
A Diagonal Fault Attack on the Advanced

Encryption Standard

Dhiman Saha ? Debdeep Mukhopadhyay ?? Dipanwita RoyChowdhury ? ? ?

Keywords: Fault Attack, AES-Rijndael, Clock Glitching

Abstract. The present paper develops an attack on the AES algorithm,

exploiting multiple byte faults in the state matrix. The work shows that

inducing a random fault anywhere in one of the four diagonals of the state

matrix at the input of the eighth round of the cipher leads to the deduction

of the entire AES key. We also propose a more generalized fault attack

which works if the fault induction does not stay confined to one diagonal.

To the best of our knowledge, we present for the first time actual chip results

for a fault attack on an iterative AES hardware running on a Xilinx FPGA

platform. We show that when the fault stays within a diagonal, the AES key

can be deduced with a brute force complexity of approximately 232, which

was successfully performed in about 400 seconds on an Intel Xeon Server

with 8 cores. We show further that even if the fault induction corrupts

two or three diagonals, 2 and 4 faulty ciphertexts are necessary to uniquely

identify the correct key.

1 Introduction

Fault tolerance in cryptography is nowadays a widely researched topic. The advent
of mobile handsets, smart cards, personal digital assistants (PDAs) with crypto-
graphic hardware requires protection against accidental or intentional faults. The
first use of faults to attack crypto-hardware dates back to 1996 by Boneh, De-
Millo and Lipton [1, 2] from Bellcore. Since then fault based attacks have been
extended successfully to both asymmetric and symmetric ciphers. The concept of
Differential Fault Analysis (DFA) was introduced by Biham et. al. [3] on the Data
Encryption Standard (DES). The Advanced Encryption Standard (AES), being
the global standard for sensitive data encryption, has been a popular target for
fault attacks. With the work on optical fault induction reported in [4], research in
the field of fault-based side channel cryptanalysis of AES has gained considerable
attention. Less costly methods for fault injection include variation of supply volt-
ages, clock frequency, clock glitches or temperature variations. Several differential
fault attacks on AES have been reported in literature. While most attacks exploit
the properties of the encryption function, recent reported attacks have also tar-
geted the key scheduling. In [5], authors mount DFA on AES by inducing faults
at byte level to the input of ninth round of AES using 250 faulty ciphertexts. The

? Dhiman Saha is a PhD Student in the Department of Computer Sc. and Engg, IIT
Kharagpur, India. E-mail: dhimans@cse.iitkgp.ernet.in

?? Debdeep Mukhopadhyay is an Assistant Professor in the Department of Computer Sc.
and Engg, IIT Kharagpur. E-mail: debdeep@cse.iitkgp.ernet.in.

? ? ? Dipanwita RoyChowdhury is a Professor in the Department of Computer Sc. and Engg,
IIT Kharagpur. E-mail: drc@cse.iitkgp.ernet.in



attack reported in [6] recovers the key with around 128 to 256 faulty ciphertexts.
In [7], Dusart et. al. show that using a byte level fault induction anywhere between
the eighth round MixColumn and ninth round MixColumn, the attacker is able to
break the key with 40 faulty ciphertexts. The authors of [8] mounted an attack on
AES with just single byte faults using two faulty outputs. The point of induction
was at the input of the eighth or ninth round. In [9], the authors present a fault
attack on AES when the fault is induced in a 32 bit word of AES in the ninth
round. The authors propose two models for fault occurrence. In the first model,
they assume that at least one of the bytes among the four targetted bytes are
uncorrupted. While in the second model they assume that all the four bytes are
corrupted. The former fault requires 6 faulty ciphertexts, while the later requires
around 1500 faulty ciphertexts to discover the key. We observe that when the as-
sumptions are on the value of a byte (either it being faulty or uncorrupted) the
number of faulty pairs is quite small. We claim that attacks based on multiple byte
faults are more practical as opposed to those based on single byte faults. Also as
induction of faults requires high precision instruments (more the precision, more
the cost!) and are harder to guarantee, an attack which requires large number of
faulty pairs is impractical. Among the attacks on key expansion, it has been sug-
gested in [10, 11] that with byte level fault, a minimum of two faulty ciphertexts
and a brute force search of 48 and 40 bits respectively reveal the AES key. In [12]
a fault attack against AES was proposed, which revealed the key using a single
byte fault induction at the input of the eighth round. The attack exploited the
inter-relations between the fault values in the state matrix after the ninth round
MixColumn operation. Through simulations it was shown that the attack reduced
the AES-128 key space to 232 using a single faulty ciphertext.

