
High-Speed Hardware Implementations of
BLAKE, Blue Midnight Wish, CubeHash,
ECHO, Fugue, Grøstl, Hamsi, JH, Keccak,
Luffa, Shabal, SHAvite-3, SIMD, and Skein

Version 2.0, November 11, 2009

Stefan Tillich, Martin Feldhofer, Mario Kirschbaum, Thomas Plos, Jörn-Marc
Schmidt, and Alexander Szekely

Graz University of Technology,
Institute for Applied Information Processing and Communications,

Inffeldgasse 16a, A–8010 Graz, Austria
{Stefan.Tillich,Martin.Feldhofer,Mario.Kirschbaum,

Thomas.Plos,Joern-Marc.Schmidt,Alexander.Szekely}@iaik.tugraz.at

Abstract. In this paper we describe our high-speed hardware imple-
mentations of the 14 candidates of the second evaluation round of the
SHA-3 hash function competition. We synthesized all implementations
using a uniform tool chain, standard-cell library, target technology, and
optimization heuristic. This work provides the fairest comparison of all
second-round candidates to date.

Keywords: SHA-3, round 2, hardware, ASIC, standard-cell implemen-
tation, high speed, high throughput, BLAKE, Blue Midnight Wish, Cube-
Hash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3,
SIMD, Skein.

1 About Paper Version 2.0

This version of the paper contains improved performance results for Blue Mid-
night Wish and SHAvite-3, which have been achieved with additional imple-
mentation variants. Furthermore, we include the performance results of a simple
SHA-256 implementation as a point of reference. As of now, the implementations
of 13 of the candidates include eventual round-two tweaks. Our implementation
of SIMD realizes the specification from round one.

2 Introduction

Following the weakening of the widely-used SHA-1 hash algorithm and concerns
over the similarly-structured algorithms of the SHA-2 family, the US NIST has
initiated the SHA-3 contest in order to select a suitable drop-in replacement [27].
In round two of the competition, 14 candidates remain for consideration. Apart

2 S. Tillich et al.

from the ongoing cryptanalytic efforts, benchmarking of software and hardware
implementations of the candidates will be an important part of the evaluation.
Software benchmarking is done for example by NIST on their reference plat-
form and by the eBASH project in the context of the ECRYPT II network of
excellence [5].

While a fair comparison of software performance is far from trivial, the
situation for hardware implementations seems even worse. Although hardware
performance figures for several candidate algorithms have been published [14], a
fair and meaningful comparison of these results is extremely difficult. Hardware
modules are designed towards different goals (e.g. maximal throughput, low area,
optimal speed-area tradeoff) and feature varying degrees of functionality and
system interfaces. Moreover, implementation often involves different synthesis
tools, target technologies, and optimization heuristics.

The Athena project has the goal of allowing a more meaningful comparison
of hardware performance on FPGAs [19]. This effort is aided by the relatively
broad availability of corresponding design and synthesis tools (e.g. Xilinx ISE,
Altera Quartus II) and the ease of using certain families of FPGAs as uniform
target devices. For standard-cell hardware implementations, the availability of
corresponding synthesis setups tends to be much more limited. Even if the same
tools are employed, the standard-cell libraries and target technologies seldom
agree. Another problem is that the HDL code of implementations is not always
made available, which often precludes benchmarking of implementations from
different parties.

In order to overcome these hurdles, we decided to take on the effort to
design and implement high-speed hardware modules of all 14 candidate hash
algorithms. Our implementations encompass equivalent functionality and inter-
faces, and received similar optimization effort. Implementation has been done
targeting the same process technology and the same standard-cell library and
has made use a uniform optimization heuristic. Our work is the first to provide a
comparison of all 14 candidates and should be a good starting point for a fair and
transparent evaluation of the hardware performance of the SHA-3 candidates. In
this context, our work is the first to present concrete hardware implementations
of JH, SHAvite-3, and SIMD, and complete standard-cell implementations of
BLAKE, Blue Midnight Wish, CubeHash, Shabal.

This paper is structured as follows. In Section 3 we state the general proper-
ties of our hardware modules. The modules themselves are described in Sections 4
to 17 (in alphabetical order). Our practical results are presented in Section 19
and the paper is concluded in Section 20.

3 Design and Implementation of the SHA-3 Candidates

Our main target have been those variants of the hash functions which produce a
256-bit message digest. We generally assumed that message padding is performed

Hardware Implementations of the Round-2 SHA-3 Candidates 3

external to the hardware module1. Consequently, our modules can be fed with
a number of full message blocks. Apart from padding, the hardware modules
are fully self-contained and require no additional components (e.g. external
memory). Extra functionality like salting or keyed hashing modes have not been
supported. Interfacing has been kept generic and with broad data input and
output ports2 so that there is no dependency on a specific bus or system interface.

4 BLAKE

The BLAKE family of hash functions has been designed by Aumasson et al. [1]
and follows the concept of the “HAsh Iterative FrAmework” (HAIFA) [7]. Two
versions of BLAKE are available: a 32-bit version (BLAKE-32) for message
digests of 224 bits and 256 bits, and a 64-bit version (BLAKE-64) for message
digests of 384 bits and 512 bits.

4.1 Algorithm Description

BLAKE uses the local wide-pipe strategy and operates on a large inner state v
that is represented as a 4 × 4 matrix of words. The compression function of
BLAKE takes as inputs a message block MSG, the current chaining value hi,
and a counter value t. Basically, the compression function consists of three steps:
initialization, round updates, and finalization. During the first step, the inner
state v is initialized from hi and t. Afterwards, v is updated several times by
using a message-dependent round function. In the last step, v is compressed and
the next chaining value hi+1 is computed.

The round function is based on the stream cipher ChaCha [3] and consists of
the eight round-dependent transformations G0 . . . G7. All Gis are derived from
a single transformation operation G which is parameterized by a permutation
table σ. Each Gi processes four words of the inner state v and is composed of
modular additions, XOR, and shift operations. First, G0 . . . G3 are applied in
parallel on the four vertical columns of v. Consecutively, G4 . . . G7 are applied
in parallel on the four disjoint diagonals of v. BLAKE-32 uses 10 iterations of
the round function and BLAKE-64 uses 14 iterations.

4.2 Implementation

We have implemented various design approaches of BLAKE-32 and evaluated
them with respect to the maximum achievable throughput. Results have shown
that the best performance is obtained by implementing four parallel instances
of the transformation operation G. Hence, two clock cycles are required for
computing one round of BLAKE-32. Carry-save adders are used inside the G
1 Implementing the padding in the hardware module would usually complicate the

module’s interface and render no significant advantage for the external environment.
2 Data input is generally a complete message block, while data output is usually the

complete message digest.

4 S. Tillich et al.

operations to speed up the computation. We have added a pipeline register at the
output of the permutation table in order to reduce the critical path of the design.
Moreover, delaying the finalization step, which produces the next chaining value,
by one clock cycle additionally increases the performance. Figure 1 shows the
datapath of this implementation, which reaches a throughput of almost 4 Gbit/s
and requires less than 46,000 GEs.

MDG

st
at

e
v

co
l.

se
l.

di
ag

.
se

l.

