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Prof. Dr. Jacques Patarin (Université de Versailles)
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Marc Van Barel, and Prof. Joos Vandewalle for serving as jury members. In
particular, I want to acknowledge their critical proof reading or the fruitful dis-
cussions I had with them in the past. In addition, I want to thank Prof. Jan
Willems for agreeing to serve as a jury-member on such short notice and Prof.
Guido De Roeck for chairing the jury.

Special thanks go to An Braeken for our successful collaboration, and to
Jasper Scholten for patiently answering my “stupid” mathematical questions.
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Abstract

This thesis gives an overview of Multivariate Quadratic polynomial equations
and their use in public key cryptography.

In the first chapter, some general terms of cryptography are introduced.
In particular, the need for public key cryptography and alternative schemes is
motivated, i.e., systems which neither use factoring (like RSA, Rivest-Shamir-
Adleman) nor the discrete logarithm (like ECC, elliptic curve cryptography).

This is followed by a brief introduction of finite fields and a general discussion
about Multivariate Quadratic systems of equations and ways of representing
them. In this context, affine transformations and their representations are also
discussed. After these tools are introduced, they are used to show howMultivari-
ate Quadratic equations can be used for signature and encryption applications.
In addition, the problem ofMultivariate Quadratic polynomial equations is put
into perspective and a link with the theory of NP-completeness is established.
The second chapter concludes with the two related problems isomorphism of
polynomials and minimal rank of the sum of matrices. Both prove useful in the
cryptanalysis of Multivariate Quadratic systems.

The main part of this thesis is about concrete trapdoors for the problem of
Multivariate Quadratic public key systems. We can show that all such systems
fall in one of the following four classes: unbalanced oil and vinegar systems
(UOV), stepwise triangular systems (STS), Matsumoto-Imai Scheme A (MIA),
and hidden field equations (HFE). Moreover, we demonstrate the use of several
modifiers. In order to evaluate the security of these four basic trapdoors and
their modifiers, we review some cryptanalytic results. In particular, we were
able to develop our own contributions in this field by demonstrating an affine
approximation attack and an attack using Gröbner base computations against
the UOV class. Moreover, we derived a key recovery and inversion attack against
the STS class. Using our knowledge of the HFE class, we develop two secure
versions of the signature scheme Quartz.

Another important part of this thesis is the study of the key space ofMulti-
variate Quadratic public key systems. Using special classes of affine transfor-
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mations, denoted “sustainers”, we are able to show that all four basic classes
have some redundancy in their key spaces and hence, have a smaller key space
than previously expected. In particular for the UOV and the STS class, this
reduction proves quite dramatic. For HFE and MIA, we only find some minor
redundancies. Moreover, we are able to show that our results for MIA are the
only ones possible, i.e., there are no other redundancies than the one we describe
in this thesis. In addition, we extend our results to several important variations
of HFE and MIA, namely HFE-, HFEv, HFEv-, and MIA-. They have been used
in practice for the construction of signature schemes, namely Quartz and Sflash.

In order to demonstrate the practical relevance of Multivariate Quadratic
constructions and also of our taxonomy, we show some concrete examples. In
particular, we consider the NESSIE submissions Flash, Sflash, and Quartz and
discuss their advantages and disadvantages. Moreover, we describe some more
recent developments, namely the STS-based schemes enhanced TTS, Tractable
Rational Maps, and Rainbow. Then we move on to some application domains for
Multivariate Quadratic public key systems. In particular, we see applications in
the area of product activation keys, electronic stamps and fast one-way functions.
Finally, we suggest some new schemes. In particular, we give a generalisation of
MIA to odd characteristics and also investigate some other trapdoors like STS
and UOV with the branching and the homogenisation modifiers.

All in all, we believe that Multivariate Quadratic polynomial systems are a
very practical solution to the problem of public key cryptography. At present,
it is not possible to use them for encryption. However, we are confident that it
will be possible to overcome this problem soon and use Multivariate Quadratic
constructions both for encrypting and signing.
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Samenvatting

Deze thesis geeft een overzicht van het gebruik van stelsels van multivariate
kwadratische veeltermen in publieke sleutelcryptografie. In het eerste hoofdstuk
worden enkele cryptografische begrippen gëıntroduceerd. In het bijzonder wordt
de noodzaak van publieke sleutelcryptografie en de alternatieve oplossing ervoor,
d.z.w., systemen die noch factorisatie (zoals RSA, Rivest-Shamir-Adleman) noch
het discrete logaritme gebruiken (zoals ECC, elliptische krommecryptografie).

Dit wordt gevolgd door een korte inleiding van eindige lichamen en een al-
gemene bespreking over systemen van stelsels van multivariate kwadratische veel-
termen en manieren om ze voortestellen. In deze context worden ook affiene
transformaties en hun voorstelling besproken. Nadat deze hulpmiddelen zijn
gëıntroduceerd, worden zij gebruikt om aan te tonen hoe de stelsels van mul-
tivariate kwadratische veeltermen voor handtekening- en encryptietoepassingen
kunnen worden gebruikt. Bovendien wordt het probleem van uit kwadratische
veeltermen bestaande stelsels van vergelijkingen in perspectief gezet en er wordt
een verbinding gelegd met de theorie van NP-Volledigheid. Het tweede hoofd-
stuk besluit met een discussie over de twee verwante problemen isomorfismen
van veeltermen en minimale rang van de som van matrices. Beide blijken nuttig
te zijn voor de cryptanalyse van systemen gebaseerd op stelsels van multivariate
kwadratische veeltermen.

Het belangrijkste deel van deze thesis gaat over concrete valkuilen voor het
probleem van publieke sleutelsystemen die gebaseerd zijn op stelsels van mul-
tivariate kwadratische veeltermen. We kunnen aantonen dat al dergelijke sys-
temen in één van de volgende vier klassen vallen: uit evenwicht gebrachte olie-
en azijn-systemen (UOV), trapsgewijze driehoekige systemen (STS), Matsumoto-
Imai schema A (MIA), en verborgen lichaamsverglijkingen (HFE). Voorts tonen
we het gebruik van verscheidene wijzigingen aan. Om de veiligheid van deze vier
basis-valkuilen en hun wijzigingen te evalueren, herzien we sommige cryptana-
lytische resultaten. In het bijzonder kunnen we onze eigen bijdragen op dit gebied
ontwikkelen door twee aanvallen tegen UOV aan te tonen, namelijk een benader-
ingsaanval en een aanval die Gröbnerbasis berekeningen gebruikt. Voorts leidden
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we een sleutelterug-win en een inversie-aanval tegen de klasse STS af. Gebruik
makend van onze kennis over HFE, ontwikkeln we twee veilige versies van het
Quartz handtekeningsschema.

Een ander belangrijk deel van deze thesis is de studie van de sleutelruimte van
publieke sleutelcryptografie gebaseerd op stelsels van multivariate kwadratische
veeltermen. Gebruikmakend van speciale klassen van affiene transformaties, die
we “onderhouders” noemen, kunnen we aantonen dat alle vier de basisklassen
wat redundantie in hun sleutelruimte hebben en dus een kleinere sleutelruimte
bevatten dan eerder verwacht. In het bijzonder blijkt deze reductie voor UOV
en de STS klasse vrij dramatisch. Voor HFE en MIA vinden we slechts enkele
minder belangrijke reduntanties. Voorts kunnen we aantonen dat onze resultaten
voor MIA de enige mogelijke zijn, d.z.w., zijn er geen andere redundanties dan
degene die we in deze thesis beschrijven. Bovendien breiden we onze resultaten tot
verscheidene belangrijke variaties van HFE en MIA uit, namelijk HFE-, HFEv,
HFEv-, en MIA-. Deze zijn in de praktijk gebruikt voor de bouw van handteke-
ningsschema’s, namelijk Quartz, Flash en Sflash.

Om de praktische relevantie van de bouw van systemen gebaseerd op stelsels
van multivariate kwadratische veeltermen en ook van onze classificatie aan te
tonen, geven we enkele concrete voorbeelden. In het bijzonder behandelen we
de NESSIE inzendingen, Flash, Sflash en Quartz en bespreken we hun voor- en
nadelen. Voorts beschrijven we wat meer recente ontwikkelingen, namelijk op
STS-gebaseerde “verbeterde TTS”, “Handelbare Rationele Transformaties”, en
Regenboog. Vervolgens begeven we ons naar de toepassingsgebieden van publieke
sleutelcryptografie systemen gebaseerd op stelsels van multivariate kwadratische
veeltermen. In het bijzonder behandelen we toepassingen op het gebied van
product-activeringssleutels, elektronische postzegels en snelle eenrichtingsfunc-
ties. Ten slotte stellen we enkele nieuwe schema’s voor. In het bijzonder geven
we een generalisatie van MIA voor oneven karakteristiek, en onderzoeken we ook
andere valkuilen zoals STS en UOV met vertakking- en homogenisatieaanpassers.
Al met al, geloven we dat de uit stelsels van multivariate kwadratische veeltermen
bestaande systemen een zeer praktische oplossing geven voor het probleem van
publieke sleutelcryptografie. Momenteel is het niet mogelijk om ze voor encryptie
te gebruiken. Nochtans zijn we zeker dat het mogelijk zal zijn om dit probleem
te overwinnen, en om de stelsels van multivariate kwadratische veeltermen te
gebruiken voor zowel encryptie als voor het zetten van handtekeningen.

x



Zusammenfassung

Diese Dissertation gibt einen Überblick über Multivariate Quadratische Poly-
nomgleichungen und ihre Verwendung in der asymmetrischen Kryptographie.

Das erste Kapitel führt in einige allgemeine Begriffe der Kryptographie ein.
Insbesondere wird die Notwendigkeit von Public-Key Kryptographie sowie alter-
nativer Schemata motiviert. Unter alternativen Schemata verstehen wir in diesem
Kontext Systeme, die weder Faktorisierung benutzen (wie z.B. RSA, Rivest-
Shamir-Adleman) noch diskrete Logarithmen (wie z.B. ECC, Elliptic Curve Cryp-
tographie).

Darauf folgt eine kurze Einführung in endliche Körper sowie eine allgemeine
Diskussion überMultivariate Quadratische Gleichungssysteme und ihre Darstel-
lungsformen. In diesem Kontext behandeln wir affine Transformationen und
deren Representation. Nachdem diese Werkzeuge eingeführt wurden, benuzten
wir sie um zu zeigen, wie Multivariate Quadratische Systeme für elektronis-
che Unterschriften und Verschlüsselung verwendet werden können. Des weiteren
zeigen wir eine Verbindung zwischenMultivariaten Quadratischen Systemen und
der Theorie der NP-Vollständigkeit auf. Das zweite Kapitel endet mit den bei-
den verwandten Problemen Isomorphismus von Polynomen und Minimaler Rang
der Summe von Matrizen. Beide sind für die Kryptanalyse von Multivariaten
Quadratischen Systemen von hohem Wert.

Der Hauptbeitrag dieser Dissertation sind konkrete Falltüren für die Kon-
struktion Multivariater Quadratischer Systeme. Wir können zeigen, dass alle
diese Systeme in eine der folgenden vier Klassen fallen: Unbalanced Oil and
Vinegar Systeme (UOV), Stepwise Triangular Systeme (STS), Matsumoto-Imai
Schema A, und Hidden Field Equations (HFE). Des weiteren zeigen wir die Ver-
wendung mehrerer Modifizierer. Um die Sicherheit dieser vier grundlegenden
Falltüren sowie der Modifizierer einschätzen zu können, besprechen wir einige
kryptanalytischen Ergebnisse. Unsere eigenen Beiträge auf diesem Gebiet sind
ein affiner Approximierungsangriff sowie ein Angriff, der auf der Berechnung von
Gröbner Basen beruht. Beide Angriffe erfolgten gegen UOV. Des weiteren haben
wir sowohl einen Key-Recovery-Angriff wie auch einen Inversionsangriff gegen
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STS entwickelt. Unter Ausnutzung unserer Kenntnis der HFE-Klasse konnten
wir zwei sichere Versionen des Signatursystems Quartz entwickeln.

Ein weiterer wichtiger Teil dieser Dissertation ist das Studium des Schlüssel-
raumsMultivariaterQuadratischer Systeme. Durch Benutzung spezieller Klassen
affiner Transformationen, sog. “Erhalter”, können wir zeigen, dass alle vier Grund-
klassen einen redundanten Schlüsselraum haben. Der Schlüsselraum ist damit
kleiner als ursprünglich angenommen. Vor allem für UOV und STS ergibt sich
eine sehr starke Reduktion, während wir für HFE und MIA nur kleinere Redun-
danzen finden konnten. Des weiteren waren wir im Stande zu zeigen dass die von
uns gefundenen Redundanzen in der MIA-Klasse die einzig möglichen sind. Wir
konnten unsere Ergebnisse zu wichtigen Varianten von HFE und MIA, nämlich
HFE-, HFEv, HFEv-, und MIA- verallgemeinern. Alle vier wurden in der Praxis
für die Konstruktion von Unterschriftenschemata benutzt, nämlich Quarz und
Sflash.

Um die praktische Bedeutung sowohl Multivariater Quadratischer Systeme
wie auch unserer Taxonomie zu demonstrieren, diskutieren wir einige konkrete
Beispiele. Wir konzentrieren uns dazu vor allem auf die NESSIE-Einreichungen
Flash, Sflash und Quartz und besprechen ihre Vor- und Nachteile. Des weit-
eren beschreiben wir einige neuere Entwicklungen in Gestalt der STS-basierten
Schemata enhanced TTS, Rational Tractable Maps, und Rainbow. Darauf fol-
gen einige mögliche AnwendungsfelderMultivariater Quadratischer Systeme wie
Produktaktivierungsschlüssel, elektronische Briefmarken und schnelle Einweg-
funktionen. Letztendlich schlagen wir einige neue Schemata vor. Insbeson-
dere verallgemeinern wir MIA auf ungerade Charakteristiken und untersuchen
auch andere Falltüren wie STS und UOV mit dem Homogenisierungs- und dem
Verzweigungsmodifizierer.

Alles in allem glauben wir, dassMultivariate Quadratische Systeme eine sehr
praktische Lösung für das Primitiv

”
asymmetrisch Kryptographie“ darstellen.

Zur Zeit ist es leider nicht möglich, sie für Verschlüsselungsschemata zu verwen-
den. Wir sind allerdings zuversichtlich, dass sich dieses Problem bald überwinden
lässt und Multivariate Quadratische Systeme damit sowohl für Verschlüsselung
wie auch für elektronische Unterschriften eingesetzt werden können.

xii
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Chapter 1

Introduction

In today’s Internet driven society, information is a valuable asset: it is “pro-
duced”, stored, and traded. So all this information needs protection of several
kinds: protection against altering, certainty of origin, and also protection of its
very content from leaking out or being stolen. For some of these aims, mecha-
nisms we know from the physical world are sufficient: for example, the access to
a computer class is usually strictly guarded: either we have a human supervisor
who makes sure that only legitimate people may enter this computer class, or we
have some kind of physical access control: either by keys or key cards. However,
as soon as information is exchanged over untrusted networks such at the open
Internet, this physical protection becomes vain: for example, it is impossible to
protect the whole Internet this way as it belongs to too many people living in too
many countries. Hence, we need a different toolkit for ensuring authenticity and
secrecy of the information flowing through open networks as the Internet. One
of the most prominent examples for such a toolkit is called “cryptology”.

1.1 Cryptology

Although cryptography received very much attention during the last decades,
the science of “secret writing” and its analysis are actually far older. In this
section we give a brief overview of some important steps in the development of
cryptology from its early beginning to nowadays “public key” cryptology. This
way, we motivate the research carried out in this doctorate.

1
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1.1.1 The Caesar Cipher

One early example of cryptology can be found in the times of the Roman empire.
It is a cipher called “Caesar” (after Julius Caesar) and was used both by him
and his successors [Bau95, Sec. 3.2.3]. The following example illustrates this
technique:

clear text a t t a c k a t d a w n
cipher text D W W D F N D W G D N Q

Here the clear text “attack at dawn” is transformed into the corresponding
cipher text “DWWDFNDWGDNQ”. For a Caesar cipher, each letter is re-
placed by its third successor in the alphabet, i.e.,

a → D, b → E, c → F,
. . .

x → A, y → B, z → C

To decrypt a message which has been sent in Caesar, each letter has to be
shifted back 3 positions in the alphabet. Variations of the Caesar cipher use not
only a simple shift by 3 but any permutation of the alphabet, i.e., they use a more
complex key. However, due to their rather simple structure, these kind of ciphers
can easily be broken using the frequency of different letters in different languages.
For example, the letter “e” is the most frequent one in English (12.51%) and also
in German (17.48%) [Bau95, Fig. 91]. But the shorter the text, the lesser the
likelihood that the text shows the same frequency as the whole language. For
example, “attack at dawn” contains only the vowel “a” and no “e” at all. Still,
the Caesar cipher has to be considered broken today, even for such short texts.

1.1.2 One-Time Pad

A logical extension of the substitution principle used in the Caesar cipher is
to have not one but many different substitutions. The extreme case — one
independent substitution for each letter — is called a “one-time pad” [Sch96,
Sec. 1.5]. For a one-time pad, the key has to be as long as the message to be sent
and also “truly random”. In addition, this key can never be used again (therefore
the name “one-time pad”). If it is reused, this is a very serious breach of security.
However, in case all the above criteria are met, a one-time-pad is a provably
perfect secure system, i.e., as long as the key is kept secret, no eavesdropper can
reveal the message [Beu93, Sec. 3.3]. The technique is illustrated in the following
example, cf Table 1.1.

Here the secret key chooses the substitution to be used, i.e., how many letters
a character is to be shifted. If the secret key is an “x” (as for the first “a” in
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Table 1.1: Example of the One-Time Pad

clear text a t t a c k a t d a w n
secret key x v d y w b z f o h c e

cipher text Y P X Z Z M A Z S I Z S

“attack”), the corresponding clear text character is shifted by 24 positions. As
the alphabet has 26 characters, a shift by 26 positions (i.e., for the secret key
character “z”), does not have any effect, so the letter stays unchanged. This can
be seen for the “a” in “at”. To decrypt, each step is reversed, i.e., instead of
using the ith successor of a letter, we use its ith predecessor — with i depending
on the key-letter.

Intuitively, the one-time pad is secure as all messages are equally alike. In the
above example, we can change “attack at dawn” to “surrender now” by “just”
changing the secret key, cf Table 1.2. Hence, without knowing the secret key,
the attacker cannot “learn” anything new as the cipher does not reveal anything
about the distribution of the secret key. So as long as each key is used only one,
we have an unbreakable cipher.

Table 1.2: Second Example of the One-Time Pad

clear text s u r r e n d e r n o w
secret key f u f h u y w u a u k v

cipher text Y P X Z Z M A Z S I Z S

As there is a perfectly secure cipher available — in fact, this cipher was
invented nearly a century ago in 1917 by Joseph Mauborgne and Gilbert S.
Vernam [Sch96, Sec. 1.5] — one would expect cryptology to have come to an end
as there seems to be no need for any other ciphers. But the contrary is true as
there is a high price to pay for perfect security: the key has to be as long as
the message and also perfectly random. The latter requires a “random source”,
e.g., radioactive decay or thermal noise [Sch96, Sec. 17.14]. In addition, it needs
very much randomness, as the key has to be very large. For example, to encrypt
an ISDN connection (64,000 bits/second) for only 1 minute, we need approx. 0.5
MBytes — which is the equivalent of a book with approx. 200 pages. For high
bandwidth channels like Ethernet (10-100 Mbits/second), the required key length
is far beyond any reasonable size — even the equivalent of a multi-volume lexicon
would not last for long. Moreover, the sender and the receiver of a message need
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to know the same key, therefore, it has to be transmitted securely to at least one
of them. If there are many keys and if they are also rather large, this can be
a challenging task. In addition, both sender and recipient have to store the key
in a secure manner. So in practice, a one-time pad can only be used if very few
messages are transmitted and if they are also rather short. Alternatively, if the
security requirements are very high. For example, the red telephone between the
White House and the Kremlin used to be protected by a one-time pad [Mas92,
p. 11]. According to [Mas92, p. 11], they use a symmetric cipher, at least since the
early 90s. Hence we see that perfect security is not always necessary in practice
— even on the highest political level.

1.1.3 Modern Cryptology

Nowadays, cryptology does not only deal with the problem of securing communi-
cation against eavesdropping, but also with problems such as message integrity
and authentication (see above).

For a data authentication problem, the attacker plays a more active role than
only eavesdropping, i.e., she (in cryptographic papers, the attacker is often called
“Eve”) does not only try to eavesdrop but also to alter the content of a message.
This can be very dangerous if, e.g., the sum on a money transfer is changed:
instead of withdrawing 100 euro from a customer’s bank account, the bank takes
1,000,000 — assuming that the attacker altered the content of the money transfer
form on the way from the customer to the bank.

In this context, a comparably new development in cryptography, the so-called
“public key cryptography” is very useful. It dates back to 1976 when Diffie and
Hellman published their paper “New Directions in Cryptography” [DH76]. They
introduced the idea of not using one single, secret key for both encryption and
decryption (as we saw it in the previous examples) but one key for encryption
(called “public key”) and one key for decryption (called “private key”). This
looks rather complicated but has nice advantages over the old, so-called “secret
key cryptography”: users no longer have to care about many secret keys (one
for each communication partner), but only one, i.e., their own private key. The
other keys can (and in fact, should) be publicly known, so there is no need to keep
them away from eavesdroppers. Moreover, applications such as digital signatures
of electronic documents become possible now. For electronic signatures, the
private key is used to generate a signature (“to sign a document”), while the
public key checks this signature (“to verify a signature”). We see an example of
this signing technique in Section 2.3.

Although it has many practical advantages, at first the idea of Diffie and Hell-
man was purely theoretical, i.e., they did not present an algorithm which could
be used for public key cryptography but stated the mere principle. However, dur-
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ing the following years, such algorithms were developed, e.g., RSA or ElGamal.
The first is based on the problem of factoring large numbers (1024 bits and more),
the latter on a problem called “discrete logarithm”, i.e., to compute the solution
of equations like ax = b for given a, b in discrete equations. Both are computa-
tionally difficult problems — even with modern algorithms and computers. See
[MvOV96] for these and other cryptographic algorithms.

More formally, we have the following construction in public key cryptogra-
phy: let kA be Alice’s private key and KA her public key. For a public key
encryption scheme, we need two functions c := E(KA,m) and m′ := D(kA, c)
such that m′ = m ∀m. Moreover, for given public key KA it must be easy to
compute E(KA,m) for any given message m. Still, the computation of any func-
tion m′′ := D(c) without the knowledge of the private key kA or some equivalent
information may not be possible. Similar, there may not be an efficient function
k′A := f(KB) which computes an equivalent version of Alice’s private key. For
a signature scheme, we have a similar notion: here we have the two functions
s := S(kA,m) and b := V (KB , s,m), namely signature computation S(·, ·) and
signature verification V (·, ·, ·). As for public key encryption schemes, it is vital
that it is not possible to compute the private key efficiently from the public key,
nor to derive signatures without this private key. As we will see in the sequel,
these requirements are met by most schemes discussed in this thesis.

Nowadays, cryptographic techniques are widely used — both by civil and
military users. In non-military use, e-commerce is an important application
domain of cryptographic techniques. For example, if you buy a book at Amazon,
your credit card information is secured through the SSL/TLS protocol which
makes use of certificates, i.e., electronic signatures on public keys, public key
exchange routines to transmit so-called “session keys”, and also symmetric key
algorithms, which use the session key to encrypt the information you transmit to
Amazon and vice versa [DA99, Shi00].