However in spite of several research works, there is surprisingly no reported
work on actual fault attacks on real life hardware. Most of the attacks proposed,
model the fault as a non-zero disturbance of a single byte of the AES state matrix.
In this paper we introduce a new fault attack on AES, based on the fault induction
in the diagonals of the AES state matrix at the input of the eighth round. Our
attack named as the Diagonal Fault Attack is thus based on a multi-byte level
fault modeling as opposed to a single byte level fault model. We have verified
the entire attack on an iterative architecture of AES on a Xilinx FPGA platform
with real-time fault injection using clock glitching via less sophisticated and less
costly instruments. We show that when a non-zero fault is induced in one of
the four diagonals of the AES state matrix at the input of the eighth round, a
single faulty ciphertext is needed to reduce the key space of AES-128 to 232. The
brute force search requires around 400 seconds on an eight core Intel Xeon server
running Linux operating system. Further, we present attack methods to retrieve
the key when the faults are not confined to one diagonal. We show that when two
diagonals are corrupted the attacker needs two faulty ciphertexts, whereas if three
diagonals are disturbed four ciphertexts are required to ascertain the correct key.
Our experimental findings show that when the eighth round of AES is clocked at
slightly higher than the maximum permissible frequency, in all the faulty cases at
most three of the four diagonals are disturbed, and hence can be cryptanalyzed
by the proposed method.

The paper is organised as follows: section 2 describes the AES-Rijndael algo-
rithm. The fault model is described in section 3 and the attack environment is
stated in section 4. Section 5, 6 and 7, propose the attacks using three different



fault models. Section 8 reports the experimental results, and the comparisions are
furnished in section 9. The working principle of the Finally, the work is concluded
in section 10.

2 The Description of AES-Rijndael Algorithm

The description of the AES-Rijndael algorithm may be found in [13]. The typical
round is described in the current subsection. The 128 bit message and key sizes
have been considered, but the discussion can be extended to other specifications
of the Rijndael block cipher.

The 128 bit input block to AES is arranged as a 4×4 array of bytes, known as
the state matrix, refer to figure 1. The elements of the matrix are represented by
the variable, bij , where 0 ≤ i, j ≤ 3 and i, j refers to the row and column positions.

b
00

b b b

b b b b

bbb b

b b b b

10

20

30

01 02 03

11 12 13

21 22 23

31 32 33

Fig. 1. The State Matrix of AES-Rijndael

The algorithm has ten rounds and the keys of each round are generated by a
key scheduling algorithm. The design of the key scheduling algorithm of AES is
such that the knowledge regarding any round key reveals the original input key
(named as the master key) from which the round keys are derived. The input
state matrix (plaintext) is transformed by the various round transforms. The state
matrix evolves as it passes through the various steps of the cipher and finally
emerges in the form of ciphertext.

The rounds of AES use the following steps (figure 2):

1. The Byte Sub Step: The Byte Sub is the only non-linear step of the cipher. It
is a bricklayer permutation consisting of an S-box applied to the bytes of the
state. Each byte of the state matrix is replaced by its multiplicative inverse,
followed by an affine mapping. Thus the input byte x is related to the output
y of the S-Box by the relation, y = A.x−1 + B, where A and B are constant
matrices[13].

2. The ShiftRows Step: Each row of the state matrix is rotated by a certain
number of byte positions. This is a byte transposition step.

3. The MixColumn Step: The MixColumn is a bricklayer permutation operating
on the state column by column. Each column of the state matrix is considered
as a 4-dimensional vector where each element belongs to GF (28). A 4×4 matrix
M whose elements are also in GF (28) is used to map this column into a new



vector. This operation is applied on all the 4 columns of the state matrix [13].
Here M is defined as follows:

M =







2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2







4. AddRoundKey: Each byte of the array is exclusive-ored with a byte from a
corresponding array of round subkeys.

The first 9 rounds of AES-Rijndael are identical - only the last round is not because
the MixColumn step does not exist.

ADD ROUND
      KEY

SHIFT ROW

ADD ROUND
      KEY

ROUND 1

 BYTE SUB

MIX COLUMN

−9

ADD ROUND
      KEY

 BYTE SUB

SHIFT ROW
ROUND 10

Fig. 2. The Round Transforms of AES-Rijndael

The proposed fault attack is based on a fault model which assumes fault in-
duction in the diagonals of the AES state matrix. Hence before proceeding to the
attack we give a formal definition of the diagonal of the state matrix.

