parties. Then
Pi outputs (corrupt, d).

2. If Pk received a signature γi on (corrupt, d) from t + 1 distinct parties Pi,
it considers these as a proof that Pd is corrupted, sends this proof to all
parties, outputs (corrupt, d), waits for one round and then terminates all
protocols.

2 Note that Pl need not be the one who sent the incorrect message to the honest
party—Pl may have behaved locally consistent given its inputs—but S will be able
to find a first deviator, and it will clearly not be one of the honest parties.

3. If Pk receives a proof that Pd is corrupt from any party, it relays this proof
to all parties, outputs (corrupt, d), waits for one round and then terminates
all protocols.

If the signature scheme are unforgeable and only corrupted parties deviate
from the protocol, then the protocol has the following two properties, except
with negligible probability.

Detection soundness: If an honest party outputs (corrupt, d), then Pd is
corrupt.

Common detection: If an honest party terminates the protocol prematurely,
then there exists Pd such that all honest parties have output (corrupt, d).

The reason why the relayer Pr waits for one round before terminating is that
Pr wants all other parties to have seen a proof that Pi is corrupt before it ter-
minates itself. Otherwise the termination of Pr would be considered a deviation
and an honest Pr could be falsely detected. In the following we do not always
mention explicitly that the detection sub-protocol is run as part of all protocols.

Transmission Functionality The transmission protocol can run in two modes.
In cheap mode Ftransmit is implemented as follows.

1. On input (transmit,mid,m) party Ps(mid) signs (mid,m) to obtain signa-
ture σs and sends (mid,m, σs) to Pr(mid).

2. On input (transmit,mid) party Pr(mid) waits for one round and then ex-
pects a message (mid,m, σs) from Ps(mid), where σs is a valid signature from
Ps on (mid,m). If it receives it, it outputs (mid,m).

3. On input (reveal,mid, i) party Pj , if it at some point output (mid,m),
sends (mid,m, σs) to Pi, which outputs (mid,m) if σs is valid.

It is easy to check that this is a UC secure implementation under the following
restrictions:

Synchronized input from honest parties: If some honest party receives in-
put (transmit,mid), then all honest parties Pi 6= Ps(mid) receives the same
input (transmit,mid). Furthermore, if Ps(mid) is honest, it receives input
(transmit,mid,m) for some m.

Signatures: Even corrupted Ps send along the signatures σs.

The restriction synchronized input from honest can be enforced by the way
the ideal functionality is used by an outer protocol, i.e., by ensuring that the
honest parties agree on which message identifiers are used for which message
in which rounds. This is the case for the way we use Ftransmit. The restriction
signatures is unreasonable, and we show how to get rid of it below. We need the
rule Do not commit corrupt to corrupt in Ftransmit as we cannot prevent a
corrupt Ps from providing a corrupt Pi with signatures on arbitrary messages,
i.e., we cannot commit the corrupted parties to what they have sent among
themselves.

As mentioned, the above implementation only works if all senders honestly
send the needed signatures. If at some point some Pr does not receive a valid
signature from Ps, it publicly accuses Ps of being corrupted and the parties
switch to the below expensive mode for transmissions from Ps to Pr.

1. On input (transmit,mid,m) party Ps(mid) signs (mid,m) to obtain signa-
ture σs and sends (mid,m, σs) to all Pi 6= Ps.

2. On input (transmit,mid) parties Pi 6= Ps(mid) wait for one round and then
expects a message (mid,m, σs) from Pr(mid), where σs is a valid signature
of Ps(mid) on (mid,m). If Pi receives it, it sends (mid,m, σs) to Pr(mid).
Otherwise, it sends a signature γi on (corrupt, i) to all parties.

3. On input (transmit,mid) party Pr(mid) waits for two rounds and then ex-
pects a message (mid,m, σs) from each Pi, where σs is a valid signature of
Ps(mid) on (mid,m). If it arrives from some Pi, then Pr outputs (mid,m).

Note that now each round of communication on Ftransmit takes two rounds on the
underlying network. Between two parties where there have been no accusations,
messages are sent as before (Step 1 in the above protocol) and the extra round
is used for silence—it is necessary that also non-accusing parties use two rounds
to not lose synchronization.

If Ps sends a valid signature to just one honest party, then Pr gets its signa-
ture and can proceed as in optimistic mode. If Ps does not send a valid signature
to any honest party, then all n− t honest Pi send γi to all parties and hence all
honest parties output (corrupt, s) in the following round, meaning that Ps was
detected. Using these observations it can easily be shown that the above protocol
is a UC implementation of Ftransmit against covert adversaries with deterrence
1. Note that it is not a problem that we send m in cleartext through all parties,
as an accusation of Ps by Pr means that Ps or Pr is corrupt, and hence m need
not be kept secret.

We skipped the details of how the accusations are handled. We could in prin-
ciple handle accusations by using one round of broadcast after each round of
communication to check if any party wants to make an accusation. After broad-
casting the accusations, the appropriate parties can then switch to expensive
model. To avoid using a Byzantine agreement primitive in each round, we use
a slightly more involved, but much cheaper technique which communicates less
than n2 bits in each round and which only uses a BA primitive when there are
actually some accusations to be dealt with. The details are given in the next
section.

