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Abstract. Recently, the C∗− signature scheme has been completely bro-
ken by Dubois et al. [2, 3]. As a consequence, the security of SFLASH and
other multivariate public key systems have been impaired. The attacks
presented in [2, 3] rely on a symmetry of the differential of the encryp-
tion mapping. In [1], Ding et al. experimentally justify the use projection
as a method of avoiding the new attack. In this paper, we derive some
properties of the discrete differential, give a theoretical justification for
the reparation in [1], and establish the exact context in which this attack
is applicable.
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1 Introduction

In recent years much focus in public key cryptography has shifted to multivariate
systems. This change is due to several factors: the problem of solving a system
of quadratic equations is hard, particularly over a field of characteristic greater
than zero; to date, no great reduction of the complexity of this problem has
been found in the quantum model; there are very efficient implementations of
multivariate systems; and finally, it is easy to parameterize many multivariate
systems in such a way that vastly different schemes are derived with potentially
vastly different resistances to specialized attacks.

One multivariate scheme which has recently been broken by Dubois et al. in
[2, 3] is the C∗− signature scheme. In particular, the attack breaks the SFLASH
signature scheme and some variants of the scheme by using a special property of
the differential of the encryption map to recover a full C∗ public key, compatible
with the C∗− public key, to which Patarin’s attack in [6] may be applied.

More recently, Ding et al., see [1], have repaired the SFLASH scheme using
projection, which has also, ironically, been called “fixing,” see [9]. They were
able to show strong experimental evidence that projection protects the scheme
from the differential attack; however, no theoretical explanation was available.

This paper is organized as follows. First, we review the C∗, HFE, C∗−, and
SFLASH schemes. Next, we look at the new attack on C∗− of Dubois, et al. In
the following section, we present some useful results on the differential of a field
map and establish limits for the effectivity of the new attack in the more general
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HFE setting. We then present a theoretical analysis of the claim by Ding et al.
in [1] that projection avoids the new attack. Finally, we discuss the implications
of these results.

2 C∗, HFE, and SFLASH

The SFLASH signature scheme can be considered a special case of the C∗−

signature scheme which is derived from the Matsumoto-Imai cryptosystem, often
called the C∗ scheme, originally presented in [4]. Each of these schemes was
designed to take advantage of the difficulty of solving a nonlinear system of
equations over a finite field.

2.1 The C∗ Scheme

The idea of the C∗ scheme is to use affine maps to hide a “quadratic” monomial
map. This can be accomplished by composing functions, each of which is easily
invertible.

Choose a finite field Fq of even characteristic and a degree n extension k.
The map f : k → k defined by f(x) = x1+qθ

is a permutation polynomial for
coprime values of n and θ. Choosing two Fq-affine transformations, U and T , we
can encrypt via the composition

P = T ◦ f ◦ U. (1)

Note that the map x 7→ xqθ

, a Frobenius map, is Fq-linear since

(x + a)qθ

= (x + a)pkθ

=
pkθ∑

i=0

(
pkθ

i

)
aixpkθ−i = xqθ

+ aqθ

, (2)

where the last equality is due to the fact that
(
pkθ

i

)
= 0 for 0 < i < pkθ in

a field of characteristic p, and the fact that x 7→ xqθ

is the identity map on
Fq. Therefore, we can represent f as f(x) = x(Lθx), where Lθx = xqθ

is the
exponentiation expressed as an Fq-linear transformation. For this reason we call
f Fq-quadratic or simply “quadratic.” Encryption can thus be expressed as a
system of n multivariate quadratic equations over Fq. On the other hand, de-
cryption is accomplished by inverting each of the above maps, circumventing the
problem of solving a nonlinear system of equations:

P−1 = U−1 ◦ f−1 ◦ T−1. (3)

In [6], Patarin showed that C∗ is insecure. His attack is based on a relation
on the input and output of the monomial map. Given v = f(u) we have the
following:

vqθ

u = vuq2θ

. (4)
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By composing with the affine maps, T and U , we have T−1y = f(Ux) which we
can express as the following bilinear relation on the plaintext, x, and ciphertext,
y:

(T−1y)qθ

(Ux) = (T−1y)(Ux)qθ

. (5)

Once such a bilinear relation between x and y is obtained by computing a large
number of plaintext-ciphertext pairs, we have an efficient alternate means of
decryption.

