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Abstract. Among private set operations, the privacy preserving element reduction of a multi-

set can be an important tool for privacy enhancing technology as itself or in the combination

with other private set operations. Recently, a protocol, over-threshold-set-union-protocol, for a

privacy preserving element reduction method of a multiset was proposed by Kissner and Song in

Crypto 2005. In this paper, we point out that there is a mathematical flaw in their polynomial

representation of element reduction of a multiset and the resulting protocol error from the flaw

in the polynomial representation of a multiset. We correct their polynomial representation of a

multiset and propose an over-threshold-set-operation-protocol based on the corrected represen-

tation. Our over-threshold-set-operation-protocol can be combined with a privacy preserving set

operation and outputs those elements appears over the predetermined threshold number times

in the resulting multiset of set operation.

Key words : Privacy-Preserving Operations, Set Operations, Element Reduction, Multi-party

Computations

1 Introduction

Private set operations, such as set intersection, set union and element reduction of multisets,

are important tools for privacy preserving of many applications. The element reduction(by

d) method for a multiset S, a set allows a repetition of elements, is a method to get a

multiset, denoted by Rdd(S), after reducing the repetition number of each element by d

from the multiset S. Whenever one sees an element a in Rdd(S), then he/she knows that a

appears more than d times in S. A private element reduction method of a multiset enables



controlled disclosure of private information and it can be combined with other private set

operations to support controlled privacy level of the output of the private set operation. The

element reduction of a multiset also can be used to develop privacy preserving techniques

for distributed network monitoring. In distributed network monitoring service, each node

monitors anomalous local traffic, and a distributed nodes collectively identify behaviors that

are identified by at least a threshold t number of monitors.

Monitoring individuals’ network usage requires appropriate privacy preserving of network

users. In some cases, monitoring of individuals’ network behaviors generates records subject

to a system of protections under Privacy Act (e.g, FERPA). The privacy framework includes

notification of policies; minimization of collection of data; limits on secondary use; nondisclo-

sure and consent; a need to know before granting third parties access to data. On the other

hand, in order to run normal network flow, it is necessary to control anomalous behaviors

which could threat the normal flow of the network system. By using private element reduc-

tion method with respect to a threshold t on a multiset, one can identify just those elements

appeared at least t times in the multiset but cannot obtain any information of the elements

appeared less than t times. Hence the private element reduction supports an appropriate

privacy preserving in monitoring network system within Privacy Act.

In Crypto 2005, Kissner and Song studied privacy-preserving set operations, such as set

intersection, set union and element reduction of multisets ([6]). By using the polynomial

representation of set operations and public key encryption scheme with homomorphic prop-

erty, they proposed protocols for privacy preserving set intersection and set union. They also

proposed a protocol, Over-Threshold Set-Union protocol, by using their polynomial represen-

tation of element reduction of a multiset.

In this paper, we point out that there is a mathematical flaw in their polynomial repre-

sentation of element reduction of a multiset. Due to this mathematical flaw, it may happen

to identify elements appeared in the multiset less than the threshold t as elements appeared

at least t times in the multiset in their proposed Over-Threshold Set-Union protocol. Hence

when we apply Over-Threshold Set-Union protocol to network monitoring system, it may

happen to identify user with normal behavior as an user with an anomalous behavior and

this leads privacy threat to normal user. Hence it could be a serious problem in privacy pre-

serving techniques and it is necessary to correct the protocol. We give a correction in Kissner
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and Song’s polynomial representation of element reduction of a multiset. We also modify their

Over-Threshold Set-Union protocol and propose an Over-Threshold Set-Operation protocol

based on the corrected polynomial representation. Our over-threshold set-operation proto-

col can be combined with any privacy preserving set operation and outputs those elements

appears in the resulting multiset of set operation over the predetermined threshold number.

The security proof of Kissner and Song’s protocol can be preserved in our protocol, since our

protocol differs from Kissner and Song’s protocol only in the way of representing the element

reduction of a multiset as polynomials. Hence our corrected over-threshold set-operation pro-

tocol is provably secure in both standard adversary models: honest-but-curious(HBC) and

malicious adversary.

Our paper is organized as follows. In Section 2, we introduce some preliminaries, such as

adversary model and mathematical tools used in this paper. In Section 3, we describe Kissner

and Song’s polynomial representation of set union, set intersection and element reduction of a

multiset and point out a mathematical flaw in the element reduction case and errors in their

over-threshold set-union protocol. We correct Kissner and Song’s polynomial representation

of element reduction of a multiset and propose an over-threshold set-operation protocol based

on the correction in Section 4. We conclude our paper in Section 5.