In cheap mode, using Ftransmit adds an overhead Nκ bits compared to plain
transmission, where κ is the length of a signature and N is the number of mes-
sages sent. In expensive mode this overhead is a factor n larger.

Cheap Exception Handling Consider a protocol consisting of two protocols
πmain and πexcept, both for the authenticated, synchronous point-to-point model.
Initially the parties run πmain. The goal is to allow any party to raise a flag, which
stops πmain and starts πexcept. With some details left out for now, this is handled
as follows.

– If a party Pi wants to stop the main protocol, it sends (stop) to all parties
and stops the execution of πmain. It records the round Ri in which it stopped
running πmain.

– If a party Pi receives (stop) from any party while running πmain, it sends
(stop) to all parties and stops the execution of πmain. It records the round
Ri in which it stopped running πmain.

– After all parties stopped they resynchronize and then run πexcept.
– After having run πexcept, the parties agree on a round C of πmain which was

executed completely, i.e., Ri > C for all honest Pi, and then they rerun from
round C+ 1. If a party Pr already received a message from Ps for one of the
rounds that are now rerun, then Pr ignores any new message sent by Ps for
that round. This is to avoid that corrupted parties can change their mind
on what they sent in a previous round.

The resynchronization is needed as honest parties might stop in different
rounds—though at most with a staggering of one round.

The resynchronization uses a sub-protocol where the input of Pi is the round
Ri in which it stopped. The output is some common R such that it is guaranteed
that Ri = R for some honest Pi, i.e., at least one honest party stopped in round
R. Since the honest parties stop within one round of each other, it follows that
all honest parties stopped in round R − 1, R or R + 1. In particular, no honest
party stopped in round R − 2. The parties can therefore safely set C = R − 2,
i.e., rerun from round R− 1.

The protocol used to agree on the round R proceeds as follows:

1. Each Pi has input Ri ∈ N and it is guaranteed that |Ri − Rj | ≤ 1 for all
honest Pi and Pj .

2. Let ri = Ri mod 4 and make 4 calls to the BA functionality—name the calls
BA0, BA1, BA2 and BA3. The input to BAc is 1 if c = ri or c = ri−1 mod 4
and the input to BAc is 0 if c = ri + 1 mod 4 or c = ri + 2 mod 4.

3. Let oc ∈ {0, 1} for c = 0, 1, 2, 3 denote the outcome of BAc. Now Pi finds
the largest R ∈ {Ri − 1, Ri, Ri + 1} for which oR mod 4 = 1 and outputs R.

It is fairly straight forward to see that the honest parties output the same R and
that R was always the input of some honest party. Look at two cases.

– If there exists ρ such that Ri = ρ for all honest Pi, then all honest parties
input the same to the BA functionalities, and then trivially oρ−1 mod 4 = 1,
oρ mod 4 = 1, oρ+1 mod 4 = 0 and oρ+2 mod 4 = 0. Consequently, at honest
parties outputs R = ρ.

– If there exists ρ such that Ri = ρ for some honest Pi and Rj = ρ+1 for some
honest Pj , then Rk ∈ {ρ, ρ + 1} for all honest Pk, and thus all honest Pk
input 1 to BAρ mod 4, and so oρ mod 4 = 1. Furthermore, all honest parties
input 0 to BAρ+2 mod 4, so oρ+2 mod 4 = 0. It follows that all honest parties
output R = ρ if oρ+1 mod 4 = 0 and that all honest parties output R = ρ+ 1
if oρ+1 mod 4 = 1. Both outputs are valid.

The above protocol is an improved version of a protocol by Bar-Noy et al.
[3], which in turn uses techniques from Berman et al. [7]). The protocol in [3]
uses log(B) calls to the BA functionality, where B is an upper bound on the
input of the parties. We use just 4.

Note that at the point where the four BAs are run, the honest parties might
still be desynchronized by one round. We handle this using a technique from [15]
which simulates each round in the BA protocols by three synchronous rounds in
the authenticated channel model.

Commitment Functionality The protocol uses a one-round UC commitment
scheme with a constant overhead (commit to κ bits using O(κ) bits), which can
be realized with static security in the PKI model [4] given any mixed commitment
scheme [11] with a constant overhead. Concretely we can instantiate such a
scheme under Paillier’s DCR assumption. Note that opposed to Barak et al. [4]
we do not need a setup assumption: We assume honest majority and can thus,
once and for all, use an active secure MPC to generate the needed setup [13].
The protocol also uses an error-correcting code (ECC) for n parties which allows
to compute the message from any n− t correct shares.

If one is willing to use the random oracle model, UC commitment can instead
be done by calling the oracle on input the message to commit to, followed by
some randomness. In practice, this translates to a very efficient solution based
on a hash function.

The protocol proceeds as follows.