2.2 HFE

The HFE cryptosystem, introduced by Patarin [7] is a generalization of C∗. HFE
still uses the setting of a finite field, Fq, and an n-dimensional extension k over
Fq. There is one main difference. Specifically, the hidden mapping, f , is no longer
necessarily a monomial; it can be a more general quadratic polynomial. While
general HFE schemes have the desirable quality of being resistant to Patarin’s
attack on C∗, there are some problems as well.

It is difficult to find permutation polynomials which are not translations of
monomial maps. Some conditions are known which guarantee that a polynomial
is a permutation polynomial, such as those given in [5], but no criteria are
known for the construction of general quadratic permutation polynomials. For
this reason, the HFE scheme is implemented with an encryption map which
is not, in general, bijective. This quality of the cryptosystem has the effect of
making collisions possible and rendering decryption and signature generation
much less efficient.

2.3 The C∗− Scheme

To prevent an attack exploiting the bilinear relation, (5), it was suggested in [8]
to remove some of the coordinate equations. The resulting scheme, suitable for
signatures, is commonly called the C∗− scheme.

Suppose we delete the last r equations in the public key of a C∗ scheme. Let
PΠ denote the projection of P onto the first n − r coordinates. To sign, a user
needs only compute a preimage of y = PΠ(x) which is easily accomplished by
padding y with r random coordinate values and using the decryption algorithm.
Since |{x|PΠ(x) = y}| = qr, it is apparent that allowing r to be too large renders
the scheme inefficient in the sense that the size of the field must be quite large
to maintain the improbability of collision detection. If r is too small, however,
there are methods to reduce the C∗− scheme to a C∗ scheme, as shown in [8].

The difficulty in removing r of the public equations lies in the fact that,
although (4) is still valid, (5) can no longer be used. We don’t know r of the
coordinates of y, and therefore, we are missing terms in each equation we generate
over Fq. Alternatively, we may consider T to be an r × n matrix, since the new
encryption mapping does not have access to r of the rows of T . As a consequence,
it is impossible to deterministically compute coefficients involving T−1.
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2.4 SFLASH

SFLASH is a signature scheme based on the C∗− scheme. The choice of parame-
ters which were considered secure by the New European Schemes for Signature,
Integrity, and Encryption, NESSIE, consortium are q = 27, [k : Fq] = 37, θ = 11,
and r = 11. This scheme was widely heralded for nearly ten years until more
recently SFLASH and some possible variants were broken completely in [2, 3].

3 The New Attacks on C∗− Schemes

Dubois et al. in [2] and [3] based the attacks on C∗− on a property of the bilinear
differential, Df(a, x) = f(a + x) − f(a) − f(x) + f(0), of the encryption map,
f , which they called “multiplicative.” The attacks utilize a linear symmetry of
f which guarantees the existence of L : k → k, an Fq-linear map, satisfying the
following relation:

Df(La, x) + Df(a, Lx) = p(L)Df(a, x), (6)

where p is a polynomial, which we call the separation polynomial.
In particular, the attacks focus on finding L which correspond to left multipli-

cation by an element σ ∈ k. Therefore, we are interested in discovering properties
of f guaranteeing the existence of the following multiplicative symmetry :

Df(σa, x) + Df(a, σx) = p(σ)Df(a, x). (7)

Notice that if an Fq-linear transformation is found which corresponds, when
factored through the encryption, to a nontrivial multiplication, it is likely that
new linearly independent relations on the output of the monomial function will
be found. Specifically, we have the following:

DPΠ(Nσa, x) + DPΠ(a,Nσx) = Π ◦ T ◦Mp(σ) ◦Df(Ua, Ux)), (8)

where Nσ = U−1MσU and Mτ is the matrix of multiplication by τ . In practice,
equation (8) is used to find relations satisfied by these multiplication map conju-
gates. If enough new relations are derived in this manner to generate such a Nσ,
it is likely that a new full rank C∗ scheme may be constructed by gathering new
linearly independent relations from the following mapping, where f specifically
is multiplicative, as is the case for SFLASH,

PΠ ◦Nσ = Π ◦ T ◦ f ◦ U ◦Nσ

= Π ◦ T ◦ f ◦Mσ ◦ U

= Π ◦ T ◦Mf(σ) ◦ f ◦ U.

(9)

At this point, Patarin’s attack may be applied. If the system is not full rank,
or close enough to full rank to apply another attack, the process of finding a
nontrivial multiplication is repeated.
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Dubois et al. use this method in [3] to break variants of SFLASH in which
the θ parameter and the degree of the extension are not coprime. In [2] the same
method is used to break SFLASH with the NESSIE parameters. Both of these
attacks may be considered instances of the same attack since both use the mul-
tiplicative symmetry above. The only difference is that in the former the attack
focuses specifically on finding multiplications by roots of the separation polyno-
mial, whereas in the latter the focus is on finding multiplications by elements
which are not roots of the separation polynomial.

The question was asked in [2] to what extent these methods involving the
differential can be applied to the HFE− scheme, i.e., to what extent can we use
such a symmetry relation when the monomial function is replaced by a more
general polynomial?

4 Multiplicative Symmetric Properties of the Differential

To answer the questions posed in [2], we form a classification of polynomial maps
f : k → k having the multiplicative symmetry. We first need to establish some
basic definitions and ground work. Here we establish the convention that, unless
otherwise specified, the terms “linearity,” “bilinearity,” etc. refer to linearity over
a base field.

Definition 1. Given a field F, a field extension k, and a multivariate function
f : km → k, the discrete partial differential of f with respect to xi is given by

Dxif(x1, . . . , xi−1, a, xi, . . . , xm) =f(x1, . . . , xi−1, a + xi, xi+1, . . . , xm)
− f(x1, . . . , xi−1, xi, xi+1, . . . , xm)
− f(x1, . . . , xi−1, a, xi+1, . . . , xm)
+ f(x1, . . . , xi−1, 0, xi+1, . . . , xm).

(10)

We should note that the discrete partial differential operator has the desired
property of F-linearity. Using this property we are able to prove the following
useful result about bilinear maps, the proof of which generalizes to the multilin-
ear case.

Theorem 1 Let k be an extension field of F, f : k2 → k be a polynomial, and
g : k2 → k be a monomial summand of f . If f is bilinear, then g is bilinear.

Proof. For specificity, let f =
∑

i gi =
∑

i cix
αi,1
1 x

αi,2
2 , where this representation

is not equivalent to another expression of f with monomials of smaller multi-
degree. Without loss of generality suppose that g0 is not bilinear; in particular,
suppose that g0 is not linear with respect to x1. Since the discrete partial differ-
ential operator is linear, we have the following identity:

Dx1f = Dx1

∑

i

gi =
∑

i

Dx1gi. (11)
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Also, by the linearity of Dx1 and the bilinearity of f , Dx1f = 0. Therefore,
applying the definition of Dx1 to the right side of (11), we have the following:

0 =
∑

i

Dx1gi =
∑

i

ci

αi,1−1∑

j=1

(
αi,1

j

)
ajx

αi,1−j
1 x

αi,2
2 , (12)

where, of course, the binomial coefficients are taken modulo the characteristic of
k. Note, first, that since the multidegree of each gi is unique, the multidegree of
each term in this expression is also unique, and, second, that since g0 is not linear
with respect to x1, not all

