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1 Introduction

For any two binary vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Fn
2 , define the sets

δ(x, y) = {i : xi 6= yi} and sup(x) = {i : xi 6= 0}. Denote the size of a set A with |A|. Then the

Hamming distance between the binary vectors x and y is equal to d(x, y) = |δ(x, y)| and the

Hamming weight of x is wt(x) = | sup(x)|. Instead of using the Hamming distance d(x, y) and

norm wt(x), we will work with the metric defined by δ(x, y) and the corresponding norm sup(x).

In this way, many definitions and properties will be expressed by sets instead of numbers, which

in fact corresponds to the cardinality of certain sets. For this purpose monotone increasing and

monotone decreasing sets are considered. Consequently, this leads to a better description of the

properties. This approach has already been applied in [12] to codes (e.g. minimum distance,

generator and parity-check matrix, minimal codeword, etc.) and in [3] to Boolean functions (e.g.

resilient, with propagation characteristics, etc.).

In this paper we will investigate the properties of zigzag functions. The zigzag functions, intro-

duced in [2] and used for efficient oblivious transfer in [14] were later generalized to s-zigzag

functions for 2 ≤ s ≤ n in [8]. Zigzag functions are related to self-intersecting codes and orthogo-

nal arrays as it is shown in [2] and [18]. We generalize the notion of zigzag functions and prove a

connection with a subclass of ∆-resilient functions, introduced in [3]. This new definition results

in a better understanding of the properties of zigzag functions and provides a better insight in

the space defined by the new metric.

2 Background

Define the set Pn = {1, . . . , n} and denote the power set of Pn by P (Pn). Call the set which

contains all
(
n
k

)
subsets of weight k from Pn by Pk,n for 1 ≤ k ≤ n. Recall that the Hamming

distance between the binary vectors x and y is equal to d(x, y) = |δ(x, y)| and the Hamming



weight of x is wt(x) = | sup(x)|. It was noted in [12] that δ(x, y) has similar properties as a

metric and sup(x) has similar properties as a norm. Notice that sup(x) and δ(x, y) = sup(x− y)

are subsets of Pn and that Pn is partially ordered (i.e., x � y if and only if sup(x) ⊆ sup(y)).

In order to work in the metric defined by δ(x, y) and the corresponding norm sup(x), we will use

the notion access structure (Γ, ∆), or shortly denoted by Γ . The set Γ (Γ ⊆ P (Pn)) is monotone

increasing and the set ∆ (∆ ⊆ P (Pn)) is monotone decreasing. A monotone increasing set Γ

can be described efficiently by the set Γ− consisting of the minimal elements (sets) in Γ , i.e.,

the elements in Γ for which no proper subset is also in Γ . Similarly, the set ∆+ consists of the

maximal elements (sets) in ∆, i.e., the elements in ∆ for which no proper superset is also in

∆. We set Γ = ∆c (∆c = P (Pn) \ ∆). Note that Γ is monotone increasing if and only if ∆ is

monotone decreasing.

The dual sets ∆⊥ and Γ⊥ to Γ and ∆, respectively, are defined by Γ⊥ = {A : Ac ∈ ∆} and

∆⊥ = {A : Ac ∈ Γ}. It is easy to see that ∆⊥ is monotone decreasing and Γ⊥ is monotone

increasing. For two monotone decreasing sets ∆1 and ∆2 define ∆1 ]∆2 = {A = A1 ∪A2;A1 ∈
∆1, A2 ∈ ∆2}. Note that ∆1 ] ∆2 is again a monotone decreasing set. We refer to the case

∆ = {A : |A| ≤ t} as a threshold case.

Definition 1. [10] A monotone decreasing set ∆ is called Q2 if for all sets A,B ∈ ∆ ⇒ A∪B (
P . More general, ∆ is called Qs if the union of every s sets do not cover the whole set. A

monotone increasing set Γ is called Qs if and only if ∆ = Γ c is Qs for 2 ≤ s ≤ n.

The property Q2 could be rephrased as follows: there exists no set A in ∆ whose complement

also belongs to ∆. For Q2 systems, the following relation is easy to derive.

Theorem 1. ∆⊥ is Q2 if and only if ∆⊥ ⊆ ∆ (and thus if and only if Γ ⊆ Γ⊥).

Let Γ and Γ ′ be access structures on Pn. It is said that Γ ′ dominates Γ if and only if Γ ′ ⊆ Γ .

Definition 2. A monotone decreasing set ∆ is said to be self-dual if ∆⊥ = ∆. Analogously, a

monotone increasing set is called self-dual if Γ = Γ⊥.