1.2 Motivation

As we saw in the previous section, public key cryptography is an important
tool for nowadays information society. Unfortunately, the security of public key
schemes used in practice relies on a rather small number of problems: either
factoring (RSA) or discrete logarithms (ECC). Both problems are currently con-
sidered to be hard. It is widely believed that research on new schemes based on
other classes of problems is necessary. Such work provides greater diversity and
hence forces cryptanalysts to spend additional effort concentrating on completely
new types of problems. This way, we make sure that not all “crypto-eggs” are in
one basket. To strengthen the necessity for new schemes, we want to point out
that important results on the potential weaknesses of existing public key schemes
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are emerging. In particular techniques for factorisation and solving discrete log-
arithm improve continually. For example, polynomial time quantum algorithms
[Sho97] can be used to solve both problems. Therefore, the existence of quantum
computers in the range of 1000 bits would be a real-world threat to systems based
on factoring or the discrete logarithm problem. This stresses the importance of
research into new algorithms for asymmetric cryptography.

input x

?
x = (x1, . . . , xn)

?
private: S

x′

?
private: P ′

y′

?
private: T

output y ¾

public:
(p1, . . . , pm)

Figure 1.1: Outline of the General MQ-trapdoor

One proposal for secure public key schemes is based on the problem of solving
Multivariate Quadratic equations (MQ-problem) over finite fields. All of these
proposals share the same type of public key, i.e., polynomials of degree 2 over
(small) finite fields, cf Figure 1.2 for an overview and Section 2 for a more formal
treatment. In Figure 1.2 we have 1 ≤ i ≤ m polynomials in 1 ≤ j ≤ k ≤ n
variables each, and the coefficients γi,j,k, βi,j , αi ∈ F where F denotes some finite
field. The first such proposal is due to Matsumoto and Imai [IM85]. In the
last 15 years, several such public key cryptoschemes (PKC) have been proposed.
A typical multivariate public key system uses a private key T ◦ P ′ ◦ S where ◦
denotes the composition of functions, cf Figure 1.1. Here, S ∈ Aff−1(Fn) and
T ∈ Aff−1(Fm) represent two affine transformations over the finite field F. The
central map P ′ consists of m central equations in n variables each. For anMQ-
scheme, the degree of these equations is 2. Moreover, the central map P ′ must be
easy to invert to allow the decryption or signing of messages. So the secret key of
theMQ-system is composed of the triple (S,P ′, T ) ∈ Aff−1(Fn)×MQ(Fn,Fm)×
Aff−1(Fm). We want to point out that the different proposals only differ in the
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p1(x1, . . . , xn) :=
∑

1≤j≤k≤n

γ1,j,kxjxk +

n∑

j=1

β1,jxj + α1

...

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +

n∑

j=1

βi,jxj + αi

...

pm(x1, . . . , xn) :=
∑

1≤j≤k≤n

γm,j,kxjxk +

n∑

j=1

βm,jxj + αm

Figure 1.2: Public Key for Multivariate Quadratic Public Key Systems

structure of their central equations P ′. Hence, depending on this structure, we
are able to identify several classes: the MIA schemes [IM85, MI88], HFE-like
schemes [Pat96b, Cou01], Unbalanced Oil and Vinegar schemes [KPG99], and
Stepwise Triangular Systems [WBP04]. All of them rely on the fact that theMQ-
problem, i.e., finding a solution x ∈ F

n for a given system P is computationally
difficult, namely NP-complete, cf Section 2.5. In addition, factoring P into its
components T,P ′, S is considered to be a hard problem if S,P ′, T do not have
a special structure. This problem has previously been studied under the name
Isomorphism of Polynomials Problem, cf Section 2.6.1.

1.3 Related Work

As outlined above, we concentrate on Multivariate Quadratic equations over
finite fields in this text. They have the nice property that an attacker does not
even know which type of scheme he attacks, given the public key alone, i.e., we
have a kind of “secret public key schemes” [Pat00]. When deciding on the scope
of this thesis, we had to draw the line somewhere. As an objective criterion, we
used the degree of the public key polynomials, i.e., other multivariate schemes
which are based on equations of higher degree are not considered. This includes in
particular the polynomial substitution scheme of [FD85] and the Dragon scheme
from [Pat96a] as they have a public key of higher degree. In this context we
also want to mention the Bi-Quadratic C∗ scheme of [DF05]. Similarly, we do
not consider birational permutations [Sha93], as they are based on finite rings
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rather than finite fields. Moreover, they have been successfully cryptanalysed
in [CSV93, The95, CSV97]. In addition, we do not consider the matrix based
schemes from [PGC98a] either, as its use has been strongly discouraged in the
very paper were it has been developed, and also is not an MQ-system in this
stronger sense.

In this context we refer to Section 2.2: there, we outline while quadratic equa-
tions play such a prominent role. In a nutshell, they are already NP-complete
while the number of coefficients is still reasonably small. This also stresses why
we decided to concentrate on schemes based onMultivariateQuadratic equations
rather than including schemes of higher degree.

1.4 Achievement

This thesis contains several new results. First, it gives an overview on the whole
area of Multivariate Quadratic cryptography. Until now, it was necessary to
read several papers — each of them using their own notation — to get a good
idea on this area. In this context, we also established that there are only 4 basic
trapdoors and 10 generic modifiers. Before, this was not obvious at all. More
importantly and to derive this taxonomy, we needed to generalise existing trap-
doors, i.e., the TPM trapdoor of [GC00] was generalised to STS [WBP04], and
the MIA trapdoor was generalised to odd characteristics (MIO, cf Section 6.4.1).
Similar, the modifiers sparse polynomials (“s”), vinegar variables (“v”), and in-
ternal perturbation (“i”) have not been treated in their full generality before. In
addition, the homogenising (“h”) modifier has been developed during this thesis.
Quite interesting from a mathematical point of view is the question of equivalent
keys ofMQ-schemes. Surprisingly, this was not addressed in the open literature
before. The first publication we are aware of in this context is [WP05c]. The the-
ory described there has been further developed in this thesis and can be found
in Section 5. Apart from this mathematical work, we also successfully crypt-
analysed the UOV class [BWP05] and the STS class [WBP04]. Moreover, we
developed a variation of the proposed standard “Quartz” which is secure against
all known attacks [WP04]. Using the knowledge developed in this thesis, we in-
vestigated the question of possible applications of MQ-schemes. In a nutshell,
we see applications in the context of electronic stamps, product activation keys,
and fast one-way functions [WP05a].
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1.5 Outline

This thesis is organised as follows: following this introduction we consider some
basic mathematical tools, necessary for the understanding ofMQ-schemes. After
this, we consider some basic constructions for embedding trapdoors into MQ-
systems. This is followed by some cryptanalytic results and the question of
equivalent keys. The last two chapters deal with possible applications and con-
clusions.
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Chapter 2

The General
MQ-construction

After motivating the topic of this thesis, i.e.,Multivariate Quadratic public key
systems, we now move on by introducing some properties and notations useful
for the remainder of this thesis. In particular, we will develop the mathematical
tools necessary for understanding Multivariate Quadratic public key systems.
We start with briefly introducing finite fields, then concentrating on the general
problem of multivariate polynomial equations, an alternative matrix representa-
tion, consider affine transformations, and also the two related problems MinRank
and Isomorphism of Polynomials.

Our own achievement in this chapter are easier proofs for the lemmata and
theorems stated here. Moreover, we simplified and unified the notation used in
the context of Multivariate Quadratic systems.

2.1 Finite Fields

As finite fields are a very basic building block for these kind of schemes, we start
with properly introducing them. Loosely speaking, a (finite) field consists of a
(finite) set of elements, and two operations, namely addition (denoted “+”) and
multiplication (denoted “·”). These operations need to fulfil certain criteria:

Definition 2.1.1 Let F be a set of q ∈ N elements with the two operations
addition + : F×F→ F and multiplication · : F×F→ F. Note that this definition
implies closure for addition and multiplication. We call (F,+, ·) a field if the
following axioms are fulfilled:

11
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1. additive Abelian group (F,+):

(a) associativity: ∀a, b, c ∈ F : ((a+ b) + c) = (a+ (b+ c))

(b) additive neutral: ∃e ∈ F : ∀a ∈ F : a+ e = a.
In the remainder of this thesis, we denote this e with 0

(c) additive inverse: ∀a ∈ F ∃a′ ∈ F : a+ a′ = 0.
In the remainder of this thesis, we denote this a′ with −a

(d) commutativity: ∀a, b ∈ F : a+ b = b+ a

2. multiplicative Abelian group (F∗, ·) for F
∗ := F \ {0}:

(a) associativity: ∀a, b, c ∈ F : ((a · b) · c) = (a · (b · c))

(b) multiplicative neutral: ∃e ∈ F : ∀a ∈ F : a · e = a.
In the remainder of this thesis, we denote this e with 1

(c) multiplicative inverse: ∀a ∈ F
∗ ∃a′ ∈ F

∗ : a · a′ = 1.
In the remainder of this thesis, we denote this a′ with a−1

(d) commutativity: ∀a, b ∈ F : a · b = b · a

3. distributivity: ∀a, b, c ∈ F : a · (b+ c) = a · b+ a · c

Remark 2.1.2 For brevity, we write ab instead of a · b. If it is clear from the
context which addition and multiplication we use with the field, we also write F

instead of (F,+, ·).

Definition 2.1.3 Let q be a prime number, F := {0, . . . , q − 1}, and addition
and multiplication usual integer addition and multiplication modulo this prime
number q. Then we call (F,+, ·) a prime field.

Definition 2.1.4 Let F be a field and i(t) ∈ F[t] an irreducible univariate poly-
nomial in the variable t over F with degree n. Furthermore, we define the set
E := F[t]/i(t) as equivalence classes of polynomials modulo i(t) and the operation
addition “+” as normal addition of polynomials, and “·” multiplication of polyno-
mials modulo the irreducible polynomial i(t). Then we call (E,+, ·) a polynomial
field and also say that it is a degree n extension of the ground field F.

We want to point out that definitions 2.1.1, 2.1.3, and 2.1.4 are consistent:
it it possible to prove that the construction from the two latter comply with the
field axioms from the first. Moreover, all finite fields are either of the prime field
or the polynomial field type. The corresponding proofs and further properties of
finite fields can be found in [LN00]. In particular, we want to stress the following

Lemma 2.1.5 Let F be a finite field and let q := |F| be the number of its ele-
ments. Then we have ∀x ∈ F : xq = x (Frobenius automorphism).
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This lemma will prove particularly useful in the context of schemes defined
over extension fields (cf sections 3.1.3 and 3.1.4) and in the context of affine
transformations (cf Section 2.2.3). For efficient implementation of arithmetic on
finite fields we refer the reader to [BSS99, LD00].

The last piece we need before moving on to Multivariate Quadratic polyno-
mials is an isomorphism between the extension field E of dimension n over the
ground field F (cf Definition 2.1.4) and the vector space F

n. To this aim, we
observe that all field elements a ∈ E have the form

an−1t
n−1 + · · ·+ a1t+ a0 with ai ∈ F .

In addition, we see that a vector b ∈ F
n can be represented as (b1, . . . , bn) with

bi ∈ F.

Definition 2.1.6 Let E be an nthdegree extension of the ground field F and F
n

the corresponding vector space. Then we call φ : E→ F
n with

φ(a) := b and bi := ai−1 for 1 ≤ i ≤ n

for a0, . . . , an−1, b1, . . . , bn ∈ F as defined above the canonical bijection between
E and F

n. We also use its inverse φ−1 and have φ(φ−1(b)) = b for all b ∈ F
n

and φ−1(φ(a)) = a for all a ∈ E.

2.2 Considerations about Multivariate Polyno-
mial Equations

After introducing finite fields, we move on to the problem of solving a system of
multivariate polynomial equations.

2.2.1 General Multivariate Polynomial Equations

Let n ∈ N be the number of variables, m ∈ N the number of equations, and d ∈ N

the degree of the system. Here x1, . . . , xn are variables over F. By convention,
we set x0 := 1, i.e., the multiplicative neutral element in F. For given n, d ∈ N

and using a vector v with components v1, . . . , vd ∈ {0, . . . , n} we define

Vd
n :=

{
{0} for d = 0
{v ∈ {0, . . . , n}d : i ≤ j ⇒ vi ≤ vj} otherwise

We are now able to state the problem of multivariate polynomial equations. Let
P be a system of m polynomials in n variables with maximum degree d ∈ N each,
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i.e., we have P := (p1, . . . , pm) where all pi have the form

pi(x1, . . . , xn) :=
∑

v∈Vd
n

γi,v

d∏

j=1

xvj
for 1 ≤ i ≤ m

with the coefficients γi,v ∈ F and vectors v ∈ Vd
n.

This allows us to define the problem of Simultaneous Multivariate Equations
(SME): Let y1, . . . , ym ∈ F be some field elements and multivariate polynomials
p1, . . . , pm defined as above. Then finding a solution x ∈ F

n for the simultaneous
system of equations in the polynomial vector P and given y ∈ F

m is called an
SME-problem, cf Figure 2.1.





y1 = p1(x1, . . . , xn)
y2 = p2(x1, . . . , xn)

...
ym = pm(x1, . . . , xn)

Figure 2.1: Example of an SME-problem with n variables and m equations

The key-length in a system based on the intractability of the simultaneous
solving of multivariate, non-linear equations (i.e., d ≥ 2) can be computed using
the following formulas. Therefore, we first define

τ(d)(F
n) :=

{ ∑min(|F|−1,d)
i

(
n
i

)
for d > 0

1 for d = 0

for the number of terms in n variables of degree d over the finite field F. For the
correctness of the above formula, we notice that we have xq−1 = 1 with q := |F|
in all finite fields (cf Lemma 2.1.5). Using this, we can write

τd(Fn) :=
d∑

i=0

τ(i)(F
n)

for the number of all terms in a single polynomial equation over F with maximal
degree d and in n variables.

In particular, this leads to the following size function for given parameters
F, n,m, d, q := |F|:

size(F, n,m, d) := mτd(Fn) log2 q . (2.1)

In general, we obtain a key-length of O(mnd) for the public key — or O(nd+1)
for m = n.
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2.2.2 Multivariate Quadratic Polynomials

For any q and d = 2, we speak about the problem of Multivariate Quadratic
equations and denote the class of corresponding polynomial vectors P with
MQ(Fn,Fm) (cf Figure 2.1 for the general case). As we will see below, this
class plays an important role for the construction of public key schemes based on
the problem of polynomial equations over finite fields. Therefore, we state the
polynomials pi explicitly for this case:

p1(x1, . . . , xn) :=
∑

1≤j≤k≤n

γ1,j,kxjxk +

n∑

j=1

β1,jxj + α1

...

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +

n∑

j=1

βi,jxj + αi

...

pm(x1, . . . , xn) :=
∑

1≤j≤k≤n

γm,j,kxjxk +
n∑

j=1

βm,jxj + αm

with the coefficients γi,j,k, βi,j , αi ∈ F. In the case of d = 2, we call them
quadratic (γi,j,k), linear (βi,j), and constant (αi) coefficients, respectively. In
short, we write this polynomial vector as P := (p1, . . . , pm) and moreover have
P ∈ MQ(Fn,Fm). By convention, we require j < k for q = 2 as x2

i = xi in
GF(2). If the number of variables is equal to the number of equations, we write
MQ(Fn) for brevity rather than MQ(Fn,Fn).

In addition, we state the formula for the number of terms for one polynomial
of the MQ-problem explicitly:

τ(n) :=





1 + n+ n(n−1)
2 = 1 + n(n+1)

2 if F = GF (2)

1 + n+ n(n+1)
2 = 1 + n(n+3)

2 otherwise .

(2.2)

The above formula assumes polynomials with quadratic and linear terms plus a
constant term.

The prominent role ofMultivariate Quadratic equations is easily seen by the
two following observations: first, the public key size increases with O(mnd) —
and is hence very sensitive to the degree d. Therefore, we want d to be as small as
possible. On the other hand, solving quadratic systems is already NP-complete
and also hard on average. We refer the reader to cf [GJ79, p. 251] and [PG97,
App.]. A detailed proof can be found in Section 2.5.
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2.2.3 Affine Transformations

As we will see in the following sections, affine transformations play an important
role in the theory ofMultivariate Quadratic public key systems. Hence, to have
all necessary tools at hand in the sequel, we review some of their properties. In
this context, the following lemma proves useful.

Remark 2.2.1 In the remainder of this text, we denote elements of vector spaces
by small letters and elements of extension fields by capital letters, e.g., vector
x ∈ F

n but element X ∈ E.

Lemma 2.2.2 Let F be a finite field with q := |F| elements. Then we have∏n−1
i=0

(
qn − qi

)
invertible (n× n)-matrices over F.

Proof. We observe that we have full choice for the first row vector of our matrix
— except the zero-vector. With an inductive argument we see that we have full
choice for each consecutive row vector — except the span of the previous row
vectors. Hence, we have a total of

(
qn − qj−1

)
independent choices for the jth

row vector. ¤

Next, we recall some basic properties of affine transformations over the finite
field F and its nth-degree extension E.

Definition 2.2.3 Let MS ∈ F
n×n be an (n × n) matrix and vs ∈ F

n a vector
and let S(x) := MSx+ vs. We call this the “matrix representation” of the affine
transformation S.

Definition 2.2.4 Moreover, let s1, . . . , sn be n polynomials of degree 1 at most
over F, i.e., we have si(x1, . . . , xn) := βi,1x1 + . . .+ βi,nxn +αi with 1 ≤ i, j ≤ n
and αi, βi,j ∈ F. Let S(x) := (s1(x), . . . , sn(x)) for x := (x1, . . . , xn) a vector
over F

n. We call this the “multivariate representation” of the affine transforma-
tion S.

Remark 2.2.5 The multivariate and the matrix representation of an affine trans-
formation S are interchangeable. We only need to identify the corresponding
coefficients: (MS)i,j ↔ βi,j and (vS)i ↔ αi for 1 ≤ i, j ≤ n.

In addition, we can also use the “univariate representation” over the extension
field E of the transformation S.

Definition 2.2.6 Let 0 ≤ i < n and A,Bi ∈ E. Then we call the polynomial
S(X) :=

∑n−1
i=0 BiX

qi

+A the “univariate representation” of the affine transfor-
mation S(X).



2.2. MULTIVARIATE POLYNOMIAL EQUATIONS 17

The important point here is that x→ xq is a linear mapping in the finite field F

and also its extension field E, cf Lemma 2.1.5. Hence, all sums which have only
powers of the form xqi

for 0 ≤ i < n in E are also linear mappings. A proof of
this statement can be found, e.g., in [KS99].

Lemma 2.2.7 An affine transformation in univariate representation can be ef-
ficiently transfered into matrix representation and vice versa.

Proof. As we already know that both the univariate and the matrix representa-
tion exist, it is sufficient to give an algorithm to transfer an affine transformation
given in one of these representations to the other representation.

We start with the univariate polynomial P (X) :=
∑n−1

i=0 BiX
qi

+A for given
Bi, A ∈ E and compute a corresponding matrix M ∈ F

n×n and a vector v ∈ F
n.

For this purpose, we define η0 ∈ F
n the 0 vector, and ηi ∈ F

n : 1 ≤ i ≤ n,
a vector with its ith coefficient 1, the others 0. Moreover, we use the canonical
bijection φ : E→ F

n, cf Definition 2.1.6. Now, we compute v := φ(P (φ−1(η0))),
and Mi := φ(P (φ−1(ηi))) where the vector Mi ∈ F

n denotes the ith row of the
matrix M . By construction, we have φ(P (X)) = M.φ(X) + v for all X ∈ E.

The converse computation, i.e., to obtain a polynomial P ∈ E[x] of the re-
quired form for given matrix M ∈ F

n×n and a vector v ∈ F
n is a little more

difficult. Note that the polynomial P is very sparse as it has only (n + 1) non-
zero coefficients. We start with the observation φ−1(M.0 + v) = P (0) = A, i.e.,
we have A := φ−1(v). For the coefficients B0, . . . , Bn−1 ∈ E, it is sufficient to
solve the following matrix equation for given Xi ∈ E, 1 ≤ i ≤ λ and λ ≥ n over
the extension field E:




Xq0

1 Xq1

1 . . . Xqn−1

1
...

...
. . .

...

Xq0

i Xq1

i . . . Xqn−1

i
...

...
. . .

...

Xq0

λ Xq1

λ . . . Xqn−1

λ







B0

B1

...

...
Bn−1




=




M.φ(X1)
M.φ(X2)
M.φ(X3)

...

...
M.φ(Xλ)




(2.3)

To obtain a unique solution, we need the rank of the above matrix to be equal
to n. As it is a (λ × n)-matrix, we can be sure that the rank will not exceed
n. Moreover, if the rank is smaller than n, we increase the value of λ, until the
matrix has full rank and we obtain a unique solution. This is possible as we have
full control on X and hence can make sure that all rows are linearly independent.
We do not expect λÀ n in practice; this was confirmed through simulations.

We note that all computations in this proof can be done in polynomial time:
we need matrix multiplications in the ground field F, and Gauss operations in
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the extension field E to solve the above linear equation. Hence, we can transfer
efficiently between both representations. ¤

Remark 2.2.8 The matrix from (2.3) resembles Vandermonde matrices. How-
ever, there is an important difference: rows of Vandermonde matrices have the
form αi for i = 0, . . . , (n− 1) while the matrix from (2.3) uses double exponents.
While only a small change at first glance, it changes the structure of the ma-
trix. For example, a Vandermonde matrix has only 1’s in its first column while
the above matrix may have any value from E here. As a consequence, the ma-
chinery developed for Vandermonde matrices cannot be applied in the proof of
Lemma 2.2.7.

In the remainder of this thesis, we denote the class of affine transformations
F

n → F
n by Aff0(F

n), and the class of linear transformations, i.e., with the con-
stant term equal to 0, will be denoted by Hom0(F

n) for homomorphism. In both
cases, the subscript 0 indicates that the all zero transformation is also included in
this set. Moreover, for affine and linear transformations, we can use the matrix
representation to determine if the corresponding transformation is a bijection or
not. For a bijection, the matrix MS needs to have full rank. In most cases,
we will use bijections in this thesis and hence, use Aff−1(Fn) and Hom−1(Fn),
i.e., the class of invertible affine and linear transformations, respectively. In this
context we want to stress that (Aff−1(Fn), ◦) and (Hom−1(Fn), ◦) form groups
for the symbol “◦” being function composition.

At some points, we will not only need transformations within the same vector
space, but transformations S(x) : F

n → F
m with n 6= m. We therefore extend

our notation to Aff0(F
n,Fm) and Hom0(F

n,Fm) in this case. Obviously, the
corresponding transformations cannot be bijective anymore, but injective in the
case n < m and surjective in the case n > m. As in the case of bijective
transformations, we can use the rank of the corresponding matrix to determine
if a given transformation is injective or surjective. By abusing the notation from
above, we write Aff−1(Fn,Fm) and Hom−1(Fn,Fm) in this case, i.e., both for
the surjective (n > m) and the injective (n < m) case. In any case, function
composition is no longer defined on these objects and hence, (Aff−1(Fn,Fm), ◦)
(Hom−1(Fn,Fm), ◦) are no groups anymore.

