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Abstract

The nonlinearity profile of a Boolean function is the sequence of its
minimum Hamming distances nlr(f) to all functions of degrees at most r,
for r ≥ 1. The nonlinearity profile of a vectorial function is the sequence
of the minimum Hamming distances between its component functions and
functions of degrees at most r, for r ≥ 1.The profile of the multiplicative
inverse functions has been lower bounded in a previous paper by the same
author. No other example of an infinite class of functions with unbounded
algebraic degree has been exhibited since then, whose nonlinearity profile
could be efficiently lower bounded. In this preprint, we lower bound the
whole nonlinearity profile of the simplest Dillon bent function (x, y) 7→
xy2n/2−2, x, y ∈ F2n/2 .

Keywords: Boolean function, Covering radius, higher-order nonlinearity, Reed-
Muller code, S-box.

1 Introduction

Boolean functions and more generally vectorial Boolean functions F : Fn2 → Fm2
(often called (n,m)-functions) are central objects for the design and the security
of symmetric cryptosystems (stream ciphers and block ciphers), see e.g. [5, 6]. In
cryptography, the most usual representation of Boolean functions is the algebraic
normal form (ANF):

f(x1, . . . , xn) =
∑

I⊆{1,...,n}

aI
∏
i∈I

xi,

where the aI ’s are in F2. The terms
∏
i∈I xi are called monomials. The alge-

braic degree d◦f of a Boolean function f equals the global degree of its (unique)
ANF, that is, the maximum degree of those monomials whose coefficients are
nonzero. Affine functions are those Boolean functions of algebraic degrees at
most 1. The Boolean functions used in stream or block ciphers must have high
degrees to avoid the Berlekamp-Massey attack on stream ciphers and the higher
order differential cryptanalysis on block ciphers.
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Another possible representation of Boolean functions uses the identification be-
tween the vector-space Fn2 and the field F2n . It represents any Boolean function
(and more generally any function from F2n to a subfield of F2n) as a polynomial
in one variable x ∈ F2n of the form f(x) =

∑2n−1
i=0 fi x

i, where the fi’s are
elements of the field. This representation exists for every function from F2n to
F2n (this is easy to prove; note that the polynomial

∑2n−1
i=0 fi x

i can be obtained
by using the so-called Mattson-Solomon polynomial [43, 5]) and such function
f is Boolean if and only if f0 and f2n−1 belong to F2 and f2i = f2

i for every
i 6= 0, 2n−1, where 2i is taken mod 2n−1. This allows representing f(x) in the
form

∑
k∈Γ(n) trnk

(fkxk)+f2n−1x
2n−1, where Γ(n) is the set obtained by choos-

ing one element in each cyclotomic class of 2 modulo 2n−1 (the most usual choice
for k is the smallest element in its cyclotomic class, called the coset leader of the
class), where nk is the size of the cyclotomic class containing k and where trnk

is the trace function from F2nk to F2: trnk
(x) = x+x2 +x22

+ · · ·+x2nk−1
. This

representation is called the trace representation. Note that, for every k ∈ Γ(n)
and every x ∈ F2n , we have fk ∈ F2nk (since f2nk

k = fk) and xk ∈ F2nk as well.
A slightly different representation, often called also the trace representation,
has the form f(x) = tr(

∑2n−1
i=0 uix

i), where tr = trn and where the u′is are
elements of the field F2n (it can be easily obtained from f(x) =

∑2n−1
i=0 fi x

i

since f(x) = tr(λf(x)), when tr(λ) = 1). The former representation is unique
for every Boolean function and the latter is not (see more e.g. in [5]). Recall
that the 2-weight w2(i) of an integer i equals by definition the number of 1’s
in its binary expansion. The algebraic degree of the function is then equal to
the maximum 2-weight of the exponents i with nonzero coefficients fi in the
former representation and is upper bounded by the maximum 2-weight of the
exponents i with nonzero coefficients ui in the latter.
A third representation is possible when n is even and m divides n/2, as a bivari-
ate polynomial of the form f(x, y) =

∑
0≤i,j≤2n/2−1 fi,j x

iyj , where the fi,j ’s are
elements of the field F2n/2 (this representation is somehow intermediate between
the n-variable ANF and the univariate representation). The algebraic degree
equals then maxi,j w2(i) + w2(j).

