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Abstract. In elliptic curve cryptosystems, scalar multiplications per-
formed on the curves have much effect on the efficiency of the schemes,
and many efficient methods have been proposed. In particular, recod-
ing methods of the scalars play an important role in the performance of
the algorithm used. For integer radices, non-adjacent form (NAF) and its
generalizations (e.g., generalized non-adjacent form (GNAF) and radix-r
non-adjacent form (rNAF) [4, 21]) are proposed for minimizing the non-
zero densities in the representations of the scalars. On the other hand,
for subfield elliptic curves, Frobenius-adic expansions of the scalars can
be used for improving efficiency ([18]). Unfortunately, there are only a
few methods apply the techniques of NAF or its analogue to Frobenius-
adic expansion, namely τ -adic NAF techniques ([11, 20, 2] and [6]) for
Koblitz curves and hyperelliptic Koblitz curves. In this paper, we try to
combine these techniques, namely recoding methods for reducing non-
zero density and Frobenius-adic expansion, and propose two new efficient
recoding methods of scalars for more general family of subfield elliptic
curves over odd characteristics. We also prove that the non-zero densities
for the new methods are same as those for original GNAF and rNAF.
As a result, the speed of the proposed schemes improve between 12.5%
and 79% over that for previously known schemes.

Keywords: generalized non-adjacent form (GNAF), radix-r non-adjacent
form (rNAF), Frobenius-adic expansions, τ -adic NAF (τ -NAF), φ-adic
NAF (φ-NAF), Elliptic Curve Cryptosystems (ECC)

1 Introduction

Elliptic curve cryptosystems (ECC) were proposed in 1985 independently by
Victor Miller [13] and by Neal Koblitz [9]. Since ECC provide many advantages,
for example, shorter key length and faster computation speed than those of
RSA cryptosystems, ECC have been the focus of much attention. In ECC, each
protocol such as ECDH, ECElGamal, and ECDSA involves scalar multiplications



for given points on an elliptic curve by large integers. These multiplications have
much effect on the efficiency of the schemes, and many efficient methods have
been proposed.

As one such method, the use of subfield elliptic curves (i.e. elliptic curves over
finite fields which are actually defined over some subfield [3]) is especially attrac-
tive because by using the Frobenius maps, which is efficiently calculated, scalar
multiplication on subfield elliptic curves can be performed much faster than
that on curves over prime fields. Indeed, Smart ([18]) shows that every element
d ∈ Z[φ] can be written as d =

∑�−1
i=0 diφ

i, where di ∈ {0,±1, · · · ,±(q − 1)/2},
q is an order of the defining field of an Fq-subfield elliptic curve E, and φ is
the q-th power Frobenius map on E. Therefore, we can use not point doubling
but Frobenius map when we perform scalar multiplication on a subfield elliptic
curve. Note that neither of these methods can be applied in the case of curves
over prime fields (the case in which the group of prime field rational points is
used to cryptosystem). In [7], the authors proposed efficiently computable en-
domorphisms other than Frobenius endomorphisms can be used for fast scalar
multiplication. Moreover, in [14], the authors proposed two kinds of endomor-
phisms in [7] that can be used together for a certain class of curves, and they
also presented a new expansion method.

On the other hand, recoding method of the scalars also plays an impor-
tant role in the performance. In general, smaller non-zero densities in the rep-
resentations of scalars improve the efficiency. Non-adjacent form (NAF) and its
generalizations such as generalized non-adjacent form (GNAF [4]) and radix-r
non-adjacent form (rNAF [21]), are methods used for minimizing the non-zero
densities. So as to achieve further improvement, it has been tried to combine the
subfield curve method with the recoding methods. In [20], Solinas proposed an
efficient method of scalar multiplication for Koblitz curves, namely τ -adic NAF
(τ -NAF), and [11] proposed τ -adic NAF for some supersingular elliptic curves
defined over the prime field of characteristic three using the Frobenius endomor-
phism of the curves. In addition, [6] proposed a generalization of τ -adic NAF
for hyperelliptic Koblitz curves. Recently, in [2], the authors proposed the radix-
τ width-w NAF for every integer in all Euclidean quadratic imaginary fields.
However, only a few curves are available for the above methods so far.

1.1 Contribution of this paper

The contribution of this paper is to propose two generalizations of τ -NAF, that
is, two classes of φ-adic NAF (φ-GNAF and φ-rNAF) using the techniques of
GNAF and rNAF, respectively, which can be applied to a family of subfield ellip-
tic curves defined over finite fields of odd characteristics. The digit set of NAF is
{0,±1} and the digit set of Frobenius-adic expansion is {0,±1, · · · ,±(q−1)/2}.
We can not directly apply the technique of NAF to Frobenius-adic expansions
except for τ -NAF for Koblitz curves because of the narrowness of the digit set
of NAF. Thus as a natural development, we apply the GNAF and rNAF tech-
niques, which are the generalizations of ordinary NAF, to generalize τ -NAF to
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elliptic curves over odd characteristics. For the resulting recoding methods, φ-
GNAF and φ-rNAF, if the radix is small (e.g., 3, 5), the difference between the
computational costs for the precomputation tables of φ-GNAF and φ-rNAF is
relatively small (at most, several elliptic additions). But, if the radix is signif-
icantly large, the computational cost for the precomputation table of φ-rNAF
is quite large compared to that for φ-GNAF. However the non-zero density for
φ-rNAF is significantly smaller than that for φ-GNAF. Thus, these two gen-
eralizations are used for the most appropriate applications. The speed of the
proposed schemes improved between 12.5% and 79% over that for previously
known schemes. In this paper, as the first step in the generalizations of φ-NAF,
we concentrate on investigating only φ-GNAF and φ-rNAF, and we do not deal
with the width-w versions of these.

This paper is organized as follows. Section 2 reviews ordinary GNAF, rNAF,
and τ -adic NAF for Koblitz curves. Section 3 shows how to generalize τ -NAF
for Koblitz curves to two classes of φ-adic NAF for a family of subfield elliptic
curves and proves some properties of φ-GNAF and φ-rNAF. Section 4 compares
the total computational costs of several previous methods and the proposed
methods.

2 Preliminaries

In this paper, in general, for any complex number ψ(�= 0), we denote
∑�−1

i=0 ciψ
i

with ci ∈ Z by (c�−1, · · · , c0)ψ . Hamming weight of (c�−1, · · · , c0)ψ is defined by
the number of non-zero ci’s. According to convention, we denote −a by ā for
any natural number a.

2.1 GNAF, rNAF

In this section, we review ordinary GNAF and rNAF. Let r, α be relatively prime
positive integers. We denote Dr,α a set defined as follows.

Dr,α :=
{{0,±1, · · · ,±α} if α < r,
{0,±1, · · · ,±α} \ {±r,±2r, · · · ,±�α/r�r} otherwise.