Definition 1. Diagonal: A diagonal is a set of four bytes of the state matrix,
where the ith diagonal is defined as follows:

Di = {bj,(j+i)mod4 ; 0 ≤ j < 4} (1)

According to the above definition and with reference to the state matrix of AES
(refer figure 2) we obtain the following four diagonals.

D0 = (b00, b11, b22, b33)

D1 = (b01, b12, b23, b30)

D2 = (b02, b13, b20, b31)

D3 = (b03, b10, b21, b32)

In the next section, we present the fault model used in the attack.



3 Fault Model of the Attack

The Fault model determines the assumptions that we make about the nature of
the fault that are induced in the attack. The implementation of AES we target
is an iterative one. Research shows that unrolled or pipelined design of AES are
unpopular because they do not allow to operate the cipher in Output Feedback
Mode (OFB) or Cipher Block Chaining (CBC) mode, which are more secured
modes of operation.

The attacker aims to inject a fault at the input of the eighth round. An iterative
design helps in this regard, as the attacker is able to control the timing of fault
induction by simply counting the number of clock edges from the start of an
encryption. We classify the induced faults into four models:

Model 0 (M0): A random non-zero fault is induced in one of the diagonals,
D0, D1, D2 and D3.

Model 1 (M1): A random non-zero fault occurs at most across two diagonals.
Model 2 (M2): A random non-zero fault occurs at most across three diago-

nals.
Model 3 (M3): A random non-zero fault occurs at most across all four diag-

onals.

Fig. 3. Fault Models

Figure 3 shows example faulty states according to the above models. It may
be noted in the figure, that in the first state matrix only diagonal D0 is affected.
In the second state matrix both D0 and D3 is corrupted. The diagonals D0, D2

and D3 are disturbed in the third state matrix, whereas all the four diagonals are
affected in the fourth state matrix. Thus the faults in the four state matrices are
respectively in accordance with models, 0, 1, 2 and 3.

It may be noted that all the models are multi-byte fault models and thus
attacks based on these models are more feasible than those based on single byte
faults as found in the literature. Among the models, M0 ⊆ M1 ⊆ M2 ⊆ M3. Thus
in the series, M0, M1, M2, M3, the higher fault models are more relaxed and thus
attacks based on them are more realistic. For example, most ideal fault model
would have been M3 which captures all possible faults. We show in our proposed
attack methods, that faults based on M0, M1 and M2 lead to the successful
retrieval of the key. However, the same attack is not possible for faults according
to M3 but not belonging to M2. It may be noted from the above facts that the
proposed attack can capture all faults upto three bytes, as three bytes can never
lie across all the four diagonals.

In the next section we present the implementation of AES targeted for the
proposed fault attack.



4 The Attack Environment

In this section we outline the target design of AES which has been attacked by
the proposed fault attack. Subsequently, we present the fault injection technique
adopted for experimentally carrying out the proposed attack.

4.1 Target Implementation of AES

We have implemented an iterative architecture of AES using Verilog HDL. The
implementation is exhibited in figure 4. The key and plaintext get loaded when the
‘Load Key’ and ‘Load Plaintext’ signals are asserted. The module first generates
each round-key and stores it in the Key Memory. Once key generation is over
the Key Scheduler asserts the Kdone signal. This happens once for each new key
loaded. Then the round function module iterates 10 times before generating the
ciphertext which is indicated by the Output valid signal. The controller consists of
a counter which keeps track of the number of rounds and also selects the specific
round key from the Key Memory. The design is downloaded on a Xilinx Spartan-3E
XC3S500E platform and operates at a maximum frequency of 36 MHz.

Fig. 4. Implementation of AES

4.2 Fault Injection Set-up

The effectiveness of fault attacks depend on the ability to induce faults inside
the hardware. Methods proposed in [4] use optical beams to induce faults inside
a circuit. However for our experimentation we use clock glitching as a means to
induce internal faults. The advantage of such a method is in the lesser cost of
the fault injection technique. The attacker thus manipulates only the clock signal.
The set-up for such an injection is given in figure 5. The basic idea is to use a
multiplexer to switch from the low frequency clock to a higher frequency clock at



the beginning of the eight round. The clocks are generated from an Agilent 33250A
80Mhz Function/Arbitrary Waveform Generator. So only the eighth round will run
on the faster clock. The frequency of the faster clock has to be carefully adjusted
from a signal generator. It should be slightly higher than the maximum frequency
that the AES design supports. Our experiments show that there is a relation
between the number of faults induced and the frequency of the faster clock. We
have verified using Xilinx ChipScope Pro embedded logic analyzer that the number
of faulty diagonals is directly proportional to the clock frequency.

