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Abstract

Network coding has received significant attention in the networking community for its po-
tential to increase throughput and improve robustness without any centralized control. Unfor-
tunately, network coding is highly susceptible to “pollution attacks” in which malicious nodes
modify packets in a way that prevents the reconstruction of information at recipients; such
attacks cannot be prevented using standard end-to-end cryptographic authentication because
network coding requires that intermediate nodes modify data packets in transit. Specialized
solutions to the problem have been developed in recent years based on homomorphic hash-
ing and homomorphic signatures. The latter are more bandwidth-efficient but require more
computation; in particular, the only known construction uses bilinear maps.

We contribute to this area in several ways. We present the first homomorphic signature
scheme based solely on the RSA assumption (in the random oracle model), and present a
homomorphic hashing scheme based on composite moduli that is computationally more efficient
than existing schemes (and which leads to secure network coding signatures based solely on the
hardness of factoring in the standard model). Both schemes use shorter public keys than previous
schemes. In addition, we show variants of existing schemes that reduce the communication
overhead significantly for moderate-size networks, and which improve computational efficiency
in some cases quite dramatically (e.g., we achieve a 20-fold speedup in the computation of
intermediate nodes). At the core of our techniques is a modified approach to network coding
where instead of working in a vector space over a field, we work directly over the integers (with
small coefficients).
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1 Introduction

Network coding (NC) [2, 15] offers an alternative, decentralized approach to traditional multicast
routing. We consider a network setting where a source node has a piece of information (a file) that
it wants to distribute to a set of target nodes. The source partitions the file into m network packets
which it transmits to its neighboring nodes. Further transmission happens through intermediate
nodes who receive packets via incoming links and produce modified packets sent over outgoing
links. These outgoing packets are computed as linear combinations of incoming packets, where
packets are viewed as vectors in a linear space over some field. We focus on the case of random
linear network coding [7, 10], where scalars are chosen at random from the underlying field. This
strategy induces a fully decentralized solution to the routing problem since nodes do not need to
coordinate their actions as each chooses its own linear combinations independently of other nodes.

Target nodes reconstruct the original file sent by the source from the packets they receive. For-
tunately, this does not require knowledge by the target of all scalars chosen by intermediate nodes.
Instead, it suffices to augment each information vector traveling the network with m additional cod-
ing coordinates that encode in a compact way the history of all linear combinations that resulted
in that vector. A target that receives a set of augmented vectors for which the attached coding
coordinates induce a full rank matrix can recover the original information sent by the source via a
simple matrix inversion operation (see Section 2.1). A fundamental question is what is the decoding
probability at the targets, namely, the probability with which a target is able to reconstruct the
original file (or, equivalently, the probability for the target to collect enough linearly independent
coding vectors). The NC literature, and actual applications, show that small-size fields (e.g., of
size 256) provide very good decoding probability for networks with sufficient connectivity.

However, while random linear NC can increase throughput and reliability relative to alternative
techniques, it suffers from a serious weakness: its susceptibility to pollution attacks in which mali-
cious nodes inject into the network invalid packets that prevent the reconstruction of information
at the targets. Here, an invalid packet is any packet that is not in the linear span of the original
augmented vectors sent by the source. By the way vectors are propagated and combined in the
network, a single invalid packet injected by the attacker can invalidate many more packets, even-
tually preventing the reconstruction of information at the targets. This constitutes a serious denial
of service attack which an attacker can mount effortlessly and which in real-life scenarios can be
sufficient to outweigh the benefits of network coding.

Clearly, what is needed is a way for intermediate nodes to be able to verify the validity of
incoming vectors. Note, however, that since packets are modified by intermediate nodes, a regular
signature by the source on the original information is not sufficient. Prior work has shown, however,
that dedicated network coding signatures can be used to solve this problem. These are based on one
of two primitives: eother (collision-resistant) homomorphic hash functions [14, 17] or homomorphic
signature schemes [13, 4, 3] In both cases, the homomorphic properties are used such that the
signature (or hashing) operation on a linear combination of vectors results in a corresponding
homomorphic combination of signatures (or hash values). See Section 2.2 for details, and [3] for a
complete survey.

Constructions of homomorphic hash functions are well known, and can be implemented over any
prime-order group where the discrete logarithm problem is hard. Building homomorphic signatures
is more challenging. So far the only known construction is based on bilinear groups [3] and involves
costly pairing operations. In particular, NC signatures based on homomorphic signatures are
computationally more expensive than those built from homomorphic hashing. However, the latter
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are less communication-efficient since they require each packet sent in the network to be sent with
some “authentication data” whose length is proportional to m (the number of information vectors).
One drawback of both approaches is that they replace the small fields used in NC with very large
ones. Thus, instead of using vectors over an 8-bit field as in traditional NC, the cryptographic
approaches use vectors over a 160-bit (i.e., cryptographically strong) field instead. This results in
a factor of 20 increase in the bandwidth overhead.

Our contributions. We contribute to this area in several ways. We present the first homomor-
phic signature scheme based on the RSA assumption in the random oracle model.1 In particular,
it is the first homomorphic signature scheme to avoid bilinear groups and pairings, and thus has
more efficient processing at the intermediate nodes. Bandwidth overhead is lower than in existing
schemes for networks of moderate size (e.g., where the maximum path length between source and
target nodes is 20–30 hops). In addition, the scheme uses a public key of constant size.

We also present a new homomorphic hashing scheme that works modulo a composite number N .
However, instead of the many random generators used by known schemes, ours uses a single fixed
generator which can be set to 2, speeding up significantly the exponentiation operation. Concretely,
by considering each information vector v transmitted over the network as a single (large) integer,
we define our hash function simply as HN (v) = 2v mod N . The hash function is homomorphic over
the integers and can be proven collision resistant based on the hardness of factoring. In particular,
it leads to a provably secure NC signature scheme based on the factoring assumption and without
random oracles.

A core technique we must develop for the above constructions is to apply network coding over
the integers rather than over a field as is traditionally done. By working over the integers we
enable the homomorphic properties of the above two schemes (where the group order is unknown),
and furthermore can work with small coefficients. As noted earlier, a major disadvantage of prior
cryptographic techniques in the context of NC is their use of large (160-bit) coordinates and equally
large coefficients for the linear combinations. In contrast, by working over the integers we are able
to choose small (e.g., 8-bit) integer coefficients for the linear combinations. This has the immediate
effect of improving the computation at intermediate nodes by a factor of 20, and it also reduces the
total bandwidth overhead for networks with moderate-length paths between source and targets. A
crucial question we need to answer is how this affects the decoding probability. Fortunately, we
can show that if the integer coefficients are taken from a set Q = {0, . . . , q − 1}, for prime q, then
the decoding probability is at least as good as working over a field of size q and therefore 8-bit
coefficients are good enough for most applications.

The ability to work with NC with small integer coefficients allows us also to improve the
performance of existing schemes. We show that by simply choosing coefficients for the linear
combinations in existing schemes from a small set Q as above (but still performing computations
modulo the large prime p as required by these schemes) we are able to improve significantly the
performance: we obtain a 20-fold improvement on signature generation and a reduction on the
communication overhead as well.

We mention that our approach to NC over the integers may also enable constructions of lattice-
based homomorphic signatures, and we are currently investigating this possibility.