2.2.4 Matrix Representation

As we saw above, it is possible to represent affine transformations in three dif-
ferent ways: univariate, multivariate, and as a matrix. Here, we see that one
can also express Multivariate Quadratic polynomials as square matrices over
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the ground field F. Let

pi =
∑

1≤j≤k≤n

γi,j,kxjxk +

n∑

j=1

βi,jxj + αi

be a public key polynomial as defined in Section 2.2.2, i.e., with the public key
coefficients αi, βi,j , γi,j,k ∈ F and the unknowns xi ∈ F. In order to uniquely
express its homogeneous quadratic parts, i.e., the coefficients γi,j,k for j 6= k in a
symmetric matrix Pi ∈ F

n×n, we need to distinguish odd and even characteristic.

Pi =




γi,1,1 γi,1,2/2 · · · · · · γi,1,n/2
γi,1,2/2 γi,2,2 γi,2,n/2

...
...

. . .
...

γi,1,n−1/2 γi,2,n−1/2 γi,n−1,n−1 γi,n−1,n/2
γi,1,n/2 γi,2,n/2 · · · γi,n−1,n/2 γi,n,n




Figure 2.2: Matrix Representation Pi of the Public Key pi

• For odd characteristics, the matrix elements (Pi)a,b on row a and column
b of the symmetric matrix Pi are determined by

{
(Pi)a,b := (Pi)b,a :=

γi,a,b

2 for 1 ≤ a < b ≤ n
(Pi)a,a := γi,a,a for 1 ≤ a ≤ n .

So, instead of evaluating the quadratic parts of pi by the vector x, we
may also perform xPix

t as matrix-vector multiplications (here t denotes
transposition), cf Figure 2.2 for a graphical representation of this idea.

• For even characteristic, division by 2 is not defined. Therefore the form
Pi := Li + Lt

i for lower triangular matrices Li is used. This way, we
loose the quadratic coefficients γi,i of the public polynomials. However, in
characteristic 2, these quadratic terms are linear and we can therefore ignore
them. To the knowledge of the author, the above observation has been
initially reported in [KPG99] and is there credited to Don Coppersmith.

Although it seems strange at first glance that such a matrix representation of
Multivariate Quadratic polynomials could be useful, we will see in Chapter 4
that it is crucial for certain types of attacks.



20 CHAPTER 2. THE GENERAL MQ-CONSTRUCTION

2.3 MQ-trapdoor

To be useful for public key cryptology, we do not only need an intractable prob-
lem, but also a way of embedding a trapdoor into it. For the MQ-problem as
stated in Section 2.2, we are able to embed a trapdoor (S,P ′, T ) into a system of

input x

?
x = (x1, . . . , xn)

?
private: S

x′

?
private: P ′

y′

?
private: T

output y ¾

public:
(p1, . . . , pn)

Figure 2.3: Graphical Representation of the MQ-trapdoor (S,P ′, T )

equations P, cf Figure 2.3. Here we have (S,P ′, T ) ∈ Aff−1(Fn)×MQ(Fn,Fm)×
Aff−1(Fm) and P ∈ MQ(Fn,Fm), i.e., S is an invertible affine transformation
S : F

n → F
n and T is an invertible affine transformation T : F

m → F
m. More-

over, P ′ is a polynomial vector as defined in Section 2.2, i.e., all m polynomials
in n variables each have degree d = 2. In particular, we have P ′ as a function
P ′ : F

n → F
m. In the remainder of this thesis, we denote components of the

hidden quadratic transformation P ′ by a prime ′, e.g., the variables x′1, . . . , x
′
n

or the coefficients α′
i, β

′
i,j , γ

′
i,j,k for 1 ≤ i ≤ m and 1 ≤ j ≤ k ≤ n. In general,

P ′ consists of non-homogeneous polynomials, i.e., we have at least one non-zero
β′

i,j and one non-zero α′
i in this polynomial-vector.

We want to point out that the trapdoor from Figure 2.3 is the only one
possible: as we restricted our attention to Multivariate Quadratic equations,
we cannot have a degree higher than 2 for the public key equations. But this
implies immediately that we can have at most one degree 2 transformation in the
overall construction. Hence, all variations ofMultivariate Quadratic systems (cf
Section 3.2) can only use degree one equations for the two affine transformations
S, T and some hidden invertible quadratic system of polynomials for P ′. In
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particular, these two affine transformations are used to hide the internal structure
of the central equations P ′ from the eyes of an attacker. This is necessary as we
need the central map P ′ to be invertible in contrast to the public key P alone.

Another way of “modifying” the above trapdoor is the use of several affine
transformations. However, as we noted in the previous section, this does not help
as affine transformations form a group and hence, are closed under composition.

2.3.1 Signature Verification

Signature verification is the same for all schemes based on the difficulty of the
MQ-problem: evaluate the polynomial vector P for a given signature x ∈ F

n.
If the result is the same as the given message vector y ∈ F

m, we accept the

signature, otherwise we reject. For short, we write y
?
= P(x) where

?
= denotes

comparison. So we perform the following m checks of elements in F:

y1
?
= p1(x1, . . . , xn)

...

ym
?
= pm(x1, . . . , xn)

As each polynomial has τ(n) = O(n2) coefficients (cf Section 2.2), such an eval-
uation takes a total of O(mn2) multiplications and additions in the finite field F.
Strategies for fast evaluation of the public key are discussed in [CGP01, CGP03a].

2.3.2 Signature Generation

To generate a signature, we make use of the private key, i.e., the MQ-trapdoor
(S,P ′, T ) ∈ Aff−1(Fn)×MQ(Fn,Fm)×Aff−1(Fm). Here we observe that we need
to invert each individual step, i.e., we need to compute the vector y′ := T−1(y)
for given y, followed by x′ := P ′−1(y′), and finally x := S−1(x′), cf Figure 2.4.

We start with the inversion of S(x): as we saw in Section 2.2.3, we can write
this affine transformation using an invertible matrix M ∈ F

n×n and a vector
v ∈ F

n, i.e., we have S(x) := Mx+v. Therefore, its inverse is given by the affine
transformation S−1(x) := M−1(x − v). Similar, we can invert the second affine
transformation T .

Things are more complicated for the system of polynomials P ′ as inversion
strategies differ for individual trapdoor functions, e.g., MIA, HFE, STS, or UOV.
Therefore, we will discuss the inversion strategy in the individual sections (cf
Section 3.1). However, we want to stress that it is enough to find one pre-image
of P to obtain a valid signature, i.e., we only need one x′ ∈ F

n with P ′(x′) = y′

for given y′ ∈ F
m. In case P ′ : F

n → F
m and hence P : F

n → F
m is not a

surjection, we add some random bits to the input x ∈ F
n, cf [CGP01] for an
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input x

?
x = (x1, . . . , xn)

?

6private: S S−1

x′

?

6private: P ′ P ′−1

y′

?

6private: T T−1

output y ¾

public:
(p1, . . . , pn)

Figure 2.4: Inverting the MQ-trapdoor

outline of this idea. In a nutshell, even a small number of random bits ensures
that we obtain a valid signature in all practical cases. In [CGP01], it is shown
that we need only 7 random bits to obtain a valid signature with probability
1 − 2−187 for the HFE trapdoor for a given message x ∈ F

n. As we will see in
the next section, matters are slightly more complicated for decryption.

2.3.3 Decryption

Decryption and signature generation are quite similar — except for the fact that
we usually need to compute all possible pre-imagesX ′

1, . . . , X
′
k ∈ F

n which satisfy
the equation P ′(X ′) = y′ for given y′ ∈ F

m and some k ∈ N. Depending on the
scheme used, it may happen that we do not have a unique solution X ′ for this
equation. Hence, we need a possibility to pick the right Xi from the set of all
possible solutions Q := {Xi ∈ F

n : Xi := S−1(X ′
i) for 1 ≤ i ≤ k}. Assuming that

we decrypt a valid ciphertext, we have Q non-empty and hence, k ∈ Z : k ≥ 1.
This problem has been discussed in [Pat96b] and its author suggests to use

either error-correcting codes or a cryptographically secure hash function to solve
it. To our knowledge, only hash functions have been used so far in this context.
Denote such a hash function H(·) : F

n → {0, 1}h where h is the length of the
hash string. Hence, during encryption (see below), the hash-value x̃ := H(x) is
computed and then used to pick the right Xi from the set Q by simply checking if

the corresponding hashes match, i.e., if we have H(Xi)
?
= x̃. As the hash function
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plaintext M

?
side computation: redundancy x̃

X = (x1, . . . , xn)

?
private: S

X ′

?
private: P ′

y′

?
private: T

y ¾

public:
(p1, . . . , pn)

Figure 2.5: MQ-systems for Encryption of Message M with Ciphertext (y, x̃)

is assumed to be cryptographically secure, an attacker cannot use the knowledge
of x̃ to gain an advantage when computing x. In this context we want to point
out that the attacker can always verify his guesses on x by checking if y = P(x′)
match for some guess x′ ∈ F

n. However, the workload of this procedure clearly
depends on the size of the set Q: on average, we will need to check |Q|/2 elements
before finding the right Xi. Hence, Q may not be too large in practice. As we
will see below, this is a serious obstacle for constructing a secure and efficient
encryption scheme based on the MQ-problem.

In this context, the question of the optimal length of the output of such a
hash function is also important: having the corresponding hash too short, we
may not be able to find a unique xi from the set Q. Having h too long, we waste
bandwidth. This question has been elaborated in [Dau01, Section 2.3.3]. In a
nutshell, we need an 80 bit hash result to have a probability of 1−2−80 for unique
decryption. More general, we need h bits to have a probability of 1 − 2−h for
unique deciphering.

Using the idea of an error correcting code on x, i.e., to encode a message M
using some code word x, and only accepting elements from Q which are a correct
codeword, does not seem to have advantages over the idea of using hash-functions
as it enforces a bigger parameter n: our new message space is now the message
space of the error correcting code while the size of the code space determines the
number of input variables n. Hence, the number of coefficients increases by the
message expansion of the error correcting code used and therefore also the time
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for decryption or encryption. Moreover, having redundancy in the clear text is
usually not a good idea as it may be exploited in an attack. We therefore do not
advise this strategy but encourage the use of hash-functions in this context.

A similar strategy is padding: here, the first f < n bits of the message
vector X ∈ F

n are fixed to some values v1, . . . , vf ∈ F and only signatures with
x1 = v1, . . . , xf = vf are accepted. Hence, we have the same concerns as for
methods using error correcting codes: we need a bigger parameter n for secure
schemes but may give the adversary an advantage as he already knows parts of the
message. Assuming that we want to filter out wrong signatures with probability
1− 2−s, we need f := log2 q padding bits. A typical value for s would be 80.

Remark 2.3.1 To use MQ-systems in real-world applications, the question of
semantic security becomes pressing. This means that an attacker cannot use the
encrypted text y′ ∈ F

m to gain information about the original message x ∈ F
n.

Hence, the question of suitable padding schemes arises naturally.

2.3.4 Encryption

As discussed in the previous section, the function P ′(x′) = y′ is usually not sur-
jective — and consequently, neither is P(x) = y. Hence, we need to compute
some redundancy to allow unique decryption, cf Figure 2.5. Consequently, en-
cryption consists of two steps: first, we evaluate the public key and second, we
compute this redundancy x̃:

1. y := P(x)

2. x̃ := H(x)

for some hash function H(·), cf previous section. The encrypted message now
consists of the pair (y, x̃) ∈ F

m × {0, 1}h for h ∈ N being the length of the hash-
string used. In contrast to decryption, encryption is always unique as there exists
only one y ∈ F

m for any given x ∈ F
n.

2.4 Univariate and Multivariate Representations

After outlining the general structure of the MQ-trapdoor, we move on to the
multivariate representation of univariate functions.

Therefore, we need to come back to Definition 2.1.6 which allowed us to
transfer elements between the extension field E and the vector space F

n, using
the canonical bijection φ : E → F

n and its inverse φ−1 : F
n → E. With this

definition, we are now able to formally prove an important lemma in the context
of MQ-systems.
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Lemma 2.4.1 Let E be an extension field and F the corresponding ground field.
We recall that we have q := |F| as the number of its elements. In addition, let n
be the dimension of E over the ground field. Consider the univariate monomial

P (X) := CXqa+qb

over E for some a, b ∈ N and C ∈ E. Then there exists a
polynomial vector P ∈ MQ(Fn) which computes the same function, i.e., ∀ W ∈
E : φ(P (W )) = P(φ(W )).

Proof. First, we decompose P (X) into the two univariate monomials U(X) :=

CXqa

and V (X) := Xqb

. Second, we observe that computing in Z/(qn − 1)Z
allows us to reduce the degree of the monomials U(X), V (X) below qn. In par-
ticular, we can obtain obtain two integers a′, b′ ∈ Z with 0 ≤ a′, b′ < n such that

U(X) = U ′(X) for U ′(X) := CXqa′

holds for all inputs X ∈ E. The same is true

for V (X) = V ′(X) with V ′(X) := Xqb′

. Therefore, and w.l.o.g., we can assume
0 ≤ a, b < n.

Next we note that the monomials of U, V are affine transformations in univari-
ate representation, i.e., we can apply Lemma 2.2.7 to obtain the corresponding
multivariate representations U and V. Denoting the components of the polyno-
mial vector U by u1, . . . , un we can now write

U(x1, . . . , xn) = φ(U(φ−1(x1, . . . , xn)))

= φ(u1(x1, . . . , xn)

+ tu2(x1, . . . , xn)

+ . . .

+ tn−1un(x1, . . . , xn)) .

Similar, we obtain a mixed F
n/E-representation of the polynomial vector V. Mul-

tiplying U ,V in E, i.e., in particular, modulo the irreducible defining polynomial
i(t), yields the corresponding Multivariate Quadratic polynomials by construc-
tion. ¤

Remark 2.4.2 Instead of computing the multivariate polynomials as outlined in
the above proof, we can also use multivariate polynomial interpolation, cf [MI88,
Wol04] for details.

Corollary 2.4.3 For a polynomial of the form

P (X) :=
∑

0≤i,j≤D

qi+qj≤D

Ci,jX
qi+qj

with Ci,j ∈ E

with D ∈ N and D < qn, there exists a polynomial vector P ∈ MQ(Fn) which
computes the same function.
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Lemma 2.4.4 Let F be a ground field and E an n-dimensional extension of F.
Then for the polynomial

P (X) :=
∑

0≤i≤j<n

Ci,jX
qi+qj

+
n−1∑

i=0

BiX
qi

+A

with coefficients Ci,j , Bi, A ∈ E there exists a unique multivariate quadratic poly-
nomial vector P ∈ MQ(Fn), not necessarily of full degree, which computes the
same function, i.e., we have P (X) = φ−1(P(φ(X))) ∀X ∈ E.

Proof. We use Corollary 2.4.3 for the quadratic terms, Lemma 2.2.7 on the
affine part, and add up the result. ¤

Interestingly, the converse is also true:

Lemma 2.4.5 Let P ∈ MQ(Fn) be a Multivariate Quadratic system of equa-
tions and E an n-dimensional extension of the ground field F. Then there exists
a unique univariate polynomial

P (X) :=
∑

0≤i≤j<n

Ci,jX
qi+qj

+

n−1∑

i=0

BiX
qi

+A

with coefficients Ci,j , Bi, A ∈ E which computes the same function as P, i.e., we
have P (X) = φ−1(P(φ(X))) ∀X ∈ E.

Proof. We use a counting argument and will assume F 6=GF(2) for simplicity.
Consider all polynomials P (X) ∈ E[X] which have the above form. They have(
n
2

)
+n+n+1 coefficients in total: the quadratics (coefficients Ci,j with i 6= j), the

quadratics in the same variable (coefficients Ci,i), the linear terms (coefficients

Bi) and the constant term A. Hence, there are qn.(n(n+3)
2 +1) choices in total

for these polynomials P (X). On the other hand, we know from (2.2) that we

have a total choice of qn.τ(n) = qn.(n(n+3)
2 +1) for polynomial vectors inMQ(Fn).

In addition, Lemma 2.4.4 shows that each of these polynomials P (X) has a
unique multivariate representation, denoted P(X). Moreover, both functions
compute the same output for any given input X ∈ E. This is not true for two
polynomials P1(X), P2(X) ∈ E[X], P1 6= P2 and their corresponding polynomial
vectors P1,P2 ∈ MQ(Fn). Hence, using the counting from above we are able
to conclude that for each polynomial vector P, there is one unique univariate
polynomial P (X). This completes the proof for the case F 6= GF(2).

The same proof runs through for GF(2), but we have to adjust our counting
slightly as x2

i = xi holds for 1 ≤ i ≤ n and consequently no terms of the form

Xqi+qi

in the polynomial P (X). However, the overall idea remains the same. ¤
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Remark 2.4.6 The previous lemma has already been shown in a more general
setting in [KS99, Lemma 3.3]; in this thesis, the proof has been simplified for the
case of Multivariate Quadratic equations. Another proof of this lemma, but this
time restricted to the case F = GF(2), can be found in [MIHM85]. Moreover,
the univariate representation of multivariate quadratic equations can be computed
efficiently: we use polynomial interpolation on a total of O(n2) points from E,
which translates to O(n3) elements from F, cf Lemma 2.2.7 for the general idea.

Lemma 2.4.7 Let P ∈ MQ(Fn,Fm) be a Multivariate Quadratic system of
equations with n ∈ N variables and m ∈ N equations. For the cases (a) m < n
and (b) m > n there exists a univariate representation P ∈ E[X] for E being an
(a) n-dimensional and (b) m-dimensional extension of the ground field F.

Proof. Case (a): We have m < n and E an n-dimensional extension of the
ground field F and the canonical bijection φ : E → F

n (see Definition 2.1.6).
Moreover, consider the reduction/projection transformation R : F

n → F
m defined

as
R(x1, . . . , xm, xm+1, . . . , xn) := (x1, . . . , xm)

and its “inverse” transformation R−1 : F
m → F

n which is defined as

R−1(x1, . . . , xm) := (x1, . . . , xm, 0, . . . , 0) .

Using Lemma 2.4.5, we compute a polynomial P ∈ E[x] with

P (X) = φ−1(R−1(P(φ(X)))) ∀X ∈ E .

By construction, we have

R(φ(P (φ−1(x)))) = P(x) ∀x ∈ F
n .

An alternative way of writing the above statement is to replace the “inverse
reduction” R−1(X) by adding zero polynomials pm+1, . . . , pn to the multivariate
function P, i.e., these polynomials are all chosen to be the zero polynomial. This
way, we obtain P : F

n → F
n and can therefore apply Lemma 2.4.5 directly.

Case (b): We have m > n and E an m-dimensional extension of the ground
field F and define φ : E→ F

m. Moreover, consider the reduction transformation
R : F

m → F
n defined as R(x1, . . . , xn, xn+1, . . . , xm) := (x1, . . . , xn). Using

Lemma 2.4.5, we compute a polynomial P ∈ E[x] with

P (X) = φ−1(P(R(φ(X)))) ∀X ∈ E .

By construction, this polynomial computes the required function. Moreover, due
to the definition of the reduction function R(x), the degree of P(R(x)) remains
quadratic. ¤
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Remark 2.4.8 Due to their construction, both polynomials P (X) in (a) and (b)
of Lemma 2.4.7 are a univariate representation of the corresponding P(x). For
a fixed reduction transformation R and a fixed extension field E, this univariate
polynomial P (X) is even unique.

Theorem 2.4.9 Let n,m ∈ N and F a finite field with q := |F| elements. More-
over, define k := max{n,m} and an extension field E := GF(qk). Then there
exists a unique univariate representation P ∈ E[X] for each multivariate system
of equations P ∈MQ(Fn,Fm) and vice versa.

Proof. We use lemmata 2.4.4, 2.4.5, and 2.4.7. ¤

Remark 2.4.10 For d the maximal degree of the multivariate equations, and

a univariate polynomial P (X) with monomials of the form Xqi1+···+qi
d′

with
d′ ≤ d, it is possible to prove a generalisation of Lemma 2.2.7 by induction
over d. Similar, we can show the converse for general polynomials P . However,
as this thesis concentrates on Multivariate Quadratic equations, we omit the
corresponding proofs and refer the reader to [KS99].

2.5 NP-Completeness of MQ

As we saw in the previous section,MQ is a quite general problem which can be
used for signing and encrypting with an embedded trapdoor. Still, for a one-way
trapdoor function, we need two properties: trapdoor and one-wayness. To moti-
vate the second, we establish in this section that MQ is an NP-complete prob-
lem. The fact that MQ over GF(2) is NP-complete has already been pointed
out in [GJ79, p. 251]. For the proof, [GJ79, p. 251] refers to a manuscript from
A.S.Fraenkel and Y.Yesha that was unpublished in 1977 and also to “private com-
munication” with L.G.Valliant. The text [FY79], from A.S.Fraenkel and Y.Yesha,
was published in 1979, has the same title as the manuscript quoted in [GJ79] and
gives a proof for the NP-completeness for polynomials over GF(2) and also the
algebraic closure of GF(2). It mentions that strictly quadratic polynomials have
been treated by L.G.Valiant, without giving any further hint how to prove this.
It is called “MinRank” there and also in parts of the older literature as it was
seen to be the minimal rank of a matrix. This is similar to the current definition
of the MinRank-problem, cf Section 2.6.2 for details. In the newer literature the
same problem is usually denoted MQ (Multivariate Quadratic). This section
is based on [PG97] which gives a proof both for the case of GF(2) and also for
domains, cf Definition 2.5.5 on Page 30. A preliminary version of this section has
been published in [Wol02a].
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2.5.1 MQ over GF(2)

To show that MQ over GF(2) is NP-complete, we first show that it is in NP
and then reduce 3-SAT to MQ.

Definition 2.5.1 MQ-GF(2): Let MQ(Fn,Fm) be all systems of quadratic
equations over F := GF(2). Then we call one element P ∈ MQ(Fn,Fm) an
instance of MQ over GF(2).

Solvable in NP-time. The following Non-deterministic Polynomial-time al-
gorithm (NP) solves MQ-GF(2) for a given system of equations. The input
size can be computed using (2.2) for given finite field F and natural numbers
n,m ∈ N.

1. Guess an assignment A for (x1, . . . , xn) ∈ {0, 1}n.

2. Check if all m equations are satisfied by A.

3. Output true or go to an infinity loop, respectively.

As there are m equations, and each equation has 1 + n + n(n+1)
2 = n(n+3)

2 + 1
terms at most, Step (2) requires polynomial time. If Step (2) is successful, the
algorithm outputs true, and terminates but otherwise goes to an infinite loop.
So MQ-GF(2) can be solved in NP-time.

Remark 2.5.2 Note that in the case F = GF(2), x2 = x ∀x. This means that
we can have xixj : i 6= j but not xixi as xixi = x2

i = xi ∀i ∈ {1, . . . , n} and xi

over GF(2).

NP-hardness. In this section, we reduce 3-SAT to MQ-GF(2).

Definition 2.5.3 3-SAT: Let B = {b1, . . . , bn} be a set of Boolean variables, let
L = {b1, b1, . . . , bn, bn} be the corresponding set of literals, let ci ∈ (L ∪ L2 ∪ L3)
be clauses of at most 3 literals, and let C = {c1, . . . , cm} be a set of these clauses.
Then the corresponding 3-SAT problem is to determine if there is an assignment
A ∈ {0, 1}n for B such that all ci are true and hence C is satisfied.