Fig. 5. Fault Injection Set-up

In the next section, we present fault attacks on AES according to the fault
model M0. Hence we have non-zero faults in one of the four diagonals of the AES
state matrix at the input of the eighth round.

5 The Proposed Attack according to Fault Model M0

We first show that faults which are confined to one diagonal are equivalent and
can be used to retrieve the key using the same method.

5.1 Equivalence of faults in the same diagonal

Lets us first observe the propagation of a fault injected in diagonal D0 through
the round transformations from the input of the eighth round to the output of
the ninth round. Figure 6 shows the diffusion of a byte fault induced at the input
of the eighth round. The difference of the state matrices of the two ciphers are
depicted in the figure.

From figure 6 we can see that fault induced spreads to an entire column at
the end of the eighth round. By the end of the ninth round the fault spreads to
the entire state matrix. However, the bytes of each the four columns of the the
state matrix have some inter-relations among them. We exploit these relations
to filter out keys and reduce the key space. We now show that inter-relations
remain invariant for any type of faults that occur within a diagonal. For instance,
if multiple bytes of the diagonal D0 are faulty, the relations among the bytes after



A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
1

A
2

A
3

A
4

A
6

A
7

A
8

A
5

A
10

A
9

A
11

A
12

A
13

A
14

A
15

A
16

1F

F 4

F 2

F 3

Round 
Shift
Row

Eighth 

F 3

F 3

F 1

12F

F 13 

F 4

F 4

F 1 F 4 3

4F2 F2

F 32

F3 2

F 33 F22

F2

F 1

F 4

F 3

F2

2f’

f’

f’

3f’

Round 
Mix Column

Eighth 

Round
Byte Sub

f’f

Eighth 

Ninth Round Byte Sub

Tenth Round Byte SubTenth Round Shift Row Ninth Round Mix Column

Ninth Round Shift Row

f’

Fig. 6. Propagation of Fault Induced in the input of eighth round of AES

the ninth round MixColumn (as depicted in figure 6) will still hold. Figure 7 shows
some cases of fault induction in diagonal D0. The faults vary in the number of bytes
that are faulty in D0 at the input of the eight round. We emphasize on the fact
irrespective of the number or positions of bytes that are faulty in D0, the fault is
confined to the first column C0 of the state matrix at the end of the eighth round.
So the fault propagation in the ninth round for all these cases is similar and leads
to the same byte inter-relations at the end of the ninth round.

Fig. 7. Equivalence of different kinds of faults induced in diagonal D0 at the input of
eighth round of AES

In the last paragraph, we saw that any fault in D0 results in C0 getting affected.
The happens due to the property of the ShiftRow operation. In general any fault at



the input of the eighth round in the ith diagonal, 0 ≤ i ≤ 3, leads to the ith column
being affected at end of the round. There are four diagonals and faults in each
diagonal maps to four different byte inter-relations at the end of the ninth round.
These relations are depicted in figure 8. These relations will remain unchanged for
any combination of faults injected within a particular diagonal. Each of the four
sets of relations in figure 8 will be used to form key dependent equations. The next
subsection explains the generations of the equations from the byte inter-relations.

Fig. 8. Byte inter-relations at the end of ninth round corresponding to different diagonals
being faulty

5.2 Equation generation from byte inter-relations

Our attack requires an attacker to obtain a single faulty ciphertext and one fault-
free ciphertext. Let the fault-free ciphertext be denoted by CT while the faulty
one be denoted by CT ′ Let, the two ciphertexts be represented by:

CT =









x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

x13 x14 x15 x16









and

CT′ =









x1 + A1 x2 + A2 x3 + A3 x4 + A4

x5 + A6 x6 + A7 x7 + A8 x8 + A5

x9 + A11 x10 + A12 x11 + A9 x12 + A10

x13 + A16 x14 + A13 x15 + A14 x16 + A15









Here xi and Ai (1 ≤ i ≤ 16) are each one byte.



The corresponding key matrix for the tenth round is:

K10 =









K00 K01 K02 K03

K10 K11 K12 K13

K20 K21 K22 K23

K30 K31 K32 K33









,where each term kij (0 ≤ i, j ≤ 3) is also a byte value.
Let us assume that the fault was injected somewhere in diagonal D0. So the

inter-relations after the ninth round MixColumn corresponding to D0 given in
figure 8 are to be considered. Combining the above facts we obtain the following
set of equations to evaluate the values of the key bytes K00, K13, K22 and K31,
thus revealing 32 bits of the AES key.