1. On input (commit, cid,m), Ps(cid) computes an ECC (m1, . . . ,mn) of m. The
sender then computes ci ← commitpki(mi) and sends ci to Pi via Ftransmit.

2. On input (reveal, cid, r), Pi opens each ci to Pi. The opening is sent via
Ftransmit. If any Pi receives an invalid opening, it transfers ci and mi to all
parties and Ps is detected as a cheater. Otherwise, Pi transfers ci and the
opening to Pr.

3. Then Pr collects validly opened ci. Let I be the index of these and let mi be
the opening of ci for i ∈ C. If |I| < n − t, then Pr waits for one round and
terminates.3 If (mi)i∈I is not consistent with a codeword in the ECC, then
Pr transfers (ci)i∈I and the valid openings to the other parties which detect
Ps as corrupted. Otherwise, Pr uses (mi)i∈I to determine m and outputs
(cid,m).

Assuming that a commitment to ` bits have bit-length O(max(κ, `)), where κ
is the security parameter, the complexity of a commitment to ` bits followed by
an opening is O(nmax(κ, `/n)) = O(n(κ+ `/n)) = O(`+ nκ). This is assuming
that there are no active corruptions, such that Ftransmit has constant overhead.

3 Since we assume that at most t parties are corrupted, we can assume that either Ps is
detected or Pr receives n−t commitments with corresponding valid decommitments.

Flip Functionality To implement FBflip the parties proceed as follows.

1. On input (flip), all Pi commit to a uniformly random ki ∈ [0, B − 1].
2. In the next round all Pi reveal ki to all parties.
3. All parties output k =

∑n
i=1 ki mod B.

Under the condition that the protocol is used by the honest parties in a
way that guarantees that they input (flip) in the same round, the argument
that the protocol implements the functionality against a covert adversary (with
deterrence 1) is straight forward.

Input Functionality The input functionality can be implemented using a VSS
with a multiplication protocol active secure against t < n/2 corruptions. The
VSS should have the property that it is possible to verifiable reconstruct the
secret and the share of all parties given the shares of the honest parties—standard
bivariate sharing has this property. We sketch the protocol.

1. Each Pi deals a VSS [[xi]] of its input xi.
2. The parties use standard techniques to compute a VSS [[d]] of a uniformly

random d ∈R {0, 1} ⊂ K.
3. For each input [[xi]] the parties use an actively secure multiplication protocol

to compute [[x(i,0)]] = [[di · xi]] and [[x(i,1)]] = [[(1− di) · xi]].
Each Pi takes its output to be (x(j,0)

i)nj=1 and (x(j,1)
i)nj=1, where x(j,c)

i is its
point on the polynomial used by the sharing [[x(j,c)]]. The other values of
the VSS are internal to the implementation of Finput and only used for the
below command.

4. On input (reveal, i, k) the parties reconstruct [[d]] and all [[xi,d]] towards Pk
and Pk computes the points x(j,d) of Pj in all sharings and output (x(j,d)

i)nj=1.

Bibliography

[1] J. Algesheimer, J. Camenisch, and V. Shoup. Efficient computation mod-
ulo a shared secret with application to the generation of shared safe-prime
products. In CRYPTO, pages 417–432, 2002.

[2] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. In S. P. Vadhan, editor, TCC, volume
4392 of Lecture Notes in Computer Science, pages 137–156. Springer, 2007.

[3] A. Bar-Noy, X. Deng, J. A. Garay, and T. Kameda. Optimal amortized
distributed consensus. Information and Computation, 120(1):93–100, 1995.

[4] B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally composable
protocols with relaxed set-up assumptions. In FOCS, pages 186–195. IEEE
Computer Society, 2004.

[5] Z. Beerliová-Trub́ıniová and M. Hirt. Perfectly-secure mpc with linear com-
munication complexity. In TCC, pages 213–230, 2008.

[6] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended ab-
stract). In STOC, pages 1–10. ACM, 1988.

[7] P. Berman, J. A. Garay, and K. J. Perry. Optimal early stopping in dis-
tributed consensus. In A. Segall and S. Zaks, editors, WDAG, volume 647
of Lecture Notes in Computer Science, pages 221–237. Springer, 1992.

[8] P. Bogetoft, D. L. Christensen, I. Damg̊ard, M. Geisler, T. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I.
Schwartzbach, and T. Toft. Secure multiparty computation goes live. In
Financial Cryptography, pages 325–343, 2009.

[9] R. Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, pages 136–145. IEEE, 2001.

[10] I. Damg̊ard and J. B. Nielsen. Scalable and unconditionally secure multi-
party computation. In CRYPTO, pages 572–590, 2007.

[11] I. Damg̊ard and J. B. Nielsen. Perfect hiding and perfect binding univer-
sally composable commitment schemes with constant expansion factor. In
M. Yung, editor, CRYPTO, volume 2442 of Lecture Notes in Computer
Science, pages 581–596. Springer, 2002.