G
G

G

in
iti

al
iz

at
io

n

pe
rm

ut
at

io
n

ta
bl

e

pi
pe

lin
e

re
g.

ch
ai

ni
ng

 v
al

ue

fin
al

iz
at

io
n

IV

MSG

t

Fig. 1. Implementation of BLAKE-32.

The efficiency of this approach in terms of throughput per area can be further
improved by splitting the functionality of each G operation into two equal parts
and implementing only one of them in hardware. In that way, a throughput of
more than 3.2 Gbit/s is achieved by consuming only 29,000 GEs.

5 Blue Midnight Wish

Blue Midnight Wish (BMW) has been developed by Gligoroski et al. [20] and
offers message digest sizes of 224, 256, 384, as well as 512 bits. In our imple-
mentations we focussed on BMW-256 which could also be easily adapted to
BMW-224, as both versions are nearly identical.

5.1 Algorithm Description

BMW basically works on a double pipe H and a quadrupled pipe {Qa, Qb},
whereby H is at least two times the size of the message digest and {Qa, Qb} is
at least four times the size of the message digest. The compression function of
BMW iteratively computes new values of Qa, Qb, and H by means of the three
functions f0, f1, and f2.

Hardware Implementations of the Round-2 SHA-3 Candidates 5

The function f0 takes a 512-bit message block M and the current value of H;
for the first message block, H contains a predefined IV. The message block M
and the double pipe H are diffused and stored to the first part of the quadrupled
pipe Qa. The function f0 contains shift, rotate, and XOR operations as well as
additions and subtractions modulo 32 on the 32-bit words of M and H.

The message expansion in f1 is carried out within two subroutines (expand1

and expand2) which perform a multi-permutation between M , Qa, and Qb.
Both subroutines contain shift, rotate, and XOR operations as well as additions
and subtractions modulo 32 on the 32-bit words of M , Qa, and Qb. In the
recommended version of BMW, expand1 is performed two times and expand2

14 times, where each invocation computes one of 16 32-bit words for Qb. As
expand1 is considerably more complex than expand2, the authors state that
the security of BMW can be increased by increasing the number of expand1

rounds and decreasing the number of expand2 rounds. In our implementation
we focussed only on the recommended version with the distribution of two and
14 rounds for expand1 and expand2, respectively.

The third and last part in the compression function (f2) is described by
the authors as a folding mechanism to map 3m bits of M , Qa, and Qb to m
bits representing the new value of the double pipe H. Similar to the previous
functions, f2 contains shift, rotate, and XOR operations as well as additions
modulo 32 on the 32-bit words of the three components.

The compression function is executed repeatedly to process the message
blocks and to update the double pipe H. As output transformation the com-
pression function is executed one last time with swapped input arguments: The
input M contains the current value of the double pipe after the last iteration
and the input H represents a predefined constant of 16 32-bit words.

5.2 Implementation

We have tested two basic implementation approaches: A pipelined implementa-
tion with shared adders/subtractors and a full unrolling of the message expansion
and compression function. While the pipelined implementation is smaller, the
fully unrolled module has a considerably higher throughput. The datapath of
the hardware module with full unrolling is shown in Figure 2.

6 CubeHash

The CubeHash family of hash functions has been designed by Daniel Bern-
stein [4]. CubeHash uses a uniform structure for producing message digests of
up to 512 bits. The number of rounds and the size of a message block can be
tweaked.

6.1 Algorithm Description

Each member of the CubeHash family is defined through the size of the message
digest h (in bits), the number of rounds per message block r, and the number

6 S. Tillich et al.

MSG

MDf0
, f

1,
 f2

H
_r

eg

IV

CONST

Fig. 2. Implementation of BMW-256 (fully unrolled).

of bytes b per message block. The notation CubeHashr/b-h is used to describe
a specific CubeHash variant. The parameter configuration for the round-two
SHA-3 submission of CubeHash specifies 16 rounds and 32-bit message blocks
(Cubehash16/32-h).

The round function of CubeHash works on the internal 1,024-bit state, which
is organized in 32 words of 32 bits each. A round consists of ten simple operations
which each manipulate the 16 words of half the state. These operations consist
of addition of words modulo 232, word rotation, word swapping, and XORing
of words. The internal state is initialized in 10r rounds, each message block is
XORed to the state and the result processed in r rounds, and the message digest
is derived from the last state in 10r rounds.

6.2 Implementation

Our implementation has been kept flexible, in order to accommodate a wide
range of CubeHash variants. The algorithm’s parameters can be selected individ-
ually at runtime for each hashing operation. The full range of message digest sizes
h and message block sizes b is supported. Furthermore, the number of rounds r
can be configured up to a maximum value of 32 rounds. These parameters are
read in the initialization phase of the hashing operation. The number of unrolled
full CubeHash rounds is statically configurable prior to synthesis of the design.
The control finite-state machine adapts flexibly to the runtime parameters and
the number of unrolled rounds.

At the core of our implementation is the 1,024-bit state and a combinatorial
unit consisting of the configured number of CubeHash rounds. The clock cycle
latency per message block is simply the number of rounds r divided by the
number of unrolled rounds. Initialization and finalization take 10r + 1 cycles,
respectively. If an extra cycle is allowed for the loading of message blocks, the
area of the implementation can be reduced at the cost of a lower throughput. The
datapath of our CubeHash implementation with two unrolled rounds is depicted
in Figure 3.

We have synthesized our CubeHash module with different numbers of un-
rolled rounds (1, 2, 4, or 8). Implementation with 16 unrolled rounds failed due
to problems of the synthesis software with larger designs. In any case, increased

Hardware Implementations of the Round-2 SHA-3 Candidates 7

2
C

ub
eH

as
h

ro
un

ds

un
ro

lle
d

st
at

e

X
O

R

CONFIG

h/
8,

 b
, r

ZERO

MD

X
O

R
 1

MSG

Fig. 3. Implementation of CubeHash.

degrees of unrolling turned out to be an ineffective measure to reach higher
throughputs.

7 ECHO

The hash function ECHO has been invented by Ryad Benadjila et al. [2]. Its
design is based on the goal to use as many features of the Advanced Encryption
Standard (AES) as possible.

7.1 Algorithm Description

Basically, ECHO consists of the serial application of a compression function
following the Merkle-Damg̊ard principle. The chaining variable has 512 bits and
the internal state consists of 2,048 bits. This state is organized as a 4× 4 matrix
of 128-bit words, each of which is interpreted as an AES state. The compression
function uses the functions BIG.SubWords, BIG.ShiftRows, BIG.MixColumns
as well as the function BIG.Final in the last iteration.

The BIG.SubWords function is basically an S-box look-up on 128-bit words
whereby two complete AES rounds are applied to each word. A counter with
the current message size and a salt value are used as keys for the AES rounds.
BIG.ShiftRows works similar to AES ShiftRows with 128-bit words as unit.
BIG.MixColumns uses the same multiplication matrix as AES, only that its in-
put and output bytes are selected from four different AES states. After iterating
these three functions eight times, the final operation BIG.Final is applied. The
chaining variables are updated by using the old chaining variables, a feed-forward
of the message and the state. Finally, the output of the hash function is a
truncation of the chaining variable.