A Q2 access structure Γ is called minimal Q2 if for every access structure Γ ′ which dominates

Γ , it follows that Γ ′ is not Q2. A Q2 monotone structure ∆ is called maximal Q2 if Γ = ∆c is

a minimal Q2 access structure. It is easy to derive the following lemma.

Lemma 1. An access structure Γ is minimal Q2 if and only if Γ is self-dual.

3 Zigzag functions

We start with a generalization of the definition of vector resilient functions introduced in [1,

6]. After proving that zigzag functions are a special type of vector resilient functions, we derive



some bounds on the parameters of the zigzag functions. This is followed by two constructions

of zigzag functions. Finally, relations with orthogonal arrays, intersecting codes and quorum

systems are pointed out.

3.1 Definition

Definition 3. Let f be a vector function from Fn
2 into Fk

2. The function f is said to be resilient

or unbiased with respect to the subset T = {i1, . . . , it} ⊆ Pn if for any (a1, . . . , at) ∈ Ft
2 and

β ∈ Fk
2 holds that

|{x|x = (x1, . . . , xn) ∈ Fn
2 , xj1 = a1, . . . , xjn = at, f(x) = β}| = 2n−t−k.

If f is resilient with respect to all sets of weight less or equal than t, then f is said to be an

(n, k, t)-resilient function. An (n, k, 0)-resilient function is called balanced vector function.

The definition of (n, k, t)-resilient functions can be easily generalized to the definition of (n, k,∆)-

resilient functions, following the approach of [3].

Definition 4. A vector function f from Fn
2 into Fk

2 is called (n, k,∆)-resilient if f is resilient

for all sets A ∈ ∆.

When ∆ = {A : |A| ≤ t} the definitions of ∆-resilient and t-resilient function coincide.

Definition 5. [2] A function f from Fn
2 into Fk

2 is called zigzag if for all sets A ⊆ Pn the

function f is resilient with respect to at least one of the sets A ⊆ Pn or Ac = Pn \A.

3.2 Bounds on zigzag functions

A well known trivial bound for existence of (n, k, t)-resilient functions is t ≤ n − k [1, 6]. Con-

structions of (n, k, t)-resilient functions can be found in [20]. We will prove that zigzag functions

are a special type of vector resilient functions.

Theorem 2. A function f is zigzag function if and only if f is an (n, k,∆)-resilient function,

for which Γ⊥ is a Q2 structure.

Proof. Consider a (n, k,∆)-resilient function f . Then for any subset A we have either A ∈ ∆ or

A ∈ Γ . If A ∈ ∆ then, by the definition of (n, k,∆)-resilient function, f is resilient with respect

to A. In the second case if A /∈ ∆ (i.e. A ∈ Γ ) then by definition (of dual access structure)

Ac ∈ ∆⊥. So, in order to have Ac ∈ ∆ we need to require that ∆⊥ ⊆ ∆. But the relation

∆⊥ ⊆ ∆ is equivalent to Γ ⊆ Γ⊥, which is equivalent Γ⊥ to be Q2. On the other hand, a ∆-

resilient function, such that Γ⊥ is a Q2 structure, satisfies the zigzag property, as for all A ⊆ Pn

either A or Ac belongs to ∆. ut



Remark 1. If f is resilient with respect to either A or Ac for all A ⊆ P, but not to both, then f

is a (n, k,∆)-resilient function with ∆ self-dual, because of the additional property Γ⊥ ∩∆ = ∅
and thus ∆ ⊆ ∆⊥ should hold.

Thus for (n, k,∆)-resilient function the trivial bound for existence can be restated as follows: ∆ ⊆
P (Pn−k,n) or equivalently for any A ∈ ∆ we have |A| ≤ n− k. (see [18, Lemma 3.1]) Applying

Theorem 2 to the threshold case, i.e. for (n, k, t)-resilient functions we get that n − t − 1 ≤ t

(since ∆⊥ ⊆ ∆), hence n ≤ 2t + 1. Now combining this fact with the trivial bound we get

dn−1
2 e ≤ t ≤ n−k, hence n ≥ 2k−1 which is [18, Lemma 3.2]. Therefore it follows that t ≥ k−1

(see [18, Theorem 3.3]). These results can be generalized as follows:

Theorem 3. Let f be a zigzag function from Fn
2 into Fk

2 then the following properties hold for

the corresponding (n, k,∆)-resilient function:

(i) ∆⊥ ⊆ ∆ ⊆ P (Pn−k,n); (ii) P (Pk−1,n) ⊆ ∆; (iii) 2k − 1 ≤ n.