For an integer radix r ≥ 2, GNAF and rNAF are proposed for minimizing the
numbers of non-zero densities in the representations of integer scalars. In [4] and
[21], the authors calculate the non-zero densities using Markov chains. In this
paper, we regard non-zero densities of some representations as average densities
of non-zero digits of the representations (See Section 3 for precise definitions).

Definition 1 [GNAF [4]] A radix-r generalized non-adjacent form (GNAF) of
a positive integer d is a representation d =

∑�−1
i=0 eir

i where ei ∈ Dr,r−1, e�−1 �= 0
and for each i, one of the following holds : (1) ei+1ei = 0, (2) if ei+1ei > 0, then
|ei+1 +ei| < r, (3) if ei+1ei < 0, then |ei+1| > |ei|. The length of the GNAF is �.
For a, b ∈ Dr,r−1, if a, b satisfy one of the followings : (1) ab = 0, (2) if ab > 0,
then |a + b| < r, (3) if ab < 0, then |a| > |b|, then we call a pair (a, b) radix-r
admissible pair, and otherwise, we call (a, b) radix-r non-admissible pair.
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Definition 2 [rNAF [21]] A radix-r non-adjacent form (rNAF) of a positive
integer d is a representation d =

∑�−1
i=0 eir

i where ei ∈ Dr,(r2−1)/2, e�−1 �= 0
and for each i, it satisfies ei+1ei = 0 where we define e� = 0. The length of the
rNAF is �. For a, b ∈ Dr,(r2−1)/2, if ab = 0, then we call a pair (a, b) radix-r
non-adjacent pair, and otherwise, we call (a, b) radix-r adjacent pair.

In the above definitions, note that for the radix r = 2, GNAF and rNAF
coincide, and in this case, we call these recoding method “NAF”([21], pp.104).
We can see that GNAF and rNAF have some desired properties. For details,
consult [4] for GNAF, and [21] for rNAF.

Proposition 1 [Properties of GNAF (resp. rNAF)]
(1) Every positive integer d has a unique GNAF (resp. rNAF) representation.
(2) GNAF (resp. rNAF) representation of d has the smallest Hamming weight
among all signed representations of d with digit set Dr,r−1 (resp. Dr,(r2−1)/2).
(3) The average non-zero density of GNAF (resp. rNAF) is asymptotically (r−
1)/(r + 1) (resp. (r − 1)/(2r − 1)).

2.2 Subfield elliptic curves and Frobenius-adic expansion

We briefly review subfield elliptic curves and Frobenius-adic expansion on the
curves which we focus on in this paper. For detail, refer [18], [3] and [17].

Definition 3 [Fq-subfield elliptic curves] Let p be an odd prime, q = pr a
power of p, and Fq the finite field with q-elements. An elliptic curve defined over
Fq is called an “Fq-subfield elliptic curve” if for some cryptographic usage, we
focus on the group of Fqn-rational points E(Fqn) for some n ≥ 2. An Fq-subfield
elliptic curve E is given by a Weierstrass equation y2 = x3 + ax + b, where
a, b ∈ Fq. Let us denote φ the qth-power Frobenius map on E.

φ : E → E, (x, y) �→ (xq , yq),

and put tn := qn + 1 − #E(Fqn), where E(Fqn) means the set of Fqn-rational
points on E. We can regard φ as a complex number which satisfies the following
characteristic equation : φ2 − t1φ+ q = 0.

In [18], the authors show that every element d ∈ Z[φ] has a φ-adic represen-
tation with some digit set. More precisely, they show the followings.

Theorem 1 [Frobenius-adic expansion for subfield elliptic curves] Let
E be an elliptic curve over Fq and φ be its qth-power Frobenius map of E. Let
d ∈ Z[φ], then we can write d =

∑�−1
i=0 ciφ

i, where ci ∈ {0,±1, · · · ,±(q − 1)/2}
and � � �2 logq 2

√
NZ[φ]/Z(d)	+ 4.
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2.3 τ -NAF for Koblitz curves and supersingular Koblitz curves

Next, we review τ -NAF for Koblitz curves and supersingular Koblitz curves.

Definition 4 [τ-NAF for ordinary Koblitz curves] Let Ea be an elliptic
curve defined over F2 with defining equation as follows.

Ea : y2 + xy = x3 + ax2 + 1, a = 0 or 1.

It can be proven that these curves are ordinary, and we call these “ordinary
Koblitz curves”. Let τ be the 2nd power Frobenius map of Ea. A τ-adic NAF
representation (τ-NAF) for ordinary Koblitz curves of an element d ∈ Z[τ ] is a
representation d =

∑�−1
i=0 eiτ

i where ei ∈ D2,1, e�−1 �= 0 and no two consecutive
digits ei are nonzero. The length of the τ-NAF is �.

Theorem 2 [Properties of τ-NAF [20], [1]]
(1) Every d ∈ Z[τ ] has a unique τ-NAF.
(2) τ-NAF of d has the smallest Hamming weight with digit set D2,1.
(3) The average non-zero density of τ-NAF is asymptotically 1/3 and it has the
same non-zero density of ordinary NAF.

Koblitz [11] also proposed another possibility of NAF-like recoding method
for Frobenius-adic representations on supersingular elliptic curves Ea : y2 =
x3 − x − (−1)a/F3, where a = 0 or 1. Similarly to the case of ordinary Koblitz
curves, the uniqueness of τ -NAF for these curves can be proven. Moreover, it is
also proven that the non-zero density for this method is 2/5. See [11] for details.
It is unknown any analogues of τ -NAF representation for another subfield elliptic
curves except for Koblitz curves and curves in [2]. But in [2], they proposed only
non-adjacent radix-τ expansions for integers in all Euclidean quadratic imaginary
fields. In the next section, we will propose two classes of φ-NAF representation
for a family of subfield elliptic curves. In the following, we call two classes of
φ-NAF representation φ-GNAF, φ-rNAF, respectively.

3 Proposed Methods (Two classes of φ-NAF)

In this section, we investigate how to expand two classes of φ-NAF for a family
of subfield elliptic curves. Let SECt1 [Fq] be the set of Fq-subfield elliptic curves
with the qth power Frobenius trace t1. In the following, we focus on the case
t1 = 1 and consider a scalar multiplication for a given integer d and for a
given point P ∈ E(∈ SEC1[Fq]). Note that although curves of trace one are
anomalous, this does not mean the attack on anomalous curves in [19, 15] and
[16] applies in this context. For all P ∈ E(Fqn), it satisfies that (φn − 1)P = O.
Hence dP = (d mod (φn − 1))P for any integer scalar d. From [18], there exist
Q, d′ ∈ Z[φ] such that d = Q(φn − 1) + d′ with d′ = 0 or Ψ(d′) < λΨ(φn − 1),
where Ψ is a multiplicative function. Note that this provides a 50% improvement
in the performance about the length of Frobenius-adic expansion of d. In this
paper, “Frobenius-adic expansion” means the expansion in [18].
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3.1 The first φ-NAF (φ-GNAF)

At first, we show how to expand the multiplication by d map on E(Fqn) in terms
of φ-GNAF and prove some properties of this. We begin with the definition of φ-
GNAF for every subfield elliptic curves, and give an algorithm which calculates
the φ-GNAF representation for a given d ∈ Z[φ], where q � 7.