1Yu et al. [16] recently proposed an RSA-based homomorphic signature scheme, but their scheme is flawed as
verification of their signatures always fails. The source of the problem is that Yu et al. incorrectly assume (cf.
equations (11) and (12) in section III-B) that for integers A, b, d, a prime p, and (independent) RSA composite r, it
holds that ((Ab mod p)d mod r) = (A mod p)bd mod r.
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2 Background

2.1 Network Coding

We present a high-level description of linear network coding (the only type with which we are
concerned in this work); for further details see [9]. In this setting, we have a network with a
distinguished node S, called the source, and a subset of nodes known as targets. The objective is
for S to transmit a file F̄ to all the target nodes, where F̄ is represented as an ordered sequence of
m vectors v̄(1), . . . , v̄(m) ∈ Fn over some finite field F.

Before transmission, the source S creates m augmented vectors w̄(1), . . . , w̄(m) defined as

w̄(i) = (
m︷ ︸︸ ︷

0, . . . , 0, 1︸ ︷︷ ︸
i

, 0, . . . , 0 ‖ v̄(i)) ∈ Fm+n ;

i.e., each original vector v̄(i) of the file is pre-pended with the vector of length m containing a single
‘1’ in the ith position. These augmented vectors are sent by the source to its neighboring nodes.

Each (well-behaved) intermediate node I in the network processes packets (i.e., incoming vec-
tors) as follows. Upon receiving packets w(1), . . . , w(`) ∈ Fm+n on its ` incoming communication
edges, I computes a packet w for each of its outgoing links as a linear combination of the packets
that it received. That is, each outgoing packet w transmitted by I takes the form w =

∑`
i=1 αiw

(i),
where αi ∈ F. We say a vector w transmitted in the network (in the scenario above) is valid if it
lies in the linear span of the original augmented vectors w̄(1), . . . , w̄(m). It is easy to see that if all
nodes follow the protocol honestly, then every packet transmitted in the network is valid.

Different strategies for choosing the coefficients αi yield different variants of network coding.
When the {αi} are chosen randomly and independently by each transmitting node, for each of its
outgoing communication links, the resulting scheme is referred to as random linear network coding
[5, 7, 10]. For the purposes of analyzing efficiency, we assume in our work that this mechanism is
used for choosing the coefficients; our constructions, however, ensure security regardless of how the
coefficients are chosen.

To recover the original file, a target node must receive m (valid) vectors {w(i) = (u(i)‖v(i))}mi=1

for which u(1), . . . , u(m) are linearly independent. If we define a matrix U whose rows are the vectors
u(1), . . . , u(m) and a matrix V whose rows are the vectors v(1), . . . , v(m), then the original file can
be recovered as

V̄ = U−1V, (1)

where V̄ is a matrix whose rows are the original information vectors v̄(1), . . . , v̄(m).
Assuming the coefficients are chosen randomly and independently by the intermediate nodes,

the decoding probability — i.e., the probability with which a given target node will be able to
recover the file (or, equivalently, the probability with which a given target node will receive m
linearly independent vectors, as required above) — is determined by the network topology and the
size of the field F. To minimize the communication overhead (due to the first m coordinates of every
transmitted vector), it is desirable to keep |F| as small as possible; on the other hand, choosing |F|
too small would reduce the decoding probability too much. For typical networks encountered in
practice, taking |F| ≈ 256 has been shown to give a probability of decoding failure of less than 1%.
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2.2 Network Coding Signatures

The benefits of network coding can be outweighed by pollution attacks in which intermediate nodes
forward invalid vectors to their neighbors. Even a single invalid vector that reaches a target node
may be sufficient to cause incorrect reconstruction of the original file; furthermore, an invalid packet
sent by a malicious node will, with high probability, render all subsequent packets downstream
invalid as well. Note that the in-network processing required by network coding makes it impossible
to apply traditional signatures or message authentication codes to individual packets.

It is not hard to design cryptographic schemes that prevent targets from reconstructing an
incorrect file: e.g., a standard signature can be appended to the file before transmission, and
verified upon reconstruction. This technique, however, is not sufficient to enable the target to
reconstruct the correct file if multiple invalid vectors are present. Moreover, it does not provide
any way for intermediate nodes to drop invalid packets they receive.

Early efforts to deal with pollution attacks focused on information-theoretic solutions that use
error-correction techniques to ensure that targets can reconstruct the file as long as the ratio of
valid to invalid vectors received is sufficiently high [8, 11, 12]. Unfortunately, these techniques
(inherently) impose limitations on the number of nodes the adversary can corrupt, the number of
packets that can be modified, and/or the number of links on which the adversary can eavesdrop.

For the above reasons, researchers have more recently turned to cryptographic approaches that
place no bounds on the adversary other than the assumption that the adversary is computationally
bounded [14, 4, 17, 3]. These approaches give network coding signature schemes that allow anyone
holding the public key2 of the source to determine whether a given vector is valid. In particular, this
allows target nodes to reject invalid vectors before reconstructing the file; it also allows intermedi-
ate nodes to filter out invalid vectors before generating their outgoing messages, thus preventing
contamination of honestly generated vectors further downstream. A precise definition of network
coding signatures and their security requirements is presented in Appendix A.

Two classes of network coding signature schemes are known: those based on homomorphic
hashing, and those using homomorphic signatures.

Schemes based on homomorphic hashing [14, 17, 3]. A homomorphic hash function H is a
collision-resistant hash function with the property that for any vectors a, b and scalars α, β it holds
that H(αa + βb) = H(a)αH(b)β. Collision resistance implies (via standard arguments) that if one
knows vectors a, b, c for which H(c) = H(a)αH(b)β then it must be the case that c = αa + βb.

A concrete example [14] of a homomorphic hash function is given by what we call the exponential
homomorphic hash (EHH) scheme. Let G be a cyclic group of order p, and let the public key contain
a description of G along with random generators g1, . . . , gn ∈ G. Define a function H on vectors
v = (v1, . . . , vn) ∈ Zn

p as

H(v) =
n∏

j=1

g
vj

j . (2)

The homomorphic property is easily verified, and collision resistance is implied by the discrete
logarithm assumption in G.

Homomorphic hash functions can be used for network coding as follows: For each original vector
v̄(i), the source S computes hi = H(v̄(i)); it then signs h1, . . . , hm (together with a unique file
identifier fid) using a standard signature scheme. The {hi} and their signature are then appended

2A symmetric-key analogue is also possible [6, 1], but this allows only a (single) target to verify validity of vectors.
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to every packet sent in the network.3 A node can determine whether a vector w = (u ‖ v) is valid
by checking the signature on the {hi} (and the fid), and then verifying whether

∏m
i=1 hui

i
?= H(v).

In particular, for the EHH scheme this verification takes the form:

m∏
i=1

hui
i

?= H(v) def=
n∏

j=1

g
vj

j . (3)

The resultant signature scheme can be proven secure in the standard model (no random oracles)
based on the discrete logarithm assumption [14, 3].

When using homomorphic hashing, the only change in the processing done by intermediate
nodes is to verify the hash and forward the authentication information. However, the linear network
coding operations performed by intermediate nodes are now done over the (large) field F = Zp.

Homomorphic signature schemes [13, 4, 3]. Here, the full signature (and not just the hash) is
homomorphic. Namely, the signature scheme has the property that for any vectors a, b and scalars
α, β, it holds that Sign(αa + βb) = Sign(a)αSign(b)β. The security property, roughly speaking, is
that given signatures on some set of vectors w̄(1), . . . , w̄(m), it is only feasible to generate signatures
on vectors in the linear span of w̄(1), . . . , w̄(m). The application to network coding is immediate:
The source S signs each augmented vector w̄(i) and then transmits each w̄(i) together with its
signature Sign(w̄(i)). An intermediate node I that receives a set of incoming vectors with their
corresponding signatures will (i) verify the signatures (discarding any vector whose signature is
invalid) and (ii) compute (using the homomorphic property) a valid signature on each outgoing
vector that I generates. Thus, in addition to the normal network coding processing, intermediate
nodes must now compute a signature on each outgoing packet. On the other hand, the per-packet
communication overhead due to the signature is now constant rather than linear in m as in the
case of homomorphic hashing.