[12] I. Damg̊ard, Y. Ishai, M. Krøigaard, J. B. Nielsen, and A. Smith. Scal-
able multiparty computation with nearly optimal work and resilience. In
CRYPTO, pages 241–261, 2008.

[13] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
– a completeness theorem for protocols with honest majority. In STOC,
pages 218–229. ACM, 1987.

[14] V. Goyal, P. Mohassel, and A. Smith. Efficient two party and multi party
computation against covert adversaries. In EUROCRYPT, pages 289–306,
2008.

[15] Y. Lindell, A. Lysyanskaya, and T. Rabin. Sequential composition of pro-
tocols without simultaneous termination. In Proceedings of the twenty-first
annual symposium on Principles of distributed computing, pages 203–212.
ACM Press, 2002.

A General Transformation

In this section we describe the general transformation. We start by giving one
set of requirements which allows to do the transformation, and which allows an
easy analysis. After giving the requirements we discuss some relaxations. Then
we give the protocol, the simulator and the analysis of the simulator. Throughout
the section we let H denote the set of indices of honest parties and C the indices
of corrupted parties.

A.1 Requirements

We can transform protocols consisting of the following two parts.

Secret sharing scheme: The first part is a secret sharing scheme, sss. Given
a secret s and a randomizer r it produces n shares (s1, . . . , sn) = sss(s; r);
We use the notation [s] = (s1, . . . , sn) to denote n-vectors. We write [s] ∈ sss
to mean that [s] = sss(s; r) for some r.

Secret shared computation: A protocol πf which computes on shared val-
ues. In the input configuration the parties hold shares of [x(j)] ∈ sss for
j = 1, . . . , `. The protocol ends by the parties holding share of [y(j)] ∈ sss for
j = 1, . . . , `—for notational convenience we assume ` inputs and ` outputs.

We have the following requirements:

Reconstruction: We need that s can be computed efficiently from the shares
of the honest parties in [s] ∈ sss.

Patching of secret sharing scheme: In words, it is possible to explain the
shares of any non-qualified set as the shares of any secret.
Technically, there exists a poly-time function, patch, with the following prop-
erty. Let C denote a non-qualified set. Compute (s1, . . . , sn)← sss(s; r) for a
uniformly random randomizer r for the secret sharing scheme and compute
r′ = patch(s, r, C, s′). Then r′ is uniformly random given s′ and s′i = si for
all i ∈ C when (s′1, . . . , s

′
n)← sss(s′; r′).

Randomness minimality: In words, the shares of honest parties are fixed by
the secret and the shares of the corrupted parties.
Technically, there exists a poly-time function, complete, with the follow-
ing property. Let C denote a maximally non-qualified set and let [s] =
(s1, . . . , sn) ∈ sss. Then complete(s, (si)i∈C) = (si)i∈H .

Correctness: If [x(j)] ∈ sss for j = 1, . . . , ` and if [y(j)] for j = 1, . . . , ` are com-
puted as ([y(j)])j=1,...,` = πf (([y(j)])j=1,...,`), where all parties follow the pro-
tocol, then [y(j)] ∈ sss for j = 1, . . . , ` and (y(j))j=1,...,` = f((x(j))j=1,...,`).

Patching of protocol: In words, it is possible to explain the view of any non-
qualified set as being consistent with any inputs of the honest parties. Tech-
nically we require that there exists a poly-time function, patch, with the
property defined below.
Let C be any non-qualified set and let πi denote the code of Pi in πf ; It
takes inputs (x(j)

i)nj=1 and a randomizer si and produces outputs (y(j)
i)nj=1.

Let ([x(j)])nj=1 and ([x(j)′])nj=1 be two inputs for the protocol πf . Denote

the shares of Pi in ([x(j)])nj=1 by (x(j)
i)nj=1 and denote the shares of Pi in

([x(j)′])nj=1 by (x(j)
i

′
)nj=1. Assume that [x(j)] ∈ sss and [x(j)′] ∈ sss for j =

1, . . . , n and assume that (x(j)
i)nj=1 = ((x(j)

i)′)nj=1 for i ∈ C.
For i ∈ H sample a uniformly random randomizer si for πi and for i ∈ C,
let si be arbitrary values. Compute

(s′j)
n
j=1 = patch(([x(j)])nj=1, (sj)

n
j=1, C, ([x

(j)′])nj=1).

Execute the n parties πi((x
(j)
i)nj=1; si) together and record the view, viewi,

of each Pi. Then execute the n parties πi((x
(j)
i

′
)nj=1; s′i) together and record

the view, view′i, of each Pi. Then the s′i of i ∈ H are uniformly random (and
independent of si for i ∈ C and the inputs ([x(j)′])nj=1) and viewi = view′i
for i ∈ C, in particular s′i = si for i ∈ C.

The properties correctness and reconstruction are needed for the overall cor-
rectness of the protocol which runs πf and then reconstructs. The property
patching of secret sharing scheme ensures that the shares of the corrupted par-
ties hold no information on s. This ensures the security of sharing the inputs
using sss. The property randomness minimality ensures that if the shares on
the honest parties are added to the shares of the corrupted parties, it leaks no
information extra to s.4 This ensures that it is secure to compute the outputs
by revealing the honest shares to the corrupted parties. The property patching
of protocol ensures that the view of the corrupted parties in an execution of πf
leaks no information whatsoever.