8 S. Tillich et al.

7.2 Implementation

The hardware implementation of ECHO-256 is shown in Figure 4. The underly-
ing architecture is similar to the AES implementation of Mangard et al. [25]. The
central element is the State matrix which consists of 16× 128-bit words (which
are internally organized as 16 × 8-bit). We instantiated a whole AES round
four times which makes up the largest combinational circuit of the hardware
module. This allows to compute the two AES rounds for the BIG.SubWords
operation for each 128-bit word in eight clock cycles. Additional four clock
cycles are necessary for calculating BIG.MixColumns whereby 16 instances of
AES MixColumns multipliers are used. For the total of eight rounds, this leads
to a latency of 96 clock cycles. One additional clock cycle is required for the
BIG.Final operation at the end of hashing a 1,536-bit input block.

Chaining Var Message Reg

AES1

4 8 C

1 5 9 D

2 6 A E

3 7 B F

0
1
2
3

4
5
6
7

8
9
A
B

C
D
E
F

St
at

e
16

x(
16

x8
-b

it)
AES2 AES3 AES4

Barrel Shifter

16
 M

ix
C

ol
um

ns
 M

ul
tip

lie
r

Input
1536

1536

512

512

512

IV

128

128

128

128

Fig. 4. Implementation of ECHO-256.

For our implementation we investigated the use of several different implemen-
tations of the AES S-box, resulting in a trade-off between size and throughput.
Alternatively, it would be possible to further speed up our design by using 64
MixColumns multipliers instead of 16 or to instantiate 16 parallel AES rounds
instead of four. This would reduce the number of clock cycles by 24 and 48
respectively, but would in turn increase the required area considerably.

8 Fugue

Fugue has been developed by Halevi et al. [21]. It is based on the design principles
of the hash function Grindahl and features additional protection against attacks
developed for Grindahl.

Hardware Implementations of the Round-2 SHA-3 Candidates 9

8.1 Algorithm Description

At the heart of Fugue is a 128-bit permutation called SMIX. It consists of a
layer of AES S-box substitutions followed by the multiplication with a 16 × 16
constant GF(28) matrix from the left. Other operations are the mixing of the
32-bit words of the internal state via XOR and word-wise rotation of the state.

Each 32-bit message block is mixed into the state (TIX) and then the state
is transformed in several identical sub-rounds. Each sub-round consists of state
rotation (ROR3), mixing of some state words (CMIX), and an invocation of
SMIX on the first four state words. The message digest is generated in two
phases (G1 and G2) from the state. In phase G1, a number of sub-rounds is
applied to the state. Phase G2 consists of a combination of state word mixing,
rotation and SMIX. The exact transformations of G2 are determined by the size
of the message digest.

8.2 Implementation

Our implementation of Fugue-256 is depicted in Figure 5. The TIX operation
has been integrated in the loading operation of the message block in order to
keep the number of clock cycles per block small. In our case, a 32-bit block is
processed in two clock cycles.

MSG

MD

R
O

R
3

C
M

IX
X

O
R

 1
R

O
R

15
X

O
R

 2
R

O
R

14

S
M

IX

st
at

e

TI
X

X
O

R
 2

S
E

LE
C

TIV

Fig. 5. Implementation of Fugue-256.

The “heaviest” operation of Fugue is its SMIX transformation. As SMIX
resembles parts of the AES round, similar optimization techniques applies. The
whole transformation can be implemented as 16 parallel look-ups of 128-bit
values, with a subsequent combination of the 16 values into the final output
(similar to the T-table approach in AES [13]). Alternatively, the S-box layer
can be implemented separately from the matrix multiplication. We have imple-
mented both approaches. For the case of separated S-box look-up and matrix
multiplication, we have compared two different implementations of the AES

10 S. Tillich et al.

S-box: Canright’s approach using normal bases [12] and a synthesized hardware
look-up table of the input-output mapping (HW LUT approach) [30].

9 Grøstl

Gauravaram et al. have designed Grøstl, which shares many features of the
Advanced Encryption Standard (AES), including the application of the wide-
trail design strategy [18].

9.1 Algorithm Description

Grøstl comes in two flavors, with a 512-bit chaining value for message digests of
up to 256 bits, and twice the size for larger message digests. Two permutations
(called P and Q) at the core of Grøstl transform two intermediate states, which
are derived from the current chaining value and the message block. The output of
the two permutations is used to update the chaining value. The permutations are
very similar and operate on 64-bit words in multiple rounds with the “AES-like”
transformations AddRoundConstant, SubBytes, ShiftBytes, and MixBytes.

9.2 Implementation

For our high-speed Grøstl-256 implementation we have tested both the parallel
calculation of the P and Q permutation as well as the use of a single permutation
unit which can switch between both permutation types. Interestingly, the second
possibility has a higher throughput, even though it is much smaller than the
first. This is due to the fact that the throughput of a design with two parallel
permutations cannot be increased further by inserting pipeline stages within
rounds due to the inherent data dependencies of the intermediate results.

Our fastest implementation features a pipelined permutation round unit with
two stages. This unit is used to calculate the P and Q permutation alternatingly.
Two 512-bit registers are used to hold intermediate results and the previous
chaining value, respectively. This version is shown in Figure 6.

10 Hamsi

The family of cryptographic hash functions called Hamsi has been invented
by Özgül Küçük [23]. Mainly, there are two instances called Hamsi-256 and
Hamsi-512 whereas there are also the subversions Hamsi-224 and Hamsi-384. Im-
plementations of all versions are very similar except that Hamsi-512 (Hamsi-384)
has a larger state matrix. We focused on Hamsi-256 for design and implementa-
tion.

Hardware Implementations of the Round-2 SHA-3 Candidates 11

m
_s

ta
te

h_
st

at
e

IV

P
/Q

ro

un
d

st
ag

e
1

MSG

MD

P
/Q

ro

un
d

st
ag

e
2

X
O

R

pi
pe

 re
g

Fig. 6. Implementation of Grøstl-256.

10.1 Algorithm Description

Hamsi is based on a “Concatenate-Permute-Truncate” design strategy. A 256-bit
chaining value is concatenated with the expanded message of also 256 bits. The
message expansion uses a linear code to transform 32-bit message blocks to the
256-bit expanded message. On this 512-bit state (represented as 4× 4 matrix of
32-bit words) the non-linear permutation function P is applied three times to all
input blocks except the last one, where a slightly modified permutation function
Pf is applied six times. Subsequently, the resulting 512 bits are truncated and
combined with the previous chaining value using an XOR operation. Truncation
from 512 to 256 bits works by simply choosing the first and third row of the
state matrix.

The non-linear permutation function P consists of three functional layers.
First, a 512-bit constant and the current counter value are added to the state.
This is followed by the substitution layer which consists of the application of
128 identical 4-bit S-boxes. The final layer adds diffusion by applying the linear
transformation L several times. L operates on 32-bit words and produces four
32-bit words from four 32-bit input words. The non-linear permutation function
Pf has different round constants and is applied six times to the last message
block as final transformation.

10.2 Implementation

We have investigated two versions of hardware implementations of Hamsi-256
which differ in the number of instances of the non-linear permutation function

12 S. Tillich et al.

P and Pf . The state matrix is stored in a 512-bit register and the chaining value
requires a 256-bit register.