Definition 5 [φ-GNAF] Let E ∈ SECt[Fq] and d ∈ Z[φ]. A φ-adic GNAF
representation (φ-GNAF) of d on E is a representation d =

∑�−1
i=0 eiφ

i where
ei ∈ Dq,q−1 for each i, e�−1 �= 0, and one of the followings holds
(1) ei+1ei = 0,
(2) if ei+1ei > 0, then |ei+1 + ei| < q,
(3) if ei+1ei < 0, then |ei+1| > |ei|.

Let a, b ∈ Dq,q−1. If a, b satisfy one of the followings : (1) ab = 0, (2) if
ab > 0, then |a + b| < r, (3) if ab < 0, then |a| > |b|, then we call a pair
(a, b)φ φ-admissible pair follow the lead of [22]. Otherwise, we call (a, b)φ φ-non-
admissible pair.

Algorithm 1: φ-GNAF for subfield elliptic curves with Frobenius trace 1 (q � 7)

Input: d ∈ Z[φ]
Output: φ-GNAF representation of d
1. Compute d′ = d mod (φn − 1).
2. Compute � = �2 logq 2

√
NZ[φ]/Z(d)	+ 4.

3. Compute Frobenius-adic expansion (c�−1, c�−2, · · · , c1, c0) of d′.
4. b0 ← c0, b1 ← c1, b� ← 0, b�+1 ← 0.
5. i← 0.
6. While i � � do

6.1. If (bi+1, bi) : φ-admissible pair then bi+2 ← ci+2, ei ← bi.
6.2. else if bi > 0 then bi+2 ← ci+2 − 1, bi+1 ← bi+1 + 1, ei ← bi − q.
6.3. else (bi < 0) then bi+2 ← ci+2 + 1, bi+1 ← bi+1 − 1, ei ← bi + q.
6.4. i← i+ 1.

7. Return (e�+1, e�, · · · , e1, e0).

The following lemma and theorem show the correctness of Algorithm 1, thus
the existence of φ-GNAF. From the lemma, for any given Frobenius-adic ex-
pansion, we can have a sequence with digits in Dq,q−1 such that any adjacent
digits are φ-admissible. Moreover, the theorem below gives the finiteness of the
sequence (hence φ-GNAF) and evaluates the upper bound of the length of φ-
GNAF. For the proof of the lemma, it is easily seen that the proof of Theorem
12.2.3 in [22] can be applied. For details, refer [22].

Lemma 1 Let b ∈ Dq,(q+1)/2, b′, e ∈ Dq,(q−1)/2. We assume that (b′, e)φ is a
φ-admissible pair and (b, b′)φ is a φ-non-admissible pair. If we convert

(b, b′, e)φ �→
{

(1̄, c, c′, e) := (1̄, b+ 1, b′ − q, e)φ if b′ > 0,
(1, c, c′, e) := (1, b− 1, b′ + q, e)φ otherwise,

then (c, c′)φ, (c′, e)φ are φ-admissible pairs.
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Theorem 3 [Finiteness of the length of φ-GNAF] Let d ∈ Z[φ] and � be
the length of Frobenius-adic expansion of d. Then d has a φ-GNAF representation
with digit set Dq,q−1 such that the length is at most �+ 2.

Proof. Let �′ be the length of φ-GNAF representation of d. In process of Al-
gorithm 1, we will have a representation d = (c, b, b′, e�−4, · · · , e1, e0)φ, where
(e�−4, · · · , e1, e0)φ is a φ-GNAF. Now we scan the two digits (b, b′)φ. If the pairs
(c, b)φ and (b, b′)φ are φ-admissible, there is nothing to do and �′ = �. So we can
assume that (b, b′)φ is φ-non-admissible. Then we convert

(b, b′)φ �→ (c, c′, e�−3)φ :=
{

(c− 1, b+ 1, b′ − q)φ if b′ > 0,
(c+ 1, b− 1, b′ + q)φ otherwise.

If (c, c′)φ is φ-admissible, then �′ = �. Otherwise, we convert

(c, c′)φ �→ (a, a′, e�−2)φ :=
{

(1̄, c+ 1, c′ − q)φ if c′ > 0,
(1, c− 1, c′ + q)φ otherwise,

then a = 1 or 1̄. If (a, a′)φ is φ-admissible, then �′ = � + 1. If (a, a′)φ is φ-non-
admissible, then by the definition of GNAF, it is obvious that a = 1, a′ < 0 or
a = 1̄, a′ > 0. In this case, we convert

(a, a′)φ �→
{

(1, 0, a′ + q)φ a′ < 0,
(1̄, 0, a′ − q)φ a′ > 0.

Then �′ = �+ 2. Therefore the length of φ-GNAF representation of d ∈ Z[φ]
is at most 2 more than that of Frobenius-adic expansion of d. ��

We can also extend Algorithm 1 in the case of q = 3 or 5. However, in this
case, there is possibility that bi is a multiple of q and bi �= 0. If bi is a non-zero
multiple of q, we convert (bi+1, bi)φ �→ (−bi/q, bi+1 + bi/q, 0)φ. It is easy to show
that if bi is a non-zero multiple of q, then it satisfies that bi = ±q. Thus for all i,
we always have |bi+1| � (q + 1)/2, |bi| � (q + 3)/2, as Algorithm 1 (or Theorem
3). Remark that it does not occur bi+1 mod q = 0 except for bi+1 = 0. This
shows the correctness of Algorithm 2.

Let φ-GNAF� be the set of φ-GNAF representations of length �. We put A� =
#φ-GNAF�, S� =

∑
d∈φ-GNAF�

(�−w(d)), and C� = # {d ∈ φ-GNAF� | w(d) = �},
where w(d) means the Hamming weight of d. In other words, c� is the number
of φ-GNAF with length � such that all digits are non-zero. Then the non-zero
density of φ-GNAF is defined by

1− lim
�→∞

S�/(�A�).

φ-GNAF has properties same as GNAF. For details, refer the appendix.
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Algorithm 2: φ-GNAF for subfield elliptic curves with Frobenius trace 1 (q = 3 or 5)

Input: d ∈ �[φ]
Output: φ-GNAF representation of d

1. Compute d′ = d mod (φn − 1).

2. Compute � = �2 logq 2
�

N�[φ]/�(d)�+ 4.
3. Compute Frobenius-adic expansion (c�−1, c�−2, · · · , c1, c0) of d′.
4. b0 ← c0, b1 ← c1, b� ← 0, b�+1 ← 0.
5. i← 0.
6. While i � � do

6.1. If bi mod q = 0 then bi+1 ← bi+1 − bi/q, bi+2 ← ci+2 + bi/q, ei ← 0.
6.2. If (bi+1, bi) : φ-admissible pair then bi+2 ← ci+2, ei ← bi.
6.3. else if bi > 0 then bi+2 ← ci+2 − 1, bi+1 ← bi+1 + 1, ei ← bi − q.
6.4. else (bi < 0) then bi+2 ← ci+2 + 1, bi+1 ← bi+1 − 1, ei ← bi + q.
6.5. i← i + 1.