(
α0,1

j

)
are zero. Since this polynomial is identically

zero, we can fix a = 1, which gives us the following identity for all (x1, x2) ∈ k2:

0 =
∑

i

ci

αi,1∑

j=1

(
αi,1

j

)
x

αi,1−j
1 x

αi,2
2 . (13)

In the characteristic zero case, we have a polynomial identically equal to zero,
while in the characteristic p setting, we have a polynomial identically equal to
zero which has no equivalent representation with monomials of smaller multide-
gree; therefore, the coefficient of each monomial in (13) is zero. The fact that
there exists a nonzero

(
α0,1

j

)
implies that c0 = 0. Consequently, g0 = 0. This con-

tradicts our assumption that g0 is not bilinear. Thus every monomial summand
of f is bilinear.

This theorem offers the following important result as a corollary.

Corollary 1 Let f : k → k be a polynomial, and let g : k → k be a monomial
summand of f . If Df is bilinear, then Dg is bilinear.

Proof. Given f =
∑

i gi, by the linearity of the discrete differential operator, we
have

Df =
∑

i

Dgi. (14)

Note that, since each gi has a unique degree, each term in the right side of
(14) has a unique multidegree. Now by Theorem 1, since Df is bilinear, each
monomial summand of Df is bilinear, and therefore, any sum of such summands
is bilinear. Thus Dgi is bilinear for all i.

Now we focus on the multiplicative symmetry and restrict to the finite field
setting. Notice that the above corollary is as general as possible in this setting
because finite fields have the distinguishing quality of being the only rings for
which every function from the ring to itself is a polynomial. In the following
results, k denotes a degree n extension of the finite field Fq.

Lemma 1 Let g be a monomial function with an Fq-bilinear differential. Then
g has the multiplicative symmetry. Furthermore, two such monomial functions
g1 and g2 share the same separation polynomial if and only if g1 = cg2 for some
constant c ∈ k.
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Proof. Since g is a monomial function, Dg(a, x) = c
∑k−1

i=1

(
k
i

)
aixk−i. Dg is bi-

linear and thus, any monomial with nonzero coefficient in this sum must be
linear in both a and x. Therefore k = qθ1 + qθ2 for some 0 ≤ θ1, θ2 ≤ n. Hence,
g(x) = cxqθ1+qθ2 . As a consequence, we have Dg(a, x) = caqθ1

xqθ2 + caqθ2
xqθ1 .

Letting p(x) = xqθ1 +xqθ2 , we obtain Dg(σa, x)+Dg(a, σx) = p(σ)Dg(a, x). By
the above construction of the separation polynomial, two quadratic monomial
functions share the same separation polynomial if and only if they are constant
multiples of each other.

The following theorem gives a classification of polynomial functions with the
multiplicative symmetry.

Theorem 2 A polynomial f : k → k with a bilinear differential has the multi-
plicative symmetry if and only if it has one quadratic monomial summand.

Proof. (⇐) Suppose that f has exactly one quadratic monomial summand, g,
and all other monomial summands are linear. Then Df = Dg. Thus f has the
multiplicative symmetry with the same separation polynomial as that of g.

(⇒) By Corollary 1, we know that all monomial summands of f have a bilin-
ear differential. Suppose by way of contradiction that f has r distinct quadratic
monomial summands, gm, with r > 1. We know Df =

∑r
m=1 Dgm. Therefore,

Df(σa, x) + Df(a, σx) = pf (σ)
r∑

m=1

Dgm(a, x) (15)

On the other hand,

Df(σa, x) + Df(a, σx) =
r∑

m=1

(Dgm(σa, x) + Dgm(a, σx))

=
r∑

m=1

pgm(σ)Dgm(a, x).