A concrete example of a homomorphic signature scheme (the BFKW scheme) was given by
Boneh et al. [3]; the scheme can be proven secure based on the CDH assumption in the random
oracle model. We provide a description here for completeness and further reference. To
begin, the source S establishes a public key as follows:

1. Generate G = (G, GT , p, e) such that G, GT have prime order p, and ê : G × G → Gt is a
bilinear map. Choose random generators h, g1, . . . , gn ∈ G.

2. Choose s← Zp, and set f := hs.

3. Let H : Z× Z→G be a hash function, modeled as a random oracle.

4. Output the public key PK = (G,H, g1, . . . , gn, h, f) and the private key s.

To sign a vector w = (u ‖ v) ∈ Zm+n
p associated with the file identifier fid, the source S computes

the signature

σ :=

 m∏
i=1

H(fid, i)ui

n∏
j=1

g
vj

j

s

.

As discussed previously, S then sends each augmented vector w̄(i) along with its signature.
3In some settings, there may be alternate ways to distribute the {hi} authentically.
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An intermediate node who knows PK can verify validity of a vector w = (u ‖ v) with associated
signature σ by computing

γ1(PK, σ) def= e (σ, h) and γ2(PK, fid,m, w) def= e

 m∏
i=1

H(fid, i)ui

n∏
j=1

g
vj

j , f

 , (4)

and then checking whether γ1(PK, σ) ?= γ2(PK, fid,m, w). Upon receiving vectors w(1), . . . , w(`)

with valid signatures σ1, . . . , σ`, an intermediate node can generate a valid signature on any linear
combination w =

∑
i α1w

(i) by computing σ :=
∏`

i=1 σαi
i .

3 Network Coding over the Integers

In this section we introduce the main technique that underlies the results in this paper: running
random linear network coding over the integers with coefficients taken from a set of small (e.g.,
8-bit) integers. This departs from the traditional linear coding schemes in that operations will be
performed over the integers and will significantly depart from existing network coding signature
schemes which use very large coefficients (typically, 160-bit long). This approach allows us to
improve significantly on existing network coding signature schemes and, even more importantly,
will enable the creation of new schemes, in particular one based solely on RSA.

Examining the two signature schemes from the previous section, one can see that the crypto-
graphic techniques incur significant penalties relative to the basic (insecure) network coding proto-
cols, both in terms of communication and computation. The additional computation is inherent to
the cryptographic techniques and results mainly from the exponentiations used in these schemes.
Communication increase is due to the fact that instead of working over a small (e.g., 8-bit) field,
as in basic network coding, we are now working modulo a 160-bit prime p. This means that each
information vector is augmented with m coordinates each of size at least 160 as opposed to m
coordinates of size 8 each in basic network coding. This is a 20-fold increase in the communication
overhead of the scheme. The size of the scalars used in these schemes also impacts computation.
For example, the size of exponents in the left-hand side of Eq. (3) is directly proportional to the size
of the ui coordinates. Even more significant is the negative impact of these larger scalars when com-
puting signature at intermediate nodes in the BFKW scheme of Section 2.2. In the Combine phase
of this scheme a node computes

∏`
i=1 σαi

i where the cost of exponentiation is directly proportional
to the size of scalars αi each of length 160 bits or more.

To alleviate these performance costs and allow for new schemes, our approach will be to choose
small coefficients (say, of size 8 bits) as opposed to the 160-bit scalars of previous schemes. However,
this raises the question of what effect these small integer coefficients (and working over the integers)
has on the decoding probability of these schemes. Fortunately, we show that this approach improves
performance without sacrificing decoding probability and without compromising the security of the
resultant cryptographic signatures.

3.1 Network Coding Over the Integers

We modify the traditional random linear network coding schemes to work over the integers (rather
than over a field) as follows. The original file F̄ transmitted by the source S is encoded as a
sequence of vectors v̄(1), . . . , v̄(m) with integer coordinates (at this point we do not specify the
dimension of these vectors or the subset of integers from which these coordinates are taken – these
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details will depend on the specific cryptographic scheme used). These vectors are augmented with
unit vectors ū(1), . . . , ū(m) as in regular network coding. Linear combinations of incoming vectors
at intermediate nodes will use random coefficients αi from a set of small integers Q = {0, . . . , q−1}
for some small prime q, e.g., q = 257. These linear combinations will be performed over the integers
(in particular, this will be the setting for the schemes presented in Section 4 and Section 5)4. We
stress that these computations are not done modulo q. Also, the coordinates in the information
vectors v̄(i) do no have to be taken from the set Q, only the scalars for the linear combination do.

Recall (from Section 2.1) that the success of a random linear network coding scheme depends
on the decoding probability, namely, the probability with which a target in the network succeeds
in correctly reconstructing the vectors v̄(1), . . . , v̄(m) transmitted by the source. Equivalently, this
is the probability that the target collects m vectors whose u parts form an invertible matrix U
(see Eq. (1)). The network coding literature studies this probability when linear operations are
carried out over a field, but what happens to the decoding probability when the linear combinations
are performed over the integers (no modular operations)? In this case, we need to consider the
probability that the incoming vectors to the target induce a matrix U that is invertible (over the
rationals) or, equivalently, that the determinant det(U) (computed over the integers) is non-zero.

The following simple (but significant) lemma shows how the decoding probability for network
coding over the integers related to the decoding probability in the usual case, when network coding
is performed over some base field:

Lemma 1 For any network, the decoding probability when coefficients αi are taken from the set
Q = {0, . . . , q − 1}, for prime q, and all linear combinations are computed over the integers, is
the no worse than the decoding probability in the same network using a traditional network coding
scheme over a field of size q.

Proof: Fix a sequence of coefficients αi chosen by all nodes during a run of the network coding
protocol. We need to show that if these αi’s resulted in a matrix U available to a target such
that U is invertible modulo q then the same set of αi’s, when used to compute linear combinations
over the integers, would result in a matrix U (not reduced modulo q) that is invertible in Z. But
this follows directly from the fact that if det(U) is non-zero modulo q then it is non-zero over the
integers and hence invertible. 2

The lemma implies that in order to get a good decoding probability when working with linear
combinations over the integers, it suffices to choose q such that the decoding probability when
performing the linear combinations modulo q is sufficiently good. This puts us back in the standard
setting of network coding (without cryptography) where the required size of the underlying field is
well-studied. The appropriate size of q depends on the network topology, required fault tolerance,
etc. In most practical applications a field of 8 bits (e.g., Zq for q = 251 or q = 257) provides for
good decoding probability and hence is sufficient also for our purposes.

In fact, we expect that working over the integers with coefficients from the set Q = {0, . . . , q−1}
will induce a decoding probability that is noticeably better than working over a field of size q. If so,
one could save more in bandwidth and computation by further reducing the size of q (e.g., using a
6-bit q). Another variant to investigate is choosing coefficients from the set {−q/2 . . . q/2} (in this
case, one has to adjust the bounds on coordinates tested in the Nsig scheme of Section 4).

Coordinate growth. When we work over the integers without any modular reduction, the size of
the coordinates of the vectors transmitted in the network increases with each traversed hop. Specif-

4A hybrid approach where we work with small coefficients but modulo a large prime is studied in Section 3.2.
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ically, each hop increases the maximal coordinate in a vector by a factor of at most min{mq, `q},
where ` is the in-degree of a node.5 (Note that ` can be larger than m but in this case a node can
replace the incoming vectors with an equivalent set of at most m linearly independent vectors.) So,
after L hops the first m coordinates each have size at most (mq)L (since the initial m coordinates
in the augmented vectors sent by the source are 0/1-valued), while the remaining coordinates have
size at most M(mq)L, where M is the maximal size of coordinates in the original file vectors v̄(i).
The increase in bit-size of coordinates is the logarithm of the above numbers. As we will see, in
spite of this growth of coordinates the smaller coefficients will impact favorably the bandwidth
overhead of existing signature schemes and the new ones we present.