A P/Pf instance mainly consists of 128 S-boxes, which are implemented as an
unstructured mass of standard cells (HW LUT approach [30]), and four L trans-
formation modules. Additionally, round constants and the round counter are
added using XOR gates. The truncation function is simply realized as rewiring
and the feed forward of the chaining value is an XOR operation of the truncated
state with the previous chaining value. The message expansion is implemented
as a table lookup which is quite efficient.

The architecture of our fastest implementation of Hamsi-256 is depicted in
Figure 7. It features three instances of the P/Pf function and requires one clock
cycle to hash a 32-bit block (except for the last block, which requires two cycles).

P/Pf

iv

chaining val

statemessage exp
256

512
256

256

32m

const cnt

S
0

S
1

S
12

7

L0 L1 L2 L3

P/Pf

P/Pf

truncate

512

256
output

256

Fig. 7. Architecture overview of fastest Hamsi-256 implementation.

11 JH

Hongjun Wu et al. have designed the hash function family JH [32], which consists
of JH-224, JH-256, JH-384, and JH-512. All four versions of JH are based on the
same compression function which makes it rather easy to combine them in one
hardware implementation. The bit-slice implementation of the JH hash function
is very efficient in software using the SSE2 instruction set.

Hardware Implementations of the Round-2 SHA-3 Candidates 13

11.1 Algorithm Description

The standard variant of JH works with an internal state H which consists of
256 4-bit elements. In a first step, an initial vector (IV), which is derived from
the message digest size, is loaded into the internal state H. The message M is
expanded to a multiple of 512 bits, where the message M is padded with at least
512 bits.

The core component of JH (i.e. the compression function F8) works on the
internal state H and takes one 512-bit message block Mi of the padded message
as input. The first step in the compression function is an XOR operation of Mi

with the first half of H. The round constant vector Cr is loaded with an initial
vector Cr,0 and is used later in the round function R8. Next the bijective function
E8 is executed, which consists of a grouping function, the round function R8,
a trailing substitution layer St, as well as a de-grouping function. The round
function R8 is executed 35 times and contains two substitution-permutation
networks (S and P8, S0 and P6), as well as two linear transformations (L,
LCr) that implement a (4, 2, 3) maximum distance separable (MDS) code over
GF (24).

The substitution layer S within R8 as well as the trailing substitution layer St

contain two 4-bit S-boxes. The round constant vector Cr selects which S-boxes
are used (similar to Lucifer [16]) in the substitution steps and is updated in
every round of R8. After each invocation of R8, the value of Cr it updated by
passing it through the substitution-permutation network of S0 and P6, where S0

contains only one 4-bit S-box, and the linear transformation LCr.
The last step in F8 is an XOR operation of Mi with the second half of

H. The remaining 512-bit message blocks run through the same compression
procedure to iteratively generate the hash value. After all message blocks have
been processed, the n-bit message digest of M is composed of the last n bits of
H.

11.2 Implementation

Our implementation of JH-256 works with 320 instances of a combinational
implementation of the S-boxes; 256 S-boxes work on the internal state H and 64
S-boxes work on the round constant vector Cr in every round of R8. This way,
one round of R8 can be executed in only one clock cycle. The datapath of our
implementation is illustrated in Figure 8.

The IV of H as well as Cr,0 have been realized as constant vectors in our
implementation. Another possibility to derive the initial state of H would have
been to store the message digest size into the first 16 bits of H, to clear the
remaining bits of H, and to run this value through the compression function
once.

In our implementation of JH the registers for the 1024-bit internal state
H, the 512-bit message block Mi, and the 256-bit round constant Cr occupy
approximately one quarter of the whole area. The 320 combinational S-boxes
occupy another quarter of the area. One 512-bit message block is processed in
39 clock cycles.

14 S. Tillich et al.

MSG

H

IV256

S L P
81024

512

C
rCr,0

256 S 0 L C
r

P 6

S
t

Group

D
e-
gr
ou
p

MD
256

M

Fig. 8. Implementation of JH-256.

12 Keccak

Bertoni et al. have designed the Keccak family [6]. The basic component is the
so-called Keccak-f permutation, which consists of a number of simple rounds
with logical operations and bit permutations.

12.1 Algorithm Description

The structure of Keccak is simple: The input message block is XORed onto a part
of the current state and the result is passed through the Keccak-f permutation.
The initial state is all zero and the message digest is a truncation of the state
after the last message block, thus requiring no output transformation3. For the
Keccak variants proposed for SHA-3, the state is fixed at 1,600 bits, and the size
of the message block is set to the state size minus twice the message digest size.
The state is logically grouped into a 5× 5 matrix of 64-bit words.

The Keccak-f permutation consists of 24 rounds, which are identical except
for the addition of a round-dependent constant. Each round has five steps (θ,
ρ, π, χ, and ι), which feature simple logical operations and permutations of
the state bits. Although the steps are defined on the bit level, they can also be
expressed as simple operations on the 64-bit words of the state.

12.2 Implementation

The plain structure of Keccak naturally maps to the simple implementation
depicted in Figure 9. Through static configuration, our implementation supports
all variants of the Keccak hash function which have been proposed as SHA-3

3 Note that Keccak supports arbitrary lengths of the message digest by applying the
Keccak-f permutation repeatedly on the state.

Hardware Implementations of the Round-2 SHA-3 Candidates 15

candidates. For the performance evaluation we concentrated on the 256-bit
variant, namely bKeccak[r=1088, c=512, d=32]c2564.

A single round of the Keccak-f permutation is instantiated in hardware. Thus,
a total of 24 iterations is required to perform the complete permutation. The
appropriate round constant is selected by the current round index. As the round
constants have a very low Hamming weight, they can be mapped to a small
synthesized look-up table.

MSG

MD
K
ec
ca
k-
f

ro
un
d st
at
e

ZERO

X
O
R

co
ns
ts

ir tru
nc

Fig. 9. Implementation of Keccak.

The loading of the message block and its combination with the state requires
an additional clock cycle. This separation allows to reduce the critical path of the
hardware module, which runs through the Keccak-f round unit. The processing
of a complete message block thus requires 25 clock cycles.

13 Luffa

Luffa has been conceived by Canniére et al. [11]. Its core components are a
message injection function based on arithmetic over GF((232)8) and a number
of parallel 256-bit permutations.

13.1 Algorithm Description

Luffa processes the message in blocks of 256 bits. Each block is combined with
the current state in the message injection. Subsequently, the state is updated
by passing it through a number of parallel permutations. The message injection
considers 256-bit blocks (i.e. the message block and the parts of the state) as

4 In this notation, r denotes the message block size in bits, c is the state size (fixed
to 1,600 bits) minus the block size, and d is the so-called diversifier, which is used
in message padding. The bc256 notation indicates truncation of the state to 256 bits
in order to generate the message digest

16 S. Tillich et al.

polynomials over GF(232) and applies a number of additions and constant multi-
plications. Then, each 256-bit part of the state is passed through a permutation
Qj consisting of a simple tweaking function and eight similar steps.

Each step of Qj features a 4-bit S-box layer (SubCrumb), a mixing of pairs
of 32-bit words (MixWords), and the XORing of some constants (AddConstant).
The SubCrumb S-boxes can be implemented in a bit-sliced manner. MixWords
consists of only a few fixed rotations and some XORs. The constants for Add-
Constant can be generated on-the-fly with a simple function which is based on
a 64-bit linear-feedback shift register (LFSR). The output function of Luffa uses
the message injection with an all-zero message block and the Qj permutations.