Proof. The first property follows from Theorem 2 and the existence property of resilient vector

functions. For the second property, consider an element A of weight less or equal than k − 1.

Let A /∈ ∆ (i.e. Ac ∈ Γ ). Then |Ac| ≥ n− k + 1 and thus Ac ∈ Γ because of the first property.

This is in contradiction with the definition of zigzag functions, since both A and Ac are in Γ .

The condition on the dimension of the zigzag function is obtained by combining property (i)

and (ii): P (Pk−1,n) ⊆ P (Pn−k,n) and hence k − 1 ≤ n− k. ut

3.3 Constructions

It is clear from the definition that any linear combination of the components of a (∆−) resilient

function is a (∆−) resilient Boolean function. Some constructions of resilient Boolean functions

can be immediately generalized for vector functions, which in their turn can be used in order

to derive constructions for zigzag functions, as previously done in [5]. The connection between

zigzag functions and (n, k,∆)-resilient functions naturally leads to constructions of new zigzag

functions from old.

Theorem 4. [5] Let f be a zigzag function from Fn
2 into Fm

2 and g be a balanced vector function

from Fm
2 into Fk

2, then g ◦ f is a zigzag function from Fn
2 into Fk

2.

Proof. The theorem follows immediately from the fact that (∆-) resiliency is kept invariant after

applying a balanced transformation on the output. See also [3, Theorem 16]. ut

Theorem 5. [5] Let f1 : Fn1
2 → Fk

2 and f2 : Fn2
2 → Fk

2. Then the function f : Fn1+n2
2 → Fk

2 :

(x, y) 7→ f(x, y) = f1(x)+f2(y) is a zigzag function if and only if at least one of the two functions

f1 or f2 are zigzag functions.



Proof. Let f1 be a zigzag function, which implies that f1 is (n, k,∆1)-resilient with Γ1 ⊆ Γ⊥
1 and

let f2 be just an (n, k,∆2)-resilient function. Then as proven in [3], f is an (n, k,∆ = ∆1]∆2]S)-

resilient function where S = {∅, {1}, · · · , {n1}, {n1 +1}, · · · , {n2 +n1}}. Moreover, it holds that

Γ ⊆ Γ⊥, or f is a zigzag function. ut

Remark 2. The previous theorem also holds for the direct sum of an arbitrary number r with

r ≥ 2 functions. If at least one of these r functions are zigzag, the direct sum is also a zigzag

function.

3.4 Relation with Orthogonal arrays

For the threshold case, the connection between zigzag functions, resilient functions and large

set of orthogonal arrays was derived in [18, Theorem 3.5],[16, Theorem 5.1], and [9, Theorem

5.2]. We now generalize these results in the new metric. Let us first generalize the concepts of

orthogonal array and large set of orthogonal arrays.

Definition 6. An orthogonal array, denoted by OA(M,n, q, ∆), is an M × n matrix V with

entries from a set of q elements, strength ∆ which is a decreasing monotone set and index µ.

Any set A ∈ ∆+ of columns of V contains all q|A| possible row vectors exactly µ = Mq−|A| times.

A large set of orthogonal arrays OA(M,n, q,∆), denoted by LOA(M,n, q,∆) is a set of qn/M

simple OA(M,n, q, ∆) such that every n-tuple occurs as a row in exactly one of the orthogonal

arrays in the set.

Note that for ∆ = {A : |A| ≤ t}, these definitions coincide with the definitions of OA(M,n, q, t)

and LOA(M,n, q, t). From property (ii) of Theorem 3, we immediately derive:

Corollary 1. If there exists a zigzag function from Fn
2 into Fk

2 with k ≥ 2, which corresponds to a

∆-resilient function, then there exists a LOA(2n−k, n, 2,∆) and hence also an OA(2n−k, n, 2,∆)

exists.

In the case of zigzag function with respect to self-dual access structure ∆, we get the following

equivalence relation:

Theorem 6. A zigzag function f from Fn
2 into Fk

2 with k ≥ 2, which corresponds to a ∆-resilient

function, where ∆ is self-dual, exists if and only if there exists a LOA(2n−k, n, 2,∆) and thus

an OA(2n−k, n, 2,∆).

Proof. The derivation of the existence of a LOA from a zigzag function follows immediately

from Corollary 1. Conversely, consider a LOA(2n−k, n, 2,∆). Analogously as in the proof of [17,

Theorem 2.1], define the sets Ay = A(y1,...,yk) which contain the elements of the 2k orthogonal

arrays in the large set for all y ∈ Fk
2. Then the function defined by f(x1, . . . , xn) = (y1, . . . , yk) ⇔

(x1, . . . , xn) ∈ A(y1,...,yk) represents a zigzag function since ∆ = ∆⊥. ut



4 Relation with Intersecting Codes and Quorum system

In [2], the connections with linear zigzag functions and self-intersecting codes were considered.