We note that one way to achieve a bandwidth-efficient implementation of the vectors w trans-
mitted in the network is to represent all coordinates in the vector by the same number of bits
(determined by the largest coordinate in the vector) and include this length in the vector represen-
tation; when vectors are combined and coordinates grow this length indicator will increase too. As
another implementation note, we comment that in our setting Eq. (1) can be computed modulo p
for a prime p that is larger than the largest coordinate in any information vector v̄(i); in particular,
computing U−1 can be done modulo such p.

Note also that an attacker can generate unnecessarily large valid packets using linear combina-
tions with large coefficients. This can counter some of the bandwidth gains achieved by working
with small coordinates. In general, network coding signatures do not prevent all forms of denial
of service (the very cryptographic operations create such opportunities). The point, however, is to
prevent the trivial attack in which arbitrary packets inserted into the network have a catastrophic
denial of service effect without the attacker spending any resources. In the particular case of an
attacker injecting valid packets with unnecessarily large coordinates, several measures can be taken.
For example, a node can discard suspicious packets based on an estimate of the size of packets it
is supposed to get (based on other packets it receives, or its position in the network, etc), and it
can make sure not to mix packets with small coordinates with those with large ones.

3.2 Improvements to Existing Schemes

Lemma 1 is instrumental in enabling the new schemes presented in Sections 4 and 5. Here, we
deal with a “hybrid” variant where we choose small integer coefficients as above but do the linear
combination modulo a large prime p. This approach will allows us to immediately achieve some
significant performance improvements on the existing schemes described in Section 2.2 while keeping
the security guarantees of these schemes intact (i.e., the security proofs of those schemes [3] remain
valid).

Recall that in these two signature schemes, network coding works modulo a large prime p, of size
at least 160 bits. That is, the original vectors v̄(1), . . . , v̄(m) transmitted by the source are in Zn

p , the
coefficients for the linear combinations are chosen at random from Zp, and the linear combinations
are performed mod p. Here we suggest to keep these schemes unchanged except that the scalars
chosen by each intermediate node for performing linear combinations of incoming vectors will be
taken from the set Q = {0, ..., q − 1}, for small prime q (q ≈ 256) (we stress that in this case the
linear combinations are still computed mod p).

Before we see the beneficial effect on performance that small coefficients have, we need to make
sure that we have a a good decoding probability with such coefficients even when computations
are carried modulo a large prime p. Lemma 1 shows that this is the case if we work strictly over

5If w =
P`

j=1 αjw
(j), then wi =

P`
j=1 αjw

(j)
i ≤ `q max{w(1)

i , . . . , w
(`)
i }.
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the integers, but what is the effect on the decoding probability when we carry linear combinations
modulo p? The answer is that the statement of the lemma essentially holds in this case too provided
that the value m (the number of vectors v̄(i)) and the maximal path in the network from source to
target, that we denote by L, are both negligible relative to 2k where k is the length of primes from
which p is chosen at random (typically, k ≥ 160). More formally:

Lemma 2 For any network, the decoding probability of the above scheme (where coefficients for
the linear combinations are chosen at random from the set Q = {0, 1, . . . , q}, and the linear
combinations are performed modulo a random k-bit prime p) is, up to a negligible additive term
O(Lm log q/2k), the same or better than the decoding probability of a standard random linear coding
scheme over a field of size q on the same network.

Proof: We extend the proof of Lemma 1 to this setting (the only difference is that we now
perform the linear operations modulo p). Let U be the matrix generated at a target and whose
invertibility defines the successful reconstruction of information. Since we are now performing
linear combinations modulo p then this matrix has entries in Zp. Let’s consider a run that led to
the matrix U , but this time we will perform the operations over the integers without the modular
reduction. We denote by U∗ the corresponding matrix in this modified run. Clearly, we have that
U = U∗ mod p (where the modular congruence is entry-wise). We then have that det(U) = 0 mod p
if and only if det(U∗) = 0 or det(U∗) 6= 0 but p divides det(U∗). The case that det(U∗) = 0 is the
same as in Lemma 1. Thus, all we need to show is that the probability that det(U∗) 6= 0 but p
divides det(U∗) is negligible.

Since all computations leading to the integer matrix U∗ are independent of p, and p is an
independent random prime of length k then we can bound the probability that p divides det(U∗)
as follows. Let’s denote by d the bit-length of det(U∗). The number of primes of length k dividing
det(U∗) is at most d/k, and the total number of primes of length k is (up to constant factors) 2k/k.
Thus the probability to choose p of length k that divides det(U∗) is bounded by d/k divided by
2k/k, i.e., by d/2k. It remains to show that d is negligible relative to 2k. For this we proceed to
bound the value d = |det(U∗)|.

The matrix U∗ is composed of the augmented part u of vectors w = u ‖ v received by the
target. Recall from Section 3.1 that u coordinates traversing L hops will be integers ≤ (mq)L. (In
the actual running of the protocol, if the entries ui grow above p these will be reduced mod p but
here we are considering the entries of U∗ where the modular operation is omitted.) Thus, U∗ is a
m ×m matrix with each entry at most (mq)L and then det(U∗) ≤ m!(mq)Lm ≤ (mq)m(L+1), and
we have d = |det(U∗)| ≤ m(L+1)(log m+log q) which is negligible relative to 2k (for any practical
parameters m,L we will have mL << 2160). 2

We proceed to examine how the use of small coefficients benefits the performance of the network
coding signature schemes discussed in Section 2.2. In subsequent sections we use the small coefficient
technique in essential ways to obtain new signature schemes.

Saving bandwidth. Recall that in the two schemes reviewed in Section 2.2 one prepends to each
information vector a coding vector u composed of m coordinates each carrying a 160-bit number
(here we use 160 instead of |p| for clarity and concreteness). This is in strong contrast to the 8-bit per
coordinate in the traditional (non-cryptographic) linear coding schemes. Using small coefficients
as we propose alleviates the communication penalty of the cryptographic schemes. Savings are
achieved for any size network, however, the savings are more noticeable in those networks where
the typical distance from source to target is relatively small (say 20 nodes or less). For an example,
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let’s assume first a case where one adds 10 bits to the size of each u-coordinate for each node
traversed (say, we use q = 253 and a node has an average of 4 incoming nodes) and the path from
source to target has 20 nodes. After the first node is traversed the u coordinates are 10-bit long,
after the second they are 20-bit long, etc. After 16 nodes, the coordinate is 160-bit long. Up to this
point we have not applied any mod p to the computation of these u coordinates since they were
smaller than p. Whenever these coordinates grow above 160 bits the mod p reduction keeps them
up to 160 bits (they do not grow further). In total, for the first 16 hops we spent, on average, 80
bits per coordinate which is half the bandwidth consumed by the 160-bit coordinates in the basic
schemes described in Section 2.2. The total number of bits saved is 16 · 80 ·m. If each node added
16 bits (assuming a large in-degree per node) the savings would have been 10 · 80 ·m. In general,
if each node adds t bits to the coordinates and we have a path length of 160/t or more then the
savings in bandwidth over the first 160/t hops is 80 · 160/t ·m. For shorter paths the savings in
total number of bits is smaller but larger in proportion to the total bandwidth. For network with
small (say, 10-hop or less) source-target paths, as in some wireless network settings, the bandwidth
benefits can be particularly significant.