7. Return (e�+1, e�, · · · , e1, e0).

Proposition 2 [Properties of φ-GNAF]
(1) Every d ∈ Z[φ] has a unique φ-GNAF representation.
(2) The average number of non-zero digits for � digits numbers in Z[φ] is equal
to ((q−1)/(q+1))�+2/(q+1)+O((−1/q)�). In particular, the average non-zero
density among φ-GNAF representations of length � is asymptotically (q−1)/(q+
1).

The following algorithm calculates the φ-GNAF representation for a given
d ∈ Z[φ] without the calculation of Frobenius-adic expansion of d and reduces
the memory consumption to calculates the φ-GNAF representation compared to
Algorithm 1 and 2. From Theorem 3 (especially the finiteness of the length of
φ-GNAF), it is easy to show the correctness of Algorithm 3.

Algorithm 3: φ-GNAF for subfield elliptic curves with Frobenius trace 1

Input: d ∈ Z[φ]
Output: φ-GNAF representation of d
1. Compute d′ := d0 + d1φ = d mod (φn − 1)(d0, d1 ∈ Z).
2. Compute � = �2 logq 2

√
NZ[φ]/Z(d)	+ 4.

3. Compute Q, b ∈ Z such that d0 = Qq + b (b ∈ Dq,(q−1)/2) (see [18]).
4. d0 ← Q+ d1, d1 ← −Q.
5. i← 1.
6. While i � �+ 1 do

6.1. Compute Q, a ∈ Z such that d0 = Qq + a (a ∈ Dq,(q−1)/2).
6.2. d0 ← Q+ d1, d1 ← −Q.
6.3. If (a, b)φ : φ-admissible pair then ei−1 ← b, b← a.
6.4. else if b > 0 then ei−1 ← b− q, b← a+ 1, d0 ← d0 − 1.
6.5. else ei−1 ← b+ q, b← a− 1, d0 ← d0 + 1.

7. Return (e�+1, e�, · · · , e1, e0).
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3.2 The second φ-NAF (φ-rNAF)

Next, we show how to expand the multiplication by d map on E(Fqn) in terms of
φ-adic rNAF and prove some properties of this. As with the previous section, we
begin with the definition of φ-rNAF for every subfield elliptic curves, and give
an algorithm which calculates the φ-rNAF for a given d ∈ Z[φ], where q � 7.

Definition 6 [φ-rNAF] Let E ∈ SECt[Fq] and d ∈ Z[φ]. A φ-adic rNAF
representation (φ-rNAF) of d on E is a representation d =

∑�−1
i=0 eiφ

i such that
ei ∈ Dq,(q2−1)/2, e�−1 �= 0 and ei+1ei = 0 for each i. Let a, b ∈ Dq,(q2−1)/2. If
ab = 0, we call (a, b)φ φ-non-adjacent pair. Otherwise, we call (a, b)φ φ-adjacent
pair.

Algorithm 4: φ-rNAF for subfield elliptic curves with Frobenius trace 1 (q � 7)

Input: d ∈ Z[φ]
Output: φ-rNAF representation of d
1. Compute d′ = d mod (φn − 1).
2. Compute � = �2 logq 2

√
NZ[φ]/Z(d)	+ 4.

3. Compute Frobenius-adic expansion (c�−1, c�−2, · · · , c1, c0) of d′.
4. b0 ← c0, b1 ← c1, b� ← 0, b�+1 ← 0, b�+2 ← 0, b�+3 ← 0.
5. i← 0.
6. While i � �+ 2 do

6.1. If bi = 0 then bi+2 ← ci+2, ei ← 0, i← i+ 1.
6.2. else if |bi+1q + bi| � (q2 − 1)/2 then bi+3 ← ci+3, bi+2 ← ci+2 + bi+1,

ei+1 ← 0, ei ← bi+1q + bi, i← i+ 2.
6.3. else if bi+1q + bi < −(q2 − 1)/2 then bi+3 ← ci+3 + 1,

bi+2 ← ci+2 + bi+1 + (q − 1), ei+1 ← 0, ei ← bi+1q + bi + q2, i← i+ 2.
6.4. else (bi+1q + bi > (q2 − 1)/2) then bi+3 ← ci+3 − 1,

bi+2 ← ci+2 + bi+1 − (q − 1), ei+1 ← 0, ei ← bi+1q + bi − q2, i← i+ 2.
7. Return (e�+3, e�+2, · · · , e1, e0).

In the above algorithm, it does not occur the conversion :

(bi+1, bi)φ �→
{

(b̄′i, bi+1 + b′i, 0)φ if bi = b′iq for some b′i ∈ Z,
(b̄′i+1, bi+1, 0, bi)φ if bi + 1 = b′i+1q for some b′i+1 ∈ Z.

In fact, there is no possibility such that bi mod q ≡ 0, bi �= 0 or bi+1 mod q ≡
0, bi+1 �= 0 when we scan (bi+1, bi)φ.

The lemma and theorem below show the correctness of Algorithm 4, thus the
existence of φ-rNAF. For the proof of the lemma, consult [21].

Lemma 2 Let c, c′, c′′ ∈ Dq,(q−1)/2, b ∈ Dq,(q+1)/2, b′ ∈ Dq,2q−1. We convert
(c, c′, c′′, b, b′)φ from right-to-left according to the following rule and we denote
the result of the conversion (a, a′, e, e′, e′′, e′′′)φ.
The rule: We assume that we scan consecutive two digits (a, b)φ, then

9



(Rule 1) If a �= 0, b �= 0, then convert (a, b)φ

(a, b)φ �→
⎧⎨
⎩

(a, 0, aq + b)φ if |aq + b| � (q2 − 1)/2,
(1, a+ (q − 1), 0, (aq + b) + q2)φ else if aq + b < −(q2 − 1)/2,
(1̄, a− (q − 1), 0, (aq + b)− q2)φ otherwise.

(Rule 2) If a �= 0, b = 0, then skip the 1-digit b. We scan the next consecutive
two digits which include a.
(Rule 3) if a = 0, b = 0, then skip the 2-digits a and b. We scan the next
consecutive two digits which do not include a.

Then, it always satisfy that a ∈ Dq,(q+1)/2, a′ ∈ Dq,2q−1 and a′ �≡ 0 mod q
except for a′ = 0.