An example of a secret sharing scheme with the desired properties is Shamir’s
secret sharing scheme. An example of a protocol with the desired properties is
the passive secure protocol of [13] and the passive secure protocol in [1].

Relaxations The requirements can be relaxed in several ways, which all, how-
ever, complicate the analysis sufficiently that we have chosen not to go to further
generality.

First of all, we require Randomness minimality simply to by sure that it
is secure to reconstruct the outputs by simply making the shares of the honest
parties public. If the shares of the honest parties were not fixed by the shares of
the corrupted parties and the secret, they might in principle encode more infor-
mation than the output. We can relax this requirement to allow arbitrary secret
sharing scheme, like ramp schemes, simply by requiring that the computation
phase followed by a reconstruction phase consisting of making the shares of the
output public is secure against t < n/2 corrupted parties.

We can also deal with protocols which leak partial information about the out-
puts during the computation, as opposed to the strict compute-reveal paradigm
imposed above. Such protocol are broken into phases which leak no informa-
tion and each phase is transformed as below, and in each phase a new dummy
execution is selected.

Finally we can in a straight forward manner generalize to deal with schemes
where the secret sharing schemes used to share the inputs and the outputs are
not the same. This might be convenient for schemes converting between different
secret sharing scheme, where circuit based techniques are not a convenient way
to get security against deviations.

A.2 Protocol

The protocol πf is given below. For notational simplicity we assume that there
are ` = n inputs and that each Pi has one input xi ∈ K. The protocol runs in
4 In the view of the corrupted parties the entropy of the honest shares given s is 0.

the (Finput,Fcommit,Ftransmit,Fn−1
flip)-hybrid model with parties P1, . . . , Pn and

proceeds as follows:

1. Each Pi inputs xi to Finput to receive shares (x(j,0)
i)nj=1 and (x(j,1)

i)nj=1.

2. Each Pi samples uniformly random seeds K(0)
i and K(1)

i for a pseudo-random
generator, prg, and commits to these values using Fcommit.

3. Each Pi computes s(0)i = prg(K(0)
i) and s

(1)
i = prg(K(1)

i) and for c = 0, 1
runs πf with input (x(j,c)

i)nj=1 and randomness s(c)i . All messages are sent
via Ftransmit.

4. For j = 1, . . . , n and c = 0, 1 party Pi uses Fcommit to commit to the its
outputs y(j,c)

i and the messages comm(i,c)
{i,j} sent between Pi and Pj in the

execution of π(c)
f (as seen by Pi).

5. Each Pi inputs (flip) to Fflip to receive k ∈ [0, n− 2]. For i = 1, . . . , n, let
li = (i+ k mod n) + 1.

6. All parties instruct Finput to reveal d and (x(j,d)
li

)nj=1 to Pi, each Pli instructs

Fcommit to reveal K(d)
li

to Pi, and Pi computes s(d)li
= prg(K(d)

li
).

7. Each Pj instructs Fcommit to reveal comm(j,d)
{j,li} to Pi, and Pi checks that

comm(j,d)
{j,li} = comm(li,d)

{j,li} for all Pj .

If comm(j,d)
{j,li} = comm(li,d)

{j,li}, then denote their common value by comm(d)
{j,li}.

If comm(j,d)
{j,li} 6= comm(li,d)

{j,li}, then Pi broadcasts a complaint and transfers

comm(j,d)
{j,li} and comm(li,d)

{j,li} to the other parties who checks that comm(j,d)
{j,li} 6=

comm(li,d)
{j,li}. Then Pj and Pi must instruct Ftransmit to reveal the commu-

nication between them. A party failing to do so is detected as corrupted.
Otherwise, the one which revealed comm(·,d)

{j,li} inconsistent with the commu-
nication revealed by Ftransmit is detected as corrupted.

8. Each Plj reveals to Pj the values (y(i,d)
lj

)i=1,...,n.

9. Each Pi runs the program of Pli in πf on inputs (x(j,d)
li

)nj=1, randomizer s(b)li
and the incoming messages from comm(d)

{j,li} (j = 1, . . . , n).

Let (y(j,d)
li

′
)j=1,...,n be the shares of the output computed by the program.

If the messages sent by the program deviates from the outgoing messages in
comm(d)

{j,li} (j = 1, . . . , n) or (y(j,d)
li

′
)j=1,...,n 6= (y(j,d)

li
)j=1,...,n, then Pi broad-

casts (complaint) and transfers the appropriate values to let the other par-
ties verify the inconsistency. If the inconsistency is confirmed, the other par-
ties output (corrupt, li). If Pi broadcasts a complaint and does not demon-
strate an inconsistency, the parties output (corrupt, i).