Note that the coordinates of the v vectors are not affected by the use of small coefficients, these
start at |p|-bit each and remain of this size throughout the computation.

Saving computation. The savings in the size of the ui coordinates described above immediately
translate to computational savings in the homomorphic hashing based scheme of Section 2.2 as
shorter ui’s imply shorter exponents in the verification equation (3). Similar savings apply to the
BFKW verification formula (4) from Section 2.2. However, the most impressive computational
savings due to the use of small coefficients are achieved in the Combine operation (i.e., signature
generation at intermediate nodes) of the BFKW scheme. This operation, of the form

∏`
i=1 σαi

i

is expensive since the exponents αi are each of size 160. But when applying our small-coefficient
strategy we have the αi’s of size 8-bit thus inducing a 20-fold (!) computational savings in the most
critical operation of the scheme (see the following remark).

Remark 1 Note that signature verification can be done on an opportunistic basis (e.g., for a
random subset of vectors) such that if a node fails to identify an invalid packet, other nodes in the
vicinity will do so. In contrast, signature computation must be done by all nodes for each outgoing
packet and hence it constitutes the computational bottleneck of homomorphic signatures.

4 An RSA-Based Network Coding Signature Scheme

In this section we present our RSA-based network coding signature which builds on the ability to
perform random linear coding over the integers as described in Section 3.1. The scheme enjoys a
proof of security in the random oracle model under the standard RSA assumption, and constitutes
the first homomorphic signature scheme based on traditional cryptography (i.e., without relying on
bilinear maps). The scheme performs best in networks where the distance from source to targets
is not too large (say, up to 20 or 30 hops), where it offers significant performance benefits relative
the bilinear-based homomorphic signature schemes.

The basic idea of the scheme is simple, and similar to the BFKW scheme from Section 2.2.
Specifically, the idea is to compose a multiplicatively homomorphic signature that works on fixed-
length inputs with a multiplicative hash function applied to the vectors in the underlying linear
space. The homomorphic hash is similar to the function H from Section 2.2 but rather than working
modulo a prime one works modulo an RSA composite N (more precisely, this hash function uses
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generators of the cyclic group QRN of quadratic residues modulo N). The homomorphic signature
on fixed length messages is the plain RSA transformation xd mod N . The result of this composition
is shown in Eq. (5) below. In order to use this function in the context of linear network coding,
one needs that the linear space and linear operations applied to network packets correspond to
arithmetic modulo φ(N)/4. This is so since for preserving the homomorphic properties, the linear
operations translate into operations in the exponent of the generators gi whose order is φ(N)/4.
This, however, presents a difficulty: intermediate nodes in the network that need to compute these
linear operations do not know φ(N) since revealing this value allows to factor N . To overcome
this problem we will perform linear network coding over the integers (without ever reducing these
values modulo φ(N)/4) as described in Section 3.1.

Following the description in Section 3.1, we are going to represent the information (or file) held
by the source S as a sequence of vectors v̄(1), . . . , v̄(m), where each v̄(i) ∈ Zn for some value n.
Note that once the size of the file F̄ to be transmitted and the number m of vectors is set by the
application, the total length of the information in each of the vectors v̄(i) is determined (we denote
this length by |v|). Then the value n can be chosen to be any number between 1 and |v|. The freedom
in choosing n is important since, as we will see later, there is a performance tradeoff related to n:
smaller n’s save communication while larger n save computation. As in regular network coding,
before sending the v̄(i) vectors to the network, the source pre-pends to them unit vectors ū(i) thus
producing w̄(1), . . . , w̄(m) ∈ Zm+n. The rest is carried out as in Section 3.1; namely, intermediate
nodes will perform the random linear combinations of incoming packets over the integers with
coefficients chosen from the set Q = {0, ..., q−1} for a small prime q (say, q ≈ 256). From Lemma 1
we know that this strategy leads to good decoding probabilities.

We now describe our basic RSA-based homomorphic signature scheme and then proceed to
show how to use it in the network coding setting.

4.1 Basic Homomorphic RSA-Based Signature

We start by defining an RSA-based homomorphic signature that acts on vectors of integers of
dimension n; we denote this Basic scheme by Bsig.

• RSA Group: Z∗
N where N is the product of two primes. We require that QRN , the subgroup of

quadratic residues, be cyclic and that random elements in QRN be generators of the group with
high probability. One way to ensure these properties is to choose the factors of N as safe primes.

• Public key: (N, e, g1, . . . , gn) where N is an RSA composite as above, e a public exponent, and
g1, . . . , gn are random generators of QRN .

• Private signing key: d, such that ed = 1 mod φ(N).

• Signature: Let v = (v1, . . . , vn) ∈ Zn, we define

Bsig(v) =
( n∏

i=1

gvi
i

)d
mod N (5)

It is easy to see that this signature is homomorphic: for any v, v′ ∈ Zn and α, β ∈ Z, Bsig(αv+βv′) =
(Bsig(v))α · (Bsig(v′))β .
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4.2 The Network Coding Signature Nsig

Here we describe how the above signature Bsig is used as a network coding signature that we denote
by Nsig (N for “Network coding”).
Bounding coordinates. The Nsig scheme below will have a parameter L such that packets that
traverse more than L nodes may be rejected; thus, L will serve as an upper bound on the distance
from source to targets (more generally, L can be chosen such that the network coding scheme has
good decoding probability when restricted to nodes at distance ≤ L from the source). Given L
we define a bound B = (mq)L, which represents the largest possible coordinate in any vector u
transmitted in the network (as discussed in Section 3.1, this this is the maximal value a ui coordinate
can assume after traversing L or less nodes from the source). We use M to denote an upper bound
on each of the coordinates of the initial vectors v̄(1), . . . , v̄(m) transmitted by the source (namely,
we assume that for i = 1, . . . ,m, v̄(i) ∈ {0, . . . ,M}n). Then, the maximal coordinate in a valid
vector v transmitted in the network is BM , which we denote by B∗.

The Nsig Scheme.

• Parameters: m,n,M , and B (as defined above) and B∗ = BM

• Public key: The source (sender) S in the network coding setting has a public key of the form
(N, e, g1, . . . , gn) as defined for Bsig; the exponent e is chosen as specified below and the private
key d is set accordingly. In addition, the scheme uses a public (deterministic) hash function H that
maps arbitrary strings into the set QRN .

• Public exponent e: The public RSA exponent e is chosen as a prime larger than mB∗. To
optimize performance e can be chosen such that its binary representation contains very few 1’s
(e.g., 2dlog mB∗e + a for small integer a); this also allows for a short representation of e.

• Private signing key: d, such that ed = 1 mod φ(N) (d ≤ φ(N) as in regular RSA).

• Signing data by the source. On input a file represented by m vectors v̄(1), . . . , v̄(m) ∈ Zn the source
S generates the augmented vectors w̄(i) = ū(i) ‖ v̄(i) in Zm+n (where ū(i) is the i-th unit vector).
S chooses a random identifier for the file, which we denote by fid, and uses the hash function H
to define m values in QRN , hi = H(i, fid), i = 1, . . . ,m. We extend the definition of the basic
signature Bsig above to vectors in Zm+n of the form w = (u1, . . . , um, v1, . . . , vn) and define:

Nsig(w) =

 m∏
i=1

hui
i

n∏
j=1

g
vj

j

d

mod N (6)

where the gj ’s are part of the public key and the hi’s are defined above as a function of the file
identifier fid (namely, the hi values are file-specific).
The source S computes for each vector w̄(i) its corresponding signature Nsig(w̄(i)), and transmits
w̄(i) and its signature along with the file identifier fid.