Theorem 4 [Finiteness of the length of φ-rNAF] Let d ∈ Z[φ] and � be
the length of Frobenius-adic expansion of d. Then d has a φ-rNAF representation
with digit set Dq,(q2−1)/2 such that the lenght is at most �+ 4.

Proof. Let �′ be the length of φ-rNAF representation of d. As in the proof of
Theorem 3, in process of Algorithm 4, it is easily seen that we will have two
cases as follows.

(Case 1) d = (b, b′, e�−3, e�−4, · · · , e1, e0)φ, where (e�−3, · · · , e0)φ is a φ-rNAF.
Now we scan the two digits (b, b′)φ. We can assume that e�−3 = 0 because if
e�−3 �= 0, It will be able to reduce this case to the case 2 (See below the details).
If (b, b′)φ is the φ-non-adjacent pair, then �′ = �. Otherwise, we convert the pair
(b, b′)φ in the following :

(b, b′)φ �→
⎧⎨
⎩

(b, 0, bq + b′)φ |bq + b′| � (q2 − 1)/2,
(1, b+ (q − 1), 0, bq + b′ + q2)φ bq + b′ < −(q2 − 1)/2,
(1̄, b− (q − 1), 0, bq + b′ − q2)φ bq + b′ > (q2 − 1)/2,

and we put the result (c, c′, e�−1, e�−2)φ. If |bq+ b′| � (q2− 1)/2, then �′ � �+1.
Otherwise, since |b| � (q + 1)/2,

|cq + c′| = | ± q ± (q − 1) + b| = | ± (2q − 1) + b| � (q2 − 1)/2,

when it satisfies that q � 5. We can convert (1, b+(q−1))φ �→ (1, 0, b+(2q−1))φ
or (1̄, b− (q − 1))φ �→ (1̄, 0, b− (2q − 1))φ, thus we have �′ = �+ 2.

(Case 2) d = (c, b, b′, e�−4, · · · , e1, e0)φ, where (e�−4, · · · , e1, e0)φ is a φ-rNAF.
Now we scan the two digits (b, b′)φ. We can assume that b′ �= 0 because if b′ = 0,
we can reduce this case to the case 1. Note that e�−4 = 0. If b = 0, there is
nothing to do and �′ = �. So we can also assume b �= 0. Then we convert

(b, b′)φ �→
⎧⎨
⎩

(c+ b, 0, bq + b′)φ |bq + b′| � (q2 − 1)/2,
(1, c+ b+ (q − 1), 0, bq + b′ + q2)φ bq + b′ < −(q2 − 1)/2,
(1̄, c+ b− (q − 1), 0, bq + b′ − q2)φ bq + b′ > (q2 − 1)/2,
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and we put the result (a, a′, e�−2, e�−3)φ. If |bq+b′| � (q2−1)/2, there is nothing
to do and �′ � �. Otherwise, the most significant two digits are (1, (q−1)+b+c)φ
or (1̄,−(q − 1) + b+ c)φ, we convert

|aq + a′| = | ± q ± (q − 1) + b + c| = | ± (2q − 1) + b+ c| � (q2 − 1)/2,

when it satisfies q � 9. We can convert

(1, (q − 1) + b+ c)φ �→ (1, 0, (2q − 1) + b+ c)φ,
(1̄,−(q − 1) + b+ c)φ �→ (1̄, 0,−(2q − 1) + b+ c)φ.

Then we have �′ = � + 2 when it satisfies q � 9. If it satisfy that q = 7 and
|bq + b′| > (q2 − 1)/2, then we convert

(1, b+ c+ (q − 1))φ �→ (1̄,−(q − 2), 0, b+ c− (q − 1)2)φ,
(1̄, b+ c− (q − 1))φ �→ (1, q − 2, 0, b+ c+ (q − 1)2)φ.

Note that because of Lemma 2, the following situations do not occur :

(1, b+ c+ (q − 1))φ �→ (1, q, 0, b+ c+ (q − 1)2)φ,
(1̄, b+ c− (q − 1))φ �→ (1̄, q̄, 0, b+ c− (q − 1)2)φ.

Here, ±q ± q − 2 = ±2(q − 1), so | ± 2(q − 1)| � (q2 − 1)/2. Then �′ = �+ 4.
Therefore the length of φ-rNAF representation of d ∈ Z[φ] is at most 4 more
than that of Frobenius-adic expansion of d. ��

We can also extend Algorithm 4 to the case of q = 3 or 5. However, it does
not satisfy Lemma 2 in this case, namely there are possibility that bi is a multiple
of q and bi �= 0. If bi is a non-zero multiple of q, we convert

(bi+1, bi)φ �→ (−bi/q, bi+1 + bi/q, 0)φ.

It is easy to show that if bi is a non-zero multiple of q, then it satisfies that
bi = ±q. Thus for all i, we always have

|bi+1| � (q − 1)/2, |bi| � q − 1 or |bi+1| � (q + 1)/2, |bi| � 2q − 1 (|bi| �= q),

as Algorithm 4 (or Theorem 4). Note that it does not occur bi+1 mod q = 0
except for bi+1 = 0. This shows the correctness of Algorithm 5.

11



Algorithm 5: φ-rNAF for subfield elliptic curves with Frobenius trace 1 (q = 3 or 5)

Input: d ∈ Z[φ]
Output: φ-rNAF representation of d
1. Compute d′ = d mod (φn − 1).
2. Compute � = �2 logq 2

√
NZ[φ]/Z(d)	+ 4.

3. Compute Frobenius-adic expansion (c�−1, c�−2, · · · , c1, c0) of d′.
4. b0 ← c0, b1 ← c1, b� ← 0, b�+1 ← 0, b�+2 ← 0, b�+3 ← 0.
5. i← 0.
6. While i � �+ 2 do

6.1. If bi mod q = 0 then bi+1 ← bi+1 − bi/q, bi+2 ← ci+2 + bi/q, i← i+ 1.
6.2. If bi = 0 then ei ← 0, bi+2 ← ci+2, i← i+ 1.
6.3. else if |bi+1q + bi| � (q2 − 1)/2 then bi+3 ← ci+3, bi+2 ← ci+2 + bi+1,

ei+1 ← 0, ei ← bi+1q + bi, i← i+ 2.
6.4. else bi+1q + bi < −(q2 − 1)/2 then bi+3 ← ci+3 + 1,

bi+2 ← ci+2 + bi+1 + (q − 1), ei+1 ← 0, ei ← bi+1q + bi + q2, i← i+ 2.
6.5. else bi+1q + bi > (q2 − 1)/2 then bi+3 ← ci+3 − 1,

bi+2 ← ci+2 + bi+1 − (q − 1), ei+1 ← 0, ei ← bi+1q + bi − q2, i← i+ 2.
7. Return (e�+3, e�+2, · · · , e1, e0).

Let φ-rNAF� be the set of φ-rNAF representation of the length �. We put
B� = #φ-rNAF�, T� =

∑
d∈φ-rNAF�

(�−w(d)), where w(d) means the Hamming
weight of d. Then as is the case with φ-GNAF, the non-zero density of φ-rNAF
is defined by 1− lim�→∞ T�/(�B�).