13.2 Implementation

As Luffa-224 and Luffa-256 are virtually identical, we have implemented a hard-
ware module capable of both variants. The corresponding datapath is shown
in Figure 10. The inputs for the message injection function can be switched
to accommodate the first message block (IV and MSG loaded), intermediate
message blocks (state feedback and MSG loaded), and final blank rounds (state
feedback and ZERO loaded). The tweak at the start of each permutation is
already performed at the end of the message injection. The constants are gen-
erated on-the-fly and the current constants are registered in order to minimize
the critical path. One step for each of the three permutations Q0, Q1, and Q2 is
implemented in parallel.

Q
0-

2
st

ep

MSG

co
ns

t.
ge

n.

cj,L/R

MD

co
ns

ts

st
at

e

M
es

sa
ge

in

je
ct

io
n

Tw
ea

k

ZERO

IV X
O

R

Fig. 10. Implementation of Luffa-224/256.

Luffa consists of rather simple operations which can be mapped efficiently
to hardware (simple bit-sliced S-boxes, fixed rotations, XORs, and arithmetic
operations in binary extension fields). By separating message injection from the
Qj steps, the combinatorial paths can be split up relatively evenly. The message

Hardware Implementations of the Round-2 SHA-3 Candidates 17

injection has been implemented following the approach given in the specifica-
tion [11], which uses doubling of GF(232) elements as basic building block. For
the 4-bit S-box layer, we have implemented both the bit-sliced approach as well as
explicit instantiation of the S-boxes as synthesized look-up tables (both resulting
in similar speed).

14 Shabal

The hash algorithm Shabal was designed by Jean-Franois Misarsky et al. [9]. It is
based on a number of cross-coupled non-linear feedback shift registers (NLFSRs).

14.1 Algorithm Description

Shabal is defined for a message block M with a size of 512 bits. Its internal
state consists of the three components A (384 bits), B and C (both 512 bits)
and a message block counter W (64 bits). The inner core of Shabal is the keyed
permutation P . It features rotations, an AND operation, additions modulo 232

and two multiplications with small constants modulo 232. P consists of 48 steps,
each manipulating one 32-bit word of A and B. Each step (except the first one)
involves the result of the previous one.

One inner round of Shabal consists of XORing W into the first two 32-bit
words of A and adding M and B in blocks of 32 bits. The resulting A and B
together with C and M are the input for P . Then, the words of M are subtracted
from the words of C. The resulting words are written to B, while the previous
value of B is put into C. Additionally, W is incremented by one. After each
512-bit message block is processed by an inner round, three final rounds are
applied. Each final round is performed with the last message block like an inner
round but without incrementing of the counter value W . The message digest is
taken from the last bits of C.

The init state of Shabal can either be stored as a constant or calculated
by operating two rounds on a message that is prefixed with 32 words fixed
to values ranging from the digest size to the digest size plus 31, starting with
A = B = C = 0 and W = −1.

14.2 Implementation

Figure 11 depicts the datapath of our implementation of Shabal. It basically
consists of 32-bit adders, a 384-bit shift register for A and three 512-bit shift
registers for B, C and M . Each round of the permutation P rotates A, B, C,
and M by one 32-bit word. Furthermore, the results of the combinatorial logic
are put on the last position of A and B. Since there are 48 rounds of P , each
register is in the correct position after the application of P (A is fully rotated
four times, B and C are fully rotated three times). The initialization vectors are
stored as constants, which saves two initial rounds. Each inner round requires
one clock cycle for adding before P and one cycle for the subtraction after P .

18 S. Tillich et al.

Each of the 48 inner loops of P requires one cycle, resulting in a total latency of
50 cycles per message block.

MSG

MD

A B MCW

XOR

ADD

SUB

P

Fig. 11. Implementation of Shabal-256.

15 SHAvite-3

The SHAvite-3 family of hash functions has been proposed by E. Biham and O.
Dunkelman [8] and bases upon the concept of the “HAsh Iterative FrAmework”
(HAIFA) [7]. Two variants of SHAvite-3 are available: SHAvite-3256 for digests
up to 256 bits, and SHAvite-3512 for larger digests up to 512 bits. In our
implementations we have only focused on SHAvite-3256, since both variants are
very similar in their design.

15.1 Algorithm Description

The main building block of SHAvite-3256 is the Feistel block cipher E256 which
iterates a round function twelve times. The round function is composed of three
full AES rounds. E256 is used in Davies-Meyer mode, which transforms the block
cipher into a compression function. This transformation is achieved by XORing
the output of the block cipher to its input.

The compression function accepts four inputs: A chaining value h of 256 bits,
a message block m of 512 bits, a bit counter b of 64 bits, and a salt s of size
256 bits. In order to hash a message block m, the chaining value h is encrypted
with E256 using three round keys ki0 . . . ki2 for each round i. The round keys are
computed by a message expansion function that iteratively applies a non-linear
and a linear expansion step in an alternating fashion. Both steps operate on
blocks of 512 bits and produce four new round keys. The non-linear step consists
of four full AES rounds whose keys are determined by the salt s, followed by
a partial XOR of the result with the bit counter b. The linear step XORs the
current round keys with each other in a specific way in order to derive new round
keys. With the use of the input message block as the first four round keys, four
applications of the non-linear step and four applications of the linear step are
sufficient to compute all required 36 round keys.

Hardware Implementations of the Round-2 SHA-3 Candidates 19

15.2 Implementation

MD

ch
ai

ni
ng

 v
al

ue

IV

MSG

b

A
E

S
 ro

un
d

M
es

sa
ge

ex

pa
ns

io
n

kij In
te

rm
ed

. r
eg

.

ae
s

re
g.

Fig. 12. Implementation of SHAvite-3256 with one AES round.

Several versions of SHAvite-3256 have been implemented in hardware and
evaluated with respect to their performance. The versions mainly differ in the
number of unrolled AES rounds for the compression function and the message
expansion. The architecture which yielded the highest throughput in our eval-
uation is depicted in Figure 12. It features one AES round for the compression
function and one AES round for the message expansion (contained in the mes-
sage expansion block). Additionally, various implementations of the AES-round
function have been tested: The T-table approach [13], and separated S-box
and MixColumns layers, with S-box implementations following Canright [12],
Wolkerstorfer et al. [31], and the HW LUT approach [30]. With our current
evaluation approach, the highest throughput has been achieved for the SHAvite-
3256 version with one AES-round function for the compression function and
message expansion each and with S-boxes following the HW LUT approach.

16 SIMD

The SIMD family of hash functions has been designed by Leurent et al. [24].
The design of SIMD has been optimized for platforms with vector instructions
(Single Instruction, Multiple Data). The two variants SIMD-256 and SIMD-512
produce message digests of up to 256 bits and 512 bits, respectively.

16.1 Algorithm Description

SIMD-256 takes message blocks of 512 bits and has an internal state of the same
size. The message expansion expands the message from 512 to 4,096 bits. It
consists of three layers and tries to build an error correcting code with a high
minimal distance. The first layer uses a number-theoretic transform, the second
uses an inner code to further increase the minimal distance, and the last layer
permutes the expanded message. An additional last message block uses a slightly
different message expansion.