A characteristic of Boolean functions, called their nonlinearity profile, plays
an important role with respect to the security of the cryptosystems in which
they are involved. For every non-negative integer r ≤ n, we denote by nlr(f) the
minimum Hamming distance between f and all functions of algebraic degrees at
most r (in the case of r = 1, we shall simply write nl(f)). In other words, nlr(f)
equals the distance from f to the Reed-Muller code RM(r, n) of length 2n and of
order r, that is, the minimal number of bits to change in the truth table of f to
get a Boolean function of algebraic degree at most r). This parameter is called
the r-th order nonlinearity of f (simply the nonlinearity in the case r = 1). The
maximum r-th order nonlinearity of all Boolean functions in n variables equals
by definition the covering radius of RM(r, n) [19]. The nonlinearity profile of a
function f is the sequence of those values nlr(f) for r ranging from 1 to n− 1.

The same notion can be defined for S-boxes in stream or block ciphers as
well, that is, for (n,m)-functions. Such functions are used in stream ciphers
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in the place of Boolean functions to speed up the enciphering and deciphering
processes (since they output m bits instead of one at each clock cycle). They
are used as well (and more systematically) in block ciphers to bring confusion
[49] into the system. The algebraic degree of an S-box is the maximum algebraic
degree of its coordinate functions. We shall denote by nlr(F ) the minimum r-th
order nonlinearity of all the component functions ` ◦F , where ` ranges over the
set of all the nonzero linear forms over Fm2 (hence, the component functions
are those linear combinations of coordinate functions whose coefficients are not
all-zero). Equivalently, nlr(F ) is the minimum r-th order nonlinearity of all the
functions v · F , v ∈ Fm2 \ {0}, where “·” denotes the usual inner product in Fm2
(or any other inner product). If Fm2 is endowed with the structure of the field
F2m , then nlr(F ) is the minimum r-th order nonlinearity of all the functions
tr(vF (x)), v ∈ F ∗2m . The algebraic degree of an S-box is also the maximum
degree of its component functions.

The cryptographic relevance of the higher order nonlinearity has been il-
lustrated by several papers [20, 33, 34, 40, 44, 47, 50]. T. Shimoyama and T.
Kaneko have exhibited in [50] several quadratic functions h and sub-S-boxes F
of the DES such that nl2(h ◦F ) = 0 (and therefore that the global S-box of the
DES has the same property). They deduced a “higher-order non-linear” attack
(an attack using the principle of the linear attack by Matsui but with non-linear
approximations, as introduced by Knudsen and Robshaw in [40]) which needs
26% less data than Matsui’s attack. This improvement is not very significant,
practically, but some recent studies [32] seem to show that the notion of higher
order nonlinearity can be related to potentially more powerful attacks.
Computing the r-th order nonlinearity of a given Boolean function with alge-
braic degree strictly greater than r is a hard task for r > 1. In the case of the
first order, much is known in theory and also algorithmically since the nonlinear-
ity is related to the Walsh transform, which can be computed by the algorithm
of the Fast Fourier Transform (FFT). Recall that the Walsh transform of f is
the Fourier transform of the “sign” function (−1)f , and is defined at any vec-
tor a ∈ Fn2 as Wf (a) =

∑
x∈Fn

2
(−1)f(x)+x·a (where x · a is an inner product

in Fn2 - when the vector space Fn2 is identified to the field F2n , we can take
x · a = tr(xa)). The relation between the nonlinearity and the Walsh transform
is well-known: nl(f) = 2n−1 − 1

2 maxa∈Fn
2
|Wf (a)|. But for r > 1, very little

is known. Even the second order nonlinearity is known only for a few peculiar
functions and for functions in small numbers of variables. A nice algorithm due
to G. Kabatiansky and C. Tavernier and improved and implemented by Four-
quet et al. [29, 30, 31, 35, 28] works well for r = 2 and n ≤ 11 ( in some cases,
n ≤ 13). But for r ≥ 3, it is inefficient, even for n = 8 (the number of variables
in the sub-S-boxes of the AES). No better algorithm is known.