Using this definition, we show that 3-SAT can be reduced to MQ-GF(2).
We start with an instance of 3-SAT. Introduce X = {x1, . . . , xn} with xi being
variables over GF(2). Here ∨ denotes the Boolean OR function and + denotes
addition over GF(2). Transfer each clause ci to equation ei using the following
syntactical transformations where li, lj , lk ∈ L and bi ∈ B:

1. Replace (li ∨ lj ∨ lk) by (li + lj + lk + lilj + lilk + lj lk + lilj lk),
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2. Replace (li ∨ lj) by (li + lj + lilj).

3. For each variable bi ∈ B: replace bi with (1− xi) and bi with xi.

4. Construct an equation ei : (c′i = 1) for each transformed clause c′i.

This algorithm transfers each clause ci into an equation ei. Here all equa-
tions ei have at most cubic terms. After expanding and collecting terms, we

introduce n(n−1)
2 new variables yi,j and n(n−1)

2 new equations yi,j = xixj , for
i < j. Moreover, we replace xixj or xjxi by yi,j in all equations. This leads to

m+ n(n−1)
2 quadratic equations in n(n+1)

2 variables. If there is a solution for this
set of equations, we also have a solution for the original 3-SAT problem. As all
steps require only polynomial time and space, we reduced 3-SAT in polynomial
time to MQ-GF(2), i.e., ≤poly MQ-GF(2).

Theorem 2.5.4 MQ-GF(2) is NP-complete.

Proof. As shown above, MQ-GF(2) ∈ NP and 3-SAT ≤poly MQ-GF(2), which
imply that MQ-GF(2) is NP-complete. ¤

2.5.2 MQ over Domains

In the previous section, we consideredMQ over GF(2) and proved it to be NP-
complete. In this section, we generalise this result for MQ over domains.

Definition 2.5.5 MQ-D: Let D be a domain, i.e., a commutative ring with
1 and without zero divisors. Then MQ-D is the problem of solving a set of m
quadratic equations in n variables over the domain D.

NP-hardness. We will first reduce MQ-GF(2) to MQ-D, so consider the
following set of m equations over GF(2):

∑

1≤j<k≤n

γi,j,kxjxk +

n∑

j=1

βi,jxj + αi = 0 for (1 ≤ i ≤ m) ,

where γi,j,k, βi,j , αi ∈GF(2) are constants. Thesem equations form aMQ-GF(2)

problem. We transfer each of these m equations to a set of n(n+1)
2 equations with

n+ n(n−1)
2 +(n−1) = n(n+3)−2

2 variables. This way, we deal with a normal form
of Multivariate Quadratic equations over the finite field GF(2) which allows to
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embed operations over GF(2) into the domain D.





γi,1,2x1x2 = yi,1,2

γi,1,3x1x3 = yi,1,2 + yi,1,3

...
γi,n−1,nxn−1xn = yi,n−2,n + yi,n−1,n

βi,1x1 = yi,n−1,n + zi,1

βi,2x2 = zi,1 + zi,2

...
βi,n−1xn−1 = zi,n−1 + zi,n−1

βi,nxn + αi = zi,n−1

In this system of equations, γi,j,k, βi,j , αi, xi are the same as above, while yi,j,k

and zi,k are new variables over GF(2). So the whole system of m equations and in

n variables xi is transferred to a system of mn(n+1)
2 equations with n+ mn(n−1)

2 +

m(n− 1) = 2n+m(n−1)(n+2)
2 variables. This step requires polynomial time in the

input, i.e., the initial equations over GF(2).
After this initial step, we transfer the whole system from the finite field GF(2)

to the domain D. This can be done by considering each xi, yi,j,k, zi,j as an ele-
ment of D and by replacing each γi,j,k, βi,j , αi ∈ GF(2) by the additive neutral
0 ∈ D or the multiplicative neutral 1 ∈ D, respectively. During this transition,
multiplication in GF(2) can be replaced by multiplication in D. However, addi-
tion of two elements over GF(2) has to be replaced by the following term over
the domain D:

GF(2) → D

(x+ y) → (x+ y)((1 + 1)− (x+ y))

where 1 denotes the multiplicative neutral element in D. So for any i ∈ 1, . . . , n
we obtain:




γi,1,2,kx1x2 = yi,1,2

γi,1,3,kx1x3 = (yi,1,2 + yi,1,3)((1 + 1)− (yi,1,2 + yi,1,3))
...

γi,n−1,nxn−1xn = (yi,n−2,n + yi,n−1,n)((1 + 1)− (yi,n−2,n + yi,n−1,n))
βi,1x1 = (yi,n−1,n + zi,1)((1 + 1)− (yi,n−1,n + zi,1))
βi,2x2 = (zi,1 + zi,2)((1 + 1)− (zi,1 + zi,2))

...
βi,n−1xn−1 = (zi,n−1 + zi,n−1)((1 + 1)− (zi,n−1 + zi,n−1))

zi,n−1 = (βi,nxn + αi)((1 + 1)− (βi,nxn + αi))
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In addition, we have to introduce 2n+m(n−1)(n+2)
2 new equations (one for each

variable) to make sure that we obtain a solution over D if and only if there is a
solution over GF(2). Each of these equations has the form

x(1− x) = 0.

So we transfered a system of m equations and in n variables over GF(2) to

a system in 2n+m(n−1)(n+2)
2 + mn(n+1)

2 = n + m(n2 + n − 1) equations and in
2n+m(n−1)(n+2)

2 variables over D. All transformations can be done in polynomial
time and space and the existence of a solution for the transferred problem implies
the existence of a solution for the original one. HenceMQ-GF(2) ≤poly MQ-D
for any domain D. So MQ-D is NP-hard.

NP-completeness. Although [PG97] claims that MQ over any division ring
is NP-complete, we do not agree with this result. The reason is, that [PG97]
omits to show that MQ-D ∈ NP.

To show this, we consider the (slightly modified) algorithm from Section 2.5.1
for m equations in n variables over D:

1. Guess an assignment A ∈ Rn for (x1, . . . xn)

2. Check if all m equations are satisfied by A.

3. Output true or go to an infinite loop, respectively.

The crucial part is Step (2): Although this checking can be done in polynomial
time over GF(2), this is not true in general: consider the rings R and C. Neither
has zero divisors, both have a multiplicative neutral, and therefore the NP-
hardness proof from above applies. However, addition and multiplication in the
two structures C and R are not necessarily polynomial time operations and hence
Step (2) may take more than NP-time. So in general, MQ-D is NP-hard. If all
ring operations can be done in polynomial time, it is also NP-complete.

Remark. The question whether MQ-Z ∈ NP has not been answered in this
section. The key question is the number of bits which are needed to encode a
single assignment A. Closely related is the status of MQ-N. Although N is not
a domain, it seems to be possible to transfer MQ-GF(2) to N, using a similar
algorithm as outlined in Section 2.5.2. However, as this thesis deals with using
MQ for signature and encryption, and neither Z nor N seem to be of use for this
aim, we will not investigate this question further.
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2.5.3 Discussion

In this section, we showed thatMQ over GF(2) and also MQ over some domains
is NP-complete. This is especially the case when these domains are finite (and
hence are fields, as every finite domain is also a finite field). However, for general
domains MQ is NP-hard, but not necessarily NP-complete.

In general, being NP-complete does not imply that a public key crypto-
system using this problem is automatically secure. A counterexample are crypto-
systems using the knapsack problem. Although the knapsack problem is NP-
complete [GJ79, p. 65], most of these crypto-systems were broken, cf [MvOV96,
Sec. 8.6] for an overview. However, for theMQ-problem, there is strong empirical
and theoretical evidence,e.g., [CKPS00, CGMT02], that it is also hard on average
(even with embedded trapdoor) and hence can be used as basis for a secure public
key crypto system.

Still, for finite domains D, the corresponding problemMQ−D can be solved
in nondeterministic polynomial time and hence, is NP-complete.

2.6 Related Problems

As we saw in the previous section, the MQ-problem is believed to be computa-
tionally hard as it is NP-complete. Still, this is not sufficient for the construction
of secure public key schemes. In this section, we outline two more problems which
are used in the context of these schemes.

2.6.1 Isomorphism of Polynomials

For the construction of secure public key systems based on polynomial equations
over finite fields, the security of the Isomorphism of Polynomials problem or IP-
problem [Pat96b] is also important. With IP-problem we mean the difficulty to
find affine transformations S ∈ Aff−1(Fn) and T ∈ Aff−1(Fm) such that P =
T ◦ P ′ ◦ S for given polynomial vectors P,P ′. In particular, the private key in
such systems is usually the triple (S,P ′, T ), cf Section 2.3, and the public key
the polynomial vector P. Hence, if the IP-problem was easy, the security of these
schemes would be jeopardised. Therefore, these constructions have to make the
(often not explicitly stated) assumption that the corresponding IP-problem is
difficult. If the central map P ′ has a special structure — which is the case for all
systems based on the difficulty of solving a system of polynomial equations over
a finite field — the corresponding IP-problem may become easy to solve and the
system can be broken exploiting this weakness, cf e.g. [KS98, GC00, WBP04] for
examples of such attacks.
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A discussion of the security of the general IP-problem can be found in [Pat96b,
PGC98b, GMS02]. In this context, the IP-problem with only one secret plays
an important role. To fit in our framework, we assume here that T is given or
equal to the identity transformation, hence the only unknown part is the affine
transformation S. Interestingly, [LP03, Per05] shows that the IP-problem with
one secret can be solved easily for if m ≥ n, i.e., the corresponding constructions
are cryptographically insecure.

2.6.2 MinRank

When cryptanalysing MQ-schemes, we sometimes face an instance of the so-
called MinRank problem. Due to its importance, we introduce it formally here:
let (M1, . . . ,Mk) be a sequence of k ∈ N matrices over F

n×n each. Moreover, let
r ∈ N. For the MinRank-problem, we are interested in finding a linear combina-
tion of the above matrices, i.e., a vector λ ∈ F

k such that

Rank

(
k∑

i=1

λiMi

)
≤ r .

Naturally, the above problem can be extended to other fields. However, when
stated over finite fields, it is NP-complete [BFS96].

In special cases, namely when the private key has the same structure as for
STS-schemes, cf Section 3.1.2, the problem becomes tractable. In particular,
[GC00] gives two algorithms with complexity O(qr), respectively, where r ∈ N is
the number of new variables in an STS scheme. The question remains open if
a more efficient algorithm for these cases or even the general MinRank-problem
exists. A positive answer would have serious implications for the security of
several schemes based on the MQ-problem as the MinRank-problem has been
used in the cryptanalysis of several systems, e.g., in [CSV93, CSV97, KS98, KS99,
GC00, WBP04].



Chapter 3

Constructions for
MQ-trapdoors

In the previous chapter, we have introduced the general MQ-problem and have
also explained how to embed a trapdoor into it. In this chapter, we consider
special constructions of this trapdoor. We start with two examples which use only
a finite field F, denoted UOV (unbalanced oil and vinegar) and STS (stepwise
triangular system). We then move on to the two schemes MIA (Matsumoto-Imai
Scheme A) and HFE (hidden field equations); both use a ground field F and an
extension field E. Following this, we show different modifiers forMQ-trapdoors.

Our own achievement in this chapter is the STS trapdoor which was not
known in its full generality before [WBP04]. Moreover, we put all trapdoors
known so far into the following taxonomy and hence, clarified the area. In addi-
tion, the modifiers sparse polynomials (“s”), vinegar variables (“v”), and internal
perturbation (“i”) have not been treated in their full generality before. In addi-
tion, the homogenising (“h”) modifier has been developed during this thesis.

3.1 Basic Trapdoors

3.1.1 Unbalanced Oil and Vinegar Schemes: UOV

The “Unbalanced Oil and Vinegar” (UOV) scheme was introduced in [KPG99],
cf [KPG03] for an extended version of this paper. UOV is a generalisation of the
original Oil and Vinegar scheme of Patarin [Pat97].

Definition 3.1.1 Let F be a finite field and n,m ∈ N with m < n and coeffi-
cients α′

i, β
′
i,j , γ

′
i,j,k ∈ F. We say that the polynomials below are central equations

35
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in UOV-shape:

pi(x
′
1, . . . , x

′
n) :=

n−m∑

j=1

n∑

k=1

γ′i,j,k x
′
jx

′
k +

n∑

j=1

β′
i,j x

′
j + α′

i .

In this context, the variables x′i for 1 ≤ i ≤ n − m are called the “vinegar”
variables and x′i for n − m < i ≤ n the “oil” variables. We also write o := m
for the number of oil variables and v := n − m = n − o for the number of
vinegar variables. Note that the vinegar variables are combined quadratically,
while the oil variables are only combined with vinegar variables in a quadratic
way. Therefore, assigning random values to the vinegar variables results in a
system of linear equations in the oil variables which can then be solved, e.g.,
using Gaussian elimination. The above notation clearly has some redundancies:
knowing n and m, we can readily compute o and v — while v and m allow us
to compute n and o. The problem in this context is that the papers about these
schemes use very different notation. With the above settings, we use a kind of
“generalised notation” which suits most of them.

Moreover, Unbalanced Oil and Vinegar schemes (UOV) omit the affine trans-
formation T but only use S ∈ Aff−1(Fn). To fit in our framework, we set it to be
the identity transformation, i.e., we have T = id for UOV by definition. UOV
is able to omit T as all equations have exactly the same shape. Hence, we do
not need T to hide any special structure. Moreover, using the ideas of equivalent
keys, cf Section 5, we can actually show that the transformation T could always
be moved into the central equations P ′ and hence, does not give any gain in
security.

The UOV scheme can only be used for signature schemes as we need v ≥ 2o for
a secure construction; we give a more detailed security evaluation in Section 4.3
and only point out a few milestones here. The first attack against the original
OV, i.e., with parameters o = v or n = 2m can be found in [KS98]. This attack
has been extended to UOV in [KPG99]. The latest security evaluation — also
taking Gröbner bases into account, can be found in [BWP05]. As shown in all
these papers, we have on average qv different pre-images x ∈ F

n for a given vector
y ∈ F

m, so decryption is by no means efficient. In a nutshell, the most efficient
attacks have a complexity of O(qv−m−1m4) = O(qn−2m−1m4) and are due to
[KPG99].

While being the easiest trapdoor shown in this thesis, it is surprisingly also
the only safe basic trapdoor. We discuss results on the security of all trapdoors
discussed in this thesis in Chapter 4 but want to point out that all basic trap-
doors can be used to construct secure schemes when combined with the correct
modifiers.
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3.1.2 Stepwise Triangular Systems: STS

Another approach to obtain an invertible central map is used in step-wise trian-
gular systems (STS), introduced in [WBP04]. As UOV, the class STS is defined
over a finite field F and use a special structure for the central equations P ′ to al-
low easy inversion (cf Figure 3.1 for regular STS). Here, the step-width (number
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Figure 3.1: Central Equations p′i in a Regular STS Scheme

of new variables) and the step-height (number of new equations) is controlled by
the parameter r. As usual, we use m for the number of equations and n for the
number of variables. In addition, we denote by L the number of layers, q the size
of the ground field F, and r the step-width.

Let r1, . . . , rL be L integers such that r1+· · ·+rL = n, the number of variables,
and m1, . . . ,mL ∈ N such that m1 + · · · + mL = m, the number of equations.
Here rl represents the number of new variables (step-width) and ml the number
of equations (step-height), both in step l for 1 ≤ l ≤ L. In a general step-
wise Triangular Scheme (gSTS), the ml private quadratic polynomials of each

layer l contain only the variables x′k with k ≤
∑l

j=1 rj , i.e., only the variables
defined in all previous steps plus rl new ones. The overall shape of the private
polynomials leads to the name step-wise Triangular Scheme (STS), cf Figure 3.1
for regular STS. We want to stress in this context that we do not assume any
specific structure for the private polynomials p′1, . . . , p

′
m here. In particular, all

coefficients γ′i,j,k, β
′
i,j , α

′
i ∈ F for these polynomials may be chosen at random.

When not mentioned otherwise, we concentrate on regular STS schemes (rSTS
or STS for short) in this section to simplify explanations. For regular STS
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schemes we set r1 = · · · = rN = m1 = · · · = mL, which we denote by r.
Consequently, we have n = m = Lr.

To invert a system of central equations P ′(x′) = y′ for given y′ ∈ F
m, we

exploit the step-structure: in each level l, we have qr possible vectors and only
need to keep the intermediate values (x′(l−1)r+1, . . . , x

′
lr) which satisfy the corre-

sponding equations

y′(l−1)r+1 = p′(l−1)r+1(x
′
1, . . . , x

′
lr)

...

y′lr = p′lr(x
′
1, . . . , x

′
lr)

for given y′(l−1)r+1, . . . , y
′
lr ∈ F. Having a bijective structure in each level makes

sure we get only one solution — this way, STS becomes particularly efficient.
However, we impose some conditions on the coefficients γ ′i,j,k, β

′
i,j , α

′
i ∈ F this way.

Anyway, in a signature scheme, it is even sufficient if we only get one solution for
the corresponding equation. For general STS, we use the same idea but for each
individual layer and hence with a different number of equations and variables.
However, observe that the legitimate user has a workload growing with qr which
implies that this number cannot be too large if there is no special trapdoor
embedded for each layer. Section 6.2 presents examples of such constructions
with a special trapdoor embedded.

After outlining both regular and general step-wise triangular schemes, we give
a brief account of constructions suggested so far. We begin with the Birational
Permutation Schemes of Shamir [Sha93]. They are regular STS schemes with r =
1. However, as previously mentioned, they are not defined over a (small) finite
field but over a (large) finite ring. So strictly speaking, they are not STS schemes
although they are clearly related. In contrast, the TPM (Triangle Plus Minus,
[GC00]) class of Goubin and Courtois coincides with STS for the parameters
r1 = u, mL = v, m1 = · · · = mL−1 = r2 = · · · = rL = 1, i.e., we remove u ∈ N

initial layers, add v ∈ N polynomials in the last step, and have exactly one new
variable at all intermediate levels. TPM is a subclass of STS as it is not defined
over a ring but over a field, and hence, is an example of an MQ-scheme.

Shamir’s scheme was broken shortly after its publication in [CSV93, The95,
CSV97]. The TPM scheme of Goubin and Courtois has been broken in the same
paper that proposed it [GC00]. In fact, the aim of their construction was to show
that Moh’s TTM (Moh’s Tame Transformation Method, [Moh99]) construction
is weak.

The schemes RSE(2)PKC and RSSE(2)PKC, proposed by Kasahara and Sakai
[KS04c, KS04b], also fall in the class of STS schemes. The definition of these
schemes can be found in Section 4.4.5. Both schemes — and actually the whole
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STS class — have been broken in [WBP04]. We will see an overview of these
attacks in Section 4.4.

3.1.3 Matsumoto-Imai Scheme A: MIA

The scheme MIA is due to Matsumoto and Imai [IM85, MI88]. It is the first
scheme in this thesis which uses two different finite fields, namely a ground field
F and an extension field E. As outlined in Section 2.1, we use the canonical
bijection φ : E → F

n to transfer elements between the extension field E and the
vector space F

n. This way we have all tools at hand for the following definition.

Definition 3.1.2 Let F be a finite field with q := |F| elements, E be its n-th
degree extension, and φ : E → F

n the canonical bijection between this extension
field and the corresponding vector space (cf Definition 2.1.6). In addition, let
λ ∈ N be an integer such that gcd(qn − 1, qλ + 1) = 1. We then say that the
following central equation over the extension field E is of MIA-shape:

P ′(X ′) := (X ′)qλ+1 with X ′ ∈ E .

We also write P ′ := φ ◦ P ′ ◦ φ−1 to obtain a system of Multivariate Quadratic
polynomials. The corresponding algorithm can be found in Lemma 2.4.1.

The restriction gcd(qn − 1, qλ + 1) = 1 is necessary first to obtain a permutation
polynomial and second to allow efficient inversion of P ′(X ′). Indeed, the equation
h.(qλ + 1) ≡ 1 (mod qn − 1) has exactly one solution h ∈ N with h < qn − 1,
as we have the previously mentioned gcd-condition on λ. Given h, we can solve

Y ′ = P ′(X ′) as (Y ′)h = X ′[h.(qλ+1)] = X ′ by raising Y ′ to the power of h. Note
that these operations take place in the n-th dimensional extension E of the finite
field F. All in all, this approach is similar to RSA. However, the hardness of MIA
is not based on the difficulty of finding the exponent h but in the intractability to
obtain transformations S, T for given polynomial equations P,P ′ (IP-problem, cf

Section 2.6.1). As we saw in Section 2.4, the monomial (X ′)qλ+1

can be expressed
in terms of Multivariate Quadratic equations and hence be used as a trapdoor
for an MQ-problem. More on this topic can be found in Lemma 2.4.1 and also
Theorem 2.4.9.

Note that MIA is insecure, due to a very efficient attack by Patarin [Pat95].
Moreover, we want to point out that Geiselmann et al. showed how to reveal
the constant parts of these transformations [GSB01]. Hence, having S, T affine
instead of linear does not seem to enhance the overall security of MIA. The
papers [WP05b, WP05c] discuss the question of equivalent keys for MIA and
some variations. Their ideas are summarised in Section 5.
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Remark 3.1.3 In the paper [MI88], MIA was introduced under the name C∗.
Moreover, it used the branching modifier (cf Section 3.2.4) by default. As branch-
ing has been attacked very successfully, C∗ has been used without this modification
for any later construction, e.g., [CGP00c, CGP02, CGP00a, CGP03a]. However,
without the branching condition, the scheme C∗ coincides with the previously sug-
gested “Scheme A” from [IM85]. To acknowledge this historical development, we
decided to use the earlier notation and call the scheme presented in this section
“MIA” for “Matsumoto-Imai Scheme A”. As an additional benefit, the nota-
tion becomes more uniform as all basic schemes are now named with three-letter
acronyms.

3.1.4 Hidden Field Equations: HFE

After breaking MIA, Patarin generalised the underlying trapdoor to “Hidden
Field Equations” [Pat96b]. This generalisation aims at the central equations and
uses a univariate polynomial rather than a univariate monomial here. But the
basic idea of MIA, i.e., to mix a given ground field with one of its extension fields
is still used in HFE as we see in the following

Definition 3.1.4 Let F be a finite field with q := |F| elements, E be its n-th
degree extension, and φ : E → F

n the canonical bijection between this extension
field and the corresponding vector space (cf Definition 2.1.6). Moreover, let P (X)
a univariate polynomial over E with

P ′(X ′) :=
∑

0≤i,j≤d

qi+qj≤d

C ′
i,jX

′qi+qj

+
∑

0≤k≤d

qk≤d

B′
kX

′qk

+A′

where





C ′
i,jX

qi+qj

for C ′
i,j ∈ E are the quadratic terms,

B′
kX

qk

for B′
k ∈ E are the linear terms, and

A′ for A′ ∈ E is the constant term

for i, j ∈ N and a degree d ∈ N. Now we say the central equations P ′ := φ◦P ′◦φ−1

are in HFE-shape.

As the degree of the polynomial P ′ is bounded by d, this allows efficient inversion
of the equation P ′(X ′) = Y ′ for given Y ′ ∈ E and small d. An overview of possible
algorithms for this problem can be found in [Pat96b, Section 5]; in a nutshell,
these algorithms depend both on the size of the dimension n of the extension
field E and the degree d of the central polynomial P . Hence, from an efficiency
point of view, both should be rather small. Moreover, in contrast to MIA, HFE
is in general no surjection. Possible ways to overcome this problem are outlined
in Section 2.3.3.
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As for MIA, we notice that the HFE polynomial P ′(X ′) can be expressed as
Multivariate Quadratic equations MQ(Fn). They are therefore a candidate for
central equations P ′ ∈MQ(Fn). For more details on how to express these poly-
nomials over the vector space F

m, see Section 2.4 and in particular Lemma 2.4.5
and Theorem 2.4.9.