20 S. Tillich et al.

The compression function uses a modified Davies-Meyer construction. Instead
of encrypting the previous chaining value (hi−1) the input of the block cipher
in SIMD is hi−1 XOR the message. In addition, the output of the encryption
function is not simply XORed with the previous chaining value, but additional
block cipher steps with hi−1 as key are performed. The block cipher of the
compression function is built from four parallel Feistel ladders. Each round is
made up of 8 steps, and in total the compression function is made up from 4
rounds plus 4 additional steps which update the chaining value.

16.2 Implementation

MSG

S
IM

D
 s

te
p

fu
nc

tio
n

m
es

sa
ge

st
at

e
st

at
e

sa
ve

X
O

R

nt
t_

12
8

pi
pe

lin
e

re
g

m
od

_m
ul

nt
t 8

x8

in
iti

al
iz

at
io

n

tw
id

dl
e

ro
m

pe
rm

ut
at

io
n

m
ul

MD

Fig. 13. Implementation of SIMD-256.

Our implementation of SIMD-256 realizes the specification of round one of the
SHA-3 competition. The hardware module is depicted in Figure 13. It consists
of four Feistel blocks in parallel. Implementing the number-theoretic transform
(NTT) modulo 257 of the 64 input bytes basically means performing a Fast
Fourier Transform (FFT) mod 257 of 128 integer values. As half of these 128
values is zero, this FFT can be split into two separate FFT-64. Each FFT-64
is built from two instances of FFT-8 and sixteen 8 × 8-bit modulo multipliers.
With this configuration we need 36 clock cycles to process a 512-bit message
block.

17 Skein

The Skein hash function family, which is optimized for performance on 64-bit
processors, has been conceived by Ferguson et al. [17].

17.1 Algorithm Description

Skein is based on the tweakable block cipher Threefish, which has equal block and
key size of either 256, 512, or 1,024 bits. Threefish used in Matyas-Meyer-Oseas

Hardware Implementations of the Round-2 SHA-3 Candidates 21

mode, together with the format specification of the tweak and a padding scheme,
defines the so-called Unique Block Iteration (UBI) chaining mode. UBI is used
for IV generation, message compression, and as output transformation.

The size of the message digest can be set more or less arbitrarily for each
Threefish block size. The Skein variant with a block size of x bits and a message
digest size of y bits is designated as Skein-x-y. Note that the message digest size
y is only a minimal tweak to a hardware implementation.

The Threefish block cipher is based on three categories of simple operations:
Additions modulo 264, XORs, and bit permutations. These operations are de-
fined on the intermediate state organized in 64-bit words. The MIX operation
transforms two of these 64-bit words and is common to all Threefish variants.
The rotation distance depends on the Threefish block size, the round index and
the position of the two 64-bit words in the Threefish state.

Threefish rounds are applied repeatedly to the input block. A number of
subkeys are derived from the cipher key and tweak via addition modulo 264 in a
simple key schedule and are added to the input block and the intermediate state
in each fourth round.

17.2 Implementation

We have implemented Skein with all three block sizes. The core of the datapath
consists of eight unrolled rounds of Threefish and a key schedule unit which can
supply two consecutive subkeys at a time. The advantage of this architecture is
that the Threefish rounds have fixed rotation distances for their MIX layer, which
allows a simple hard-wiring of the rotations. Thus, the output of the Threefish
unit only depends on the input block and the two subkeys. Our implementation
is shown in Figure 14.

The key schedule unit is loaded with an input key and input tweak at the
beginning of each Threefish encryption. Two subsequent subkeys are derived
through a number of 64-bit adders. Apart from the key schedule unit, the
datapath contains two registers of the size of a Threefish block for the current
message block and for holding intermediate values of the Threefish encryption.

A more detailed description of our Skein implementation can be found in [29].

18 SHA-2 Reference Implementation

The SHA-2 hash function family is specified in [28]. The four variants of SHA-2
differ only slightly in the word size of the internal state, IV, and number of
rounds of the compression function.

18.1 Algorithm Description

The SHA-2 algorithms consists of a message schedule and a compression func-
tion. The message schedule is initialized with the 16 words of the current message
block, and iterated to generate additional words (one for each round of the

22 S. Tillich et al.

A
dd

 s
ub

ke
y

tf_
st

at
e

sk
_s

ta
te

X
O

RMSG
K

ey

sc
he

du
leTw

ea
k

ge
ne

ra
to

r

type/first/final/
lastblock_size

ZEROIV

MD

Ad
d

su
bk

ey

4x
 m

ix
pe

rm

4x
 m

ix
pe

rm

Fig. 14. Implementation of Skein.

compression function). Each round of the message schedule generates a new
word. The compression function applies a number of similar rounds to the eight
words of the current chaining value. Each round uses a single word from the
message schedule and a round constant. The operations of the message schedule
and compression function mainly consists of modular additions and some logical
operations.

In each round of the compression function, two words of the state are updated
while the other six words are just shifted. This structure allows for a number of
optimization techniques to be applied for hardware implementation.

18.2 Implementation

To serve as a point of reference, we have implemented a SHA-256 hardware mod-
ule with a straight-forward approach. No optimization techniques [26] have been
employed, except for the use of carry-save adders in the round implementation of
compression function and message schedule. The datapath of our implementation
is depicted in Figure 15.

19 Practical Results

The SHA-3 hardware modules have been implemented in VHDL or Verilog.
Any eventual second-round tweaks have been integrated in the modules. The
only exception is the SIMD module, which currently implements the specifica-

Hardware Implementations of the Round-2 SHA-3 Candidates 23

MSG

MD

state schedule

IV

compression
round

K(t)

schedule
round

chain

ADDIV

Fig. 15. Straight-forward implementation of SHA-256.

tion from round one5. Correct functionality of all modules has been verified
against the official Known Answer Test (KAT) vectors with simulation via
Cadence ncsim. In order to keep the implementation effort with our optimiza-
tion heuristic at a feasible level, only synthesis runs have been performed and
are reported in this paper6. Synthesis targeted the UMC 0.18 µm standard-cell
library FSA0A C from Faraday [15] and has been performed with the Cadence
PKS-Shell (v05.16) [10]. Optimization effort was set high and was primarily
aimed towards maximum speed.

Our throughput evaluation assumes that the message blocks are delivered to
the hardware module at a speed which allows it to operate under full utilization.
Our optimization target for synthesis was maximum peak throughput, which
corresponds to the throughput for long messages. Note that for shorter messages,
the throughput might change due to more or less costly initialization operations
and output transformations.

In order to optimize towards maximum peak throughput we have performed
multiple synthesis runs per design with an adaptive optimization heuristic. For
each run, the target for the critical path delay has been adapted7. Synthesis
runs have been counted as successful only if they (1) finished within a certain

5 Integration of the round-two tweak is expected to effect no significant change in the
performance figures.

6 Place & route is expected to have only little impact on the performance figures
estimated after synthesis.

7 Lowered if the run was successful, increased if it failed.

24 S. Tillich et al.

amount of time8 and (2) the synthesized design reached the set target delay
under worst-case conditions9.

Note that we only make a comparison of the results of our hardware modules
and that we do not include previously published results. We do this in order to
stress the coherency of our benchmarking effort and to keep the comparison as
fair as possible.