• Verification Vrfy(w, σ, S, fid). A node receiving a vector w = u ‖ v = (u1, . . . , um, v1, . . . , vn) in
Zm+n, a file identifier fid and a signature value σ proceeds as follows. If any of the u-coordinates
is negative or larger than B, or any of the v-coordinates is negative or larger than B∗, reject w as
invalid (i.e., set Vrfy(w, σ, S, fid) = 0). Else retrieve the public key (N, e, g1, . . . , gn) of S, compute
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hi = H(i, fid) for i = 1, . . . ,m, and accept w as valid (i.e., set Vrfy(w, σ, S, fid) = 1) if and only if

σe ?=
m∏

i=1

hui
i

n∏
j=1

g
vj

j mod N. (7)

• Signature combination by an intermediate node I. Upon receiving ` vectors w(1), . . . , w(`), corre-
sponding to file fid, and their corresponding signatures σ1, . . . , σ`, check that Vrfy(w(i), σi, S, fid) =
1, i = 1, . . . , `. Discard those w(i) that do not pass verification and also any w(i) = u(i) ‖ v(i)

for which any of the u coordinates is larger than B/mq or any of the v coordinates is larger
than B∗/mq.6 For the non-discarded vectors (for simplicity we denote them by w(1), . . . , w(`)),
I applies the Combine(w(1), . . . , w(`), σ1, . . . , σ`) operation defined as: choose random coefficients
α1, . . . , α` ∈ Q = {0, . . . , q − 1}, set w =

∑`
i=1 αiw

(i), and compute the signature on w as:

σ =
∏̀
i=1

σαi
i mod N (8)

It is easy to see that the signatures generated by the source on the original vectors w̄(1), . . . , w̄(m)

pass verification, and so do the signatures generated by honest intermediate nodes.
We prove security of this scheme in the following subsection.

Performance. The Nsig scheme provides better computational performance than the alternative
bilinear-based homomorphic signature schemes thanks to its avoidance of pairing computations and
the use of small coefficients. This is particularly the case for the schemes that existed before our
paper, such as BFKW [3], though the computational gap is reduced when using our own version
of BFKW as described in Section 3.2. Even in this case, the cost of pairing computations (and the
cost of hashing into the bilinear groups) make Nsig more efficient. Nsig (with small n) is also more
efficient regarding the public key size. Regarding bandwidth, Nsig has some bandwidth advantages
relative to the original BFKW, at least for moderate-size networks, say 20 to 30 hops, but our own
version of BFKW using small coefficients has less communication overhead at least for distances
above 15 from the source. We provide a somewhat more detailed analysis next.

Bandwidth: The coordinates of the vectors w transmitted in the network increase by a number of
bits equal to s = log(mq) for each traversed hop. Thus, after t hops each u coordinate will be of size
at most ts (remember that the u vectors start as unit vector, i.e., with 0/1 coordinates). Thus, if
we take for example s = 10 then it will take 32 hops before the total overhead of the u coordinates
exceeds that of the original BFKW scheme from Section 2.2 (where u coordinates are always of
size 160 bits). Thus, with such s and for networks with total length L ≤ 32, Nsig performs better
in the total overhead due to the u vectors. For s = 16, which is probably more than needed for
practical networks, Nsig will be better up to L = 20. In general for moderate size networks Nsig is
likely to incur less overhead in the u coordinates. If we compare Nsig to our own improved variant
of the BFKW scheme of Section 3.2, using small coefficients, then the two schemes have the same
overhead up to the point that the increasing coordinates reach 160 bits; after that the advantage
is on the modified BFKW side (since in Nsig coordinates keep growing while in BFKW they do
not). The above, however, does not take into account the fact that in Nsig also the v coordinates

6These bounds are slightly more restrictive than those required in the verification procedure Vrfy and are intended
to ensure that the vector w generated in this step satisfies the coordinate bounds required by Vrfy.
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increase while in BFKW they do not. Here, every hop adds s bits to each of the n coordinates in
the v vectors, for a total of ns bits per hop. Fortunately, we can choose n to be as small as 1, thus
essentially making this overhead insignificant (see more below on the choice of n).

Computation: The most critical operation from performance point of view is signature generation
at intermediate nodes (see Remark 1 in Section 3.2); this operation is very efficient in Nsig since
the exponents αi in Eq. (8) are small (8 bits each). This is 20 times faster than the corresponding
operation in the original BFKW scheme and similar to the cost of this operation in our improved
version of BFKW. The more expensive operation is verification at intermediate nodes given by
Eq. (7). Its right hand side has an exponentiation with exponent of size at most |v| + mb + nb
(where b = log B is the maximal number of bits by which coordinates increase during the protocol
and |v| denotes the total bitsize of each of the vectors v̄(i)). The left side has exponent of size
|e| = |mBM | = log m + b + |v|/n. To minimize the total size of exponents one computes the
minimum respect to n of |v|/n+ bn which is attained at n =

√
|v|/b. However, since the value of n

is more significant in the way it impacts bandwidth than computation then in most cases it makes
sense to choose n = 1 (this induces an increase in the size of n by at most |v| bits; however, since
the right hand side of Eq. (7) is already larger than |v| then the additional overhead is relatively
small – especially considering that due to its sparsity a longer e only incurs in additional squarings).
The resultant cost of verification is still better than BFKW’s due to the additional costs of BFKW:
the pairing operation and the cost of hashing into the bilinear groups (which has the cost of an
additional exponentiation per hash operation and is required for computing the values H(fid, i)
in BFKW). Moreover, if one is to decrease the public key size in BFKW using the hash function
H to generate the generators g1, . . . , gn then one has to perform n additional expensive hashing
operations. If nodes can cache these generators then the hashing expense is reduced. In the case
of Nsig the computational cost of the hashing operations is negligible. Moreover, if one uses n = 1
in Nsig the resultant public key has a single generator while in BFKW one needs |v|/160 of them
(e.g., for a 4 Kbyte |v|, BFKW requires 200 generators)

4.3 Proof of Security of the Nsig Scheme

We prove that the Nsig scheme is secure according to the security definition [3] presented in Ap-
pendix A; informally, the essence of the model is represented by the following game. The attacker
F (for forger) is provided with a public key for the Nsig scheme chosen by the signer running the key
setup algorithm. F chooses files for signing (possibly adaptively), each of which is represented as a
set of vectors v̄(1), . . . , v̄(m). For each such file, the signer returns a random file identifier fid (such
that for any two different files the corresponding identifiers are different) and the Nsig signatures
on the corresponding augmented vectors w̄(1), . . . , w̄(m). Eventually, F outputs a forgery, namely,
a file id fid∗, a vector w∗, and a signature s∗. F wins if fid∗ is one of the identifiers chosen by the
signer, s∗ is a valid Nsig signature on w∗ under file id fid∗, and w∗ is not in the linear span of the
vectors w̄(1), . . . , w̄(m) corresponding to file fid.

Our analysis models the hash function H as random oracle and is based on the RSA assumption:
Given a composite N (product of safe primes) an exponent e as defined for Nsig and C ∈R Z∗

N ,
it is hard to find Cd mod N . We note that in the proof we use the equivalent formulation of the
assumption in which C is chosen at random from QRN rather than from Z∗

N .

