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Abstract. In this short note, we investigate the security of the Unbalanced Oil
and Vinegar Scheme [15]. To do so, we use a hybrid approach for solving the
algebraic systems naturally arising when mounting a signature-forgery attack.
The basic idea is to compute Gröbner bases of several modified systems rather
than a Gröbner basis of the initial system. It turns out that our approach is
efficient in practice. We have obtained a complexity bounded from above by
240.3 (or 9 hours of computation) to forge a signature on a set of parameters
proposed by the designers of UOV.

1. Introduction

Multivariate Cryptography is the set of all the cryptographic primitives using mul-
tivariate polynomials. The use of algebraic systems in cryptography dates back to
the mid eighties, and was initially motivated by the need for alternatives to num-
ber theoretic-based schemes. Indeed, although quite a few problems have been
proposed to construct public-key primitives, those effectively used are essentially
factorization (e.g. in RSA [17]) and discrete logarithm (e.g. in Diffie-Hellman key-
exchange [11]). It has to be noted that multivariate systems enjoy low computa-
tional requirements; moreover, such schemes are not concerned with the quantum
computer threat, whereas it is well known that number theoretic-based schemes
like RSA, DH, or ECDH are [18].
Multivariate cryptography has become a dynamic research area, as reflected by
the ever growing number of papers in the most famous cryptographic conferences.
This is mainly due to the fact that an European project (NESSIE1) has advised
in 2003 to use such a scheme (namely, sflash [8]) in the smart-card context.
Unfortunately, Dubois, Fouque, Shamir and Stern [10] discovered a sever flaw in
the design of sflash, leading to an efficient cryptanalysis of this scheme. In this
paper, we investigate the security of another multivariate signature scheme, the
so-called Unbalanced Oil and Vinegar UOV scheme [15]. To this end, we have used

1https://www.cosic.esat.kuleuven.be/nessie/
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Gröbner bases [6, 7] and efficient algorithms for computing such bases; namely F5

[14].

1.1. Organization of the Paper

After this introduction, the paper is organized as follows. In Section 2, we introduce
the main concern of this paper, namely the Unbalanced Oil and Vinegar UOV
scheme [15]. To our knowledge, no successful attack has been reported on this
scheme. In section 3, we will present an efficient algebraic attack against UOV.
Our attack can be viewed as a natural extension of [5, 4].

2. Unbalanced Oil and Vinegar Scheme

The most interesting type of one-way function used in multivariate cryptography
is based on the evaluation of a set of algebraic polynomials p =

(
p1(x1, . . . , xn), . . .

, pm(x1, . . . , xn)
)
∈ K[x1, . . . , xn]m, namely :

m = (m1, . . . ,mn) ∈ Kn 7−→ p(m) =
(
p1(m), . . . , pm(m)

)
∈ Km.

The mathematical hard problem underlying this one-way function is :
Polynomial System Solving (PoSSo)
Instance : polynomials p1(x1, . . . , xn), . . . , pm(x1, . . . , xn) of K[x1, . . . , xn].
Question : Does there exists (z1, . . . , zn) ∈ Kn s. t. :

p1(z1, . . . , zn) = 0, . . . , pm(z1, . . . , zn) = 0.

To introduce a trapdoor, we start from a carefully chosen algebraic system :

f(x) =
(
f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)

)
∈ K[x1, . . . , xn]m,

which is easy to solve. That is, for all c = (c1, . . . , cm) ∈ Km, we have an efficient
method for describing/computing the zeroes of :

f1(x1, . . . , xn) = c1, . . . , fm(x1, . . . , xn) = cm.