2 Preliminaries

In this section, we describe the adversary models and cryptographic tools used in this paper.

Most can be found in [6, 7].

2.1 Adversary Model

In this paper, we propose a modified privacy-preserving element reduction protocol which is

secure under the honest-but-curious adversary model, and it can be extended to a protocol

which is secure under malicious adversary model. In our protocol, we consider standard ad-

versary models : honest-but-curious adversary model and malicious adversary model, that can

be described informally as follows [6, 7]. We can find the formal definitions of these models in

[5].

Honest-But-Curious Adversary In this model, all parties act according to their pre-

scribed actions in the protocol. Security in this model is straightforward: no player or
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coalition of c(< n) players (who cheat by sharing their private information) gains infor-

mation about other players’ private input sets, other than what can be deduced from the

result of the protocol. This is formalized by considering an ideal implementation where

a trusted third party (TTP) receives the inputs of the parties and outputs the result of

the defined function. We require that in the real implementation of the protocol, that

is, one without a TTP each party does not learn more information than in the ideal

implementation.

Malicious Adversary In this model, an adversary may behave arbitrarily. In particular,

we cannot hope to prevent malicious parties from refusing to participate in the protocol,

choosing arbitrary values for its private input set, or aborting the protocol prematurely.

Instead, we focus on the standard security definition (see, e.g., [5]) which captures the

correctness and the privacy issues of the protocol. Informally, the security definition is

based on a comparison between the ideal model and a TTP, where a malicious party may

give arbitrary input to the TTP. The security definition is also limited to the case where

at least one of the parties is honest. Let Γ be the set of colluding malicious parties; for any

strategy Γ can follow in the real protocol, there is a translated strategy that it could follow

in the ideal model, such that, to Γ , the real execution is computationally indistinguishable

from execution in the ideal model.

2.2 Homomorphic Public key Encryption scheme

To perform the privacy-preserving set operation without trusted third party, we need a public

key encryption scheme with special feature. The requirements of the encryption scheme are

as follows:

1. The encryption scheme should be additively homomorphic. That is,

– For given E(a) and E(b), E(a+ b) := E(a)+h E(b) can be computed efficiently, where

‘+h’ is an additive operation in the image of the encryption function E.

– For a constant c and E(a), E(c · a) := c ×h E(a) can be computed efficiently, where

‘×h’ is an multiplicative operation in the image of the encryption function E.,

where E(·) is an encryption function of an additively homomorphic encryption scheme.

2. The ciphertext should be re-randomized.
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3. The encryption scheme should support (n, n)-threshold decryption, i.e. the corresponding

private key is shared by a group of n players and decryption must be performed by all n

players acting together.

The Paillier’s cryptosystem [9] satisfies these requirements.

2.3 Multiset and its Polynomial Representation

We consider the concept of multiset. Differently from an ordinary “set”, a multiset permits

duplication of its elements. For example, in a multiset, an element is represented more than

once like {a, a, b} and the multiset is different from {a, b}.

Now, we define set intersection, and set union of multisets and the element reduction of a

multiset as follows:

Definition 1 The union of multisets A and B, A∪B, is the multiset composed of the elements

which are in A or B. If an element ‘a’ appears lA times in A and lB times in B, then ‘a’

appears lA + lB times in A ∪B.

Definition 2 The intersection of multisets A and B, A ∩B, is the multiset composed of the

elements which are in both A and B. If an element ‘a’ appears lA times in A and lB times in

B, then ‘a’ appears min{lA, lB} times in A ∩B.

Definition 3 The element reduction by d, Rdd(A), of a multiset A is the multiset composed

of the elements of A such that for every element ‘a’ that appears d′ times in A, ‘a’ is included

max{0, d′ − d} times in Rdd(A).

Polynomial Representation of a Multiset Kissner and Song use a homomorphic encryp-

tion scheme to achieve the property of privacy-preserving in set operation. Let a ring R be

the domain of the homomorphic encryption function and P a subset of the ring R, where

the elements in P are uniformly distributed in R and the probability that randomly chosen

element of R is an element in P is negligible.

Kissner and Song consider the multiset S whose elements belong to P and define the

polynomial representation of the multiset as follows:

– From a multiset S to a polynomial fS ∈ R[x]:
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• Given a multiset S = {Sj}1≤j≤k, Sj ∈ P , the polynomial fS ∈ R[x] represents the

multiset S can be constructed as

fS(x) =
∏

1≤j≤k

(x− Sj).