From a cryptanalytic point of view, the basic HFE scheme is broken: an
efficient key recovery attack, using the MinRank-problem (cf Section 2.6.2), has
been demonstrated in [KS99]. An inversion attack which uses both Gröbner bases
and general linearization methods has been shown in [FJ03]. In [SG03] we find
an attack which works better if n is not a prime, i.e., we have splitting fields. A
more detailed discussion of HFE can be found in [Pat96b, Cou01, WP04]. Here,
[Pat96b] gives some general considerations of HFE after its development, e.g.,
a general linearization attack against all multivariate schemes (cf Section 4.2),
while [Cou01] summarised the situation of HFE in 2001 and also improves over
the attack from [KS99]. The latest such summary of attacks can be found in
[WP04]. In particular, this paper outlines two versions of HFE which are secure
against all known attacks. Finally, [WP05b, WP05c] show that HFE allow many
equivalent keys and hence, waste memory. The corresponding ideas can be found
in Chapter 5.

3.1.5 Taxonomy and Discussion

The four trapdoors discussed above are all basic trapdoors known so far. We
notice that all of them are rather old: the first were MIA (1985) and STS (1993
in Shamir’s birational permutations and 2004 in STS), followed by HFE (1996)
and UOV (1997 as OV and 1999 as UOV). Apart from UOV with well-chosen
parameters, all basic trapdoors have to be considered broken. Unfortunately,
UOV is rather inefficient in terms of signature expansion as it has a rate of 3
between m, and n, i.e., it has an overall signature expansion rate of 3. Moreover,
UOV can not be used to construct a secure encryption scheme. Therefore, we
discuss some generic modifications in the next section. A nice property of these
modifiers is that they can be used in combination with any of these basic trap-
doors (see below). Moreover, we will see how it is possible to combine several
basic trapdoors to more elaborated MQ-systems in Section 6.2.

Before doing so, we build up a taxonomy to get a better view on the different
trapdoors used so far. A graphical representation of this idea is given in Fig-
ure 3.2. Using the finite fields as a first criterion, we see that MIA and HFE form
the class of “mixed field” schemes: both use the ground field F and an extension
field E to construct a trapdoor. Therefore, both are vulnerable to attacks using
Gröbner bases as these can exploit the structure of the extension field and the
rather low number of univariate monomials when compared to a random system
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Figure 3.2: Taxonomy of the Basic MQ-trapdoors

of equations. The same is true for the linearization attack as discussed,e.g., in
[JKJMR05]. In contrast, UOV and STS are “single field” systems as they only
use the ground field F but they construct their trapdoor using special conditions
for the polynomials p′1, . . . , p

′
m: the concept of vinegar variables for UOV and a

layer- or step-structure for STS. In both cases, the ranks of these central equa-
tions proved to be a serious vulnerability. While it was possible for UOV to fix
this problem with well-chosen parameters, STS does not allow such an option.

At first glance, MIA is a subclass of the HFE system: while MIA uses only one
monomial, HFE uses a whole polynomial. So from a cryptanalytic point of view,
HFE is much stronger than MIA and all attacks which break HFE will also defeat
MIA. The converse is not true though. Moreover, if we inspect both schemes more
closely, we see differences: MIA uses a monomial of a high degree, while HFE
relies on the existence of efficient root finding algorithms for polynomials — and
therefore needs a much smaller degree d than MIA. Hence, using implementation
as a criterion, we kept both schemes in different classes.
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3.2 Generic Modification on MQ-schemes

As we saw in the previous section, most basic trapdoors are insecure. Fortu-
nately, we do not only have these four basic trapdoors, but also several generic
“modifiers”. Hence, to construct secure schemes, we can make use of these “mod-
ifications” of the basic building blocks. As we will see below, these modifications
are quite generic as we can apply them (at least in theory) to any of the above
trapdoors. However, for some schemes, there are modifications which prove more
efficient.

3.2.1 Minus method: “-”

Although this modification looks rather easy, it proves powerful to defeat a wide
class of cryptographic attacks against several MQ-schemes, including Gröbner
bases and linearization attacks. The minus method has been introduced in
[Sha93]. In this new construction, we set m̃ := m − r for some r ∈ N and
define the public key equations as P := R ◦ T ◦ P ′ ◦ S. In this context, the
function R : F

m → F
m̃ denotes a reduction or projection. Details on this func-

tion are given in Section 2.4. In addition, we have the affine transformations
S ∈ Aff−1(Fn), T ∈ Aff−1(Fm) and the private system of Multivariate Quadra-
tic equations P ′ ∈MQ(Fn,Fm). Less loosely speaking, we consider the function
R(y1, . . . , ym) := (y1, . . . , ym−r), i.e., we neglect the last r components of the out-
put vector (y1, . . . , yn). As a consequence, a given public key P̂ ∈ MQ(Fn,Fm)
is transfered to a new key P ∈MQ(Fn,Fm̃), cf Figure 3.3.

p̂1(x1, . . . , xn) → p1(x1, . . . , xn)
...

p̂m−r(x1, . . . , xn) → pm−r(x1, . . . , xn)

p̂m−r+1(x1, . . . , xn)
...

p̂m(x1, . . . , xn)





discarded

Figure 3.3: Minus modification for P̂ being transformed to P

For MIA (or C∗), the corresponding minus variation is called MIA- (or C∗−−)
and has been discussed in [PGC98a]. For HFE, we derive HFE-. In particular,
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the attacks from [KS99, FJ03] are no longer effective against this variation.

3.2.2 Plus method: “+”

As the name suggests, the plus method adds equations to the public key rather
than removing them. To the knowledge of the author, this method has been
first discussed in [Pat96b, PGC98a]. In a nutshell, the legitimate user inserts a
total of a ∈ N random quadratic equations (π1, . . . , πa) ∈ MQ(Fn,Fa) without
a trapdoor to the central equations. Let P̃ ∈ MQ(Fn,Fm̃) be the initial central
equations and P ′ ∈ MQ(Fn,Fm) be the new central equations. We have m :=
m̃+ a for m, m̃ ∈ N and

p′1(x
′
1, . . . , x

′
n) := p̃1(x

′
1, . . . , x

′
n)

...

p′m̃(x′1, . . . , x
′
n) := p̃m̃(x′1, . . . , x

′
n)

p′m̃+1(x
′
1, . . . , x

′
n) := π1(x

′
1, . . . , x

′
n)

...

p′m(x′1, . . . , x
′
n) := πa(x′1, . . . , x

′
n)

Following the notation earlier introduced in this thesis, we see that the polynomi-
als p′1, . . . , p

′
m are components of the (new) central equations P ′ and p̃1, . . . , p̃m̃

are components of the (old) central polynomial vector P̃.
Initially, the plus method was suggested with three affine transformations

S ∈ Aff−1(Fn), T ∈ Aff−1(Fm′

) and U ∈ Aff−1(Fm) rather than two trans-
formations S ∈ Aff−1(Fn),W ∈ Aff−1(Fm) as described in this thesis. How-
ever, as proven in [Wol02a, Section 4.6], the two methods have equal security
as the method with three affine transformations can always be expressed with
two transformations and vice versa. We give an adapted version of this proof
here. However, as T ∈ Aff−1(Fn) is an affine transformation, it will affect the
polynomials p̃1, . . . , p̃n in an affine way. We show that it is not necessary to mix
p̃1, . . . , p̃n and π1, . . . , πa using a new affine transformation U but that it is suffi-
cient to mix them with an affine transformation W ∈ Aff−1(Fn+a) and to replace
both affine transformations T and U by W . Figure 3.4 gives a graphical repre-
sentation of both ideas. Here p′1, . . . , p

′
n+a denotes the overall result, p̃1, . . . , p̃n

are the polynomials of the original central equations P̃, and p1, . . . , pn are the
intermediate result after applying the affine transformation T .

To show that these two different ways of incorporating the random polynomi-
als π1, . . . , πa are equivalent, we will study how the two affine transformations T
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?

P̃ ∈ MQ(Fn,Fm̃)

p̃1, . . . , p̃n

π1, . . . , πa

p′1, . . . , p
′
n+a

?

T ∈ Aff−1(Fn)

p1, . . . , pn

-

¾

U ∈ Aff−1(Fn+a)

¾

-

W ∈ Aff−1(Fn+a)

Figure 3.4: MQ-trapdoor with three (left) and two (right) affine transformations

and U affect the different polynomial vectors involved. Before we start, we ex-
press the affine transformation U as one matrix MU ∈ F

n+a×n+a and a vec-
tor vu ∈ F

n+a. The affine transformation T will be expressed in a non-standard
way. Rather than having one matrix MT ∈ F

n×n and one vector vt ∈ F
n, we

will use a matrix MT ∈ F
(n+a)×(n+a) and one vector vt ∈ F

n+a. Using the coef-
ficients (mt)i,j of the matrix MT and the coefficients (vt)i of vector vt, they are
coefficient-wise defined as follows:

(mt)i,j :=





(mt)i,j , for i, j ≤ n
1 , for i, j > n and i = j
0 , otherwise

(vt)i :=

{
(vt)i , for i ≤ n
0 , otherwise

So in terms of matrix multiplication and vector addition, we can express the last



46 CHAPTER 3. CONSTRUCTIONS FOR MQ-TRAPDOORS

two steps of MQ+ as

MU




MT




p̃1

...
p̃n

0
...
0




+ vt +




0
...
0
π1

...
πa







+ vu = MU




MT




p̃1

...
p̃n

π1

...
πa




+ vt




+ vu

= (MUMT )




p̃1

...
p̃n

π1

...
πa




+ (MUvt + vu) = MW




p̃1

...
p̃n

π1

...
πa




+ vw

for some MW ∈ F
(n+a)×(n+a), vw ∈ F

n+a. Moreover, both matrices MT and
MU are invertible, hence MW = MUMT is also invertible. As all matrices are
invertible, we can always compute one affine transformation for any two other
given transformations. So from a cryptographic point of view, we can apply W
directly to (p̃1, . . . , p̃n, π1, . . . , πa)t rather than working with the two transforma-
tions T,U . We show this with the following argument: keep the transformation T
fixed, and choose transformation U at random. As MT is invertible, two differ-
ent transformations U,U ′ will yield two different transformations W,W ′, so their
number is the same. In terms of probability, each transformation W has the
same probability to appear for T fixed and U chosen at random. This is also true
when we allow different values for the transformation T : for each T , there is one
(and exactly one) U which yields a specific W . So the probability for a specific
W to appear does not change by allowing T to have different values. So rather
than choosing T and U at random and then compute W , we can choose W at
random without changing the probability for any specific W ∈ Aff−1(Fn+a) to
appear.

When it was proposed, the plus method was thought to enhance the security
of schemes like MIA or HFE. However, a more detailed cryptanalysis showed that
this is not the case. In addition, signature schemes have a workload increasing
with qa as only q−a of all solutions to the original problem P̃ are also a solution
for the a equations (without trapdoor) π1, . . . , πa. Hence, this method has not
received much attention lately.
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3.2.3 Subfield method: “/”

A big drawback of public key schemes based on theMQ-problem are their rather
large public keys. To overcome this problem we can choose all their coefficients
in the transformations S ∈ Aff−1(Fn) and T ∈ Aff−1(Fm) and also the central
equations P ′ ∈ MQ(Fn,Fm) in a proper subfield F̃ of the ground field F. This
way, the size of both the public and the private key decrease by a factor of
log2 F̃/log2 F. For example, choosing F = GF(256) and F̃ = GF(2), we reduce the
size of all keys with a factor of 8. The method works as subfields are closed under
addition and multiplication and hence, choosing all coefficients in the components
S,P ′, T of the private key in a proper subfield F̃ ensures that the public key
P := T ◦ P ′ ◦ S has all its coefficients in F̃ rather than F. Hence, the space for
storing these coefficients drops from log2 q to log2 |F̃|. On the other hand, the
message space F

n is not affected by this change as all operations are still defined
over the initial ground field F.

This method was introduced in [Pat96b] and has been used in the first version
of the Sflash signature scheme [CGP00c] as submitted to the NESSIE project
[NES]. In addition, it has been used in the context of UOV [KPG03]. In both
cases, the construction has been shown to be insecure [GM02, BWP05]. Similar
conclusions for HFE have been drawn in [SG03]. All in all, we strongly discourage
the use of this “subfield-trick” as it usually allows an easier cryptanalysis.

3.2.4 Branching: “⊥”

The idea of this modification is rather old and can already be found in [MI88]. A
graphical representation using two branches with n = n1 +n2 and m = m1 +m2

for some n1, n2,m1,m2 ∈ N is given in Figure 3.5. For example in MIA, this

?

S ∈ Aff−1(Fn)

? ?
P1 ∈MQ(Fn1 ,Fm1) P2 ∈MQ(Fn2 ,Fm2)

?
T ∈ Aff−1(Fm)

Figure 3.5: MQ-trapdoor with two branches P1,P2
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modification gives a speed-up for decryption, as we can reduce the dimension of
the extension field E from n to n1 and n2. Hence, we are no longer confronted
with a workload growing in O(nk) for some fixed k ∈ R, k > 1, but only in
O(nk

1 + nk
2) for the two smaller numbers n1 and n2. Similar conclusions can be

drawn for all other basic trapdoors.
More general, the overall computational effort is reduced by partitioning both

the polynomials p′1, . . . , p
′
m and the variables x′1, . . . , x

′
n in B ∈ N sets. Here, we

call B the branching number. All computations for the central equations P ′

are then independently performed in these B sets. Note that we had B = 2
in the example of Figure 3.5. Formalising this idea, we decompose the number
of variables into a B-dimensional vector over N such that n = n1 + · · · + nB .
Similar, we decompose the number of equations into m1, . . . ,mB ∈ N such that
m = m1 + · · · + mB . We use this notation to write down the branching struc-
ture, cf. Figure 3.6. At first glance this closely resembles the idea from STS, cf

Branche 1

8

<

:

p′1 (x′

1, . . . , x′

n1
)

with x′

i ∈ F

p′m1
(x′

1, . . . , x′

n1
)

..

.

Branche b

8

>

>

<

>

>

:

p′m1+···+mb−1+1 (x′

n1+···+nb−1+1, . . . , x′

n1+···+nb
)

.

.

.
p′m1+···+mb

(x′

n1+···+nb−1+1, . . . , x′

n1+···+nb
)

..

.

Branche B

8

>

<

>

:

p′m−mb+1 (x′

n−nB+1, . . . , x′

n)

p′m (x′

n−nB+1, . . . , x′

n)

Figure 3.6: Central Polynomials p′i with B branches

Section 3.1.2. However, there is an important difference here: while STS uses
the variables from the previous layers (or “branches” for the “⊥” modification),
this is not the case for the “⊥” modification. Here, all branches are completely
independent from each other. Hence, all computations can be done in parallel,
e.g., in hardware, which allows a considerable speed-up. This was also the initial
reason for proposing branching: having a more efficient public key scheme. Un-
fortunately, the articles [Pat95, Pat96a] give an algorithm for separating these
branches. To the knowledge of the author, the most efficient algorithm for this
problem has been given in [Fel01, Fel04]. It has an overall running time of O(n6)
and is hence independent of the number or size of branches.

Therefore, we strongly discourage the use of the “⊥” modification in multi-
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variate systems — though they lead to more efficient schemes. But this gain in
efficiency is paid with a too high price on the security side.

3.2.5 Fixing: “f”

A similar idea to the minus “-” modification is the fixing “f” modification: in-
stead of deleting some public key equations, we reduce the number of variables
by explicitly assigning values to the variables xn−f+1, . . . , xn for a given param-
eter f ∈ N. More formally, we pick a random vector (a1, . . . , af ) ∈ F

f and
partly evaluate the public key polynomials p1, . . . , pm. This way, we obtain new
polynomials p̃1, . . . , p̃m which now depend on the input variables x1, . . . , xñ with

p̃1(x1, . . . , xñ) := p1(x1, . . . , xñ, a1, . . . , af )

...

p̃m(x1, . . . , xñ) := pm(x1, . . . , xñ, a1, . . . , af )

Figure 3.7: Fixing Modification for Multivariate Quadratic systems P̃ and P

ñ := n − f instead of x1, . . . , xn. In Figure 3.7 we can see this idea explained
with an old public key P ∈ MQ(Fn,Fm), a new public key P̃ ∈ MQ(Fñ,Fm)
and a fixing vector a ∈ F

f .

If the initial system did not have any linear or constant terms, i.e., we set
the coefficients βi,j and αi equal to zero for 1 ≤ i ≤ m and 1 ≤ j ≤ n, we can
use the zero vector (0, . . . , 0) ∈ F

f for fixing the variables xn−f+1, . . . , xn, i.e.,
we have a = 0 in the above setting. This way, we do not introduce new linear or
constant terms and hence save public key space. From a cryptographic point of
view, this does not introduce a weakness if the original idea of fixing is secure
in the first place. Another way of looking at fixing is the use of the “inverse
reduction” function from Lemma 2.4.7, i.e., R−1 : F

n → F
ñ which is defined as

R−1(x1, . . . , xñ) := (x1, . . . , xñ, 0, . . . , 0) .

Now we can express the new public key as P̃ := P◦R−1. This way we established
the similarity between the minus and the fixing modification: in both cases, we
reduce the structure of the public key by removing some information.



50 CHAPTER 3. CONSTRUCTIONS FOR MQ-TRAPDOORS

All in all, the idea works quite well with encryption schemes but gives a
slowdown of qf for signature schemes: we only have a probability of q−f for a
signature to have the correct values for (xn−f+1, . . . , xn) = (a1, . . . , af ).

After being suggested in [Cou01], there has not been much work done on the
security of this modification. In particular, it is unknown how the running time
Gröbner attacks depends on this parameter f for systems such as MIA and HFE.
Therefore, we suggest a deeper study of the “f” modification in connection with
these basic trapdoors before using this modification.

3.2.6 Sparse Polynomials: “s”

In this section, we introduce the idea of using very sparse polynomials for the
central map P ′. In particular, this means that all known attacks against these
schemes have to be taken into account very carefully as the newly constructed
polynomials only offer “on-the-edge” security. This idea has been used both by
Yang and Chang [YC04a] and also by Wang, Hu, Lai, Chou, and Yang [WC04,
WHL+05] to construct fast asymmetric schemes.

Obviously, there is a clear benefit: instead of evaluating a total of τ(n) terms
for each hidden polynomial p′i with 1 ≤ i ≤ m, we can concentrate on far less
terms. This saves both time and memory. In particular, inverting these systems
is now more time efficient.

However, the idea is rather new and there is not much known yet about hidden
vulnerabilities of these schemes. Therefore, we suggest to study them in more
depth before applying it to concrete schemes.

3.2.7 Vinegar Variables: “v”

The following modification has been introduced in the context of HFE by Kip-
nis, Patarin, and Goubin in [KPG99] for the HFE scheme. They called their
new scheme HFEv for “Hidden Field Equations with vinegar variables” and use
a different form for the central equations P ′. The basic idea is to hide the struc-
ture of the original central equations P ′ by multiplying the linear and constant
terms with degree one and degree two terms, respectively. The overall public key
polynomials P are still of degree two, and hence within the class ofMultivariate
Quadratic polynomials.

To the knowledge of the author, we are the first to present the “v” modi-
fication in a general form so it can be used with any trapdoor. In particular,
the multivariate version of vinegar (cf Definition 3.2.2) has not been presented
before.

Definition 3.2.1 Let E be a finite field with degree n′ ∈ N over its ground
field F, v ∈ N the number of vinegar variables, n := n′ + v the number of in-
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put variables, and P’(X’) a polynomial over E. Moreover, let (z ′1, . . . , z
′
v) :=

sn−v+1(x1, . . . , xn), . . . , sn(x1, . . . , xn) for si polynomials of S(x) in multivariate
representation, cf Definition 2.2.4. Then define the central polynomial

P ′
z′

1,...,z′

v
(X ′) :=

∑

0≤i,j<n

Ci,jX
′qi+qj

+

n′−1∑

k=0

Bk(z′1, . . . , z
′
v)X ′qk

+A(z′1, . . . , z
′
v)

where





Ci,jX
′qi+qj

for Ci,j ∈ E the
quadratic terms,

Bk(z′1, . . . , z
′
v)X ′qk

for Bk(z′1, . . . , z
′
v) depending

linearly on z′1, . . . , z
′
v and

A(z′1, . . . , z
′
v) for A(z′1, . . . , z

′
v) depending

quadratically on z′1, . . . , z
′
v

Then we say the polynomial P ′
z′

1,...,z′

v
(X ′) is in univariate vinegar shape.

The condition that the Bk(z1, . . . , zv) are affine functions (i.e., of degree 1 in
the zi at most) and A(z1, . . . , zv) is a quadratic function over F ensures that the
public key as a whole is still quadratic over F. In addition, we can obtain a
similar definition for the case of multivariate quadratic polynomials:

Definition 3.2.2 Let F be a finite field F, v ∈ N the number of vinegar vari-
ables, and P ′ ∈ MQ(Fñ,Fm) a polynomial-vector over F in ñ ∈ N input vari-
ables and with m ∈ N equations. Moreover, we consider the polynomial-vector
(z′1, . . . , z

′
v) := sn−v+1(x1, . . . , xn), . . . , sn(x1, . . . , xn) for si polynomials of S(x)

in multivariate representation, cf Definition 2.2.4. In addition we have n := ñ+v
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for the number of variables. Then define the central polynomials as

p′1(x1, . . . , xñ) :=
∑

1≤j≤k≤ñ

γ′1,j,kxjxk

+

ñ∑

j=1

β′
1,j(z

′
1, . . . , z

′
v)xj + α′

1(z
′
1, . . . , z

′
v)

...

p′i(x1, . . . , xñ) :=
∑

1≤j≤k≤ñ

γ′i,j,kxjxk

+

ñ∑

j=1

β′
i,j(z

′
1, . . . , z

′
v)xj + α′

i(z
′
1, . . . , z

′
v)

...

p′m(x1, . . . , xñ) :=
∑

1≤j≤k≤ñ

γ′m,j,kxjxk

+
ñ∑

j=1

β′
m,j(z

′
1, . . . , z

′
v)xj + α′

m(z′1, . . . , z
′
v)

Here we have a new system of Multivariate Quadratic equations with only v
input variables A′ ∈MQ(Fv,Fm) for A′ =: (α′

1, . . . , α
′
m) and a polynomial vector

B′ ∈ Aff0(F
v,Fmñ) with coefficients B′ =: (β′

1,1, β
′
1,2, . . . , β

′
m,ñ). Then we say the

central polynomial P ′ is in multivariate vinegar shape.

We want to point out that the definition of the central equations P ′ = (p′1, . . . , p
′
m)

is the same as given in Section 2.2, but with a slight twist on the coefficients used:
the linear coefficients β are replaced by non-homogeneous degree 1 polynomials,
while the constant coefficients α are replaced by non-homogeneous degree 2 poly-
nomials.