ISB(x1 + K00) + ISB(x1 + A1 + K00) = 2[ISB(x8 + K13) + ISB(x8 + A5 + K13)]

ISB(x8 + K13) + ISB(x8 + A5 + K13) = ISB(x11 + K22) + ISB(x11 + A9 + K22)

ISB(x14 + K31) + ISB(x14 + A13 + K31) = 3[ISB(x8 + K13) + ISB(x8 + A5 + K13)]

The unknowns in the above set of equations is the value of the key bytes K00,
K13, K22 and K31.

The attacker obtains reduced solution spaces for the bytes K00, K13, K22 and
K31 from the three equations. At first he guesses all values of K00 and K13 in
the first equation and filters out all such key pairs that do not satisfy it. He now
has a reduced key space for K13 which he uses for the second equation and for
each such guess he guesses all values for K22 and proceeds similarly. The worst
case complexity for one pass of the algorithm is 216 and is independent of the
value of the fault induced. The above system of equations is used to reduce the
possibilities of 32 bits of the key. The average size of the reduced key space per 32
bits is roughly 28.

We briefly state the three other system of equations as follows:
In order to obtain (K01, K10, K23, K32) the attacker uses the following equa-

tions:

ISB(x15 + K32) + ISB(x15 + A14 + K32) = 2[ISB(x2 + K01) + ISB(x2 + A2 + K01)]

ISB(x2 + K01) + ISB(x2 + A2 + K01) = [ISB(x5 + K10) + ISB(x5 + A6 + K10)]

ISB(x12 + K23) + ISB(x12 + A10 + K23) = 3[ISB(x2 + K01) + ISB(x2 + A2 + K01)]

In order to obtain (K02, K11, K20, K33) the attacker uses the following equa-
tions:

ISB(x9 + K20) + ISB(x9 + A11 + K20) = 2[ISB(x3 + K02) + ISB(x3 + A3 + K02)]

ISB(x3 + K02) + ISB(x3 + A3 + K02) = [ISB(x16 + K33) + ISB(x16 + A15 + K33)]

ISB(x6 + K11) + ISB(x6 + A7 + K11) = 3[ISB(x3 + K02) + ISB(x3 + A3 + K02)]



In order to obtain (K03, K12, K21, K30) the attacker uses the following equa-
tions:

ISB(x7 + K12) + ISB(x7 + A8 + K12) = 2[ISB(x10 + K21) + ISB(x10 + A12 + K21)]

ISB(x10 + K21) + ISB(x10 + A12 + K21) = [ISB(x13 + K30) + ISB(x13 + A16 + K30)]

ISB(x4 + K03) + ISB(x4 + A4 + K03) = 3[ISB(x10 + K21) + ISB(x10 + A12 + K21)]

Using all the equations above we get a total key space of 232. We get different
sets of equations corresponding to a different diagonal being affected. So we will
have four equation-sets each covering all possible faults within a specific diagonal.
In the analysis above we assumed that the faulty diagonal was known to the
attacker. This can be easily extended to a scenario where the fault location is not
known to the attacker. In such a case the attacker guesses the faulty diagonal and
repeats the attack four times. So the size of the key space will be 232 × 4 = 234

which can be brute forced feasibly with present day computational power.
In the previous section, we have considered the scenario when the fault is

restricted to one of the diagonals of the AES state matrix. In the next two sections,
we describe attack methods when the fault spreads among the diagonals. First, we
present the attack technique when at most two diagonals are affected by the fault
induction.

6 The Proposed Attack according to Fault Model M1

In this section the fault induction takes place in the AES state matrix during the
beginning of the eighth round according to fault model M1. Thus, at most two
diagonals may get affected by the fault. It may be noted that since the fault model
M0 is a special case of M1, the attack strategy for M1 also works if the fault
is induced according to M0, that is if only one diagonal gets affected. Hence the
attack based on model M1 is more general than that based on model M0.

6.1 Propagation of Faults when two diagonals are affected

In figure 9, we observe the propagation of faults when the diagonals, D0 and D1

are affected.
The fault is induced at the input of the eighth round. We note that for all

possible faults in these two diagonals, the nature of faults in the state matrix at
the input of the ninth round MixColumn is an invariant. This property is exploited
to develop equations which are used to retrieve the correct key.