For φ-rNAF, we also have similar properties. For the proof of the following
proposition, refer the appendix.

Proposition 3 [Properties of φ-rNAF]
(1) Every d ∈ Z[φ] has a unique φ-rNAF representation.
(2) The average number of non-zero digits for � digits numbers in Z[φ] is equal
to ((q − 1)/(2q− 1))�+ q/(2q− 1) + O(((1 − q)/q)�). In particular, the average
non-zero density among φ-rNAF representations of length � is asymptotically
(q − 1)/(2q − 1).

The following algorithm calculates the φ-rNAF representation for a given
d ∈ Z[φ] without the calculation of Frobenius-adic expansion of d and reduces
the memory consumption to calculates the φ-rNAF representation compared to
Algorithm 4 and 5. From Theorem 4 (especially the finiteness of the length of
φ-rNAF), it is easy to show the correctness of Algorithm 6.
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Algorithm 6: φ-rNAF for subfield elliptic curves with Frobenius trace 1

Input: d ∈ Z[φ]
Output: φ-rNAF representation of d
1. Compute d′ := d0 + d1φ = d mod (φn − 1)(d0, d1 ∈ Z).
2. Compute � = �2 logq 2

√
NZ[φ]/Z(d)	+ 4.

3. i← 0.
4. While i � �+ 2 do

4.1. Compute Q, b ∈ Z such that d0 = Qq + b (b ∈ Dq,(q−1)/2) (see [18]).
4.2. d0 ← Q+ d1, d1 ← −Q.
4.3. If b = 0 then ei ← 0, i← i+ 1.
4.4. else compute Q, a ∈ Z such that d0 = Qq + a (a ∈ Dq,(q−1)/2).

d0 ← Q+ d1, d1 ← −Q.
if |aq + b| � (q2 − 1)/2 then ei ← aq + b, ei+1 ← 0, d0 ← a, d1 ← −Q.
else if aq + b < −(q2 − 1)/2 then ei ← aq + b+ q2,

ei+1 ← 0, d0 ← a+ (q − 1), d1 ← −Q+ 1.
else ei ← aq + b− q2, ei+1 ← 0, d0 ← a− (q − 1), d1 ← −Q− 1.
i← i+ 2.

5. Return (e�+3, e�+2, · · · , e1, e0).

Remark. In this paper, we do not discuss about the minimality of Hamming
weight of φ-GNAF and φ-rNAF among various recoding methods with appropri-
ate digit sets. Although the property of minimality is desired, we can easily seen
that for φ-GNAF, φ-rNAF, conventional proofs (for e.g., GNAF, rNAF, etc.)
are not available. It can be considerd that these flaws are caused by the differ-
ence between the rational integer ring and quadratic imaginary integer rings or
quadratic order, and we will need some deep observation on number theoretical
properties of quadratic integer rings. These issues remain to be discussed.

4 Comparisons

We compare several recoding methods for computing scalar multiplication for
a point on a subfield elliptic curve with the Frobenius trace 1 using standard
Left-to-right method (for details, refer [8]). Let d be a large positive integer and
we focus on the group of Fqn -rational points E(Fqn) for sufficient large n which
satisfy d ≈ qn. Let mq, � be the length of q-adic expansion of d, the length of
φ-adic expansion of d0 = d mod (φn − 1), respectively.

As d ≈ qn, the norm of d will be equal to d2 ≈ q2n and d0 ≈ qn+1

(for detail, refer [18]). So m = �logq d� + 1 ≈ �logq qn� + 1 = n + 1 and
� � �2 logq 2

√
NZ[φ]/Z(d0)	 + 4 ≈ �2 logq 2q(n+1)/2	 + 4 � n + 6. For simplify

of evaluation of computational cost, we assume that the length of q-adic ex-
pansion of d, the length of φ-adic expansion of d0, the length of φ-GNAF of d0

and the length of φ-rNAF of d0 are equal to each other (Of course, we should
analyze each average of the length of φ-adic expansion, φ-GNAF and φ-rNAF
among positive integers in the range [1,#E− 1] to evaluate the exact computa-
tional costs. However, we do not deal with this analysis). In practical meaning,
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the shift operations are essentially free, thus if we use normal basis for Fqn , then
the cost of Frobenius map on subfield elliptic curves are free.

In the below tables, ECADD, ECDBL, and ECFRB stand for the compu-
tational cost of the point addition, point doubling, and Frobenius map, respec-
tively. Note that when we compute point multiplication by q for ordinary GNAF
or rNAF, we use −(φ2 − φ), i.e., the computational cost of point multiplication
by q just one time is ECADD+2ECFRB.

Method #Table ECADD ECDBL ECFRB

w-NAF [20] 2w−2 (2w−2 − 1) + m2/(w + 1) m2 + 1 0

φ-adic expansion [18] 1 0.67� 0 �

ord. GNAF [4] 2 1.5� 1 2�

�−GNAF 2 0�5� 1 �

ord. rNAF [21] 3 1.4� 2 2�

�� �NAF 3 0�4� 2 �

Table 1. Computational cost for each recoding method (q = 3)

Method #Table ECADD ECDBL ECFRB

w-NAF [20] 2w−2 (2w−2 − 1) + m2/(w + 1) m2 + 1 0

φ-adic expansion [18] (q − 1)/2 ((q − 1)/q)� + (q − 5)/2 1 �

ord. GNAF [4] q − 1 (2q/(q + 1))� + (q − 3) 1 2�

�−GNAF �� 1 ((�� 1)�(� + 1))�+ (�� 3) 1 �

ord. rNAF [21] q(q − 1)/2 (3q/(2q − 1))� + (q2 − q − 4)/2 1 2�

�� �NAF �(�� 1)�2 ((�� 1)�(2�� 1))�+ (�2
� �� 4)�2 1 �

Table 2. Computational cost for each recoding method (q � 5)

In the second column, the value #Table equals the number of elements, that
have to be precomputed and stored.

We assume that q = 3, 5, 7. The above table shows that the throughputs of
[18], [4] are improved by 12.5∼25%, 57∼60%, respectively, using φ-GNAF and
the throughputs of [18], [21] are improved by 40∼46%, 31.5∼71%, respectively,
using φ-rNAF on the above assumption.

Moreover we assume that the bit length of d ≈ 200 and the width w = 6. Then
n = 126 (q = 3), 86 (q = 5), 71 (q = 7), respectively. In this case, computational
cost for each recoding method is the following.

The above table shows that the throughputs of w-NAF are improved by 75%
using φ-GNAF and 79% using φ-rNAF.