Inverting the central equation P ′(X ′) = Y ′ or P ′(x′) = y′ for X ′, Y ′ ∈ E

and x, y ∈ F
n requires to invert the original trapdoor qv times. For a signature

scheme, this is not a problem as finding a solution for any of these equations will
yield a valid signature. However, for an encryption scheme, the workload usually
is too high. Hence, this modification cannot be used to obtain such a system.
In any case: in connection with the HFE-trapdoor, this modification does not
prove efficient against the recent Gröbner attacks from [FJ03] as it only slightly
increases the number of linearly independent monomials in P ′. In addition, there
is a cryptanalysis given in [DS05a] which shows that HFEv can be broken with
a workload of qv.
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From a mathematical point of view, both the univariate and the multivariate
variation are equivalent. This can easily be seen using the ideas of the proof of
Lemma 2.4.7. Hence, it depends on the underlying trapdoor used which of the two
is to be preferred in a given construction. In particular, all cryptographic attack
against the univariate vinegar modification will also apply to the multivariate
vinegar modification. Hence, we do not gain additional strength here.

3.2.8 Internal Perturbation: “i”

The idea of internal perturbation is due to Ding [Din04]. It was first used in
connection with MIA and then denoted PMI (“Perturbated Matsumoto Imai”).
One year later, the idea was extended to HFE [DS05a] and called IPHFE (“In-
ternal Perturbation of HFE”). In both cases, an affine subspace of dimension w
is used to add some kind of “noise” to the overall system. The idea is similar to
HFEv (cf Section 3.2.7), but with a slight twist: while HFEv increases the num-
ber of input variables, internal perturbation does not. In a nutshell, the “old”
variables x′1, . . . , x

′
n are used for two purposes: first, they span an n-dimensional

vector-space in the variables x′1, . . . , x
′
n and second, they span an w-dimensional

perturbation space. The advantage is that such a variation is harder to crypt-
analyse. We can also see similarities to the branching modification in comparison
to the STS trapdoor: for vinegar and branching, the computations were done in-
dependently while for STS and internal perturbation, the computation of the first
part (first layer / perturbation polynomials) clearly influences all further com-
putations. Hence, the attacks against branching or vinegar do not apply against
STS or internal perturbation. In any case, “internal perturbation” comes in two
flavours:

Definition 3.2.3 Let P ′, P̃ ∈ MQ(Fn,Fm) be two systems of m quadratic equa-
tions in n input variables x′1, . . . , x

′
n each. Moreover, let s(x) : F

n → F
w be

an affine transformation, e.g., represented by a vector vs ∈ F
w and a matrix

Ms ∈ F
n×w where the matrix Ms has rank w. We denote the output of s(x) by

z′ ∈ F
w, i.e., we have z′ := s(x) and call the components z′1, . . . , z

′
w. In addition,

let Π ∈ MQ(Fw,Fm) be a system of m quadratic equations in w input variables
z′1, . . . , z

′
w each with components π1, . . . , πm. Then we call

P ′ :=





p′1 := p̃1(x
′
1, . . . , x

′
n) + π1(z

′
1, . . . , z

′
w)

...
p′m := p̃m(x′1, . . . , x

′
n) + πm(z′1, . . . , z

′
w)

a multivariate internally perturbated Multivariate Quadratic system of equa-
tions.
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Definition 3.2.4 Let E be an n-dimensional extension field over F. More-
over, let P̂ (X ′) ∈ E[X ′] be a central equation in univariate representation (cf
Lemma 2.4.5). In addition, let s(x) : F

n → F
w be an affine transformation rep-

resented by an (n×w)-matrix of rank w and a vector of dimension w. We denote
the output of s(x) by z′1, . . . , z

′
w ∈ F and we have Z ′ := φ−1((z′1, . . . , z

′
w, 0, . . . , 0)).

In addition, let

F (Z ′) :=
∑

0≤i≤j<n

Ĉi,jZ
′ qi+qj

+
n−1∑

i=0

B̂iZ
′ qi

+ Â

be a quadratic function with coefficients Ĉi,j , B̂i, Â ∈ E. Then we call

P ′(X ′, Z ′) := P̃ (X ′) + F (Z ′)

a univariate internally perturbated Multivariate Quadratic system of equations.

As we see, in both cases the perturbation functions Π and F depend on a
rather small perturbation subspace of dimension w. In addition, we do not require
any trapdoor for these two functions but select their coefficients at random.
Hence, we expect a workload of O(qw) for inverting the new central equation P ′.
But for qw small (e.g., q = 2 and w = 4 . . . 6), this is feasible.

At first glance, it is not obvious which of the two forms is more secure or
efficient and hence advisable for the construction of public key systems. So we
need the following

Lemma 3.2.5 For every multivariate internally perturbatedMultivariate Qua-
dratic system of equations, there is a univariate internally perturbatedMultivari-
ate Quadratic system of equations and vice versa. Hence, both kinds of internal
perturbation are equivalent from a cryptanalytic point of view.

Proof. We use the notation from definitions 3.2.3 and 3.2.4. The overall proof
is similar to the proof of Lemma 2.4.7.
⇒: We start with P ′ ∈MQ(Fn,Fm) and Π ∈MQ(Fw,Fn). Our goal is to com-
pute the corresponding univariate representation of both. This is feasible, using
Theorem 2.4.9. By construction, we obtain an internal perturbation function F
and a univariate polynomial P ′.
⇐: As for the previous proof, we use Theorem 2.4.9 — but this time to ob-
tain a multivariate representation instead of a univariate representation. The
only question to answer is if our perturbation polynomials π1, . . . , πn depend
on all n components z′1, . . . , z

′
n of Z ′ or only on the subset z′1, . . . , z

′
w. Theo-

rem 2.4.9 does not guarantee the latter. However, we observe that the perturba-
tion variables z′1, . . . , z

′
w can be expressed as R : F

n → F
w with R(z′1, . . . , z

′
n) :=
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(z′1, . . . , z
′
w, 0, . . . , 0), using the reduction from Lemma 2.4.7. Hence, the effect of

the univariate perturbation function F (Z) is equal to φ(F (φ−1(R(s(x))))) for all
input vectors x ∈ F

n. Using Theorem 2.4.9, this can be rewritten as Π(R(s(x)))
for some system of polynomials Π ∈ MQ(Fn,Fm). Taking the reduction R(·)
“into” the polynomial functions Π shows that they do not depend on the input
variables z′w+1, . . . , z

′
n, i.e., we have Π ∈ MQ(Fw,Fm). Hence, the polynomial

vector Π = (π1, . . . , πn) has the required form. ¤

By now, the “i” modification has been used with MIA (multivariate version)
and HFE (univariate version). By the time of writing, we do not see any benefit
when combining it with UOV or STS. However, in mixed schemes this may be
different. We want to note that MIA has been broken in [FGS05], using ideas
from differential cryptanalysis to “separate” the MIA scheme from the “noise”
of the internal perturbation.

3.2.9 Homogenising: “h”

By taking a fresh look at the two modifications vinegar variables “v” from Sec-
tion 3.2.7 and internal perturbation “i” from Section 3.2.8, we can develop a new
generic modifier. We use the ideas of vinegar variables, but introduce only linear
equations of degree 1 to be multiplied with the linear terms, and homogeneous
equations of degree 2 to replace the constant terms. The overall result are ho-
mogeneous equations of degree 2, regardless of the trapdoor used. Hence, we
have a way of saving a total of m(1 + n) coefficients by dropping the constant
and the linear terms. As the security ofMultivariate Quadratic equations lies in
the quadratic and not the other terms, the overall security of the corresponding
scheme does not degenerate with this modification. To the knowledge of the au-
thor, the “h” modification has not been proposed before. Formally, we can write
this modification as follows:

Definition 3.2.6 Let F be a finite field F, h ∈ N the number of homogenising
variables, and P̃ ∈ MQ(Fñ,Fm) a polynomial vector over F. Moreover, let
z′1, . . . , z

′
h be new variables which depend linearly on the input variables x1, . . . , xn.

The central map depends on the variables x′1, . . . , x
′
ñ for ñ ≤ n. Then define the

central equation as

p′1(x
′
1, . . . , x

′
ñ) :=

∑

1≤j≤k≤ñ

γ1,j,kx
′
jx

′
k

+

ñ∑

j=1

β′
1,j(z

′
1, . . . , z

′
h)x′j + α′

1(z
′
1, . . . , z

′
h)

...
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p′i(x
′
1, . . . , x

′
ñ) :=

∑

1≤j≤k≤ñ

γi,j,kx
′
jx

′
k

+
ñ∑

j=1

β′
i,j(z

′
1, . . . , z

′
h)x′j + α′

i(z
′
1, . . . , z

′
h)

...

p′m(x′1, . . . , x
′
ñ) :=

∑

1≤j≤k≤ñ

γm,j,kx
′
jx

′
k

+

ñ∑

j=1

β′
m,j(z

′
1, . . . , z

′
h)x′j + α′

m(z′1, . . . , z
′
h)

Here we have A′ ∈ MQ(Fv,Fm) for A′ = (α′
1, . . . , α

′
m) with A′ being homoge-

neous and the polynomial vector B′ ∈ Hom−1(Fv,Fmñ) with coefficients B′ =:
(β′

1,1, β
′
1,2, . . . , β

′
m,ñ). Then we say the central polynomial P ′ is in multivariate

homogeneous shape.

This definition is quite similar to the definition of the vinegar modifier (cf Sec-
tion 3.2.7), but with a slight twist: first, we ask for homogeneous rather than
non-homogeneous equations α′

i, β
′
i,j , and second, we did not fix the source of

the new variables z1, . . . , zh yet. Here, we may either use internal variables (cf
Section 3.2.8) or “external” variables (cf Section 3.2.7). Given the cryptanalytic
results previously achieved against the “v” modification of HFE, we prefer the
use of internal variables. The corresponding modification will be denoted by “h”.
Obviously, we have n = ñ and h ≤ n here. In the case of external variables as
for the “v” modification, we denote this variation “h̃”. In this case we obtain
n = ñ+ h as relationship between the new, the old, and the homogenising vari-
ables. We want to stress that we believe that internal variables are better suited
for the purpose of homogenising the public key. In addition we want to point out
that the homogenising modification only makes sense if the public key has not
been constructed in a way that it is already homogeneous. In most cases, there
is no need for this modification as it is possible to restrict the private key accord-
ingly. However, in cases where we need linear terms for one reason or another,
this modification proves useful to obtain a smaller public key.

3.2.10 Masking: “m”

The idea of masking variables has been developed in [Wol02a, sections 4.9 and
4.10]. It is the inverse idea to the “f” modification: instead of reducing the
number of input variables, this number is increased. This is realized by changing
the initial affine transformation to S̃ : F

n → F
ñ for n > ñ and S̃ ∈ Aff−1(Fn,Fñ),
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i.e., a surjective transformation from the vector space F
n to the vector space F

ñ.
This new transformation S̃ can be realized using a matrix M ∈ F

ñ×n of rank ñ
and a vector v ∈ F

ñ, cf Section 2.2.3. Masking increases the number of variables
at the expense of the number of equations. In particular, such a system cannot
be a bijection anymore. But as inverting an affine transformation is usually much
faster than inverting the central system P ′, this modification can be used for the
construction time efficient Multivariate Quadratic systems.

The effect of this transformation is rather limited when considering, e.g., the
attack of [KS99]. However, in attacks which mainly depend on the number of
input variables (e.g., Gröbner attacks), such a modification may be worthwhile.
However, as this modification has not been systematically studied its security is
an open problem.

3.3 Discussion

In this chapter, we introduced constructions for Multivariate Quadratic trap-
doors and showed how the schemes known so far can be grouped into a taxonomy
of only four basic schemes (UOV, STS, MIA, and HFE), using 10 modifiers, cf
Table 3.1. We see that there are far more modifiers than basic schemes. So to in-

Table 3.1: Modifiers for MQ-schemes

Symbol Long Name Page Security

- Minus 43 secure
+ Plus 44 mostly no effect
/ Subfield 47 insecure
⊥ Branching 47 insecure
f fixing 49 open
h homogenising 55 no effect
i internal 53 open
m masking 56 open
s sparse 50 open
v vinegar 50 slightly more secure

crease the number ofMultivariate Quadratic schemes, we suggest to concentrate
on finding new basic trapdoors rather than new modifiers. However, given that
all known trapdoors are rather old, we are not sure if many more basic trapdoors
do exist.

Obviously, the taxonomy developed in this thesis can now be used to obtain
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new and interesting schemes. However, we urge the developers of such schemes
not to combine all modifiers and trapdoors available in one scheme but to use
as few as possible: if such a scheme is well designed, it will withstand crypto-
graphic attacks while a complex scheme may distract the attention both of the
cryptanalyst and the designer of the scheme from the real weaknesses hidden in
this new construction. Moreover, each designer should make clear the rationale
behind the choices made. This way it becomes much easier for the cryptographic
community to evaluate the strength of the new proposals.

Apart from this,Multivariate Quadratic equations have very nice properties
when used in restricted environments and can be used as cryptographic primitives
for signing applications. By now, the existence of secure and efficient encryption
primitives based on the MQ-problem is an open question. However, when we
look at the authors and dates of the publications in the bibliography, we see
that more and more people get interested in this subject. Hence, we may expect
such a secure encryption scheme soon. We now move on to the cryptanalysis of
Multivariate Quadratic schemes. This allows us to discover, why all attempts
for secure encryption schemes failed so far.



Chapter 4

Cryptanalysis of
MQ-schemes

After outlining the basicMQ-trapdoors and their modifiers in the previous chap-
ter, we now move on to a description of cryptographic results on these trapdoors
and their combinations. Before moving on to concrete attacks, we first classify
two types of attacks.

Our own achievement in this chapter are the cryptanalysis of UOV with
Gröbner bases. Moreover, we introduced the affine approximation attack against
Multivariate Quadratic systems and performed a cryptanalysis of the STS class.

4.1 Types of Attacks

Definition 4.1.1 Given (x, y) ∈ F
n × F

m a pair message/ciphertext or signa-
ture/message and k a public key for an MQ-trapdoor. We want to stress that
this notation is correct: in Section 2.3, we denoted y the input and x the output
for signature generation. Hence (x, y) is indeed a signature/message pair. Now
we denote the following problems:

1. Inversion problem: Recover x for given y and public key P ∈MQ(Fn,Fm).

2. Key recovery problem: Recover the private key (S,P ′, T ) ∈ Aff−1(Fn) ×
MQ(Fn,Fm)×Aff−1(Fm) for a given public key P ∈MQ(Fn,Fm).

The attacks related to these two problems are called inversion attack and key
recovery attack, respectively.

The key recovery problem is certainly more general than the inversion problem,
as every attack which is able to reveal the private key (S,P ′, T ) for a given public
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key P can be used to obtain the x ∈ F
n for any given y ∈ F

m. So every key
recovery attack is also an inversion attack.

Before dealing with the concrete attacks on specific MQ-trapdoors, we will
first show a general inversion attack which works against all MQ-trapdoors.

4.2 Generic Linearisation Attack

Here we describe a very general attack against all public key systems which use
Multivariate Quadratic equations as their public key. To the knowledge of the
author, it has first been described in [Pat96b, Sect. 3]. Here, we assume that we
know y, ŷ ∈ F

m and some difference ∆ ∈ F
n with ∆ =: (δ1, . . . , δn). Now we

have y = P(x) and ŷ = P(x+ ∆) for some unknown vector x ∈ F
n. We subtract

the two equations y = P(x) and ŷ = P(x+ ∆) component-wise, and get

yi − ŷi = pi(x1, . . . , xn)− pi(x1 + δ1, . . . , xn + δn)

= γi,1,1(x
2
1 − x

2
1 + 2x1δ1 − δ

2
1) +

+γi,1,2(x1x2 − x1x2 − x1δ2 − x2δ1 − δ1δ2) + · · ·+

+γi,n,n(x2
n − x

2
n + 2xnδn − δ

2
n)

+βi,1(x1 − x1 − δ1) + . . .+ βi,n(xn − xn − δn) + (αi − αi)

= +γi,1,1(2x1δ1 − δ
2
1) + γi,1,2(−x1δ2 − x2δ1 − δ1δ2) + · · ·+

+γi,n,n(2xnδn − δ
2
n)

−βi,1δ1 − . . .− βi,nδn

for 1 ≤ i ≤ m. This yields a linear system of equations in the unknowns
x1, . . . , xn ∈ F. A solution can therefore be computed in polynomial time, e.g.,
by Gaussian elimination. This attack falls in the class of inversion attacks.

This attack can be avoided by padding the vector x with random elements of
F or by introducing a linearly resistant permutation (e.g., AES with a publicly
known key). As this attack is applicable to all Multivariate Quadratic systems,
it must be kept in mind when using them in practice.

4.3 Cryptanalysis of UOV

As UOV is the easiest of the schemes developed so far, we start with outlining
some cryptanalytic results on this trapdoor. This section is based on [BWP05]
which is joint work with An Braeken.
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4.3.1 The Kipnis and Shamir Attack

We start with the key recovery attack of Kipnis and Shamir against the Balanced
Oil and Vinegar scheme, i.e., we have the number of oil variables equal to the
number of vinegar variables here, cf Section 3.1.1 for the terminology of the UOV
class. Here, the attacker gets access to the public key and has to compute an
equivalent copy of the private key. The main idea of this attack is to separate
the oil and the vinegar variables. This way, an attacker is in the same position
as a legitimate user and can hence forge arbitrary signatures. The attack is very
efficient for all v ≤ m. We describe it here for o = v = m and thus 2m = n.

For the attack, we only take into account the quadratic terms of the private P ′

and the public P equations. We use the ideas previously outlined in Section 2.2.4:
in odd characteristic, we can uniquely represent the private key equations (resp.
public key equations) by xtP ′

ix (resp. x′tPix
′) for 1 ≤ i ≤ m, where P ′

i and Pi

are symmetric matrices (here t denotes transposition). For even characteristic,
the unique symmetric matrices P ′

i +P
′t
i and Pi +P t

i where P ′
i and Pi are upper-

triangular matrices belonging to F
m×m are considered. For simplicity, we denote

these matrices again by P ′
i and Pi, 1 ≤ i ≤ m, for the private key polynomials p′i

and the public key polynomials pi, respectively.
Note that because of the special structure of the private equations P ′, all

matrices P ′
i for 1 ≤ i ≤ m have the form:

P ′
i =

(
0 Ai

Bi Ci

)
,

where 0, Ai, Bi, Ci are submatrices of dimension m×m. Because P = P ′ ◦S, we
obtain

Pi = MS

(
0 Ai

Bi Ci

)
MT

S .

It is clear that each P ′
i maps the subspace xm+1, · · · , x2m (oil subspace) to the

subspace x1 = · · · = xm = 0 (vinegar subspace). If P ′
j is invertible, we can then

conclude that each P ′
iP

′−1
j maps the oil subspace to itself. Consequently the

image of the oil subspace under S, called the subspace O, is a common eigenspace
for each PiP

−1
j with 1 ≤ i < j ≤ m. In [KS98, Sect. 4], Shamir and Kipnis

describe two very efficient algorithms for computing the common eigenspace O
of a set of transformations. Picking a subspace V for which O+V = F

m allows us
to separate the oil and the vinegar variables. This way, we obtain an equivalent
copy of the private key (P, S) and hence, the Kipnis-Shamir attack is a key
recovery attack. The overall attack complexity is O(m4) for m ∈ N the number
of equations. As we have n = 2m in this setting, the overall attack complexity
can be described without reference to the number of variables n.
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In [KPG99, Sect. 4], an extension based on a probabilistic approach of the
previous attack is described which also works for v > m (or n > 2m) with
complexity O(qv−m−1m4) = O(qn−2m−1m4).

Application against the Parameters from [KPG03, Sect. 14]. In order
to avoid the birthday paradox, [KPG99, Sect. 8] describes a modification of UOV
which fixes the linear terms of the public equations depending on the message
M . This way, it is no longer possible to obtain a collision for different messages
M1 6= M2 and the same public key, as this public key now also depends on the
message M . We consider this construction to be secure and therefore refer to
[KPG99, Sect. 8] for a detailed description. However, its application in [KPG03,
Sect. 14], Example 4 is flawed. In order to derive a smaller public key, the
authors use the subfield modification “/” (cf [KPG03, Sect. 10]). As outlined
in Section 3.2.3, all coefficients in the affine transformation S and the system of
private polynomials P ′ are not chosen from the field F but from a strictly smaller
subfield F̃. This way, the public key P will only have coefficients from F̃ as
P = P ′ ◦ S and subfields are closed under addition and multiplication. Thus, we
derive a public key which is a factor of (log |F̃|/log |F|) smaller than the original
key.

[KPG03, Example 4] suggests F = GF(16), F̃ = GF(2), m = 16, v = 32/48
and obtain a public key with 2.2kB/4 kB — this is 4 times smaller than without
this trick. However, we can apply the attack from the [KPG99, Sect. 4] (see
Section 4.3.1, above) against the UOV system over F̃ = GF(2). This is possible
as the Kipnis-Shamir attack does not take linear terms into account but only
quadratic terms. The crucial point is that the linear terms are from GF(16)
while the quadratic terms are from a subfield isomorphic to GF(2). As soon
as we derived an isomorphic copy of the private key (P, S) over GF(2), we can
translate it to GF(16) and are now in the same position as a legitimate user. In
particular, we can do all computations necessary to translate the linear parts of
the public key (over GF(16)) to the corresponding private key (now, also over
GF(16)). As we have q = 2, the attack complexity is 232−16−1 · 164 = 231 or
248−16−1 · 164 = 247 and therefore far less than the claimed security level of 264.
The above application of the Kipnis-Shamir attack has been found by the author
and was published in [BWP05].

Remark: Although the algorithms from [CGMT02] achieve a lower running
time, they are not applicable in this case: they are only able to solve a given
instance of anMQ-problem, i.e., they do not allow key recovery but only inver-
sion. For this attack, we need the fact that we actually derive a valid private key
of the UOV-system, i.e., a key recovery algorithm.
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4.3.2 Attacks using Gröbner Basis Algorithms

A second inversion attack on UOV, first described in [BWP05], is inspired by the
article of Daum, Felke, and Courtois [CDF03] which outlines a way of attacking
HFE with Gröbner Basis algorithms. The attack of [CDF03] proves particularly
efficient against the HFE system with the vinegar “v” modification and partly
against the minus “-” modification, too.

In [BWP05] this inversion attack is also applied against the UOV class. In
a nutshell, the authors conclude that the attack works well if the number of
variables is roughly equal to the number of equations. Unfortunately, this is not
the case for secure choices of parameters, i.e., with n = 3m. . . 4m. In particular,
attacking UOV with Gröbner base algorithms is less efficient than exhaustive
search, even for a moderate number of variables like n = 32. In particular,
the authors conclude from their experiments that the workload of Gröbner base
attacks exceeds 264 for 38 or more equations in the finite field 2. Even for this
choice of parameters, we expect a brute force attack to be successful after around
238 tries.

4.3.3 Exploiting the Existence of Affine Subspaces

This attack extends the attack of Youssef and Gong [YG01] against the Imai and
Matsumoto Scheme B [IM85]. It exploits the fact that a cryptosystem can be
approximated by several affine equations. The original attack was designed for
fields of even characteristic. The attack described in this section is generalised
to all characteristics.