6.2 The equations based on the fault propagation

From figure 9, we note that for all possible faults corrupting the diagonals D0 and
D1, the nature of the faults at the input of the ninth round MixColumn is an
invariant and as depicted in the figure. Hence, the fault nature at the output of
the ninth round MixColumn is also an invariant. We denote the fault values in the
first column of the output of the ninth round MixColumn by a0, a1, a2, a3, where
each ai is a byte 0 ≤ i ≤ 3.



Fig. 9. Fault Propagation if diagonals D0 are D1 are affected

The following equations thus hold (refer figure 9):

a0 = 2F1 + 3F6

a1 = F1 + 2F6

a2 = F1 + F6

a3 = 3F1 + F6

Here it may be noted that the additions and multiplications are in GF (28),
with the reduction polynomial same as that in AES. Eliminating, F1 and F6 we
obtain:

a1 + a3 = a0

2a1 + 3a3 = 7a2

We can express a0, a1, a2, a3 in terms of the fault free ciphertext (CT ), faulty
ciphertext (CT ′) and the tenth round key (K10) defined in section 5.2, as follows:

a0 = ISB(x1 + K00) + ISB(x1 + A1 + K00)

a1 = ISB(x8 + K13) + ISB(x8 + A5 + K13)

a2 = ISB(x11 + K22) + ISB(x11 + A9 + K22)

a3 = ISB(x14 + K31) + ISB(x14 + A13 + K31)

Thus if we use the inter-relationships among the bytes a′

is (0 ≤ i ≤ 3), and the
above equations, we are able to reduce the possible key space of K00, K13, K22, K31.
Similar to the solving mentioned in section 5.2, we know all the variables on the
right hand side of the above equation from CT and CT ′. We guess the bytes
K00, K13, K22, K31, and maintain a list of probable keys which satisfy the inter-
relationships among the bytes a0, a1, a2 and a3. We observe that using one faulty
ciphertext, the attacker reduces the key space of K00, K13, K22, K31 from 232 to 216.
However with two faulty ciphertexts, an intersection of the solutions obtained from



the two pairs leaves an unique key with a probability of 0.99. For few other cases,
using two faulty ciphertexts leave two or three keys. If a third faulty ciphertext is
obtained, then the exact key is identified.

Proceeding similarly equations are derived for all other columns at the output
of the ninth round MixColumn. For example the second column involves the key
bytes K01, K10, K23, K32. The equations corresponding to the third column yields
the key bytes K02, K11, K20, K33. Similarly, the fourth column leads to the key
bytes K03, K12, K21, K30.

Depending on the combination of two diagonals affected out of the four diag-
onals, there are six such sets of equations. Hence if the attacker does not know
which two diagonals are affected, he guesses the faulty diagonals and applies the
corresponding set of equations to ascertain the key. Thus with two faulty cipher-
texts the attacker reduces the AES key space to six possible keys, which he can
easily brute force.

In the next section, we present an attack strategy if the fault gets spread to
atmost three diagonals. This fault model, M2 thus covers the first two models of
fault.

7 The Proposed Attack according to Fault Model M2

In figure 10, we observe the propagation of faults when the diagonals, D0, D1 and
D2 are affected.

Fig. 10. Fault Propagation if diagonals D0, D1 and D2 are affected

From figure 10, we note that for all possible faults corrupting the diagonals D0,
D1 and D2, the nature of the faults at the input of the ninth round MixColumn is
an invariant. The fault nature at the output of the ninth round MixColumn is as
seen in the figure, also an invariant. We denote the fault values in the first column
of the output of the ninth round MixColumn by a0, a1, a2, a3, where each ai is a
byte 0 ≤ i ≤ 3.

The following equations thus hold (refer figure 9):

a0 = 2F1 + 3F6 + F11

a1 = F1 + 2F6 + 3F11



a2 = F1 + F6 + 2F11

a3 = 3F1 + F6 + F11

Here also the additions and multiplications are in GF (28), with the reduction
polynomial same as that in AES. Eliminating, F1, F6 and F11 we obtain:

11a0 + 13a1 = 9a2 + 14a3

As before in case of faults modeled by M1, we can express a0, a1, a2, a3 in terms
of the fault free ciphertext (CT ), faulty ciphertext (CT ′) and the tenth round key
(K10) defined in section 5.2, as follows:

a0 = ISB(x1 + K00) + ISB(x1 + A1 + K00)

a1 = ISB(x8 + K13) + ISB(x8 + A5 + K13)

a2 = ISB(x11 + K22) + ISB(x11 + A9 + K22)

a3 = ISB(x14 + K31) + ISB(x14 + A13 + K31)