Theorem 3 Under the RSA Assumption and in the random oracle model, the scheme Nsig is a
secure (homomorphic) network coding signature.
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Proof: Given a forger F that breaks, with non-negligible probability, the signature scheme Nsig
(with parameters as described above), we build an algorithm S that inverts RSA on Z∗

N . Here S
stands for Simulator and also for Source since S will be simulating the actions of the source whose
signature F is attacking.
Algorithm S receives input N, e, C where N, e are distributed as in a Nsig signature and C ∈R QRN .
Its goal is to output Cd mod N with non-negligible probability.
S calls F on an instance of the Nsig scheme where the N, e values are those that S received as
input and the generators g1, , . . . , gn are chosen by S as follows. S chooses i0 ∈R {1, . . . , n} and
sets gi0 = C (where C is the challenge input to S). For i 6= i0, S chooses ri ∈R QRN , and sets
gi = re

i .
For each file, or set v̄(1), . . . , v̄(m), chosen by F , S (now acting as the data source) chooses a

random file identifier fid and sets (using the programmability of the random oracle H) the values
hi = H(i, fid), i = 1, . . . ,m, as follows

hi = H(i, fid) def= se
i

n∏
j=1

g
−v̄

(i)
j

j where si ∈R QRN (9)

It is easy to verify, by the above choice of h1, . . . , hm, that the signature on the vector w̄(i) = ū(i) ‖
v̄(i) equals si (as chosen by S in Eq. (9)). S returns to F the file identifier fid and the signatures
s1, . . . , sm corresponding to vectors w̄(1), . . . , w̄(m), respectively.

We also specify that if in the above procedure S chooses fid for which one of the pairs (i, fid),
i = 1, . . . ,m, was previously queried from the function H, then S aborts.

By assumption, with non-negligible probability, F outputs a forgery, i.e., a file id fid∗, a vector
w∗ /∈ Span(w̄(1), . . . , w̄(m)) (where the w̄(i) are the vectors corresponding to fid∗) and a valid
signature s∗ = Nsig(w∗) on w∗ (i.e., a valid Nsig signature under the public key values set by S).

Denote w∗ = u∗ ‖ v∗ = (u∗
1, . . . , u

∗
m, v∗1, . . . , v

∗
n), and define the vector

z∗ = w∗ −
m∑

i=1

u∗
i w̄

(i) (10)

It is easy to see that z has the form (0, . . . , 0, z1, . . . , zn), namely, all its first m coordinates are
zero (remember that the ū(i) part in the vectors w̄(i) are unit vectors and hence

∑m
i=1 u∗

i ū
(i) =

(u∗
1, . . . , u

∗
m)). Moreover, since w∗ /∈ Span(w̄(1), . . . , w̄(m)) then it must be that at least one of the

values zi is non-zero (otherwise we would have z∗ = 0 and then w∗ =
∑m

i=1 u∗
i w̄

(i)). Thus, with
probability at least 1/n, zi0 6= 0 (remember that S chose i0 at random in {1, . . . , n}).

We now show how S can find Cd mod N given the above information. Note by the definition
of z∗ and the homomorphic property of Nsig we have

Nsig(z∗) = Nsig(w∗ −
m∑

i=1

u∗
i w̄

(i)) = Nsig(w∗)
m∏

i=1

Nsig(w̄(i))−u∗
i = s∗

m∏
i=1

s
−u∗

i
i (11)

On the other hand, we can also represent Nsig(z∗) as

Nsig(z∗) = Nsig(0, . . . , 0, z1, . . . , zn) =
( m∏

i=1

h0
i

n∏
i=1

gzi
i

)d
= (Czi0 )d

∏
i6=i0

(gzi
i )d = (Czi0 )d

∏
i6=i0

rzi
i (12)
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Combining (11) and (12) we get that

(Czi0 )d = s∗
m∏

i=1

s
−u∗

i
i

∏
i6=i0

r−zi
i (13)

Since S knows all the values on the right-hand side of (13) it can compute s′ = (Czi0 )d mod N .
Now, using the well-known “Shamir’s trick”, we can derive the value s = Cd mod N from s′

provided that gcd(zi0 , e) = 1. Indeed, choosing a, b such that ae + bzi0 = 1, it can be verified that
s = Cd mod N = Cas′b which S can compute.

Thus, S inverts C provided that zi0 is coprime to e. But this is the case since e is prime and
−e < zi0 < e. Indeed, since w∗ passes verification then it must be that 0 ≤ u∗

i ≤ B, 0 ≤ v∗i ≤MB.
From Eq. (10) it follows, for j = 1, . . . n, that zj = v∗j−

∑m
i=1 u∗

i w̄
(i)
j ≥ −

∑m
i=1 BM ≥ −mBM ≥ −e

where the last inequality follows the definition of e. The case zj ≤ e is similar. 2

Remark. Note that the above proof uses the fact that we choose the exponent e larger than
any coordinate. Interestingly, this is not just an artifact of the proof but essential for security. If
coordinates are allowed to grow above e then an attacker can generate a signature for a non-valid
vector as follows. Given a valid vector w = u||v with valid signature σ, the attacker can generate a
valid signature σ′ for w′ = u||v′ where v′ = v +(e, 0, . . . , 0) by setting σ′ = σ ·g1. This will generate
a valid signature even though w′ /∈ Span(w̄(1), . . . , w̄(m)).

5 Homomorphic Hashing Modulo a Composite

As shown in Section 2.2, a homomorphic collision-resistant hash function that acts on a linear space
can be used to build a network coding signature. The idea is that a node that holds the authen-
ticated hash values corresponding to the original information vectors v̄(1), . . . , v̄(m), can validate
any incoming (augmented) vector by comparing the hash of this vector with the corresponding
(homomorphic) combination of the original hash values as described in Eq. (3). Network coding
signatures based on homomorphic hashing, where nodes do not generate signatures on outgoing
vectors, offer significant computational advantages over fully homomorphic signature schemes. In
particular, a node that chooses not to verify an incoming vector (see Remark 1) does not need
to take any cryptographic action. In addition, schemes based solely on homomorphic hashing are
often more efficient for signature verification (for example, avoiding a costly pairing computation
or a long RSA exponentiation). On the other hand, these schemes require that verifying nodes
obtain, for each file, the authenticated hash values of the original vectors v̄(1), . . . , v̄(m) (i.e., m
hash values plus the source’s signature on them). In settings where delivering these authenticated
values to nodes, possibly in some off-line way7, is practical, homomorphic hash schemes provide for
attractive alternatives to network coding signatures based on homomorphic signatures.

In this section we study a homomorphic hashing scheme, denoted HN , that is similar to the
EHH scheme in Section 2.2 but works in a network coding framework similar to the RSA case. That
is, the hash function is computed modulo a composite N and the packet vectors (and their linear
combinations) are defined over the integers. The resultant scheme is significantly more efficient
than the RSA scheme of Section 4 and also computationally more efficient than the EHH scheme

7Assuming that the m hash values are much shorter than the m vectors to be transmitted, their delivery can be
done by alternative means such as point-to-point or broadcast mechanisms, or at the time when nodes register to
receive some content (such in the case of peer-to-peer networks)
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(over prime order groups) from Section 2.2. And, while it produces larger hash values, it requires a
minimal public key (just an RSA modulus) without the overhead of the many generators of EHH.

We use the linear network coding setting of Section 3.1 (also used in Section 4), namely, working
over the integers and with random linear coefficients taken from a set Q = {0, . . . , q − 1} for small
prime q. In particular, the file to be transmitted is represented by m n-dimensional integer vectors
v̄(1), . . . , v̄(m) ∈ Zn. For concreteness, the reader can think of n = 1 and each vector v̄(i) being a
large integer (indeed, this will be the most efficient instantiation of our scheme).