– From a polynomial f ∈ R[x] to a multiset S:

• Given a polynomial f ∈ R[x], the multiset S represented by f can be defined as follows:

a ∈ S and a appears t times in S ⇐⇒

(x− a)t|f, (x− a)t+1 6 |f and a is an element in P

Feasible Homomorphic Operations of Encrypted Polynomials We define an encryp-

tion E(f(x)) of a polynomial f(x) =
∑deg(f)

i=0 f [i]xi as a tuple of each encryption of coefficient

f [i], where 0 ≤ i ≤ deg(f). That is,

E(f(x)) := (E(f [0]), · · · , E(f [deg(f)])).

If the public key encryption scheme satisfies the additive homomorphic property, we can

perform the following computations without its decryption key.

1. The addition of encrypted polynomials: Given E(f1) and E(f2), we can compute E(f1+f2)

as follows:

E((f1 + f2)[i]) := E(f1[i]) +h E(f2[i]) (0 ≤ i ≤ max{deg(f1),deg(f2)}).

2. The addition of encrypted polynomial and unencrypted polynomial: Given E(f1) and f2,

we can compute E(f1 ∗ f2) as follows:

E((f1 ∗ f2)[i]) := (f2[0]×h E(f1[i])) +h · · ·+h (f2[i]×h E(f1[0]))

(0 ≤ i ≤ max{deg(f1) + deg(f2)}).

3. The differentiation of encrypted polynomial: Given E(f), we can compute E( df
dx) as follows:

E

(
df

dx
[i]

)
:= (i + 1)×h E(f1[i + 1]) (0 ≤ i ≤ deg(f1)− 1).

4. The value of encrypted polynomial at plain point: Given a ∈ R and E(f), we can compute

E(f(a)) as follows:

E(f(a)) := (a0 ×h E(f [0])) +h · · ·+h (adeg(f) ×h E(f [deg(f)])).
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3 Analysis of Kissner and Song’s Element Reduction Methods

In this section, we review the results of Kissner and Song [6, 7] and point out a flaw in their

polynomial representation of element reduction of a multiset. Furthermore we show that their

over-threshold set-union protocol has critical errors since they used the incorrect polynomial

representation of element reduction of a multiset.

3.1 Errors of Kissner and Song’s Polynomial Representation for Element

Reduction

Kissner and Song use polynomials to represent multisets and propose probabilistic polyno-

mial representations corresponding to set union, set intersection, and element reduction of a

multiset. Kissner and Song’s polynomial representations of the set union, set intersection and

incorrect element reduction (by d) of a multiset are given as follows:

Union Let f and g be polynomial representations of multisets S and T , respectively. The

polynomial f ∗ g is the polynomial representation of multiset S ∪ T .

Intersection Let f and g be polynomial representations of multisets S and T , respectively.

For random polynomials r, s of higher to or same degree with deg(f), f ∗r+g∗s is equal to

gcd(f, g)∗u, where u is a uniformly distributed in Rα[x], Rα[x] is the set of all polynomials

whose coefficients are in R and degrees are lower to or same with α = 2deg(f)−|S∩T |. The

polynomial f ∗r+g∗s is a polynomial representation of multiset S∩T with overwhelming

probability.

(Incorrect) Element Reduction (by d) Let f be the polynomial representation of a mul-

tiset S. For random polynomials r, s of degree deg(f) or more and a random polynomial

F with degree d whose solutions are not in P , f (d) ∗F ∗r+f ∗s is equal to gcd(f, f (d))∗u,

where f (d) is the d-th derivative of f , u is a uniformly distributed in Rα[x], Rα[x] is the

set of all polynomials whose coefficients are in R and degrees are lower to or same with

α = 2deg(f)−|Rdd(S)|. The polynomial f (d) ∗F ∗ r +f ∗ s is a polynomial representation

of multiset Rdd(S) with overwhelming probability.

In the above, since u is uniformly distributed in Rα[x], the probability that u has a root

in P is negligible. Thus f ∗ r + g ∗ s = gcd(f, g) ∗ u is the polynomial representation of the
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multiset S ∩T and f (d) ∗F ∗ r +f ∗ s = gcd(f, f (d))∗u is the polynomial representation of the

multiset Rdd(S) with overwhelming probability. The polynomial representation of element

reduction proposed in [6, 7] uses following lemma.