Thus if we use the inter-relationship among the bytes a′

is (0 ≤ i ≤ 3), and the
above equations, we are able to reduce the possible key space of K00, K13, K22, K31.
Similar to the solving mentioned in section 5.2, we know all the variables on the
right hand side of the above equation from CT and CT ′. We guess the bytes
K00, K13, K22, K31, and maintain a list of probable keys which satisfy the inter-
relationship among the bytes a0, a1, a2 and a3. We observe that using one faulty
ciphertext, the attacker reduces the key space of K00, K13, K22, K31 from 232 to
224. However with four faulty ciphertexts, an intersection of the solutions obtained
from the two pairs leaves an unique key.

It may be noted that when the faults occur according to the model M3, that
is all the four diagonals are affected, the proposed method fails to obtain the
key. However, as we show in the next section, when we clock the design at a
slightly higher frequency than the maximum permissible frequency the faults occur
according to the models M0, M1 and M2 with a much larger probability.

8 Experimental Results

In this section, we furnish experimental results on the proposed fault attacks.
The attacks have been performed on a hardware implementation of AES on a
Xilinx Spartan-3E platform. The design operates at a maximum frequency of 36
MHz, when the design operates as expected. The attack strategy is to switch the
clock and pass the faster clock to drive the circuit at the time when the 8th round
encryption commences. In Table 1, we summarize the nature of the induced faults
with respect to the frequency of the faster clock. It may be observed that when
the faster clock has a frequency of 36 MHz then there is no faulty state. Hence we
obtain the original fault free ciphertext. Gradually we increase the frequency of
the faster clock in steps of 0.1 MHz and use the ChipScope 7.1 analyzer to observe
the faulty bytes in the state matrix of the AES hardware running on the FPGA,



when the eighth round starts. The number of attempts to inject a fault at each
step is 512. This is the maximum possible number of samples that Chipscope 7.1
can handle.

Table 1. Fault classification with clock frequency

Clock No Model 0 Model 1 Model 2 Model 3
Frequency (MHz) Fault (M0) (M1) (M2) (M3)

36.0 512 0 0 0 0
36.1 512 0 0 0 0
36.2 512 0 0 0 0
36.3 510 2 0 0 0
36.4 511 1 0 0 0
36.5 508 4 0 0 0
36.6 504 8 0 0 0
36.7 507 5 0 0 0
36.8 490 22 0 0 0
36.9 489 23 0 0 0
37.0 419 79 14 0 0
37.1 448 60 4 0 0
37.2 434 64 13 1 0
37.3 403 94 15 0 0
37.4 408 99 5 0 0
37.5 248 226 38 0 0
37.6 214 205 84 9 0
37.7 128 205 122 57 0
37.8 76 180 133 123 0
37.9 20 122 145 225 0
38.0 158 191 129 34 0
38.1 27 116 185 185 0
38.2 40 127 198 147 0
38.3 26 69 155 257 5
38.4 17 62 137 254 42
38.5 0 20 68 361 63
38.6 0 0 16 319 177
38.7 0 2 20 293 197
38.8 0 1 8 290 213
38.9 0 11 42 368 91
39.0 15 59 107 308 23
39.1 0 2 12 197 301
39.2 0 5 26 339 142
39.3 0 3 11 285 213
39.4 0 0 0 134 378
39.5 0 0 6 138 368
39.6 0 0 0 150 362
39.7 0 0 0 21 491
39.8 0 0 0 18 494
39.9 0 0 0 14 498
40.0 0 0 0 0 512



We note that at 36.3 MHz faults start to appear for the first time. Till 37.5
MHz faults under model M0 dominate. From 38.1 to 38.4 MHz the faults under the
model M0, M1 and M2 occur simultaneously with similar frequency. M2 starts
to dominate when the clock frequency reaches 38.5 MHz and continues to do so
till 39.4 MHz; during this period M0 and M1 faults get reduced. After this from
39.5 MHz M3 faults start to dominate, while M2 still appears but M0 and M1
faults vanish.

So, we observe that if the clock changes are confined between 36 to 37.4 MHz,
then M0 faults occur primarily and in few cases M1 faults. Since as we have
previously shown, the fault attacks based on the model M0 is the strongest and
most powerful, we can indeed break the AES key using a single fault injection in
400 seconds (refer section 5).