In order to hide the specific structure of f , we usually choose two linear transfor-
mations – given by invertible matrices – (S,U) ∈ GLn(K)×GLm(K) and set(

p1(x), . . . , pm(x)
)

=
(
f1(x · S), . . . , fm(x · S)

)
· U,

abbreviated by p(x) = f(x · S) · U ∈ Km to shorten the notation.
The public-key of such systems will be the polynomials of p and the secret-key is
the two matrices (S,U) ∈ GLn(K)×GLm(K) and the polynomials of f .
To generate a signature s ∈ Kn of a digest m ∈ Km, we compute s′ ∈ Kn such
that f(s′) = m · U−1. This can be done efficiently due to the particular choice of
f . Finally, the signature is s = s′ · S−1 since :

p(s) = f(s′ · S−1 · S) · U = m · U−1 · U = m.

To verify the signature s ∈ Kn of the digest m ∈ Km, we check whether the equality
: “p(s) = m” holds. We would like to emphasize that most of the multivariate
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signature schemes proposed so far (e.g. [8, 19]), including UOV [15], follow this
general principle. For UOV, the matrix U is simply equal to the identity matrix.
The main specificity of UOV lies in the way of constructing the inner polynomi-
als f(x) =

(
f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)

)
∈ K[x1, . . . , xn]m. Kipnis, Patarin,

and Goubin [15] proposed the following construction. The n variables x1, . . . , xn

are partitioned in two sets {xi}i∈V and {xi}i∈O where V = {1, . . . , n−m} is the
set of vinegar indices and O = {n − m + 1, . . . , n} the set of oil indices. Each
polynomial fk of the secret mapping has a quadratic part f (2)

k of the special form
:

f
(2)
k (x1, . . . , xn) =

∑
(i,j)∈V×V |i≤j

α
(k)
i,j xixj +

∑
(i,j)∈V×O

β
(k)
i,j xixj . (1)

As a consequence of this very special structure, the equations induced by equa-
tions (1) when fixing the vinegar variables to constant values are linear in the
remaining (oil) variables. This provides an efficient method for inverting system
f(x) with a high probability — the linear system in the oil variables we obtain is
invertible with high probability. For more details, we refer the reader to the initial
paper [15].

2.1. Recommended Values for UOV

The authors of UOV have recommended in [15, 16] to choose parameter values such
that n > 3m. In particular, they proposed [16] the following set of parameters :
K = F24 ,m = 16, n = 32 (or 48). We will show that this set of parameters does
not guaranty a sufficient level of security.

3. Description of the Attack

We now describe our attack against UOV [15]. Our goal is to forge a valid signature
s′ ∈ Kn for a given digest m = (m1, . . . ,mm) ∈ Km. In other words, we want to
find an element of the variety :

VK(p1 −m1, . . . , pm −mm) ⊆ Kn,

with p1, . . . , pm ∈ K[x1, . . . , xn] the polynomials of UOV public-key. We recall that
the parameters are K = F24 ,m = 16 and n = 32 (or 48) .
The main limitation for computing directly this variety is due to the fact that
the number of equations (m) is smaller that the number of variables (n). As a
consequence, there is at least (#K)n−m valid solutions to the signature-forgery
system. Hence, even if you suppose that you have been able to compute a Gröbner
basis for the degree reverse lexicographical ordering (DRL), you will probably not
be able to recover efficiently the Lex-Gröbner basis using FGLM [12]. The reason
is that the complexity of FGLM is polynomial in the size of the variety.
A natural way to overcome these practical limitations is to randomly specialize
(i.e. fix) n−m variables. We will have to solve a system having the same number
of variables and equations (m). For each specification of the n −m variables, we
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can always find a solution of the new system yielding to a valid signature. We also
mention that the specialized system will have very few solutions in practice. Thus,
the cost of computing the variety will be now essentially the cost of computing a
Gröbner basis. It is exactly at this point that the authors of [5], which also tried
to attack UOV using Gröbner basis, stopped their analysis.
The important observation here is that – after having specified n−m variables –
the new system will behave like a semi-regular system [1, 3, 2]. We will present
latter in this section experimental results supporting this claim. Note that such
a behavior has been also observed, in a different context, in [20]. The degree of
regularity of a semi-regular system of m variables and equations is equal to m+ 1.
In our context (m = 16), this remains out of the scope of the F5 algorithm. This
is exactly the reason explaining why Braeken, Wolf, Preneel concluded that their
attack can not be efficient.
To avoid this difficulty, we can use the fact that #K is relatively small and try to
decrease the degree of regularity by specializing r ≥ 0 more variables (in addition
of the n−m variables already fixed). Thus, we will have to solve a systems of m
equations with m−r variables, which behave like semi-regular systems. This allows
to decrease the degree of regularity, and thus the complexity of F5. For instance,
the degree of regularity of a semi-regular system of m−1 variables and m equations
is approximately equal to