A self-intersecting code [7] is a code for which sup(x) ∩ sup(y) 6= 0 for all nonzero codewords

x, y. On the other hand (weakly) self-dual codes are defined as follows. Code C is called weakly

self-dual if C $ C⊥, a code C is called self-dual if C = C⊥. It is easy to see that for a weakly

self-dual code C there exists a non-invertible matrix W such that WH = G, where G and H

are the generator and parity check matrices of the code, while for self-dual code C one has

H = G. For a code C the set of possible (allowed) distances is defined in [12] by Γ (C) = {A :

there exist x, y in C, x 6= y such that δ(x, y) ⊆ A} and the set of forbidden distances is defined

by ∆(C) = Γ (C)c. It is easy to see that ∆(C) is monotone decreasing and that Γ (C) is monotone

increasing. If ∆(C) = {A : |A| < d} then C is an [n, k, d] code.

Theorem 7. [2] The function f : Fn
2 → Fk

2 defined by f(x) = xMT is a linear zigzag function

if and only if M is the generator matrix of an [n, k, d] self-intersecting code C.

In [12] the authors show that any weakly self-dual code corresponds to an access structure

with Q2 property, while any self-dual code corresponds to an access structure which satisfies

the minimal Q2-property. However, it is still an open problem whether the inverse also holds,

i.e. whether to any Q2 or minimal Q2 access structure corresponds a weakly self-dual code or

self-dual code respectively. Since there exists a relation between the monotone span programs

of access structures and the generator matrices of the corresponding codes, this property could

be used to derive new constructions of zigzag functions.

Quorum set system and quorum access structures have been used in the study of problems

related to mutual exclusion [15], data selective dissemination of information [19], distributed

access control, digital signatures [13], multi party computation [4], etc.

Definition 7. [4] A set system Q is a collection of subsets Qi ⊆ Pn. A quorum system is a set

system Q that has the intersection property: Qi ∩ Qj 6= ∅ for all Qi, Qj ∈ Q. The sets of the

system are called quorums.

Definition 8. [4] Let Q be a quorum system. Let Γ (Q) = {A : Q ⊆ A,Q ∈ Q} be the collection

of sets containing some quorum, and let ∆(Q) = {B : Bc ∈ Γ (Q)} be the collection of sets whose

complement contains a quorum. The quorum access structure of Q is the tuple (Γ (Q),∆(Q)).

Consider for instance the tuple (Γ⊥,∆). Beaver and Wool [4] proved that in the passive case

multi-party computation is unconditionally secure provided that the tuple (Γ⊥,∆) is a quorum

access structure, where the quorum system is Q = (Γ⊥)−.



Lemma 2. The tuple (Γ⊥,∆) is a quorum access structure if and only if ∆ satisfies the Q2

property.

Proof. The Q2 property for ∆ by definition states that ∀A,B ∈ ∆ : A∪B 6= P, then ∀Ac, Bc ∈
Γ⊥ : Ac ∩Bc = (A ∪B)c 6= ∅. So, the quorum system (Γ⊥)− is equivalent to ∆ being Q2. ut

This result leads to the following equivalence.

Theorem 8. The access structure (Γ (C),∆(C)⊥) is a quorum system if and only if C is an

intersecting code.

5 s-Zigzag Functions

In [8] the authors generalized the notion of zigzag function to s-zigzag function, as follows.

Definition 9. [8] Call A1, . . . , As ∈ Λ an s-partition of P in Λ if A1 ∪ · · · ∪ As = Pn and

Ai∩Aj = ∅ for all 1 ≤ i < j ≤ s. A function f from Fn
2 into Fk

2 is called s-zigzag if f is resilient

with respect to at least s − 1 subsets of any s-partition. A function is called fully zigzag if it

satisfies s-zigzag property for 2 ≤ s ≤ n.

Thus zigzag functions are by definition 2-zigzag functions. Now we will generalize Theorem 2 to

the new setting.

Theorem 9. A function f is an s-zigzag function if and only if it is an (n, k,∆)-resilient

function, such that Γ⊥ is a Qs structure.