Table 1 summarizes our results for the “best” variants of the 14 presented
hardware modules. The primary selection criterion for the table entries was high
throughput. Some implementation variants increase throughput marginally at a
substantial overhead in area (e.g. 4% increase in throughput at a 65% increase
in area). In such cases, we report the slightly slower but substantially more
area-efficient implementation.

The implementations reported in Table 1 refer to the following implementa-
tion variants:

– BLAKE: Four G functions in parallel, two pipeline registers, additional
cycle for chaining, carry-save adders.

– Blue Midnight Wish: Whole compression function (f0, f1, f2) as a single
combinational block, generic adders.

– CubeHash: Two CubeHash rounds unrolled, generic adders.
– ECHO: S-boxes as HW LUT.
– Fugue: S-boxes and matrix multiplication separated, S-boxes as HW LUT.
– Grøstl: Shared P/Q permutation, S-boxes and MixBytes separated, S-boxes

following Wolkerstorfers et al. approach [31] with one pipeline register.
– Hamsi: Three P/Pf instances in series, S-boxes as HW LUT.
– JH: 320 S-boxes (one cycle per R8 round), combinational S-boxes.
– Keccak: One Kekkak-f round per cycle.
– Luffa: S-boxes and matrix multiplication separated, S-boxes as HW LUT,

output of control FSM registered.
– Shabal: One round of permutation P per cycle, generic adders.
– SHAvite-3: One AES round for compression function and message expan-

sion each.
– SIMD: Message expansion with 16 parallel FFT-8 and 16 parallel modular

multipliers, compression function with four parallel Feistel blocks.
– Skein: Eight Threefish rounds unrolled, generic adders.
– SHA-2: No unrolling or quasi-pipelining, generic adders.

Table 1 contains the block size of the hash algorithm (block) and the number
of clock cycles required for the processing of one block (latency). The area is
given in terms of gate equivalents (GEs)10. The reported clock frequency is the
maximum value under typical conditions11. The TP column indicates the peak
throughput at the stated clock frequency. A graphical representation of area in
8 For the present work, the limit has been set to two hours.
9 A maximal negative slack of 50 ps has been allowed.

10 1 GE equals 9.37 sqmils (i.e. the size of a ND2 cell).
11 Operating temperature 25 ◦C .

Hardware Implementations of the Round-2 SHA-3 Candidates 25

Table 1. Results for implementation with the UMC 0.18 µm FSA0A C standard-cell
library.

Block Latency Area Clock freq. TP
Implementation Reference bit cycles GE MHz Gbit/s

BLAKE-32 Submitted 512 22 45,640 170.64 3.971
BMW-256 Submitted 512 1 169,737 10.46 5.358
CubeHash16/32-h Submitted 256 8 58,872 145.77 4.665
ECHO-256 Submitted 1,536 97 141,489 141.84 2.246
Fugue-256 Submitted 32 2 46,257 255.75 4.092
Grøstl-256 Submitted 512 22 58,402 270.27 6.290
Hamsi-256 Submitted 32 1 58,661 173.91 5.565
JH-256 Submitted 512 39 58,832 380.22 4.992
Keccak(-256) Submitted 1,088 25 56,316 487.80 21.229
Luffa-224/256 Submitted 256 9 44,972 483.09 13.741
Shabal-256 Submitted 512 50 54,186 320.51 3.282
SHAvite-3256 Submitted 512 37 57,388 227.79 3.152
SIMD-256 Submitted 512 36 104,166 64.93 0.924
Skein-256-256 Submitted 256 10 58,611 73.52 1.882
Skein-512-512 Submitted 512 10 102,039 48.87 2.502

SHA-256 Submitted 512 66 19,144 302.11 2.344

relation to highest throughput is given in Figure 16. Several area-performance
tradeoffs for the same implementations are given in Figure 17. Figure 18 zooms in
on the area which contains most of the implementations. An interactive version
of the most recent performance results, conforming to Figure 16 of the most
recent version of this paper can be found on IAIK’s website [22].

In terms of throughput, the Keccak implementation outperforms all other
modules by a considerable margin. The Luffa module is second fastest and more
compact. The next-best implementations are those of Grøstl, Hamsi, JH, and
CubeHash which all have similar area requirements. The BMW module achieves
similar throughput, but at considerably higher hardware cost. The implemen-
tations of Fugue and BLAKE are a bit slower, but also smaller. The Shabal
and SHAvite-3 modules are slower and bigger and achieve similar performance.
The Skein-512 implementation follows next with a considerable hardware cost.
The ECHO module achieves similar throughput, but requires more area. The
Skein-256 module follows with a moderate size. Our implementation of SIMD is
the slowest in the field. The straight-forward SHA-256 implementation has the
smallest area and achieves a throughput which is rather at the low end of the
spectrum.

20 Conclusions

In this work we presented our high-speed hardware implementations of all 14
round-two candidates of the SHA-3 contest. All hash modules have been designed
and implemented towards the same optimization goal and evaluated with the

26 S. Tillich et al.

0

2

4

6

8

10

12

14

16

18

20

22

24

0 20 40 60 80 100 120 140 160

Area (kGates)

Th
ro

ug
hp

ut
 (G

bi
t/s

)
BLAKE-32
BMW-256
CubeHash16/32-256
ECHO-256
Fugue-256
Grøstl-256
Hamsi-256
JH-256
Keccak-256
Luffa-224/256
Shabal-256
SHAvite-3_256
SIMD-256
Skein-256-256
Skein-512-512
SHA-256

Fig. 16. Highest throughput vs. area of the high-speed hardware implementations of
the SHA-3 candidates.

same synthesis tools, target technology, and optimization heuristic. In order to
stress the coherency of our results, we have consciously excluded other prior
published implementations from consideration, as we regard the differences in
interface design, standard-cell library, target technology, synthesis tools, and
optimization effort to make meaningful comparisons extremely difficult. We
believe that our work provides the fairest comparison of hardware performance
of the SHA-3 candidates to date.

References

1. J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan. SHA-3 proposal
BLAKE, version 1.3. Available online at http://131002.net/blake/blake.pdf,
2008.

2. R. Benadjila, O. Billet, H. Gilbert, G. Macario-Rat, T. Peyrin, M. Robshaw, and
Y. Seurin. SHA-3 Proposal: ECHO. Available online at http://crypto.rd.

francetelecom.com/echo/doc/echo_description_1-5.pdf, February 2009.
3. D. J. Bernstein. ChaCha, a variant of Salsa20. Available online at http://cr.yp.

to/chacha/chacha-20080128.pdf, January 2008.
4. D. J. Bernstein. CubeHash specification (2.B.1). Available online at http://

cubehash.cr.yp.to/submission/spec.pdf, October 2008.
5. D. J. Bernstein and T. Lange. eBASH: ECRYPT Benchmarking of All Submitted

Hashes. http://bench.cr.yp.to/ebash.html.
6. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. KECCAK specifications,

Version 2 – September 10, 2009. Available online at http://keccak.noekeon.org/
Keccak-specifications-2.pdf, September 2009.