Lemma 1 (Lemma 2 in [6]) Let R be a ring and f(x) ∈ R[x]. For (d ≥ 1),

(1) if (x− a)d+1|f(x), then (x− a)|f (d)(x).

(2) if (x− a)|f(x) and (x− a)d+1 6 |f(x), then (x− a) 6 |f (d)(x).

By using Lemma 1, Kissner and Song showed that gcd(f, f (d)) is a polynomial represen-

tation of Rdd(S), where f is the polynomial representation of the multiset S. But, in general,

Lemma 1 is incorrect when d > 1. We can make a counter-example of Lemma 1 as follows.

Example 1 Let a,b and c be distinct elements of ring R. Let f(x) = (x − a)(x − b)(x − c).

If the Lemma 1 is correct then the following relation:

(x− a) 6 |f (2)(x)

holds since (x−a)|f and (x−a)3 6 |f(x). But f (2)(x) = 6x−2(a+b+c) and (x− (a+b+c)
3 )|f (2)(x)

i.e.

(x− a)|f (2)(x), when c = 2a− b.

This contradicts Lemma 1.

Thus we see that Lemma 1 is incorrect. The mathematical flaw in Lemma 1 results errors in

their polynomial representation of element reduction. In the same example as in Example 1, we

consider the element reduction by 2 for the set S = {a, b, c} of distinct elements with c = 2a−b.

Clearly, we see that Rd2(S) = φ. But as we have in the above example, gcd(f, f (2)) = (x−a),

which cannot be a polynomial representation of Rd2(S) = φ.

3.2 Analysis of the Kissner and Song’s Protocol

Now, we analyze the Over-Threshold Set-Union protocol proposed in [6, 7]. The Over-Threshold

Set-Union protocol is a multiparty protocol with n users under the assumption that at most

c(< n) players can dishonestly collude. A user i (where 1 ≤ i ≤ n) generates a multiset Si
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whose elements represent private information and they are in P . Assume that each individual

multiset should have the same cardinality. That is, for all i such 1 ≤ i ≤ n, |Si| = k for some

k. The j-th element of a multiset Si is represented by (Si)j . At the end of the protocol, all

users wants to get a multiset which consists of the over-threshold elements in the set union

S = S1∪· · ·∪Sn of each user’s multiset. The goal of the protocol is to solve the Over-Threshold

Set-Union problem which is defined in [6, 7] as follows:

Definition 4 1 All players know elements in the union of the each players’ private multisets

that appears more than a threshold number d times, and the frequency of these elements in

the union without gaining any other information. We call the elements of resulting set as

over-threshold elements in the union of private sets of all players.

In their Over-Threshold Set-Union protocol, Kissner and Song use the element reduction

method to obtain over-threshold elements in set union. Let a fixed threshold number be t and

a polynomial p be the corresponding to the multiset S of union of private sets of all players.

As shown in the previous section, Kissner and Song computed gcd(p, p(t−1)) as the polyno-

mial representation of Rdt−1(S) thus gcd(p, p(t−1)) doesn’t give the correct representation of

Rdt−1(S) in some cases.

Now, we show that their protocol outputs wrong results in the case of Example 1. We

apply their Over-Threshold Set-Union protocol to the set union S = {a, b, 2a − b} with the

threshold 3. Then, the protocol outputs the corresponding set {a} as the set of the over-

threshold 3 in set union. But a appears only once in the set S, hence Kissner and Song’s

protocol is not a correct threshold 3 protocol.

Suppose we consider the above example in the distributed network monitoring system

with a privacy policy that says ‘the monitoring system identify only the users with anomalous

behavior over threshold 3’. Then the user ‘a’ will be identified in the monitoring system, but

it appears only once and should not be identified in the monitoring system. This conflicts the

privacy policy they adopt. Hence a correction in Kissner and Song’s polynomial representation

of element reduction is required.

1 This definition can be extended to a Over-Threshold Set-Operation problem by exchanging the union for

general set operation.
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4 A Correct Polynomial Representation and an Over-Threshold

Set-Operation Protocol

In this section, we suggest a correct polynomial representation of element reduction and

propose a new over-threshold set-operation protocol using the corrected polynomial represen-

tation.

4.1 A Correct Polynomial Representation of Element Reduction

We propose new method of element reduction by correcting Lemma 1. Particularly, we prove

gcd(f, f ′, · · · , f (d)) is a polynomial representation of Rdd(S). By correcting Lemma 1, we have

following lemma.

Lemma 2 Let f(x) ∈ R[x]. The followings are equivalent.