5 Conclusion

It has been an unsolved problem to generalize τ -NAF techniques for Koblitz
curves to more general family of subfield elliptic curves whose endomorphism
rings are not necessarily subrings of Euclidean quadratic imaginary number
fields. In this paper, we have described two generalized methods on a family
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Method #Table ECADD ECDBL ECFRB

w-NAF [20] 16 44 201 0

φ-GNAF (q = 3) 2 63 1 126

φ-GNAF (q = 5) 4 59 1 86

φ-GNAF (q = 7) 6 57 1 71

φ-rNAF (q = 3) 3 50 2 126

φ-rNAF (q = 5) 10 46 1 86

φ-rNAF (q = 7) 21 52 1 71

Table 3. Computational cost for each recoding method (w = 6, m2 = 200)

of subfield elliptic curves. Those methods are two classes of φ-NAF (φ-GNAF
and φ-rNAF). Our proposed methods can be applied to every subfield elliptic
curves with Frobenius trace 1 regardless of whether or not the endomorphism
rings are Euclidean. We also prove that these representations have the same
non-zero densities as the corresponding original GNAF and rNAF. Because of
the high efficinecy in computing Frobenius maps, our proposed methods improve
the efficiency of scalar multiplication significantly compared to previous meth-
ods. The speed of the proposed schemes improve between 12.5% and 79% over
that for previously known schemes.
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A Several Proofs

In this section we prove several propositions and lemmas described in this paper.
Here, we review the following Lemma to prove the uniqueness of φ-GNAF and
φ-rNAF. For detail, refer [12].

Lemma 3 Let α = a+ bφ ∈ Z[φ] (a, b ∈ Z), then we have

φ|α ⇔ q|a.

In particular, for rational integer a ∈ Z, we have φ|a⇔ q|a.

Proof of Proposition 2.

(1) We suppose that d ∈ Z[φ] has two such representations

d =
∑

eiφ
i =

∑
e′iφ

i.
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If i0 is the smallest number such that ei = e′i for 0 � i � i0 − 1 and ei0 �= e′i0 ,
then we can replace d by (d −∑i0−1

i=0 eiφ
i)/φi0 =

∑�−1
i=i0

eiφ
i−i0 , and we have

representations

d =
�−1∑
i=0

eiφ
i =

�−1∑
i=0

e′iφ
i, e0 �= e′0,

where � is the maximum of length of the two representations. Then from Lemma
3, we have q|(e0− e′0), and by the assumption, |e0|, |e′0| � q− 1, hence it satisfies
that |e0 − e′0| � |e0| + |e′0| � 2q − 2. Therefore we have e0 − e′0 = ±q. In the
following, we will give a proof for the case e0− e′0 = q. For another case, we can
prove similarly, thus we omit it.

We have q = (e0−e′0) =
∑�−1

i=1(e′i−ei)φi and by the characteristic polynomial
of φ, we have φ− φ2 =

∑�−1
i=1(e′i − ei)φi. Thus we can see

(e1 − e′1 + 1) = (e′2 − e2 + 1)φ+
�−1∑
i=3

(e′i − ei)φi−1.

Hence, from Lemma 3, we also have q|(e1 − e′1 + 1). It follows that e′1 ∈
{e1 + 1 − q, e1 + 1, e1 + 1 + q}. Then, by the same way as [22], we can easily
induce the contradiction (For details, refer [22], pp.177).

(2) At first, we show that C�+1 = (q − 2)C�, C1 = 2(q − 1). We fix an element
d = (e�−1, · · · , e0)φ of Z[φ] which is a φ-GNAF representation such that each
ei �= 0. For the fixed d, we count the number of e which satisfy 0 < |e| < q − 1,
and (e�−1, · · · , e0, e)φ is a φ-GNAF representation. We can assume that e0 > 0.
If e0e > 0, e satisfy 0 < e < q − 1− e0 and otherwise 0 < e < e0. Thus we have
that the number of e is q − 2, hence the recurrence equation for C�. It is trivial
that C1 = 2(q − 1).

Next, we show that A� and S� satisfy the recurrence equations A1 = 2(q−1),
A2 = 2(q−1)2, A�+2− (q−1)A�+1− qA� = 0 (� ≥ 1), and S1 = 0, S2 = 2(q−1),

S�+2 − (q − 1)S�+1 − qS� = 2(q − 1)
(

1 +
2(q − 1)
(q + 1)

(
q(q� − 1)
q − 1

− (−1)� − 1
2

))
.

In Table 4, the symbol ‘∗’ means a non-zero digit. We explain how to see
Table 4. The left column stand for forms of � digits φ-GNAF representation, the
center column stand for the number of each φ-GNAF representation correspond
to each form of the left column, and the right column stand for each number of
0 digits correspond to each form of the left column. From Table 4, we can derive

A� =
�−2∑
j=1

Cj

(
�−1−j∑
i=1

Ai + 1

)
+ C�−1 + C�,

S� =
�−2∑
j=1

Cj

(
�−1−j∑
i=1

Si + (�− i− j)Ai
)

+
�−1∑
i=1

(�− i)Ci.
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forms # of representations # of 0 digits

(∗0 ∗ · · · ) C1A�−2 C1A�−2 + C1S�−2

(∗00 ∗ · · · ) C1A�−3 2C1A�−3 + C1S�−3

(∗000 ∗ · · · ) C1A�−4 3C1A�−4 + C1S�−4

...
...

...

(∗0000 · · · 0∗ ) C1A2 (�− 3)C1A2 + C1S2

(∗0000 · · · 00∗) C1A1 (�− 2)C1A1 + C1S1

(∗0000 · · · 000) C1 (�− 1)C1

(∗ ∗ 0 ∗ · · · ) C2A�−3 C2A�−3 + C2S�−3

(∗ ∗ 00 ∗ · · · ) C2A�−4 2C2A�−4 + C2S�−4

(∗ ∗ 000 ∗ · · · ) C2A�−5 3C2A�−5 + C2S�−5

...
...

...

(∗ ∗ 000 · · · 0∗ ) C2A2 (�− 4)C2A2 + C2S2

(∗ ∗ 000 · · · 00∗) C2A1 (�− 3)C2A1 + C2S1

(∗ ∗ 000 · · · 000) C2 (�− 2)C2

...
...

...

(∗ ∗ ∗ · · · ∗ 0∗) C�−2A1 C�−2A1 + C�−2S1

(∗ ∗ ∗ · · · ∗ 00) C�−2 2C�−2

(∗ ∗ ∗ · · · ∗ ∗0) C�−1 C�−1

(∗ ∗ ∗ · · · ∗ ∗∗) C� 0

Table 4. Forms of � digits φ-GNAF representations

From these equations, we have the desired recurrence equations, and by ele-
mentary calculations, we have A� = 2(q − 1)

(
q� − (−1)�

)
/(q + 1), and

S� =
2(q − 1)
q + 1

(
q�−1 − 1
q − 1

+
(−1)�−1 − 1

2

)
+

4(q − 1)2

(q + 1)2
(�− 1)

(
q�

q − 1
− (−1)�

2

)

−4(q − 1)2

(q + 1)2

(
q(q�−1 − 1)

(q − 1)2
+

(−1)�−1 − 1
4

)
+
q�−1 − (−1)�−1

(q + 1)2

+
(−1)�(q − 1)(1− (−q)�−1) + 2((−1)�−1 − q�−1)

(q + 1)3
.