10. If no party broadcast a complaint, then the parties instruct Fcommit to re-
veal y(j,1−d)

i towards Pj . Then Pj collects n− t values y(j,1−d)
i , reconstructs

y(j,1−d) and outputs yj = y(j,1−d).

A.3 Simulator

The first tool we need is that we can predict what each party should send in
each round by inspecting Finput and Fcommit in Step 2. This is done as follows.

1. For each Pi, let (x(j,0)
i)nj=1 and (x(j,1)

i)nj=1 be the outputs to Pi in Step 1.

2. Let K(0)
i and K

(1)
i be the values input to Fcommit in Step 2 and let s(0)i =

prg(K(0)
i) and s

(1)
i = prg(K(1)

i).
3. For i = 1, . . . , n and c = 0, 1, let π(c)

i denote the code of Pi in πf initialized
with inputs (x(j,c)

i)nj=1 and randomizer s(c)i . Now each π
(c)
i is ready to send

the first round of messages.
4. As long as not all π(c)

i terminated, run the π(c)
i to produce the messages that

it should send in the next round, and input these message the corresponding
π

(c)
j .

5. Let pcomm(c)
{i,j} be the messages sent between π

(c)
i and π

(c)
j above, and let

pshare(c)
i = (y(j,c)

i)nj=1 be the shares computed by π(c)
i .

We now define some different types of deviations.

1. Inspect Fcommit to get the values comm(i,c)
{i,j} committed to by all parties. If

comm(i,c)
{i,j} 6= comm(j,c)

{i,j}, then say that an inter-deviation involving Pi and
Pj occurred in track c. If Pi is honest, then define Pj to be the deviator. If Pj
is honest, then define Pi to be the deviator. If Pi and Pj are both corrupted,
then define the lower indexed to be the deviator.

2. If there are no inter-deviations, then define comm(c)
{i,j} to be the common

value of comm(i,c)
{i,j} and comm(j,c)

{i,j}. Now, if comm(c)
{i,j} 6= pcomm(c)

{i,j} for some
Pi and Pj , then say that an intra-deviation occurred in track c and define
the deviator Pk ∈ {Pi, Pj} be the lowest indexed party to send a message
different from pcomm(c)

{i,j} to some other party.
3. If there are no intra-deviations either, then all parties followed the passive

protocols, which defines consistent output shares pshare(c)
i = (y(j,c)

i)nj=1 for

i = 1, . . . , n. If any Pi commits to a value different from the predicted y(j,c)
i ,

say that a commitment deviation occurred in track c and define Pi to be the
deviator.

It is straight forward to see that if there are no deviations of any type in any
track, then all parties followed the passive protocols and committed to correct
shares. Furthermore, if any deviation occurred in the dummy track and the
associated deviator Pi is checked by a honest party, then some corrupted Pj
will be detected, though not necessarily exactly Pi. Finally, it can be seen that
by the end of Step 4 we can define which deviations occurred and who are the
deviators, and at this point the bit d and the index k are uniformly random
and independent of the view of t corrupted parties. Putting these observations
together, we see that if it is not the case that all parties followed the passive

protocols and committed to correct shares, then a corrupted party is detected
with probability p/2, where p is the probability that a deviator is checked by an
honest party. If there is just one deviator, then p = (n− t)/(n− 1) > 1/2.

The above intuitively shows that the deterrence factor is 1/4. We now show
that we can actually simulate the protocol. The simulator is given in below:

1. First S receives (xi)i∈C from Feval and outputs xi to A as if coming from a
corrupted Pi in πf .

2. In Step 1 S inspects the inputs of A to Finput and records the inputs x′i it
gives on behalf of Pi, i ∈ C. It then inputs {x′i}i∈C to Feval and gets back
{yi}i∈C , where (y1, . . . , yn) = f(x′1, . . . , x

′
n), where x′i = xi for i ∈ H is the

xi received by Feval from the environment.
3. In Step 1 S inspects the inputs of A to Finput and records (d1, . . . , dn).

Then it samples [x(j,0)]← sss(dj) and [x(j,1)]← sss(dj) for j = 1, . . . , n and
outputs ({x(j,0)

i }nj=1, {x
(j,1)
i }nj=1) to Pi as if coming from Finput.

4. Then S runs Step 2, using random K
(c)
i for i ∈ H and inspecting the inputs

of A to Fcommit to learn K
(c)
i for i ∈ C. It then computes s(c)i = prg(K(c)

i)
for i = 1, . . . , n.

5. Then S runs Step 3 and Step 4 honestly.
Cheating is detected and handled as follows. For i = 1, . . . , n and c = 0, 1
the simulator computes the predicted values pcomm(c)

{i,j} and pshare(c)
i from

the values {x(j,c)
i }nj=1 and s

(c)
i computed above. During the simulation, S

inspects the inputs from A to Ftransmit and Finput. If some Pi, i ∈ C, makes
any type of deviation in any track, then S pauses the simulation and lets
δ ∈ {0, 1} denote the index of the execution in which the deviation occurred.
(a) Transmits a value to Pj , j ∈ H which is different from the one predicted

by the pcomm values.
(b) Commits to any comm value not consistent with the pcomm values.
(c) Commits to a share y(j,c)

i different from the one predicted by the pshare
values.