(1) (x− a)d+1 | f(x).

(2) f(a) = f ′(a) = · · · = f (d)(a) = 0, i.e. (x− a) | f, (x− a) | f ′, · · · , (x− a) | f (d).

Proof. ((1) ⇒ (2)) Suppose (x− a)d+1 | f(x). Then f(x) = (x− a)d+1g(x) for some g(x), and

clearly we have f(a) = 0. We also have f ′(x) = (d + 1)(x− a)dg(x) + (x− a)d+1g′(x) and it

gives f ′(a) = 0. For 1 ≤ n ≤ d, we get f (n)(x) = (d+1) · · · (d−n+2)(x− a)d−n+1g(x)+ (x−

a)d−n+2hn(x) for some hn(x). Hence f(a) = · · · = f (d)(a) = 0.

((2) ⇒ (1)) First we will show that if f (n)(a) = 0 and (x−a)n|f(x) then (x−a)n+1 | f(x).

Since (x−a)n|f(x), we have f(x) = (x−a)ng(x) for some g(x). f (n)(x) = n!g(x)+(x−a)hn(x)

for some hn(x). Since f (n)(a) = 0, we have g(a) = 0, which implies that g(x) = (x− a)g1(x)

for some g1(x). Therefore f(x) = (x− a)n+1g1(x).

Because f (1)(a) = 0 and (x−a)|f(x) by hypothesis, we have (x−a)2|f(x). And again together

(x− a)2|f(x) with f (2)(a) = 0, we have (x− a)3|f(x). By repeating the same procedure with

f (3)(a) = 0, · · · , f (d)(a) = 0, eventually we get (x− a)d+1|f(x). �

We obtain the following Corollary from the Lemma 2.

Corollary 3 (x− a)d+1 | f(x) ⇒ (x− a)d | f ′(x).
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Proof. By Lemma 2,

(x− a)d+1 | f(x) ⇔ f(a) = f ′(a) = · · · = f (d)(a) = 0

⇒ f ′(a) = f ′′(a) = · · · = f ′(d−1)(a) = 0

⇒ (x− a)d | f ′(x) by applying Lemma 2 to f ′.

Therefore Corollary 3 is proved. �

Now, we will prove gcd(f, f ′, · · · , f (d)) is a correct polynomial representation of Rdd(S).

Theorem 4 Let a polynomial f be a polynomial representation of a multiset S. For a ∈ S

and positive integer `a,

(x− a)`a | gcd(f, f ′, · · · , f (d)), (x− a)`a+1 6 | gcd(f, f ′, · · · , f (d))

⇔ a appears `a times in Rdd(S).

i.e. gcd(f, f ′, · · · , f (d)) is a polynomial representation of Rdd(S).

Proof. (⇒) Suppose that `a is a positive integer satisfying

(x− a)`a | gcd(f, · · · , f (d)), and (x− a)`a+1 6 | gcd(f, · · · , f (d)).

Then since (x− a)`a | gcd(f, · · · , f (d)), we have

(x− a)`a | f, (x− a)`a | f ′, · · · , (x− a)`a | f (d).

By Corollary 3, we have

(x− a)`a−1 | f (d+1), · · · , (x− a)1 | f (d+`a−1).

Thus we have (x− a)d+`a | f by Lemma 2.

If (x − a)`a+d+1|f , then f(a) = · · · = f (`a+d)(a) = 0. The part f(a) = · · · = f (`a)(a) = 0

implies that (x− a)`a+1|f by Lemma 2. Similarly, f (i)(a) = · · · = f (`a+i)(a) = 0 implies that

(x− a)`a+1|f (i) for all i with 1 ≤ i ≤ d and it means that (x− a)`a+1| gcd(f, · · · , f (d)). This

contradicts to the hypothesis. Therefore, we have (x− a)`a+d+1 6 |f .

Hence `a satisfies

(x− a)`a+d|f and (x− a)`a+d+1 6 |f.

11



And we know that a appears `a +d times in multiset S since f is a polynomial representation

of S. In conclusion, a appears `a times in Rdd(S).

(⇐) Suppose that a appears `a times in Rdd(S), then we have (x−a)`a+d | f and (x−a)`a+d+1 6

|f . By Corollary 3, we have

(x− a)`a+d−1 | f ′, · · · , (x− a)`a | f (d), · · · , (x− a) | f (`a+d−1), (x− a) 6 |f (`a+d),

which implies that

(x− a)`a | f, (x− a)`a | f ′, · · · , (x− a)`a | f (d), but (x− a)`a+1 6 |f (d).