9 Comparison with Existing Works and Experimental

Results

There have been considerable number of works on the subject. To the best of our
knowledge, no reported works present fault attacks on real life implementations.
In our paper, we have not only shown our attack on an FPGA implementation
of AES but also demonstrated that fault injection via clock glitching can be a
dangerous tool to the adversary.

In our approach, we have developed our attack based on multi-byte fault mod-
els, compared to single byte fault models existing in literature except [9]. In [9], the
authors use an attack based on four byte faults where he needs about 1500 faulty
ciphertexts. However they do not outline any practical method through which such
a large number of faulty ciphertexts can be obtained.

Finally table 2 compares the existing fault based attacks on AES with our work.
The results show that though our work is based on multi-byte fault modeling, still
it is able to attack AES with least number of faulty ciphertexts.

10 Conclusions

A new fault attack on AES based on multiple byte faults has been presented. Three
attack strategies have been developed exploiting the disturbance in the diagonals
of the AES state matrix at the input of the eighth round. The fault has been
injected by the simple mechanism of clock glitching. For the first time in existing
literature, the fault attack has been shown on actual hardware implementation.
The experiments confirm that the fault attack outperforms existing works with
respect to practical fault modeling and number of faulty ciphertexts needed.

References

1. D. Boneh, R.A. DeMillo and R.J. Lipton, “On the Importance of checking crypto-
graphic Protocols for Faults,” in Eurocrypt 1997. 1997, LNCS 1233.

2. D. Boneh, R.A. DeMillo and R.J. Lipton, “On the Importance of Eliminating Errors
in Cryptographic Computations,” Journal of Cryptology, pp. 101–120, 2001.

3. E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key Cryptosystems,”
in Advances in Cryptology, Crypto 1997. 1997, LNCS 1294.



Table 2. Comparison of Existing Fault Attacks on AES exploiting properties of
the encryption function

Reference Fault Model Fault Location No. of
Faulty Encryptions

[6] Force 1 bit to 0 Chosen 128
[6] Implementation Dependent Chosen 256

[10, 11] Disturb 1 byte Key Scheduling 7
[5] i) Switch 1 bit i) Any bit of chosen bytes i) ≈ 50

ii) Disturb 1 byte ii) Anywhere among 4 bytes ii) ≈ 250
[7] Disturb 1 byte Anywhere between ≈ 40

last two MixColumns

[8] Disturb 1 byte Anywhere between 7th 2
round and

8th round MixColumn

[12] Disturb 1 byte Anywhere between 7th 2
round MixColumn

and 8th round MixColumn
[9] 4 bytes:

i)One byte undisturbed Input of i) 6
ii)All 4 bytes disturbed ninth Round ii) 1500

This paper Multibytes:
i) M0 Anywhere between 7th i) 1
ii) M1 round MixColumn ii) 2
iii) M2 and 8th round MixColumn iii) 4

4. S. Skorobogatov and R. Anderson, “Optical Fault Induction Attacks,” in CHES

2002. 2002, LNCS 2523.
5. C. Giraud, “DFA on AES,” Cryptology ePrint Archive, Report 2003/008, 2003.
6. J. Blomer and J. P. Seifert, “Fault Based Cryptanalysis of the Advanced Encryption

Standard (AES),” in FC 2003. 2003, pp. 162–181, LNCS 2742.
7. P. Dusart, G. Letourneux and O. Vivolo, “Differential Fault Analysis on A.E.S.,”

http://eprint.iacr.org/2003/010.
8. G. Piret and J. J. Quisquater, “A Differential Fault Attack Technique against SPN

Structures, with Application to the AES and Khazad,” in CHES 2003. 2003, pp.
77–88, LNCS 2779.

9. M. Salmasizadeh A. Moradi, T. M. Shalmani, “A generalized method of differential
fault attack against aes cryptosystem.,” in CHES, 2006, pp. 91–100.

10. J.Takahashi, T.Fukunaga and K.Yamakoshi, “DFA mechanism on the AES sched-
ule,” in Proceedings of 4th International Workshop on Fault Detection and Tolerance

in Cryptography, FDTC, 2007, pp. 62–72.
11. J.Takahashi, T.Fukunaga, “Differential Fault Analysis on the AES Key Schedule,”

http://eprint.iacr.org/2007/480, 2007.
12. Debdeep Mukhopadhyay, “An improved fault based attack of the advanced encryp-

tion standard,” in AFRICACRYPT, 2009, pp. 421–434.
13. J. Daemen and V. Rijmen, The Design of Rijndael, Springer-Verlag, 2002.