6. If there were deviations, then S inputs (cheat) to Feval and gets back (xi)ni=1

and a notification of whether it was caught or not.
– If it was caught, then it lets d = δ and samples k uniformly at random

from i− 1−H mod n
– If it was not caught, it samples d ∈ {0, 1} with Pr[d = δ] = 1

3 and
Pr[d = 1 − δ] = 2

3 , and samples k ∈ [0, . . . , n − 2] with k uniformly
random in i − 1 − H mod n with probability α = 4

3 (n−tn−1 −
1
4) and k

uniformly random in [0, n− 2] \ i− 1−H mod n with probability 1−α.
It then patches the simulated enriched execution, e = 1− d, and finishes the
simulation as follows:
(a) The enriched execution used inputs computed as [x(j,e)] ← sss(dj ; rj).

Now S computes r′j = patch(dj , rj , C, xj) for the (xi)ni=1 received from

Feval and [x(j,e)′] ← sss(xj ; r′j). This defines new shares (x(j,e)
i

′
)nj=1 for

i ∈ H.

(b) Then S computes

(s(e)j
′
)nj=1 ← patch(([x(j,e)])nj=1, (s

(e)
j)nj=1, C, ([x

(j,e)′])nj=1).

(c) Then S finishes the execution of Step 3 using the patched (x(j,e)
i

′
)nj=1 as

input to P (e)
i and using the patched s

(e)
i

′
as randomizer for P (e)

i .
(d) In Step 5 of πf , S lets Fflip return the k that S computed in Step 5.
(e) In Step 6 of πf , S lets Finput return the d that S computed in Step 5.
(f) Then S finishes the simulation by simply following the protocol. For each

Pi it instructs Feval to output whatever Pi outputs in the simulation.
7. If there were no deviations in the simulation of Step 3 and Step 4, then S

patches the enriched shares of corrupted outputs committed to by honest
parties as follows.
For each output y(j) = yj , j ∈ C, received from Feval it finds the share y(j,e)

i

committed to by Pi, i ∈ C. Then it computes

(y(j,e)
i)i∈H = complete(y(j), (y(j,e)

i)i∈C)

and changes the internal state of Fcommit to be consistent with Pi, i ∈ H,
having committed to y(j,e)

i in Step 3.
Then it finishes the simulation by honestly following the protocol. When
some honest Pi outputs yi in the simulation, S instructs Feval to give the
output of Pi. If some honest Pi outputs (corrupt, j) in the simulation, S
instructs Feval to output (corrupt, j) on behalf of Pi.

A.4 Analysis

In this section we show that the view produced by the simulator is indistinguish-
able from the view of the protocol. We look at two cases.

Case I There is a deviation in Step 3 or Step 4.
Case II There are no deviations in Step 3 and Step 4.

We start with Case II. Here there are the following differences between the
simulation and the execution.

1. In the simulation the enriched execution is run with the inputs (d1, . . . , dn).
In the execution it is run with (x1, . . . , xn).

2. In the simulation the outputs from Pi, i ∈ H seen by the environment comes
from Feval. In the execution they are the values computed by Pi by running
the protocol.

3. In the simulation the shares (y(j,e)
i)i∈H for j ∈ C are input to Fcommit. They

are computed as complete(y(j), (y(j,e)
i)i∈H) where y(j) is output by Feval.

The view of the adversary and environment of the first difference can be
shown to be negligible using the security of prg and the patching properties.
First we change the simulation to use uniformly random sei for honest Pi, which
changes the view of the corrupted parties negligibly by the security of prg and
the fact that the view of the enriched execution is not opened. Then we can
change the simulation to use the correct input xi for each honest Pi instead of di
in the enriched execution. This will not change the view of the corrupted parties
as we in Case II assume that they follow the protocol πf correctly, which in
particular allows us to apply he patching properties, which ensure that the view
of the corrupted parties are independent of the inputs of the honest parties in
πf when all parties follow the protocol.

We then consider the second difference. In Case II we have no deviations in
the execution of the enriched execution π

(e)
f . By the correctness property and

the fact that x(j,e) is the value input to Finput by Pi, it follows that in the
protocol the sharing [y(j,e)] is a sharing of the valued obtained by computing
(y(j,e))nj=1 = f((xj)nj=1) for the inputs xj to Finput. In the simulation, S takes
the inputs to Finput from the corrupted parties and give these to Feval. As a
result Feval computes (y(j,e))nj=1 = f((xj), and hence the output to Pi will be
the same as in the protocol.