The best known general upper bound on the first order nonlinearity of any
Boolean function is:

nl(f) ≤ 2n−1 − 2
n
2−1.

It can be directly deduced from the Parseval relation
∑
a∈Fn

2
W 2
f (a) = 22n. It is

tight for n even and untight for n odd (some lower bounds on the covering radius
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exist then, see e.g. [5]). This bound is obviously valid for (n,m)-functions as
well and it is then the best known bound when m < n. But, as proved by K.
Nyberg, it is tight (achieved with equality by the so-called bent functions) only
when n is even and m ≤ n/2 (see e.g. [6]). The simplest known example of bent
(n, n/2)-function is the Dillon function of the form tr(xy2n/2−2), where x, y live
in the field F2n/2 and tr is the trace from this field to F2. It has algebraic degree
n/2 (which is the maximum for a bent function, see e.g. [5]).
When m = n, we have the better bound [16]:

nl(F ) ≤ 2n−1 − 2
n−1

2 ,

which is achieved with equality (by the so-called almost bent functions) for every
odd n. For m > n further (better) bounds are given in [12] but no such bound
is tight. Improving upon all these bounds when they are not tight is a series of
difficult open problems.

The best known upper bound on the r-th order nonlinearity of any Boolean
function for r ≥ 2 is given in [14] and has asymptotic version:

nlr(f) = 2n−1 −
√

15
2
· (1 +

√
2)r−2 · 2n/2 +O(nr−2).

This bound is obviously also valid for vectorial functions. It would be nice to
improve it, for S-boxes, as the bound has been improved in the case r = 1. We
leave this as an open problem.

It can be proved [19, 7] that, for every positive real c such that c2 log2(e) > 1,
where e is the base of the natural logarithm, (e.g. for c = 1), almost all Boolean
functions satisfy

nlr(f) ≥ 2n−1 − c

√√√√ r∑
i=0

(
n

i

)
2

n−1
2 ≈ 2n−1 − c nr/2 2n/2

π1/4 r(2r+1)/4 23/4
, (1)

and that the probability that nlr(f) is smaller than this expression is asymp-
totically at most O(2(1−log2 e)

Pr
i=0 (n

i)) when n tends to ∞.
This proves that the best possible r-th order nonlinearity of n-variable Boolean
functions is asymptotically equivalent to 2n−1, and that its difference with 2n−1

is polynomially (in n, for every fixed r) proportional to 2n/2. The proof of this
fact is obtained by counting the number of functions having upper bounded r-th
order nonlinearity (or more precisely by upper bounding this number) and it
does not help obtaining explicit functions with non-weak r-th order nonlinearity.

In [9] has been proved a lower bound on the r-th order nonlinearity of a
given function f , knowing a lower bound on the (r − 1)-th order nonlinearity
of the derivatives of f , and deduced lower bounds on the whole nonlinearity
profile of the multiplicative inverse function. We denote by Daf the so-called
derivative of any Boolean function f in the direction of a ∈ Fn2 :

Daf(x) = f(x) + f(x+ a).
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The addition is performed mod 2 (i.e. Daf is a Boolean function too). Let f
be any n-variable function and r a positive integer smaller than n. We have:

nlr(f) ≥ 2n−1 − 1
2

√
22n − 2

∑
a∈Fn

2

nlr−1(Daf). (2)

This bound is tight.
In this same paper has been observed that the r-th order nonlinearity of the

restriction f0 of a function f to a hyperplane H is lower bounded by means of
the r-th order nonlinearity of f :

nlr(f0) ≥ nlr(f)− 2n−2. (3)

Moreover, if the restrictions of f to H and to Hc are equal, then nlr(f) =
2nlr(f0). Note that applying iteratively this last result shows that if f(x) =
g(x1, · · · , xk) for some k and for some k-variable function g, then we have
nlr(f) = 2n−knlr(g).
From these results was deduced an efficient lower bound on the profile of the
multiplicative inverse function Finv(x) = x2n−2, where n is any positive integer
and x ranges over the field F2n . Denoting finv(x) = tr(x2n−2), were proved:

nl2(Finv) ≥ 2n−1 − 1
2

√
(2n − 1)2n/2+2 + 3 · 2n

≈ 2n−1 − 23n/4,

nl3(Finv) ≥ 2n−1 − 1
2

√
(2n − 1)