(16)

Therefore, taking the difference of 15 and 16,

r∑
m=1

(pf − pgm)(σ)Dgm(a, x) = 0, (17)

for all σ, a, x ∈ k. Since the gm are not constant multiples of each other, by
Lemma 1, pgi 6= pgj for i 6= j. We can therefore fix a σ ∈ k such that for some
s ∈ {1, . . . , r} we have pf (σ)− pgs(σ) 6= 0 . Thus

r∑
m=1

tm(ajmxkm−jm + akm−jmxjm) = 0, (18)
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where tm = cm(pf − pgm)(σ) are constants. Rewriting this sum by collecting
powers of x and indexing by the powers of x we have the following:

∑

l

Pl(a)xl = 0, (19)

for all x, where the Pl are polynomials in a. Since the Pl are not identically zero,
there is a value of a such that not all of the Pl are simultaneously zero. Fix
such an a. Then we have a nonzero polynomial in x the degree of which is less
than qn. But this contradicts (19). Thus, f has at most one quadratic monomial
summand.

Now we have an answer to the questions posed in [2]. Both of the attacks
presented in [3, 2] require the existence of a hidden field map with the multiplica-
tive symmetry. In particular, the experiments in [2] suggest that for large field
extensions the general linear and multiplicative symmetries of equations 6 and 7
are intertwined, i.e., f has a linear symmetry only if there is a nonsingular linear
map, L, such that f ◦L has the multiplicative symmetry. The above results show
that the multiplicative symmetry is only present for field maps which differ from
a C∗ monomial by an affine map; thus, HFE is not, in general, susceptible to
the multiplicative symmetry attack.

5 The Effect of Projection

In [1], Ding et al. proposed projection as a method of securing the C∗− scheme
from the attack based on the multiplicative symmetry. Experimentally, it has
been verified that the projection onto a codimension 1 or more affine space
breaks the symmetry. In light of the results of the previous section, we can give
a more categorical explanation for the observed behavior.

In the case of fixing m variables, projecting corresponds to the following
mapping:

P (x) = T ◦ f ◦Ma1,...,am ◦ U, (20)

where Ma1,...,am is the linear transformation which acts as the identity on the
first n − m coordinates and replaces the last m coordinates with ai · x, where
ai ∈ Fn

q has last m coordinates zero.
Let us first consider the singularity of Ma1,...,am to be subsumed by f . We

prove that the composition of f with a singular factor of Ma1,...,am cannot have
the multiplicative symmetry.

Theorem 3 Let M be an Fq-linear transformation and let f be a C∗ monomial
map, f(x) = x1+qθ

. The composition f ◦M has the multiplicative symmetry if
and only if M is a linear monomial map, i.e. Mx = cxqi

for some i < n.

Proof. (⇐) Suppose M is a linear monomial map, Mx = cMxqi

for some i < n.
Therefore, f ◦M(x) = cqθ+1

M xqθ+i+qi

, where, of course, the sum in the exponents
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of q is taken modulo n. As a consequence of Theorem 2, f ◦M has the multi-
plicative symmetry.

(⇒) Let f̂ = f ◦M . Since every Fq-linear transformation, M , can be written
M =

∑n−1
i=0 cix

qi

, we have the following:

f̂(x) = f ◦M(x)

= f ◦
n−1∑

i=0

cix
qi

= (
n−1∑

i=0

cix
qi

)1+qθ

=
∑

i,j<n

cic
qθ

j−θx
qi+qj

=
n∑

i=0

cic
qθ

i−θx
2qi

+
∑

i<j<n

(cic
qθ

j−θ + cjc
qθ

i−θ)x
qi+qj

.

(21)

Note that the right hand side expression is simplified because the equality
qi + qj = qk + ql implies either (i, j) = (k, l) or (i, j) = (l, k).

We have two distinct types of coefficients. The first, cic
qθ

i−θ, corresponds to a

product along a column in the following matrix, while the second, cic
qθ

j−θ+cjc
qθ

i−θ,
corresponds to a minor.