We then consider the third difference. As we argued above, the value y(j),
j ∈ C, received by S from Feval in the simulation will be the same as the value
y(j,e) of which π(e)

f computes a sharing [y(j,e)] in the execution. Furthermore, by

the correctness property and the fact that all parties follow π
(e)
f in Case II, we

have that [y(j,e)] = (y(j,e)
i)ni=1 ∈ sss. By the randomness minimality it follows

that (y(j,e)
i)i∈H = complete(y(j), (y(j,e)

i)i∈C) in the execution, i.e., (y(j,e)
i)i∈H

have the exact same distribution as in the simulation.
We then consider Case I. If we ignore that the honest parties use pseudo-

random si instead of truly random ones, which can be handled as above, it follows
directly from the patching properties that the view seen by the corrupted parties
have the same distribution as in an execution of the protocol with the d and k
used by S, the only difference being that in the execution x(j,e) = xj from a
beginning and in the simulation we patch from x(j,e) = dj to x(j,e) = xj after
d is determined. Furthermore, in Case I S determines all outputs of Feval and
specify them to be the same as those in the simulation. This ensures that the
view of the simulation by A and the environment is indistinguishable from their
view of an execution of the protocol with the d and k used by S. All that remains
to be checked is thus that

1. When S is detected by Feval, there exists a corrupted party Pj for which all
honest parties output (corrupt, j).

2. If an honest party outputs (corrupt, j), then Pj is corrupted.
3. The distribution of d and k are the same in the simulation and the execution.

The first property follows from picking d = δ and k ∈ i− 1−H mod n when
S is caught. Picking d = δ ensures that the execution in which Pi deviated is

made the dummy one. Picking k = i − 1 − h mod n for h ∈ H ensures that
h+k mod n+1 = i, which ensure that the honest Ph will check Pi. This ensures
that at least one corrupted party is caught.

The second property follows by inspection of the protocols.
We then consider the third property. We first argue that d is negligibly close

to the right distribution and then argue that k has the correct distribution.
When S is caught we let d = δ with probability 1. When S is not caught

we let d = δ with probability 1
3 . This means that we let d = δ with probability

1
4 ·1+ 3

4 ·
1
3 = 1

2 . In the protocol the view of A is computationally independent of
d up until it makes a deviation—it is perfectly independent if we let the honest
parties use a uniformly random si instead of a pseudo-randomly generated one.
This means that δ = d with probability negligibly close to 1

2 , or the bit δ, which
is known by A would be a distinguisher for prg.

When S is caught we sample k uniformly random in i − 1 −H mod n with
probability 1. When S is caught we sample k uniformly random in i − 1 −
H mod n with probability α. This means that we pick k uniformly at random
in i − 1 −H mod n with probability 1

4 + 3
4α. Hence an element in i − 1 −H is

picked with probability(
1
4

+
3
4
α

)
1

n− t
=
(

1
4

+
3
4

4
3

(
n− t
n− 1

− 1
4

))
1

n− t
=

1
n− 1

.

Since i − 1 − H ⊂ [0, n − 2] and the remaining probability mass is distributed
uniformly over [0, n− 2] \ i− 1−H, it follows that also an element in [0, n− 2] \
i − 1 −H is picked with probability 1

n−1 , so k is uniform over [0, n − 2] in the
simulation as well as in the protocol.

B Chinese Whispers

In our protocol we have all parties commit to the messages they exchanged
before the revelation of d and k. This might seem superfluous, as Ftransmit was
already used to commit the parties to their messages. The difference is that
Fcommit also binds the corrupted parties to what they have exchanged among
themselves, whereas Ftransmit allows the corrupted parties to change their mind
on what they exchanged among themselves. We give an example demonstrating
that it makes a difference whether the corrupted parties are committed to was
sent among them before we reveal who checks who.

Consider the following passively secure protocol called Chinese-Whispers
for computing the identity function (x1, . . . , xn) 7→ (x1, . . . , xn).

1. In round 1 party P1 should send 0 to P2.
2. For i = 2, . . . , n− 1, in round i party Pi should take the bit sent from Pi−1

and send it to Pi+1.
3. In round n all parties i = 2, . . . , n should behave as follows: If they received

a 0 from Pi−1 in round i, then they should output xi. If they received a 1
then they should broadcast xi and then output xi.

Chinese-Whispers is clearly passively secure. Consider now a setting where
P1, . . . , Pt are corrupted and where Pt sends 1 to Pt+1 in round t, a serious
deviation which lets the corrupted parties learn all the inputs of the honest
parties. If we now let the honest parties check a corrupted party at random,
then with probability going to 1, as n grows, there will be a corrupted party
Pi, i ∈ {2, . . . , t− 1}, which is checked by a corrupted party. The adversary can
then behave as if P1, . . . , Pi−1 all received and sent 0, that Pi received 0 and
sent 1, and Pi+1, . . . , Pt all received and sent 1. Now all the parties except Pi
followed the protocol, and since the local consistency of Pi is not checked this
goes unnoticed. If we had forced the adversary to picked the party Pi having
received 0 and sent 1 before the assignment of who checks who was made public,
then Pi would have been checked by an honest party with probability at least
1
2 , which is what we need.

Chinese-Whispers itself does not fit as a protocol we can transform, but
can be embedded into any such protocol to render it vulnerable to the above
attack.