Thus lim�→∞ S�/(�A�) = 2/(q + 1). Hence we have the desired result. ��

Proof of Lemma 2.

We apply the rule in the statement of Lemma 2 to (c, c′, c′′, b, b′)φ. We denote
the conversion of i-th digit and i+ 1-th digit by � and the conversion of i+ 2-th
digit and i+3-th digit by 	. We assume a′ ≡ 0 mod q, a′ �= 0. From |a′| � 2q−2,
we have a′ = q or a′ = −q. It suffices to consider the case of a′ = q (In the same
way as the case of a′ = q, we can also the case of a′ = −q). It is easy to understand
the following : the situations which have the possibility of a′ ≡ 0 mod q, a′ �= 0 is
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(	, �) = ((1), (2)), ((2), (1)), ((2), (2)), ((3), (2)), where (1) means (Rule 1) in the
statement of Lemma 2 and so on. From now on, we investigate each situation.

(Case 1) (	, �) = ((1), (2)). It is easy to show that a′ = c+ c′ + (q − 1), i.e. c′ =
−c+1. We apply the rule to (c, c′, c′′, b, b′)φ, We have e′ = (−c+1)q+c′′+b+q2

and it is easy to show that e′ > (q2 − 1)/2. This is contrary to |e′| � (q2 − 1)/2.

(Case 2) (	, �) = ((2), (1)). It is easy to show that a′ = c+ c′ + 1, i.e. c = c′ =
(q−1)/2. We apply the rule to (c, c′, c′′, b, b′)φ, We have e′′′ = bq+b′+q2 and e′ =
c′′+b+(q2+3q−2)/2. It is easy to show that b = −(q−3)/2,−(q−1)/2,−(q+1)/2.
It is also easy to see that b � −q. This is contrary to |b| � (q + 1)/2.

(Case 3) (	, �) = ((2), (2)). It is easy to show that a′ = c+c′+q, i.e. c′ = −c. We
apply the rule to (c, c′, c′′, b, b′)φ, We have e′′′ = bq+ b′ + q2 and e′ = (−c+1)q+
c′′+b+(q−1)+q2. It is easy to show that b = −(q−3)/2,−(q−1)/2,−(q+1)/2.
It is also easy to see that −cq+ c′′ < −(q2− 1)/2. This is contrary to the ranges
of c′′, c.

(Case 4) (	, �) = ((3), (2)). It is easy to show that a′ = c + c′ + q − 2, i.e.
c′ = −c + 2. We apply the rule to (c, c′, c′′, b, b′)φ, We have e′′′ = bq + b′ − q2
and e′ = (−c + 1)q + c′′ + b − (q − 1) + q2. It is easy to show that b = (q −
3)/2, (q−1)/2, (q+1)/2. It is also easy to see that −cq+ c′′ < −(q2−1)/2. This
is contrary to the ranges of c′′, c.

Therefore it always satisfy that a′ �≡ 0 mod q except for a′ = 0. ��

Proof of Proposition 3.

(1) By the same way as Proposition 2, we suppose d ∈ Z[φ] has two such
representations

d =
�−1∑
i=0

eiφ
i =

�−1∑
i=0

e′iφ
i, e0 �= e′0.

Then from Lemma 3, we have q|(e0 − e′0), and by the assumption, |e0|, |e′0| �
(q2 − 1)/2, hence it satisfies that |e0 − e′0| � |e0| + |e′0| � q2 − 1. Therefore
we have e0 − e′0 = ±q,±2q, · · · ,±(q − 1)q. We put e0 − e′0 = aq, where a ∈
{±1,±2, · · · ,±(q − 1)}. We must have e0, e0

′ �= 0. Because if e0 = 0, e0′ =
−(e0 − e0′) is divisible by q but e0′ ∈ Dq,(q2−1)/2, i.e. q � e0

′. This is contrary
to e0 = 0. Similarly, we can show that e0′ �= 0. By the definition of φ-rNAF, we
must have e1, e1′ = 0. We have aq = (e0 − e′0) =

∑�−1
i=1(e′i − ei)φi and by the

characteristic polynomial of φ, we have aφ − aφ2 =
∑�−1

i=1(e′i − ei)φi. Thus we
can see

(e1 − e′1 + a) = (e′2 − e2 + a)φ+
�−1∑
i=3

(e′i − ei)φi−1.

Hence, from Lemma 3, we also have q|(e1 − e′1 + a). It follows that q|a. This
is contrary to a ∈ {±1,±2, · · · ,±(q − 1)}.
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(2) We will show that B� and T� satisfy the recurrence equations B1 = B2 =
q2 − q, B�+2 −B�+1 − (q2 − q)B� = 0 and T1 = 0, T2 = q2 − q,

T�+2 − T�+1 − (q2 − q)T� = (q2 − q)
(

�∑
i=1

Bi

)
.

forms # of representations # of 0 digits

(∗0 ∗ · · · ) B1B�−2 B1B�−2 + B1T�−2

(∗00 ∗ · · · ) B1B�−3 2B1B�−3 + B1T�−3

(∗000 ∗ · · · ) B1B�−4 3B1B�−4 + B1T�−4

...
...

...

(∗0000 · · · 0 ∗ 0) B1B2 (�− 3)B1B2 + B1T2

(∗0000 · · · 00∗) B1B1 (�− 2)B1B1 + B1T1

(∗0000 · · · 000) B1 (�− 1)B1

Table 5. Forms of � digits φ-rNAF representations

In Table 5, the symbol ‘∗’ means a non-zero digit. We explain how to see
Table 5. The left column stand for forms of � digits φ-rNAF representation, the
center column stand for the number of each φ-rNAF representation correspond
to each form of the left column, and the right column stand for each number of
0 digits correspond to each form of the left column. From Table 5, we can derive
B� = B1

(
1 +

∑�−2
i=1 Bi

)
, and

T� = B1

(
1 +

�−2∑
i=1

Ti

)
+B1

(
�−2∑
i=1

(�− 1− i)Bi + (�− 1)

)
.

From these equations, we have the desired recurrence equations, and by ele-
mentary calculations, we have B� = q(q − 1)(q� − (1− q)�)/(2q − 1), and

T� =
q(q − 1)(q�−1 − (1− q)�−1)

2q − 1
+

(�− 1)(q�+2(q − 1)− (1− q)�+2q)
(2q − 1)2

+
q�(1− q)4 + q4(1− q)�

q(2q − 1)2
+

q�−1(1− q)
2q − 1

(
q�−1 − 1
q�−1

)
,

thus we have lim�→∞ T�/(�B�) = q/(2q − 1) as desired. ��
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