In a nutshell, the attack assembles several points belonging to the same affine
subspaceW . Having w points x1, . . . , xw ∈ F

n for which UOV is affine, a function
F (x) = Ax + b can be used to describe the output of UOV. In order to launch
the attack, we first compute the corresponding yi = UOV (xi) for 1 ≤ i ≤ w and
yi ∈ F

m. With this knowledge, we can determine for any given y′ if it belongs to
the subspace W and — if this is the case — compute a vector a ∈ F

w with y′ =∑w
i=1 aiyi. As the subspace W is affine, we can then determine the corresponding

x′ ∈ F
n as

∑w
i=1 aixi. In the following section, we will present several ways of

computing the points xi, i.e., to determine one or several subspaces W .
For UOV, there exist approx. qv subspaces of dimension o = m on which UOV

is affine. Moreover, all these subspaces are disjunct. If we can find (o+1) linearly
independent points of the same subspace, we completely break the scheme for this
subspace. If we find fewer, e.g., w points, we have at least covered qw points of
the corresponding subspace W . Repeating the search for (o+1) points qv times,
we break the whole scheme. Note that it is sufficient for the signature forgery
of a given y ∈ F

m if we know one subspace W for which y ∈ W . Therefore, we
do not need to know all qv subspaces but only a small number for forging any



64 CHAPTER 4. CRYPTANALYSIS OF MQ-SCHEMES

signature x ∈ F
n for a given message y ∈ F

m with high probability. We recall
that (x, y) ∈ F

n × F
m was defined as a signature/message pair. Hence the task

is to compute x ∈ F
n for given y ∈ F

m.
In order to search for points which are in the same subspace, we use the

following observation: if the 3 points R1, R2, R3 ∈ F
n are in the same affine

subspace with respect to UOV, the following condition has to be satisfied:

UOV (R1)− UOV (R2)− UOV (R3) + UOV (−R1 +R2 +R3) = 0 . (4.1)

We check the validity of the above equation by computing

AR1+v−AR2−v−AR3−v+A(−R1+R2+R3)+v = A(R1−R1+R2−R2+R3−R3)

Using this property, we can determine points of the same affine subspace by
repeating the heuristic algorithm described in Figure 4.1 several times. The
corresponding algorithm for even characteristic has been described in [YG01].

Input: point R1, public key P of UOV
Output: A pair (R1, R2) of points which belong to the same affine subspace
repeat
pass← 0
trials← 0
R2 ← Random(Fn)
δx ← −R1 +R2

repeat
trials← trials+ 1
R3 ← Random(Fn)
R4 ← δx +R3

δy ← UOV (R1)− UOV (R2)− UOV (R3) + UOV (R4)
if (δy = 0) then pass← pass+ 1

until (pass > threshold) or (trials > qv · threshold)
until (pass > threshold) or (trials > qv · threshold)
OUTPUT (R1, R2)

Figure 4.1: Algorithm to find a pair of points in the same affine subspace for
which UOV is affine

By repeating this algorithm often enough for a fixed point R1, we obtain
(o+1) linearly independent points of one affine subspace. The complexity of the
algorithm will be roughly O(q2v), according to the probability that R1, R2 and
R3 belong to the same affine subspace.

This attack can be improved using the relation

UOV (R1) + UOV (R2)− UOV (R1 +R2) = b (4.2)
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for some fixed b ∈ F
m. As soon as we find a triple (R1, R2, R3) ∈ (Fn)3 of

points which yield δy = 0 in Algorithm 4.1, we use (4.2) to check if all of them
yield the same constant b. If this is the case, we can conclude with probability
q−2m that all three points belong to the same subspace. At this point, we can
change to another algorithm: instead of checking triples, we now check pairs. If
the pair (R1, R

′) yields the constant b, we found a new candidate belonging to
the same subspace as R1. Using the other points found so far, we can increase
the probability that R′ is genuine further by q−m with each point we try. We
summarise this algorithm:

1. Find a triple (R1, R2, R3) ∈ (Fn)3 which satisfies (4.1).

2. Using this triple and (4.2), determine the value of the constant b ∈ F
m.

3. Use (4.2) to find more points R′ ∈ F
n in the same subspace.

4. As soon as (o + 1) points R ∈ F
n are known, determine matrix A by

Gaussian elimination.

The running time of this algorithm is O(q2v + (n− v)qv) on average as we chose
the points R2 and R3 independently from the point R1 in the first step and R′

also independently from R1. The overall running time to find a total of (o + 1)
points in the same subspace becomes therefore O(q2v) as O(oqv) is negligible in
comparison to O(q2v).

We are able to speed up Algorithm 4.1 from Section 4.3.3 if we can spend some
memory and also have m > v, i.e., we do have “enough” equations in relation to
the dimension v of the affine subspaces to be found. This is certainly not true
for UOV — here we have typically m < v or even m < 2v (see above). However,
for other multivariate quadratic systems, this condition may hold. In particular,
it is the case for System B of Matsumoto-Imai, cf [YG01]. We therefore present
two ways of speeding up Algorithm 4.1. We explain it for the example of UOV
to simplify the discussion but want to stress that it also works against System B
or any other multivariate quadratic system which allows affine approximations
of small dimension.

Triple Algorithm

If we can spend O(kq2v) of memory for some small k (e.g., 10 ≤ k ≤ 20) and also
have m > v, we can achieve a time/memory-tradeoff for finding all subspaces
in UOV by using the following technique. In the precomputation phase, we
evaluate random pairs (R1, R2) ∈R F

n × F
n using (4.2). The probability for

each of these pairs to have points in the same affine subspace is q−v (birthday
paradox). Moreover, we know that two points in the same subspace will yield
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the same constant b ∈ F
m. On the other hand, two points which are not in

the same subspace will yield a random value v ∈ F
m. The probability for each

of these values to occur is q−m with m > v. As we were dealing with a total
of kq2v pairs, we do not expect two random values v1, v2 ∈ F

n to occur more
often than, say, k

2 times. Therefore, all values occurring more often than k
2 are

constants b with very high probability. Checking the points in the corresponding
pairs using (4.1), we can even distinguish pairs of different subspaces which yield
the same constant b. After this precomputation step, we can check for each point
R′ ∈ F

n to which of the qv subspaces it belongs, using O(qv) computations on
average. After O(oqv) trials, we have (o + 1) points for each subspace and can
therefore determine the matrix A ∈ F

n×n and the vector b for the affine equation
F (x) = Ax+ b. The above algorithm can be summarised as follows:

1. Use Equation 4.2 on kq2v random pairs (R1, R2) ∈R F
n × F

n and store
triples (b,R1, R2) ∈ F

m × F
n × F

n

2. Check for each value bi ∈ F
m how often it occurs in the stored list

3. For values bi which occur at least k
2 times, use (4.1) to check whether the

corresponding triples belong to the same affine subspace.

4. Use (4.2) to determine more points R′ ∈ F
n for each of these subspaces.

The overall running time of this algorithm is O(q2v). However, the drawback is
that we need an amount of memory that grows exponentially with 2v. Therefore,
it seems to be advisable to use the following algorithm O(qv) times instead. This
leads to the same overall running time but requires less memory, namely only
O(qv).

Pair Algorithm

Using a similar idea, we can also reduce the running time for finding the corre-
sponding subspace W for one given point R1 ∈ F

n. However, we need O(kqv)
memory for some small k, e.g., 10 ≤ k ≤ 20. In this setting, we evaluate pairs
(R1, R2) for randomly chosen R2 ∈R F

n and store the corresponding triples
(b,R1, R2) ∈ F

m× (Fn)2. With a similar argument as for the previous algorithm,
we expect a random distribution for the values bi ∈ F

m — except if the pair
(R1, R2) for given R1, R2 is in the same vector space W . This event occurs with
probability q−v. Therefore, we can assume that the correct value b will occur k
times on average and with very high probability at least k

2 times. As soon as we
have found this value b, we can look for more values R′ which satisfy (4.2). The
overall running time of this algorithm is O(kqv) for the first step and O(oqv) for
the second step, i.e., O(qv) in total. However, the drawback is that we need an
amount of memory that grows exponentially with v.
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Both speed-ups do no longer work for v,m = n
2 as the “gap” between q−v and

q−m no longer exists. Therefore, we cannot distinguish anymore between values
b and random values.

The advantage of the affine approximation attack against UOV is that we
know exactly the structure of these affine subspaces. In addition, all these affine
subspaces are disjunct. This was not the case for System B from Matsumoto-
Imai [IM85]. Theoretical predictions of the running time of the algorithm were
therefore more difficult.

4.3.4 Discussion

We saw in the previous section that UOV with o = v, i.e., as many oil as vinegar
variables, can be attacked efficiently using an idea of Kipnis and Shamir. In fact,
their idea has been extended to the case of v > o and has been used by the author
to successfully attack a special choice of parameters for UOV, cf Section 4.3.1.
In addition, the vulnerability of the UOV class against Gröbner attacks has
been investigated. It turns out that UOV is quite resistant against this type of
attack — even when using the Daum-Felke-Courtois strategy. A new class of
attacks is the affine approximation attack. While it works well for v small, this
is unfortunately not the case for UOV.

A different type of attack has been discussed in [CGMT02]. Here, special
purpose algorithms for n À m have been proposed. While they do not use the
special structure of the UOV trapdoor, they make use of the fact that secure
UOV requires v ≥ 2o, and hence, we have n ≥ 3m.

4.4 Cryptanalysis of STS

In the previous section, we described several attacks on the UOV class. We now
move on to the STS class, which has been developed by An Braeken and the au-
thor. In addition, the following cryptanalysis is also the result of a collaboration
with An Braeken.

All attacks described in this section deal with regular STS (rSTS), i.e.,
we have the same number of new variables and new equations in each step.
In symbols: n1 = . . . = nL = m1 = . . . = mL = r for some step-width
r ∈ R and m = n = Lr, cf Section 3.1.2 for this notation. We want to
stress that the cryptanalysis also works for general STS (gSTS), but the de-
tails become more cumbersome. For the sake of clarity, we decided to con-
centrate on rSTS in this section. In this context, we developed both an in-
version attack (cf Section 4.4.3) against rSTS, which recovers for given cipher-
text y ∈ F

m the corresponding message x ∈ F
n. In the key recovery attack

(cf Section 4.4.4), we build an equivalent version of the private key, denoted
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(S̃, P̃ ′, T̃ ) ∈ Hom−1(Fn)×MQ(Fn,Fm)×Hom−1(Fm). Using (S̃, P̃ ′, T̃ ), the at-
tacker is now in the same position as the legitimate user for deciphering a given
ciphertext y or forging a signature on it. For both attacks, we first need some
observations on kernels of matrices.

4.4.1 Chain of Kernels

Before moving on to these kernels, we want to recall that one can express any
Multivariate Quadratic polynomial as an (n×n)-matrix over F, cf Section 2.2.4.
This is both true for a public key polynomial pi, but also a private key polynomial
p′i. Following the notation outlined in the previous sections, we denote the corre-
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Figure 4.2: Matrix Representation P ′
i of the Private Key p′i for Layer l

sponding matrices Pi ∈ F
n×n and P ′

i ∈ F
n×n, respectively. Obviously, the rank

of each such matrix depends on its layer l: in each such layer, we only have input
variables x′1, . . . , x

′
rl. We may also say that all coefficients associated to variables

x′rl+1, . . . , x
′
n are equal to 0. This idea has been summarised in Figure 4.2. The

matrices P ′
i have a rank of rl in each layer l for 1 ≤ l ≤ L and we have

ker′l = {a′ ∈ F
n| a′1 = . . . = a′rl = 0}

as common kernels of the matrices P ′
i for (l − 1)r < i ≤ lr, see Figure 4.2 for

the structure of the matrix for a given layer l ∈ N. As these kernels are hidden
by the linear transformation S, we also mark them with a prime ′. Moreover, we
denote by a′i ∈ F for 1 ≤ i ≤ n the coefficients of the vectors a′ ∈ F

n.
We now study the effect of the linear transformation S, i.e., the change of

variables. As we have p̂i := p′i ◦ S and x′ = S(x), we obtain P̂i := SP ′
iS

t in
terms of the corresponding matrices. As the transformation S is invertible, we
have Rank(P̂i) = Rank(P ′

i ) and

kerl = {a′S−1 | a′ ∈ F
n ∧ a′1 = . . . = a′rl = 0} (4.3)
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for the kernels of P̂i for (l − 1)r < i ≤ lr and an unknown matrix S ∈ F
n×n.

Moreover,

ker′L ⊂ . . . ⊂ ker′1 and consequently kerL ⊂ . . . ⊂ ker1 .

With the notation T = (τi,j)1≤i,j≤m, each individual public key matrix Pi

can be expressed by

Pi =

m∑

j=1

τi,j [SP
′
iS

t] =

m∑

j=1

τi,jP̂i .

The problem of finding the transformation T−1 and thus T has therefore been
reduced to finding a linear combination of the public key (in matrix notation)
which has a specific rank, i.e., to a MinRank problem (cf Section 2.6.2). While
the general MinRank problem is difficult on average and even NP-complete, the
above problem is defined for matrices with a very special structure. As we will
see below, this special structure is actually a weakness and allows for attacks
against STS schemes.

4.4.2 Recovering the Transformation T

As we saw in the previous section, it is crucial for an attack of STS schemes to
recover the transformation T . In this section, we describe two algorithms which
can be used for this purpose.

Attacking the High-Rank Side.

We start with an attack on the high-rank side (cf the algorithm in Figure 4.3).
The overall idea of this algorithm is to exploit the step-structure of STS. To do
so, we observe that a correct random guess of a row-vector in T−1 will lead to a
condition on the rank of the linear combination of the corresponding public key
equations — expressed in matrix notation. More formally and also to verify the
correctness of this algorithm, we consider the following vector spaces.

Definition 4.4.1 Define a descending chain of subspaces Jl of dimension m−lr
each for 1 ≤ l ≤ L as

Jl := {b′T−1 | b′ ∈ F
m ∧ b′lr+1 = . . . = b′m = 0} for 1 ≤ l ≤ L . (4.4)

When picking a random element v ∈R Jl+1, we have a probability of q−r that the
expression v ∈ Jl holds because of the definition of the subspaces Jl, Jl+1. In ad-
dition, we have two efficient methods (matrixCheck or polynomialCheck, respec-
tively) to check whether v ∈ Jl or v /∈ Jl. First, we concentrate on matrixCheck.
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Lemma 4.4.2 The method matrixCheck will check if v ∈ Jl and is defined by

matrixCheck(P1, . . . , Pm, v, l) returns true iff Rank(
m∑

i=1

viPi) ≤ lr .

Proof. For the sake of the argument, we look at the problem in the T−1-space,
i.e., after the linear transformation T−1 has been applied. Using the notation
from (4.4), we consider vectors b′ instead of v. Hence we have

M :=
m∑

i=1

b′iP̂i =
rl∑

i=1

b′i
(
SP ′

iS
t
)

= S

(
rl∑

i=1

b′iP
′
i

)
St .

Observing the step-wise structure of the private key polynomials p′i we conclude
that Rank(M) ≤ lr. This yields the result. ¤

The expected running time of the algorithm from Figure 4.3 is therefore
bounded by O(mn3Lqr): by picking at most cmqr vectors for each layer (c being
a small constant, e.g., 10), we can compute the vector spaces J1, . . . , JL with
very high probability. Checking the matrix condition costs an additional factor
of n3 as we are processing matrices from F

n×n. In comparison, the running time
of the other steps of the algorithm are negligible.

In characteristic 2 we may apply Dickson’s theorem instead to check directly
for a given polynomial if it may be reduced to a form with less variables (proce-
dure polynomialCheck). Unfortunately, the proof is a bit lengthy; we therefore
refer to [MS91, Sect. 15.2, Thm. 4] for both the theorem and its proof. An algo-
rithmic version of it can be found in [CGMT02, Sec. 3.2]. The time complexity of
this algorithm is there estimated to be O(n3). Therefore, the overall complexity
of the above algorithm remains the same: O(mn3Lqr).

Remark 4.4.3 In both cases, we will not be able to recover the original trans-
formation T but the inverse of a linear equivalent copy of it, denoted T̂ for the
inverse and T̃ for the linear equivalent of T . In fact, we will recover versions
of T in which the rows of T̃ are linear combinations of the rows of T within the
same layer. Using arguments from Chapter 5, we see that we actually recover
one representative of an equivalence class of possible private keys, all leading to
the same public key. This stresses the importance of finding equivalent keys for
Multivariate Quadratic schemes.

Attacking the Low-Rank Side.

In the previous algorithm we constructed the linear equivalent copy of T−1 step-
wise by means of the r basis vectors from the subspace J̃ = Jl+1∩Jl for l = L . . . 1.
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procedure highRankAttack(P)
Input: P: system of public equations

Output: T̃ : an equivalent copy of the transformation T
Pi ← computeMatrix(pi); JL ← F

m

for l← L− 1 downto 1 do
Jl ← ∅
repeat
v ∈R Jl+1

if matrixCheck(P1, . . . , Pm, v, l) ∨ polynomialCheck(p1, . . . , pm, v, l) then
Jl∪ ← {v}

until Dimension(Jl)
?
= lr

J̃ ← Jl+1 ∩ Jl

for i← 1 to r do

RowVector(T̂ , lr + i) ← BasisVector(J̃ , i)
endfor

return T̃ ← T̂−1

endproc

Figure 4.3: High-Rank algorithm for computing the transformation T̃ for a given
public key P

Therefore we call it an attack from the high-rank side. We now show how we can
also perform an attack from the low-rank side.

For the following lemma, we use the same notation as in Definition 4.4.1 but
set J0 := {0 ∈ F

m}, i.e., the all-zero vector in an m-dimensional vector space
over the ground field F.

Lemma 4.4.4 The subspace J̃ := Jl ∩ Jl−1 where Jl−1 denotes the complement
of the vector space Jl−1, has dimension r and will determine r new linearly
independent rows of the matrix T−1.

Proof. The proof is based on two different observations. The first one is that the
kernels keri form a descending chain. Therefore, setting ker0 := F

n, the statement
w ∈ kerl is true with probability q−r for all w ∈R kerl−1 and 1 ≤ l ≤ L. Second,
the linear equation

∑m
i=1 vi(wPi) = 0 has qlr solutions for unknown v ∈ F

m if
and only if the vector w is in the kernel kerl. ¤

Algorithm 4.4 will therefore terminate with a correct solution T̃ after a total of
O(Ln3qr) steps on average. Thus it outperforms the algorithm from the previous
section by a factor of m. As for the previous algorithm, we will not recover the
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procedure lowRankAttack(P)
Input: P: system of public equations

Output: T̃ : an equivalent copy of the transformation T
Pi ← computeMatrix(pi); K0 ← F

n; J0 ← {0}
for l← L downto 1 do

repeat
w ∈R Kl−1

Jl ← SolutionSpace(
∑m

i=1 vi(wPi) = 0) for an unknown v ∈ F
m

until Dimension(Jl)
?
= lr.

J̃ ← Jl ∩ Jl−1

for i← 1 to r do

t̂← BasisVector(J̃ , i); RowVector(T̂ , lr + i) ← t̂; P̂(l−1)r+i ←
∑m

j=1 t̂jPj

Kl ← Kernel(Plr)
endfor

return T̃ ← T̂−1

endproc

Figure 4.4: Low-Rank algorithm for computing the Transformation T̃ for a given
public key P

original transformation T but an equally useful variant of it.
Remark: Specialised versions of the algorithms from figures 4.3 and 4.4 can

be found in [GC00] for the case of schemes with step-width 1 of the intermediate
layers.

4.4.3 Inversion Attack

In the previous section, we have discussed two different approaches to recover a
linear transformation T̃ for given public key equations. In this section, we will use
T̃ and the polynomials p̂i := T̃−1 ◦ pi to solve the problem y = P(x) for a given
vector y ∈ F

m, i.e., for the MQ-problem. We do so by computing a successive
affine approximation of x, cf Figure 4.5. Define Ki := keri for 1 ≤ i ≤ L.

Lemma 4.4.5 The solutions of the inversion problem form a chain of affine
subspaces x+ <Kl> — where Kl has dimension (n− rl) in step l.

Proof. Recall that the kernels Ki := keri for 1 ≤ i ≤ L have the form kerl =
{a′S−1 | a′ ∈ F

n ∧ a′1 = . . . = a′rl = 0}. Setting K0 := F
n we have

K̃l = Kl−1 ∩Kl = {a′S−1 | a′ ∈ F
n ∧ a′1 = . . . = a′(l−1)r = a′lr+1 = . . . = a′n = 0}
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for 1 ≤ l ≤ L. Using this observation, we can manipulate groups of r (hidden)
variables x′ and therefore influence the output of the polynomials p̂i layer by layer.
This is possible although we do not know the actual value of the secret matrix
S. The statement in the lemma then follows from the fact that the polynomial
system P̂ inherits the layer structure of the original private polynomial system
P ′, i.e., we have a descending chain of subspaces. ¤

Using the algorithm from above, we learn r log2 q bits about the vector x for each
level of recursion. With this inversion attack, we are now in a similar position

procedure inversionAttack(P, T̃ , K1, . . . , KL, y)

Input: P: system of public equations, T̃ : linear transformation,
K1, . . . , KL: descending chain of kernels, y: target-value

Output: X: a set of solutions for the problem y = P(x)

procedure recursivePart(x, l)
if l > L then return {x}
K̃ ← Kl−1 ∩Kl; X ← ∅
for ∀w ∈ K̃ do

if (p̂i(x+ w)
?
= ỹi : (l − 1)r < i ≤ lr) then X ∪ ← recursivePart(x+ w, l)

return X
endproc

p̂i ← pi ◦ T̃
−1 : 1 ≤ i ≤ m

ỹ ← yT̃−1; K0 ← F
n

return recursivePart(0,1)
endproc

Figure 4.5: Inversion attack for y = P(x) and given T̃

as the legitimate user: at each level, we have to try cqr possible vectors and
to evaluate r polynomials p̂i — each step costing O(rn2). In case the STS is
not a bijection, we may need to branch — but this is the same situation as
for the legitimate user. The only additional overhead is the computation of the
complement of vector spaces and to intersect them. Both can be done in O(n2).
Assuming that P is a bijection, one application of this inversion attack has time-
complexity O(n2Lrqr).
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4.4.4 Key Recovery Attack

The starting point of the key recovery attack (cf Figure 4.6) is the same as for
the inversion attack, namely ker1 ⊃ . . . ⊃ kerL, due to ker′1 ⊃ . . . ⊃ ker′L. As
we have computed the transformation T̃ in the previous step, we are able to
compute the system of equations P̂, the corresponding matrices P̂l and therefore
their kernels for each layer l : 1 ≤ l ≤ L. Due to its internal structure, the
vector space K̃ := Kl−1 ∩ Kl consists of exactly r row-vectors of S̃−1. We
recover them in the for loop. As soon as we have recovered S̃, we apply it to
the intermediate system of equations P̂ , yielding P̃’, an equivalent copy of the
private key polynomials. As we will see in Chapter 5, this is actually the best we
can do as each private key (S,P ′, T ) ∈ Aff−1(Fn)×MQ(Fn,Fm)×Aff−1(Fm) is
only a representative of a class of private keys which all lead to the same public
key P ∈MQ(Fn,Fm).