Proof. Consider an (n, k,∆)-resilient function f such that Γ⊥ is a Qs structure. Let us take

an s partition of Pn. For A1, there are two possibilities. First, if A1 ∈ Γ⊥, it follows that

A2 ∪ · · · ∪As ∈ ∆ and thus f is resilient with respect to s− 1 sets. In the second case, A1 /∈ Γ⊥,

which implies that A1 ∈ ∆⊥ and we need to consider the rest of the sets A2, . . . , As. For the set

A2, we have the same two possibilities. If A2 ∈ Γ⊥, then A1 ∪A3 ∪ · · · ∪As ∈ ∆. Otherwise we

need to proceed in the same way. In the worst case (when A1, A2, · · · , As−1 ∈ ∆⊥ we arrive at As

and again we have two possibilities. First, if As ∈ Γ⊥, it follows that A1∪A2 · · ·∪As−2∪As ∈ ∆

and thus f is resilient with respect to s− 1 sets. Or in the second case As ∈ ∆⊥ so all Ai ∈ ∆⊥

and A1 ∪ · · · ∪As = Pn, which is in contradiction with the Qs property of ∆⊥. ut

Corollary 2. Every s-zigzag function f is also an s′-zigzag function for s ≤ s′ ≤ n. Thus every

(2-) zigzag function f is fully zigzag function.

Similar as for 2-zigzag functions, an s-zigzag function f is resilient with respect to exactly s− 1

elements from the partition if and only if the additional property Γ⊥ ∩∆ = ∅ holds.



From the definition of Qs, it is clear that for all 2 ≤ s ≤ n, a Qs structure implies a Q` structure

with ` ≤ s. Note that Γ⊥ being Qs structure implies for ∆ (changing the monotonicity) that

any s-zigzag function is also an `-zigzag function with s ≤ ` ≤ n. Thus fully zigzag functions

are equivalent to zigzag functions.

Note that the construction from Section 3.3 can also be applied to the construction of s-zigzag

functions for any 2 ≤ s ≤ n. Next, in the similar way as in [8, Theorem 5] we derive the following

statement.

Theorem 10. If f from Fn
2 into Fk

2 is an s-zigzag function where n and s have different parity

and k >
⌊

n
2

⌋
+

⌊
s−2
2

⌋
, then f is (n, k,∆)-resilient where P⌊

n−(s−2)
2

⌋
,n
⊆ ∆.

Proof. Suppose f is resilient with respect to the set Is of size
⌊

n−(s−2)
2

⌋
. Consider the s-partition

which contains the set Is, s− 2 subsets of size 1, and a subset Ie with n− (s− 2)−
⌊

n−(s−2)
2

⌋
=⌈

n−(s−2)
2

⌉
elements. Note that this partition is the worst case we have to consider. By the trivial

bound for the existence of resilient functions, we derive that the f cannot be resilient with

respect to Ie if and only if |Ie| =
⌈

n−(s−2)
2

⌉
≥ n − k. The last inequality can be rewritten as

k >
⌊

n
2

⌋
+

⌊
s−2
2

⌋
. ut

Combining Theorem 10 and the trivial bound ∆ ⊆ P (Pn−k,n) (see property (i) of Theorem

3), we derive a condition on the dimension n of the zigzag function f from Fn
2 into Fk

2. This

generalizes and simplifies the proof of [8, Lemma 4].

n ≥

{
2k − s + 2, if n, s are both odd or even;

2k − s + 1, otherwise.

Theorem 10 has a nice implication that a relation can be found between s-zigzag functions and

orthogonal arrays. Similar to the proof of Theorem 6 we have:

Theorem 11. [8] An s-zigzag function f : Fn
2 → Fk

2 where n and s have different parity and

k >
⌊

n
2

⌋
+

⌊
s−2
2

⌋
, exists if and only if a LOA(2n−k, n, 2,∆) exists.

We generalize the notion of quorum system (see Definition 7) to s-quorum system as a system

that has the s-intersection property namely ∩s
j=1Qij 6= ∅ for all Qij . Then define an s-quorum

access structure analogously to Definition 8. Now it is easy to prove a relation between the Qs

property for ∆ and the s-quorum systems.

Lemma 3. The tuple (Γ⊥,∆) is an s-quorum access structure if and only if ∆ satisfies the Qs

property.

Thus the result of Hirt and Maurer [10] in the active case multi-party computation can be

translated in this context as follows: every function can be securely computed, provided that

the tuple (Γ⊥,∆) is a 3-quorum access structure, where the 3-quorum system is Q = (Γ⊥)−.



Further we generalize intersecting codes to s-intersecting codes, namely we say that a code is s-

intersecting code for s ≥ 2 if the intersection of any s non-zero codewords is not empty. Analogous

theorem for relation between s-intersecting codes and s-quorum systems can be proven.

Theorem 12. The access structure (Γ (C),∆(C)⊥) is an s-quorum system if and only if C is an

s-intersecting code.
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