(
c0 c1 . . . cn

cqθ

−θ cqθ

1−θ . . . cqθ

n−θ

)
(22)

Suppose f̂ has the multiplicative symmetry. By Theorem 2, the coefficient of
at most one power of x is nonzero. Therefore, the coefficient matrix must have
either one column with a nonzero product and no nonzero minors, no column
with a nonzero product and exactly one nonzero minor, or no nonzero entries,
in which case M is trivial.

In the first case, in which the one nonzero coefficient is of the form cic
qθ

i−θ,
the coefficient matrix must be of the form

(
0 . . . 0 ci 0 . . . 0
0 . . . 0 cqθ

i−θ 0 . . . 0

)
. (23)

since otherwise the matrix would have a nonzero minor. This, however, implies
that θ = 0 and Mx = cix

qi

. Thus, in this case, M is a linear monomial map
and, specifically, f(x) = cx2. Clearly, this case is impossible if q is even.

In the other case, i.e. the one nonzero coefficient is of the form cic
qθ

j−θ+cjc
qθ

i−θ,
we have one nonzero minor and no column with a nonzero product. Therefore,
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the coefficient matrix has the form
(

0 . . . ci . . . 0 . . . 0
0 . . . 0 . . . cqθ

j−θ . . . 0

)
, (24)

or (
0 . . . 0 . . . cj . . . 0
0 . . . cqθ

i−θ . . . 0 . . . 0

)
. (25)

This case is only possible when ci = cj−θ or cj = ci−θ; furthermore, only one
of ci and cj is nonzero. This fact again implies that Mx is a nonzero linear
monomial map. Thus the composition of a quadratic monomial and a nonzero
Fq-linear map, M , has the multiplicative symmetry if and only if M is a linear
monomial map.

Therefore, projection indeed does break the symmetry over the large field.
The only remaining possible application of the methods of Dubois et al. is if
we consider the matrix Ma1,...,am

to be absorbed by U , in which case we must
accept that S = Ma1,...,amU is singular.

In this case, it is conceivable that the attack of Dubois et al. may be applied by
using a pseudoinverse, S+ instead of an inverse in the definition, Nσ = S+MσS.
The only restriction is that we require SS+MσS = MσS, which occurs only
when the image of S in k, which we denote Sk, is σ-invariant.

Theorem 4 Let k be a finite extension of Fq and let S : k → k be a singular
Fq-linear transformation. There exists a σ ∈ k such that Sk is σ-invariant if and
only if Sk is an `-subspace of k, where ` is the smallest intermediate extension
of Fq containing σ.

Proof. (⇐) If Sk is an `-subspace of k then it is trivially σ-invariant for all σ ∈ `.
(⇒) Sk is an Fq-subspace of k, and is consequently Fq-closed. Since Sk ⊂ k is
σ-invariant, it is a union of sets of the form 〈σ〉 v for v ∈ k. Since the Fq-closure
of any such set, 〈σ〉 v, is an `-subspace, by additive closure, Sk is an `-subspace
of k.

Therefore, projection does not exactly “break” the multiplicative symmetry
in general; rather, it “pushes down” the symmetry into a subspace over a smaller
field. It should be noted that, given a random choice of singular map, S, it is
extremely unlikely for Sk to be an `-subspace of k. In particular, as in the case
of SFLASH, if k is a prime extension of Fq, then there does not exist a nontrivial
intermediate extension, `, and the multiplicative symmetry is completely broken.

6 Conclusion

We conclude from the preceding facts that the method using multiplicative sym-
metry can be applied only when the hidden permutation polynomial has exactly
one nonlinear monomial summand. If this condition is not met, as is the case
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for the general HFE scheme, the polynomial has no multiplicative symmetry in
this sense.

In addition, we give theoretical justification for the effectiveness of projection
as a means of removing the multiplicative symmetry. We prove that projection is
a legitimate method of avoiding the new attacks; however, more study is needed
to confirm that a projected SFLASH will be secure.
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