Hardware Implementations of the Round-2 SHA-3 Candidates 27

SHA-3 HW Performance

BLAKE-32 BMW-256 CubeHash16/32-h ECHO-256 Fugue-256 Groestl-256 Hamsi-256 JH-256 Keccak(-256)

Luffa-224/256 Shabal-256 SHAvite-3_256 SIMD-256 Skein-256-256 Skein-512-512 SHA-256

25.000 50.000 75.000 100.000 125.000 150.000 175.000
Area (GEs)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Th
ro

ug
hp

ut
 (

G
bi

t/
s)

Fig. 17. Various tradeoffs for throughput vs. area of the high-speed hardware
implementations of the SHA-3 candidates.

7. E. Biham and O. Dunkelman. A Framework for Iterative Hash Functions - HAIFA.
In Second NIST Cryptographic Hash Workshop, Santa Barbara, California, USA,
August 24-25, 2006, August 2006.

8. E. Biham and O. Dunkelman. The SHAvite-3 Hash Function (version from
February 1, 2009). Available online at http://www.cs.technion.ac.il/~orrd/

SHAvite-3/Spec.01.02.09.pdf, February 2009.

9. E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr, A. Gouget,
T. Icart, J.-F. Misarsky, M. Naya-Plasencia, P. Paillier, T. Pornin, J.-R. Reinhard,
C. Thuillet, and M. Videau. Shabal, a Submission to NIST’s Cryptographic
Hash Algorithm Competition. Available online at http://www.shabal.com/

wp-content/plugins/download-monitor/download.php?id=Shabal.pdf, Octo-
ber 2008.

10. Cadence Design Systems. The Cadence Design Systems Website. http://www.

cadence.com/.

11. C. D. Canniére, H. Sato, and D. Watanabe. Hash Function Luffa, Specification
Ver. 2.0. Available online at http://www.sdl.hitachi.co.jp/crypto/luffa/

Luffa_v2_Specification_20090915.pdf, September 2009.

12. D. Canright. A Very Compact S-Box for AES. In J. R. Rao and B. Sunar, editors,
Cryptographic Hardware and Embedded Systems – CHES 2005, 7th International
Workshop, Edinburgh, UK, August 29 - September 1, 2005, Proceedings, volume
3659 of Lecture Notes in Computer Science, pages 441–455. Springer, 2005.

13. J. Daemen and V. Rijmen. The Design of Rijndael. Information Security and
Cryptography. Springer, 2002. ISBN 3-540-42580-2.

28 S. Tillich et al.

SHA-3 HW Performance

BLAKE-32 BMW-256 CubeHash16/32-h ECHO-256 Fugue-256 Groestl-256 Hamsi-256 JH-256 Keccak(-256)

Luffa-224/256 Shabal-256 SHAvite-3_256 SIMD-256 Skein-256-256 Skein-512-512 SHA-256

27.500 30.000 32.500 35.000 37.500 40.000 42.500 45.000 47.500 50.000 52.500 55.000 57.500 60.000
Area (GEs)

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

6,0

6,5

Th
ro

ug
hp

ut
 (

G
bi

t/
s)

Fig. 18. View of Figure 17 zoomed into area containing most implementations.

14. ECRYPT II. SHA-3 Hardware Implementations. http://ehash.iaik.tugraz.at/
wiki/SHA-3_Hardware_Implementations.

15. Faraday Technology Corporation. Faraday FSA0A C 0.18µm ASIC Standard Cell
Library, 2004. Details available online at http://www.faraday-tech.com.

16. H. Feistel. Cryptography and Computer Privacy. Scientific American, 228(5):15–
23, 1973.

17. N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas,
and J. Walker. The Skein Hash Function Family. Available online at http://www.
skein-hash.info/sites/default/files/skein1.1.pdf, November 2008.

18. P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, and
S. S. T. Martin Schläffer. Grøstl – a SHA-3 candidate. Available online at http:

//www.groestl.info/Groestl.pdf, October 2008.
19. George Mason University. The Athena Website. http://cryptography.gmu.edu/

athena/.
20. D. Gligoroski and V. Klima. Cryptographic Hash Function BLUE

MIDNIGHT WISH. Available online at http : / / people . item . ntnu .

no / ~danilog / Hash / BMW-SecondRound / Supporting _ Documentation /

BlueMidnightWishDocumentation.pdf, September 2009.
21. S. Halevi, W. E. Hall, and C. S. Jutla. The Hash Function “Fugue”. Available

online at http://domino.research.ibm.com/comm/research_projects.nsf/

pages/fugue.index.html/$FILE/fugue_09.pdf, September 2009.
22. Institute for Applied Information Processing and Communications (IAIK), Graz

University of Technology. SHA-3 Hardware Benchmarking. http://www.iaik.

tugraz.at/content/research/vlsi/sha3hw/, 2009.

Hardware Implementations of the Round-2 SHA-3 Candidates 29

23. Ö. Küçük. The Hash Function Hamsi, version from September 14, 2009. Available
online at http://www.cosic.esat.kuleuven.be/publications/article-1203.

pdf, September 2009.
24. G. Leurent, C. Bouillaguet, and P.-A. Fouque. SIMD Is a Message Digest. Updated

version: 2009-01-15, 2009.
25. S. Mangard, M. Aigner, and S. Dominikus. A Highly Regular and Scalable AES

Hardware Architecture. IEEE Transactions on Computers, 52(4):483–491, April
2003.

26. R. P. McEvoy, F. M. Crowe, C. C. Murphy, and W. P. Marnane. Optimisation
of the SHA-2 Family of Hash Functions on FPGAs. In J. Becker, A. Herkersdorf,
A. Mukherjee, and A. Smailagic, editors, IEEE Computer Society Annual Sympo-
sium on Emerging VLSI Technologies and Architectures (ISVLSI’06), Karlsruhe,
Germany, 2-3 March, 2006, Proceedings, pages 317–322. IEEE Computer Society,
March 2006.

27. National Institute of Standards and Technology (NIST). Cryptographic Hash
Algorithm Competition Website. http://csrc.nist.gov/groups/ST/hash/sha-3.

28. National Institute of Standards and Technology (NIST). FIPS-180-3: Secure
Hash Standard, October 2008. Available online at http://www.itl.nist.gov/

fipspubs/.
29. S. Tillich. Hardware Implementation of the SHA-3 Candidate Skein. Cryptology

ePrint Archive (http://eprint.iacr.org/), Report 2009/159, April 2009.
30. S. Tillich, M. Feldhofer, and J. Großschädl. Area, Delay, and Power Characteristics

of Standard-Cell Implementations of the AES S-Box. In S. Vassiliadis, S. Wong,
and T. Hämäläinen, editors, 6th International Workshop on Embedded Computer
Systems: Architectures, Modeling, and Simulation, SAMOS 2006, Samos, Greece,
July 17-20, 2006, Proceedings, volume 4017 of Lecture Notes in Computer Science,
pages 457–466. Springer, July 2006.

31. J. Wolkerstorfer, E. Oswald, and M. Lamberger. An ASIC implementation of
the AES SBoxes. In B. Preneel, editor, Topics in Cryptology - CT-RSA 2002, The
Cryptographers’ Track at the RSA Conference 2002, San Jose, CA, USA, February
18-22, 2002, Proceedings, volume 2271 of Lecture Notes in Computer Science, pages
67–78. Springer, 2002.

32. H. Wu. SHA-3 proposal JH, version January 15, 2009. JH online at
http://icsd.i2r.a-star.edu.sg/staff/hongjun/jh/index.html, 2008.