Thus `a is a positive integer satisfying

(x− a)`a | gcd(f, · · · , f (d)) and (x− a)`a+1 6 | gcd(f, · · · , f (d)). �

By Theorem 4, we can correct the Kissner and Song’s polynomial representation of element

reduction as follows:

Correct Element Reduction (by d) Let f be the polynomial representation of a multiset

S. For random polynomial ri’s of degree deg(f) or more and random polynomial Fi’s with

degree i whose solutions are not in P ,
∑d

i=0 f (i) ∗Fi ∗ ri is equal to gcd(f, f ′, . . . , f (d)) ∗u(x)).

Thus the polynomial
∑d

i=0 f (i) ∗Fi ∗ri is a polynomial representation of multiset Rdd(S) with

overwhelming probability.

4.2 An Over-Threshold Set-Operation Protocol

Now, we propose an Over-Threshold Set-Operation protocol using our correct polynomial

representation of element reduction of a multiset. As described above, the goal of this protocol

is for all players to obtain the multiset of elements which appear in the result of set operation

of each private multiset more than a predetermined threshold number without gaining any

other information.

There are n(≥ 2) honest-but-curious players with a private input set Si such that |Si| = k.

We assume that at most c(< n) players can dishonestly collude. The players share the secret
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key sk corresponding to the public key pk for a homomorphic cryptosystem which supports

threshold group decryption. Let the threshold number be d and Fj be an arbitrary polynomial

of degree j which has no roots representing elements of the set P .

Protocol : Over–Threshold Set–Operation–HBC

1. Set-Operation Each player i = 1, · · · , n computes fi(x) = (x −

(Si)1) · · · (x − (Si)k). Players perform the predetermined set opera-

tion protocol and player 1 obtain the encryption of polynomial p,

corresponding to the result of set operation, Epk(p). Player 1 dis-

tributes Epk(p) to players 2, · · · , c + 1.

2. Element-Reduction Each player i = 1, · · · , c + 1

(a) Computes Epk(p′), · · · , Epk(p(d)) from Epk(p).

(b) Chooses randomly d + 1 polynomials ti,0, · · · , ti,d ∈ Rk[x].

(c) Sends Epk(p ∗ ti,0 +F1 ∗ p′ ∗ ti,1 + · · ·+Fd ∗ p(d) ∗ ti,d) to all other

player.

3. Group-Decryption All players perform a group decryption to ob-

tain Φ = Fd∗p(d)∗(
∑c+1

i=1 ti,d)+· · ·+F1∗p′∗(
∑c+1

i=1 ti,1)+p∗(
∑c+1

i=1 ti,0).

4. Recovering-Set Each player i = 1, · · · , n determines the resulting

set depending on a kind of set operation.

We use the modified element reduction method of the multiset in the step 2 and fix the

flaw of the original one proposed by Kissner and Song. The step 1 and 4 of the above protocol

can be varied according to a kind of set operation. In [6, 7], protocols for privacy preserving

set operations, set union and set intersection, were proposed. In step 1, if we apply Kissner

and Song’s privacy-preserving (set union/set intersection) then we obtain (Over-Threshold

Set-Union protocol /Over-Threshold Set-Intersection protocol), respectively.

Because the difference of Over–Threshold Set–Union protocol proposed in [6, 7] from our

protocol is only the polynomial representation method of element reduction of multiset, it

does not affect the security of the protocol. Thus, the our protocol has the same security with

that of [6, 7] in the set intersection and set union cases when we follow their set operation

protocol.
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5 Conclusion

A privacy preserving element reduction method can be an important tool to identify badly

behaved internet users while it preserves privacy for normal users. In Crypto 2005, Kiss-

ner and Song introduced a method of polynomial representation of element reduction of a

multiset and proposed an Over-Threshold-Set-Union protocol using the polynomial represen-

tation and homomorphic public key encryption scheme. In this paper, we have shown that

their polynomial representation is not correct and its impact to their protocol can be some-

what critical for privacy preserving techniques. We present a correction for the polynomial

representation of element reduction of a multiset in this paper. We also modified their Over-

Threshold Set-Union protocol and proposed an Over-Threshold Set Operation protocol based

on the corrected polynomial representation. Our Over-threshold-set-operation-protocol can

be combined with a privacy preserving set operation and outputs those elements appears over

the predetermined threshold number times in the resulting multiset of set operation.
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