Let’s consider the following simple adaptation to the composite case of the EHH scheme from
Section 2.2. Let N be the product of two safe primes so that the group QRN of quadratic residues
modulo N is cyclic, and let g1, . . . , gn be generators of QRN . For v = (v1, . . . , vn) ∈ Zn we define
(analogously to Eq. (2))

HN (v) =
n∏

j=1

g
vj

j mod N. (14)

For v ∈ Zn this is a homomorphic hash function that is collision resistant if factoring N is hard.
Thus, HN can serve as a basis for a network coding signature scheme as discussed in Section 2.2.
In particular, a node receiving a vector w = (u1, . . . , um, v1, . . . , vn) can verify it as

m∏
i=1

hui
i

?= HN (v) =
n∏

j=1

g
vj

j mod N (15)

where h1, . . . , hm are the hash values of the information vectors v̄(1), . . . , v̄(m).
Bandwidth considerations for this scheme, which uses integer coefficients that grow over time,

are similar to those of the RSA-based scheme from Section 4; one additional benefit of HN is that
there is no need to determine an a-priori bound on these coefficients. As in the case of the RSA
scheme from Section 4, one way to limit the effect of coordinate growth in total communication is
by setting n = 1. As we see below, not only this reduces bandwidth overhead but also improves
computational performance significantly.

Indeed, we are going to represent each block of information v̄(i) (and subsequent vectors v
transmitted in the network) as a single (long) integer so that n = 1. This is possible since the
function gv mod N is collision resistant even for very large integers and for a single generator g
(security follows from the hardness of factorization since if values v and v′ collide then v − v′ is a
multiple of φ(N))/4 which suffices to factor N). Moreover, by choosing N appropriately8, we can
fix the single generator of QRN to the value 2, thus obtaining:

HN (v) = 2v mod N, v ∈ Z (16)

Not only does this reduce communication overhead but it provides the most salient advantage
of the HN scheme, namely, fast exponentiation. Compare this to the prime order group scheme
of Eq. (2) which uses n random generators as the bases (and due to n being typically large one
cannot use multi-base optimizations). This implies a significant speedup of the hash verification at
intermediate nodes when using the HN scheme in the context of network coding.

Yet another advantage of this homomorphic hash is that it improves considerably the size of
public parameters relative to the prime order group implementation from Section 2.2. To see this,

8Choose N = pq where p = 2p′ + 1, q = 2q′ + 1 with p, q, p′, q′ are all primes, and p′, q′ are congruent to 3 mod
8 and p, q are congruent to 7 mod 8. This ensures that 2 is a quadratic residue in QRp and since QRp is of prime
order then 2 is also a generator of QRp. Same holds for QRq, and therefore 2 is a generator of QRN .

17



let’s first note that in the prime order case of Eq. (2), the total length of the set of generators
g1, . . . , gn is n|p| which is as large as each information vector v̄(i). Indeed, each individual gi can
only hash values smaller than p and it must be chosen at random to ensure that finding collisions
is as hard as computing discrete logarithms. Also, the number of generators is usually very large,
e.g., for vectors v̄(i) of size 4KB and p of 160 bits one needs 200 random generators. In the case of
HN the generator is fixed (to 2) so it does not require extra public parameters except for N .

We note that in the prime order case, one can avoid including explicitly the values g1, . . . , gn in
the description of the public parameters if these generators are derived using a fixed hash function.
This, however, looses one of the security advantages of the homomorphic hash scheme described in
Section 2.2, namely, the fact that security could be proven without relying on the random oracle
model. Also, note that in implementations that use elliptic curves a hash operation may cost as
much as a full exponentiation. Working modulo N dispenses of these extra complexities.

In all we have that the homomorphic hashing scheme from Eq. (16) leads to a computationally
efficient and secure network coding signature scheme whose security can be proven solely based on
the factoring assumption in the standard model.
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A Formal Definitions

For convenience, we repeat the definitions from [3]. We first define the general notion of a network
coding signature scheme.

Definition 4 A network coding signature scheme is a triple of probabilistic, polynomial-time algo-
rithms (Setup,Sign,Vrfy) with the following functionality:

• Setup(1k, N). Given a security parameter 1k and an integer N (denoting the length of vectors
to be signed9), this algorithm outputs a public key PK and a secret key SK. We assume PK
and SK contain N , and implicitly define a field F.

• Sign(SK, fid, V ). Given a secret key SK, a file identifier fid ∈ {0, 1}∗, and an m-dimensional
subspace V ⊂ FN , with 0 < m ≤ N , described as a set of basis vectors v1, . . . , vm, this
algorithm outputs a signature σ.

9In our treatment N corresponds to m + n.
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• Vrfy(PK, fid, y, σ). Given a public key PK, an identifier fid ∈ {0, 1}∗, a vector y ∈ FN , and
a signature σ, this algorithm output either 0 (reject) or 1 (accept).

We require that for all k, N and each (PK, SK) output by Setup(1k, N), for all subspaces V ⊆ FN ,
and for all fid ∈ {0, 1}∗, if σ ← Sign(SK, fid, V ) then Vrfy(PK, fid, y, σ) = 1 for any y ∈ V .

We next define security of such a scheme.

Definition 5 A network coding signature scheme S = (Setup,Sign,Vrfy) is secure if the success
probability of any probabilistic, polynomial-time adversary A in the following experiment is negligible
in the security parameter k:

Setup. The adversary A sends a positive integer N to the challenger. The challenger runs
Setup(1k, N) to obtain (PK, SK), and sends PK to A.

Queries. Proceeding adaptively, A specifies vector subspaces Vi ⊂ FN . The challenger chooses
fidi ∈ {0, 1}k uniformly at random, and sends fidi and σi ← Sign(SK, fidi, Vi) to A. (We assume
all the {fidi} are distinct.)

Output. A outputs an identifier fid∗ ∈ {0, 1}k, a signature σ∗, and a vector y∗ ∈ FN .

For fid ∈ {0, 1}k define

V (fid) =
{

Vi fid = fidi for some i
{0} otherwise

A succeeds if Vrfy(PK, fid∗, y∗, σ∗) = 1 and y∗ 6∈ V (fid∗).

We also define the notion of a homomorphic network coding signature scheme, which can be
used to construct a network coding signature scheme in the obvious way.

Definition 6 A homomorphic network coding signature scheme is defined by a tuple of probabilistic,
polynomial-time algorithms (Setup,Sign,Combine,Vrfy) with the following functionality:

• Setup(1k, N). Given a security parameter 1k and an integer N (denoting the length of vectors
to be signed), this algorithm outputs a public key PK and a secret key SK. We assume PK
and SK contain N , and implicitly define a field F.

• Sign(SK, fid, v). Given a secret key SK, a file identifier fid ∈ {0, 1}∗, and a vector v ∈ FN ,
this algorithm outputs a signature σ.

• Combine(PK, fid, {(αi, σi)}`i=1). Given a public key PK, a file identifier fid, and ` pairs
consisting of a scalar αi ∈ F and a signature σi, the algorithm outputs a signature σ. (Looking
ahead, if each σi is a valid signature on some vi, then σ will be a valid signature on

∑`
i=1 αivi.)

• Vrfy(PK, fid, y, σ). Given a public key PK, an identifier fid ∈ {0, 1}∗, a vector y ∈ FN , and
a signature σ, this algorithm outputs either 0 (reject) or 1 (accept).

We require that for all k,N and each (PK, SK) output by Setup(1k, N), the following hold:

• For all fid ∈ {0, 1}∗ and all y ∈ FN , if σ ← Sign(SK, fid, y) then Vrfy(PK, fid, y, σ) = 1.

• For all fid ∈ {0, 1}∗, any ` > 0, and all sets of triples {(αi, σi, vi)}`i=1, if it holds that
Vrfy(PK, fid, vi, σi) = 1 for all i, then it must be the case that

Vrfy
(
PK, fid,

∑
i αivi, Combine(PK, fid, {(αi, σi)})

)
= 1.
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