⌈
(m+1)

2

⌉
. More generally, the degree of regularity is given

by the index of the first non-positive coefficient of the series[1, 3, 2] :∏m
i=1(1− z2)

(1− z)m−r
.

In the following table, we have quoted the degree of regularity observed in our
experiments. Namely, the maximum degree reached during F5 on systems obtained
by fixing n −m + r variables (r ≥ 0) on signature-forgery systems. We have also
quoted the theoretical degree of regularity of a semi-regular system of m equations
in m − r variables. These experiments suggest that the systems obtained when
mounting a specify+solve signature forgery attack against UOV behave like semi-
regular systems.

m m− r r dreg (theoretical) dreg (observed)
16 15 1 9 9
16 14 2 7 7
16 13 3 6 6

By fixing variables, we can obtain a significant gain on the complexity the F5. On
the other hand, as soon as r > 0, each specification of the r variables will not
necessarily lead to an algebraic system whose set of solutions is not empty . But,
we know that there exists a least one guess of the r variables (in practice exactly
one) leading to a system whose zeroes allow to construct a valid signature. Thus,
we have to perform an exhaustive search on the r new variables. In other words,
instead of computing one Gröbner basis of a system of m equations and variables,
we compute (#K)r Gröbner bases of “easier” systems (m equations with m − r
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variables). We have then to find an optimal tradeoff between the cost of F5 and
the number of Gröbner basis that we have to compute.

In the table above, we have quoted practical results that we have obtained with F5

when solving systems obtained by fixing n−m+ r variables (r ≥ 0) on signature-
forgery systems. In this table, TF5 is the time of computing one Gröbner basis
with F5. We also included the corresponding number of operations (field multi-
plications) NopF5

performed by F5, and the total number N of operations of our
attack (i.e. the cost of computing 24·r Gröbner bases). Finally, we have quoted the
maximum memory, denoted Mem, used during the Gröbner basis computation.
The experimental results have been obtained using a bi-pro Xeon 2.4 Ghz with 6
Gb. of Ram.

m m− r r TF5 Mem NopF5
N

16 15 1 ≈ 1 h. 3532 Mb. 236.9 240.9

16 14 2 126 s. 270 Mb. 232.3 240.5

16 13 3 9.41 s. 38 Mb. 228.7 240.7

Once can see that the most interesting tradeoff is obtained with r = 2. In this case,
we obtain a complexity of 240.3, which is approximatively equivalent to 9 hours
of computations. It is interesting to remark that the complexity of our attack not
relies on the number of variables n, but only on the number of polynomials. So,
the result presented here are valid for n = 32, or n = 48 (and for any n = k ·m,
with k ≥ 1).
As the consequence, the parameters of UOV [16] that we have studied should be no
longer recommended. We believe that one should use the other set of parameters,
with K = F2, proposed in [16].
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Journal of Pure and Applied Algebra, vol. 139, pp. 61–68, 1999.

[14] J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Basis without
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Université Pierre et Marie Curie Paris 6
UFR Ingénierie 919
LIP6 Passy Kennedy, bureau 733
Boite Courrier 169
4, Place Jussieu 75252 Paris cedex 05

e-mail: Jean-Charles.Faugere@inria.fr
e-mail: ludovic.perret@lip6.fr