√
23n/2+3 + 3 · 2n+1 − 2n/2+3 + 16

≈ 2n−1 − 27n/8−1/4,

and more generally:
nlr(Finv) ≥ 2n−1 − lr,

where the sequence lr is defined by l1 = 2n/2 and lr =
√

(2n − 1)(lr−1 + 1) + 2n−2.
The value of lr approximately equals 2n−1 − 2(1−2−r)n and is asymptotically
equivalent to 2n−1, whatever is r.

In this paper we exhibit similar bounds on the simplest bent Dillon function,
the bivariate function F (x, y) = x y2n/2−2; x, y ∈ F2n/2 (n even).

2 A bound for the whole nonlinearity profile of
the Dillon function

We denote fλ(x, y) = tr(λx y2n−2), where λ is any element of F ∗
2n/2 . All the

Boolean functions fλ, λ 6= 0, are affinely equivalent to each others. We shall
write fdill for f1. But we shall need however the notation fλ in the calculations
below. We have fλ(x, y) = tr

(
λx
y

)
, with the convention that λx

0 = 0 (we shall
always assume this kind of convention in the sequel).

5



2.1 First order nonlinearity

The first order nonlinearity of the Dillon function equals 2n−1 − 2n/2−1 since
this function is bent.

2.2 Second order nonlinearity

Since the expression of fλ is bivariate, we must consider its derivatives in the
form (Da,b)fλ(x, y) = fλ(x, y) + fλ(x+a, y+ b). For every a, b ∈ F ∗

2n/2 , we have

(Da,bfλ)(ax, by) = tr
(
λax
by + λ(ax+a)

by+b

)
= tr

(
λa(x+y)
b(y2+y)

)
= fλa/b(x + y, y2 + y)

if y 6∈ F2, (Da,bfλ)(ax, by) = tr(λa(x + 1)/b) if y = 0 and (Da,bfλ)(ax, by) =
tr(λax/b) if y = 1. Denoting h(x) = tr(x), gλ(x, y) = fλ(x, y2+y) and δu(y) = 1
if y = u; 0 if y 6= u, we deduce that, for every r, we have nlr(Da,bfλ(ax, by)) =
nlr[gλa/b(x+y, y)+δ1(y)h(λax/b))+δ0(y)h(λa(x+1)/b] ≥ nlr(gλa/b)−2wH(h) =
nlr(gλa/b)− 2n/2. Note that nlr(gλa/b) equals twice the r-th order nonlinearity
of the restriction of fλa/b to the hyperplane H of equation tr(y) = 0. Applying
then Relation (3), we deduce that

∀a, b ∈ F ∗2n/2 , nlr(Da,bfλ) ≥ 2nlr(fλa/b)− 2n−1 − 2n/2. (4)

For every a ∈ F ∗
2n/2 , we have (Da,0fλ)(ax, y) = tr

(
λax
y + λ(ax+a)

y

)
= tr

(
λa
y

)
if

y 6= 0, (Da,0fλ)(ax, y) = 0 if y = 0.
Hence, according to the results of [9] recalled in the introduction of the present
paper, we have the inequalities nl(Da,0fλ) ≥ 2n/2

(
2n/2−1 − 2n/4 − 1

)
= 2n−1−

23n/4−2n/2, nl2(Da,0fλ) ≥ 2n/2
(

2n/2−1 − 1
2

√
(2n/2 − 1)2n/4+2 + 3 · 2n/2 − 1

)
=

2n−1−2n/2−1
√

(2n/2 − 1)2n/4+2 + 3 · 2n/2−2n/2 ≈ 2n−1−27n/8, nl3(Da,0fλ) ≥

2n/2
(

2n/2−1 − 1
2

√
(2n/2 − 1)

√
23n/4+3 + 3 · 2n/2+1 − 2n/4+3 + 16− 1

)
, that is,

nl3(Da,0fλ) ≥ 2n−1− 2n/2−1

√
(2n/2 − 1)

√
23n/4+3 + 3 · 2n/2+1 − 2n/4+3 + 16−

2n/2 ≈ 2n−1−215n/16−1/4 and nlr(Da,0fλ) ≥ 2n/2(2n/2−1−hr) = 2n−1−2n/2hr,
where hr is defined by h1 = 2n/4 and hr =

√
(2n/2 − 1)(hr−1 + 1) + 2n/2−2 and

nlr(Da,0fλ) is lower bounded by approximately 2n−1 − 2(1−2−r−1)n.

For every b ∈ F ∗
2n/2 , we have (D0,bfλ)(x, by) = tr

(
λx
by + λx

by+b

)
= tr

(
λx/b
y2+y

)
=

fλ/b(x, y2 + y) if y 6∈ F2 and (Da,bfλ)(x, by) = tr(λx/b) if y ∈ F2. Hence,
similarly to the case a, b ∈ F ∗

2n/2 :

∀b ∈ F ∗2n/2 , nlr(D0,bfλ) ≥ 2nlr(fλa/b)− 2n−1 − 2n/2, (5)

We deduce:

Lemma 1 Every derivative (Da,bfλ), a ∈ F2n/2 , b ∈ F ∗2n/2 , of the Dillon func-
tion has first-order nonlinearity at least 2n−1−2n/2+1. Every derivative (Da,0fλ),
a ∈ F ∗

2n/2 has first-order nonlinearity at least 2n−1 − 23n/4 − 2n/2.
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Applying Relation (2) and this lemma, we deduce that nl2(fdill) ≥ 2n−1 −
1
2

√
22n − 2(2n − 2n/2)(2n−1 − 2n/2+1)− 2(2n/2 − 1)(2n−1 − 23n/4 − 2n/2). Hence:

Proposition 1 Let Fdill(x, y) = xy2n−2 and fdill(x) = tr(xy2n−2), x, y ∈
F2n/2 . We have:

nl2(fdill) ≥ 2n−1 − 1
2

√
2n + (2n+2 + 23n/4+1 + 2n/2+1)(2n/2 − 1)

≈ 2n−1 − 23n/4.

Hence, nl2(Fdill) satisfies this same inequality.

2.3 Third order nonlinearity

Thanks to Proposition 1 and to Relations (4) and (5), we deduce from Relation
(2) that we have nl3(fdill) ≥ 2n−1 − 1

2

√
A, where

A = 22n − 2
[
(2n − 2n/2)

(
2n−1 −

√
2n + (2n+2 + 23n/4+1 + 2n/2+1)(2n/2 − 1)− 2n/2

)
+ (2n/2 − 1)

(
2n−1 − 2n/2−1

√
(2n/2 − 1)2n/4+2 + 3 · 2n/2 − 2n/2

)]
= 2n + (2n/2 − 1)

(
2
√

22n + (22n+2 + 27n/4+1 + 23n/2+1)(2n/2 − 1)

+
√

(2n/2 − 1)25n/4+2 + 3 · 23n/2

)
+ (2n − 1) 2n/2.

Hence:

Proposition 2 nl3(fdill) and nl3(Fdill) are lower bounded by approximately
2n−1 − 27n/8.

2.4 Whole nonlinearity profile

The process leading to Proposition 2 can be iteratively applied, giving a lower
bound on the r-th order nonlinearity of the Dillon functions for every r. The
expression of this lower bound is:

nlr(fdill) ≥ 2n−1 − lr,

where, according to Relations (4) and (5), the sequence lr satisfies l1 = 2n/2−1, l2 =
23n/4 and lr ≈ 2n/2

√
lr−1 ≈ 2(1−2−r)n for r ≥ 3. Hence, nlr(fdill) is asymptot-

ically equivalent to 2n−1. We can see that the lower bound we are able to prove
for this profile is similar to what we could prove for the inverse function.

Remark. The approximations above are valid asymptotically when n tends to
infinity. Obviously, for r ≥ d◦fλ = n/2 we have nlr(fλ) = 0.
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