In terms of complexity, the second step of the key recovery attack is dominant:
we need to evaluate m polynomials with O(n2) quadratic terms each. As each
quadratic term has two variables, this costs O(n2) for each term. The overall
time complexity is therefore O(mn4). So depending on the value qr, either the
key recovery or the inversion attack has a lower asymptotic running time as the
constants are in the same range. From our experiments, we expect constants
between 10 and 100.

procedure keyRecoveryAttack(P̂ , K1, . . . , KL)

Input: P̂: system of equations; K1, . . . , KL: descending chain of kernels

Output: S̃: an equivalent copy of the secret transformation S

P̃ ′: an equivalent copy of the private key polynomials
K0 ← F

n

for l ←1 to L do

K̃ ← Kl−1 ∩Kl

RowVector(Ŝ, (l − 1)r + i) ←BasisVector(K̃, i) : 1 ≤ i ≤ r

S̃ ← Ŝ−1

p̃′i ← p̂i ◦ S̃
−1 : 1 ≤ i ≤ m

return S̃, P̃ ′

endproc

Figure 4.6: Structural attack for a given sequence of kernels ker1, . . . , kerL
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4.4.5 Special Instances of STS

In this section, we show that the two schemes RSE(2)PKC and RSSE(2)PKC
[KS04c, KS04b], proposed by Kasahara and Sakai, are special instances of STS
— and will therefore fall for the attacks discussed in the previous section. In
particular, we were able to break the challenge proposed in [KS04c, Sect. 6]
using an inversion attack (cf Section 4.4.3) in both cases.

RSSE(2)PKC. In RSSE(2)PKC, the private polynomials p′i for 1 ≤ i ≤ r have
a special form, namely

p′(l−1)r+i(x
′) := φl,i(x

′
(l−1)r+1, . . . , x

′
lr) + ψl,i(x

′
1, . . . , x

′
(l−1)r) for 1 ≤ l ≤ L ,

where φl,i and ψl,i are random quadratic polynomials over F in r and (l − 1)r
variables, respectively. In both cases, the constant part is omitted. To simplify
the structure, the linear terms βxi are considered to be quadratic terms βx2

i , for
all i ∈ {1, . . . , n}. This may be done as RSSE(2)PKC is defined over GF(2) and
we hence have x2 = x for all x ∈ GF(2).

We observe that this special construction of the private key polynomials does
not affect our attacks. In particular, the maximum rank for the corresponding
matrices P ′

i stays the same, namely lr for each layer. Unfortunately, for small
values of r (in particular, 2 ≤ r ≤ 4), there is a high probability that two poly-
nomials φl,i, φl,j for i 6= j have the same coefficients: for r = 2, there is only one
non-linear coefficient, for r = 3, there are only 3, and for r = 4, we obtain 6. The
corresponding probabilities are therefore 2−1, 2−3 and 2−6, respectively, that the
polynomials φl,i, φl,j share the same quadratic coefficients. In a linear combina-
tion of these two polynomials, the rank of the corresponding matrix will therefore
drop by r. This change defeats the lowRank algorithm from Figure 4.4 as it only
uses the matrix representation of the public key polynomials pi. That way, it
will not only find solutions of the layer l, but also for such linear combinations.
To attack RSSE(2)PKC, it is therefore advisable to use the highRank algorithm
from Figure 4.3 in connection with Dickson’s theorem (cf Section 4.4.2).

RSE(2)PKC. The system RSE(2)PKC is a special instance of the previously
described RSSE(2)PKC system: the polynomials φl,i are required to be step-
wise bijections, i.e., the function (φl,1, . . . , φl,r) : F

r
2 → F

r
2 is a bijection for all

l ∈ {1, . . . , L}. This way, the whole system P becomes a bijection and it is
possible to recover the solution x step by step without any ambiguity. As being a
bijection is a rather strong requirement for a system of multivariate polynomials,
the problem described in the previous section becomes more severe as we have far
less choices for the coefficients in the quadratic terms. Still, using the high-rank
rather than the low-rank attack should overcome this problem.
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In [KS04c, Sect. 3.2], the authors suggest q = 2, r ≤ 10 for their scheme which
leads to a maximal value of 210 for qr. Therefore, we expect all attacks from the
previous section to be efficient against these schemes.

Challenges. In [KS04c, Sect. 6], Kasahara and Sakai propose two challenges
with the following parameters: F = GF(2), m = n = 100 and r = 4, 5. They gave
both the public key and a value y ∈ F

m and asked for the corresponding x ∈ F
n.

Using a (highly unoptimised) Magma [MAG] programme, we were able to break
this challenge in a few hours on an AMD Athlon XP 2000+. As the challenge
files have a size of 128 kByte each, we omitted to include them in this the-
sis but refer to http://www.osaka-gu.ac.jp/php/kasahara/publickey.html.
This webpage states both the problem and acknowledges that we computed the
required solution.

For our attack, we implemented the inversion attack against the low-rank side
(cf sections 4.4.2 and 4.4.3). As pointed out earlier, the attack should have been
more efficient using an attack against the high-rank side in combination with
Dickson’s theorem (cf Section 4.4.2). In particular, we computed the solution x
for the given value y. The two solutions are (in vector-notation, starting with x1

at the left):

• r = 4: (0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 0 0 0 1 1
1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 1 0 1 1
1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1),

• r = 5: (1 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0
0 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0
1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1).

These results have been confirmed by Kasahara and Sakai [KS04a].

Intermediate Discussion. Apart from the attacks presented in this section,
we also want to point out that the generic birthday attack for signature schemes
applies against the parameter choice q = 2 and n = m = 100. This attack is ap-
plicable against any signature scheme and uses the fact that we can expect at least
one collision after O(2n/2) computations from both sides, i.e., changing the mes-
sage y ∈ F

m and the signature x ∈ F
n. In this case, the workload becomes only

O(250) different messages y and O(250) input x. As Kasahara and Sakai do not
use special constructions as, e.g., Feistel-Patarin-Networks [CGP01], the generic
birthday attack applies in particular against RSE(2)PKC, and RSSE(2)PKC. In
addition, the hybrid type construction from the following section is also affected.
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Hybrid type construction. In [KS04b, Sect. 4.2], Kasahara and Sakai pro-
pose a so-called “hybrid type construction” to enhance the security of RSSE(2)PKC.
To simplify this explanation, we restrict to the case with two branches as this is
sufficient to point out its vulnerability to the attacks described in this thesis.

In this case, the private polynomials p′i are partitioned into two sets: the poly-
nomials p′1, . . . , p

′
m/2 are constructed as for RSSE(2)PKC (see above). However,

the construction of the other polynomials now involves a third type of polynomial,
denoted σ. For L/2 < l ≤ L and 1 ≤ i ≤ r we have:

p′lr+i(x
′) := φl,i

(
x′(l−1)r+1, . . . , x

′
lr

)
+ ψl,i

(
x′1, . . . , x

′
(l−1)r

)

+σlr+i

(
x′1, . . . , x

′
(L/2)

)
.

As for φl,i and ψl,i, the polynomials σlr+i are quadratic polynomials with ran-
domly chosen coefficients and no constant term α. All of them depend on the first
L/2 variables only. Therefore, the overall structure of the private polynomials p′i
in terms of the rank of their matrix representation P ′

i does not change and the
attacks of this thesis are still applicable.

4.4.6 Discussion

As outlined in Section 3.1.2, regular STS may be generalised by different step-
sizes and also different number of equations in each individual level, denoted
r1, . . . , rL ∈ N and m1, . . . ,mL ∈ N, respectively. Moreover, we may consider
these L-tuples as part of the private key; only their sums n and m are public.
However, the internal structure of the private key stays the same, in particular,
we still obtain the chain of kernels of the private key polynomials. The only
part of the attack we have to be careful about are the values r1 and mL, i.e.,
the number of variables in the first layer and the number of equations in the last
layer. If the first is too large, the attack at the low-rank side is no longer effective
while a high value of the latter may preclude the attack from the high-rank side.

Using gSTS (general Stepwise-Triangular Scheme) for a signature scheme al-
lows us to choose r1 À m1. However, in this case we may not allow rL ¿ mL

as this leads to a highly overdetermined system of equations — which has only
qmL−rL solutions on average. The situation is reversed for encryption schemes.
Here, we may have rL ¿ mL but not r1 À m1. As the system has a solution for
y = P(x) by construction, a large value of mL does not provide a problem here.
Unfortunately, we are not able to find it back if the value for r1 and consequently
qr1 is too large.

Therefore, gSTS will either fall to an attack from the high-rank or from the
low-rank side. In both cases the construction is insecure. We want to point out
that gSTS is a generalisation of the Triangular Plus-Minus (TPM) construction.
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In particular, we relax the condition that there is only one new variable and one
new equation at each intermediate level (cf Sect. 3.1.2).

Highly Overdetermined Schemes. When the scheme has more equations
than variables, i.e., for m > n, we need to adapt the algorithm LowRankAttack

(cf Section 4.4.2). Instead of picking one vector in each layer, we need to consider
λ :=

⌈
m
n

⌉
vectors v1, . . . , vλ ∈ F

n simultaneously. Now we have to solve the

system of equations
∑m

i=0 v
j
i (wPi) = 0 for j ∈ {1, . . . , λ} in order to have enough

information in order to recover the rows of T̃ . As for the case m ≤ n, this system
of linear equations has qlr solutions if and only if all vectors v1, . . . , vλ are in
the kernel kerl. Consequently, the complexity for the LowRankAttack increases
exponentially with λ and is equal to O(mn3Lqλr). In practice we will have small
values for λ as highly overdetermined systems of quadratic equations are easy
to solve [CGMT02]. This approach for dealing with overdetermined system of
equations has earlier been described by Goubin and Courtois [GC00].

All in all, we see that STS without any special trapdoor for the individual
layers — in particular the first and the last layer — cannot be securely used. In
this context we want to point out that the attacks described in sections 4.4.2 and
4.4.2 work not only for STS but for any schemes which has “close” ranks of its
private equations. In [YC04a], they are consequently called “crawling attacks”
as it is possible to “crawl” from one layer with specific rank to another. For this
crawling, we have a workload of q∆ where ∆ ∈ N denotes the difference in ranks
between these two layers. Still, to apply crawling attacks in the context of STS
schemes it is usually necessary to get rid of either the first or the last layer of
private key equations.

Affine Transformations. Until now, we concentrated on S, T ∈ Hom−1(Fn)×
Hom−1(Fm) rather than S, T ∈ Aff−1(Fn)×Aff−1(Fm). We will now investigate
why the attacks we developed so far are actually sufficient and cannot be coun-
tered by replacing S, T with affine transformations.

Therefore, consider two affine transformations S ∈ Aff−1(Fn), T ∈ Aff−1(Fm).
Then there exists a unique, invertible matrix MS ∈ F

n×n (resp. MT ∈ F
m×m)

and a unique vector vs ∈ F
n (resp. vt ∈ F

m) which describe the affine transfor-
mation S (resp. T ) by S(x) = MSx+ vs where x ∈ F

n is an input vector (resp.
T (x) = MTx+vt for x ∈ F

m). Moreover, we can rewrite the affine transformation
S as S(x) = (x+ vs) ◦ (MSx) where x denotes the output of MSx. In addition,
we can rewrite the affine transformation T as T (x) = (MT x̂) ◦ (x + M−1

T vt),
where x̂ denotes the output of x + M−1

T vt. As MT is an invertible matrix, the
matrix M−1

T ∈ F
m×m exists and is unique. We now express the public key as a
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composition of the private key

P = T ◦ P ′ ◦ S

= [(MT x̂) ◦ (x̃+M−1
T vt)] ◦ P

′ ◦ [(x+ vs) ◦ (MSx)] ,

where x̃ is the output of P ′ ◦ [(x + vs) ◦ (MSx)] and x̂ is the output of (x̃ +
M−1

T vt) ◦ P
′ ◦ [(x+ vs) ◦ (MSx)]. We have

P = (MT x̂) ◦ [(x̃+M−1
T vt) ◦ P

′ ◦ (x+ vs)] ◦ (MSx)

= (MT x̂) ◦ P
′′ ◦ (MSx)

for some system of equations P ′′. As both (x + vs) and (x̃ +M−1
T vt) are trans-

formations of degree 1, they do not change the overall degree of P ′′, i.e., as P ′

consists of equations of degree 2 at most, so will P ′′. In addition, due to its con-
struction, (MS ,P

′′,MT ) forms a valid private key for the public key P and the
layer-structure of STS is not affected by these two operations. Therefore, we can
“collect” the constant terms of the two affine transformations S, T in the central
equations and use the original cryptanalysis against STS with linear rather than
affine transformations. We see in Section 5 that similar conclusions can be drawn
for other Multivariate Quadratic schemes.

4.5 Attacks against MIA

While the author of this thesis has performed substantial work in the crypt-
analysis of other schemes, this is not the case for the MIA class. We therefore
quote some important attacks. Recall that we have Y ′ := X ′qλ+1 as the central
equation in MIA systems.

The original MIA scheme was broken in [Pat95]. To outline this attack we set
X ′ := φ−1(S−1(x)) and Y ′ := φ−1(T−1(x)) for x ∈ F

n. The key observation for

his attack are the following equations. First apply the operation g : A→ Aqθ−1

to both sides of the MIA equation. This yields:

Y ′qλ−1 = X ′q2λ−1 .

Multiplying both sides with X ′Y ′ leads to

X ′Y ′qθ

= Y ′X ′q2λ

.

We see that the above equation is linear in X ′ and Y ′ in terms of the vector
space F

n. Starting from this, Patarin shows how to compute equations linear
in x1, . . . , xn from the public key alone. Therefore, this attack falls in the class
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of inversion attacks. A newer attack with the same result but using differential
cryptanalysis has been reported in [FGS05].

The main source of cryptanalytic results on MIA and important variations
is [PGC98a]. There, the variation MIA- (under the name C∗−−) is considered
to be secure for qr being larger than some security level C ∈ N, e.g., C = 280.
The reason is an extension of the above cryptanalysis which also works for MIA-
instead of MIA+. Interestingly, the plus modification does not have any impact
on the above crytanalysis, i.e., MIA+ is not at all more secure than MIA itself.
Indeed, all the equations needed for the above inversion attack still exist in MIA+:
hence, we can still compute them.

There has also been an attack against an early version of Sflash [GM02],
mainly using the fact that this early version used coefficients from GF(2) rather
than from GF(128) for the private key transformations S, T ∈ Aff−1(Fn). This
way, an exhaustive search over one column of S was possible. This is another
example for the shortcomings of the “/” modification from Section 3.2.3.

In addition, there is the attack [GSB01] which shows how to recover the vec-
tors vS , vT ∈ F

n of the affine transformations S, T ∈ Aff−1(Fn). Although this
result cannot be extended to the matrices MS ,MT ∈ F

n×n of these transforma-
tions, it shows that the use of affine instead of linear transformations S, T does
not increase the overall security of schemes of the MIA type.

As a more recent development is the scheme MIAi, which has been developed
in [Din04], cf Section 3.2.8. There, it is called “Perturbed Matsumoto-Imai”
(PMI). It has been broken in [FGS05], using a differential attack to distinguish
between noisy and non-noisy parts of the message space F

n. Using only the non-
noisy parts, it is possible to launch the original cryptanalysis of Patarin against
MIA, or the new attack developed in [FGS05]. In terms of running time, this
new attack needs O(q3w) operations for w being the perturbation dimension.
Recalling that the workload of the legitimate user is also proportional to qw

we see that qw needs to be small for efficient schemes. Hence, MIAi has to be
considered broken.

So at present, we see that MIA- is the most time-efficient secure version of a
signature scheme based on multivariate quadratic equations. As we will see later,
the main problem for its use in practice is the size of the public key.

4.6 Attacks against HFE

In this section, we give a brief overview of recent attacks against HFE. For a more
detailed but partly outdated analysis, we refer to [Pat96b]. A newer analysis can
be found in [WP04], which also forms the basis for this section.
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4.6.1 Kipnis-Shamir: Recover the Private Key

In [KS99], Kipnis and Shamir show how to recover the private key of HFE from
the system of public equations. The key point of this attack is to express the
private key (i.e., polynomials over the finite field F) as sparse univariate polyno-
mials over the extension field E. We refer to Section 2.4 for the idea of expressing
the private key over the extension field E. In addition, they observe that the spe-
cial choice of the private polynomial P in HFE gives rise to a matrix equation
with very small rank (e.g., rank 13 for a 100 × 100 matrix). In [Cou01, Sect. 8],
their attack is improved and has now a workload of

(
n

RankP

)ω
= O

(
nlogq d+O(1)

)
.

In this formula, RankP is the rank of the private polynomial P in matrix form
over the extension field E, d its degree as a polynomial over E, and ω ≈ 2.7
the expected workload to solve linear equations. The attack is only applicable
against basic HFE, i.e., it fails for all its variations. On the other hand, it is the
only attack known so far which can recover the private key of HFE.

In their paper, Kipnis and Shamir also introduce the “reliniarization” tech-
nique which can solve quadratic equations with about 0.1n2 linearly independent
equations in n variables. For the traditional linearisation technique, we need
about 0.5n2 many equations. This technique has been improved in [CKPS00].
Still, as shown in [AFI+04], XL is always slower than the algorithms from Faugère.

4.6.2 Faugère: Fast Gröbner Bases

In 2002, Faugère reported to have broken the HFE-Challenge I in 96 hours, using
an AlphaServer DS20E (EV68 833 Mhz) with 4 GByte of RAM [Fau02]. In this
challenge, we have q = 2, n = 80, and a degree of d = 96 for the central equations.
The attacker is given the public key and also a value y ∈ F

m. The task is to
compute at least one x ∈ F

n which matches the given y. Interestingly, Faugère
was able to compute four different solutions. This highlights the fact that HFE
is not injective. Since then, his attacks have been improved and in 2003, Faugère
and Joux published joint work on the security of HFE [FJ03] (cf [Fau03] for
a more technical version). In a nutshell, their attack uses a fast algorithm to
compute the Gröbner basis of a system of polynomial equations. By theoretical
and empirical studies they show that inverting basic HFE given the public key
alone is polynomial for a fixed degree d in the private key polynomial P ∈ E[X].
The attack-complexity for different degrees is shown in Table 4.1

For HFEv, Faugère and Joux outline in [FJ03, Sect. 4.1] that the cryptanal-
ysis is not more difficult in this case. But for HFE-, they get a higher workload.
For the original Quartz-scheme, they establish a workload of ≈ 262 — exploiting
some further properties of their attack. However, these additional improvements
are not within the scope of this thesis. Unfortunately, they only give the num-
ber of matrix operations — which are difficult to relate to number of 3-DES
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Table 4.1: Attack complexity against basic HFE for different degrees d

Degree d 16 < d ≤ 128 128 < d ≤ 512 512 > d

Attack (asymptotical) O(n8) O(n10) ≥ O(n12)

Attack (for n = 103) ≈ 254 ≈ 266 ≈ 280

computations. Hence, we could not compute the overall security level.
Using the estimations of [FJ03, Sect. 4.1, 5.2–5.4] on Quartz, we establish

that a degree of 129 and 7 equations removed (thus, without the modification
HFEv) has an attack complexity of ≈ 286. The corresponding “Quartz-7m”-
scheme is therefore secure again. In fact, a similar result has been achieved 2002
in [CDF03] by increasing the degree d of the private polynomial to 257. However,
this estimation was only based on [Fau02]. In the light of the article [FJ03] it
turns out to be inaccurate.

4.6.3 Variations of HFE

Hidden field equations were mainly used with the minus and the “v” modification
so far. The cryptanalysis of [KS99] becomes ineffective if any variation is applied.
However, the later work of Faugère and Joux [FJ03] proves very efficient against
HFE, HFE+, and also to some extent against HFEv. Still, the method HFE-
proves a very efficient way to counter this attack.

Recently, Ding and Schmidt suggested to use the variation HFEi — they called
it IPHFE (“Internal Perturbation of HFE”, cf Section 3.2.8). Unfortunately,
there is not much independent research known about strength of this new scheme.
However, we expect it to be secure against Gröbner attacks. Given that MIAi
(see above) has been broken rather unexpectedly, we suggest to wait some time
before using HFEi in applications.

4.7 Discussion

In this chapter, we gave an overview on cryptanalytic results for the four basic
classes UOV, STS, MIA, and HFE plus some of their variations. As we saw
there, only UOV with well-chosen parameters withstands all attacks while the
basic classes of the other schemes are vulnerable to attacks.

At present, MIA-, HFE-, and UOV seem to be mature enough to be used in
practical applications. Interestingly, all of them are only useful in the context of
signature schemes.
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For all other designs, it is simply too early to use them. This is in particular
true for the newly developed “i” modification: while it would allow an encryption
scheme — either based on MIA or HFE — the MIAi variation has been broken,
and the HFEi version is only known since a year.

For STS, the situation is worse: the basic scheme cannot be used at all for
secure encryption or even signature schemes. The reason is very efficient attacks
against the first and the last layer of this multi-layer scheme. Interestingly, we
will see in Section 6.2 that the STS class is actually used in connection with other
schemes to construct secure signature schemes. Until now, the STS class could
not be used either for encryption schemes.

Therefore, we have to conclude that the construction of encryption schemes
based on Multivariate Quadratic equations is a difficult task. However, not
having a way of exchanging secrets, e.g., session keys, is a serious obstacle for any
public key scheme. It would therefore be very interesting to obtain an encryption
scheme based on Multivariate Quadratic polynomials.
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Chapter 5

Equivalent Keys

After dealing with cryptanalytic results in the previous chapter, we now move
on to a different subject: the question of equivalent private keys for Multivari-
ate Quadratic schemes. A graphical representation of this idea is presented in
Figure 5.1. At first glance, this question seems to be purely theoretical. But for

input x

?
x = (x1, . . . , xn)

?
private: S σ−1 ◦ S

x′

?
private: P ′ τ ◦ P ′ ◦ σ

y′

?
private: T T ◦ τ−1

output y ¾

public:
(p1, . . . , pn)

Figure 5.1: Equivalent private keys using affine transformations σ, τ

practical applications, we need memory and time efficient instances of Multi-
variate Quadratic public key systems. One important point in this context is the
overall size of the private key: in restricted environments such as smart cards,

85
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we want it as small as possible. Hence, if we can show that a given private key is
only a representative of a much larger class of equivalent private keys, it makes
sense to compute (and store) only a normal form of this key. Similar, we should
construct new Multivariate Quadratic schemes such that they do not have a
large number of equivalent private keys but only a small number, preferable only
one, per equivalence class. This way, we make optimal use of the randomness
in the private key space and neither waste computation time nor storage space
without any security benefit.

This chapter is based on two papers [WP05c] and [WP05b]. The article
[WP05c] is the first publicly available, systematic treatment of the question of
equivalent keys in Multivariate Quadratic systems. So our own contribution
consists of all but one of the sustaining transformations described here and their
application to the MIA, MIA-, HFE-, HFEv, HFEv-, UOV, and the STS class.
For the HFE class, the application of the so-called “additive sustainer” was known
previously. Still, it was not recognised before that it could be applied also to other
Multivariate Quadratic systems such as UOV. The theorem for the STS class
has not been published before.

We want to mention that the question of equivalent keys for the MIA class has
been independently studied by Prof. Dobbertin. We learned about his results
after the paper [WP05c] has been accepted for publication at PKC 2005. Due
to his suggestion, we added Section 5.4 in which we show that the sustaining
transformations given in Theorem 5.3.7 are actually all sustaining transforma-
tions possible, using some reasonable assumptions. In addition, we also extended
his idea to the MIO class, cf Section 6.4.1.

5.1 Initial Considerations

Before discussing concrete schemes, we start with some general observations and
definitions. Obviously, the most important term in this chapter is “equivalent
private keys”, see Figure 5.1 for a graphical representation. We start by properly
introducing it:

Definition 5.1.1 We call two private keys

(T,P ′, S), (T̃ , P̃ ′, S̃) ∈ Aff−1(Fm)×MQ(Fn,Fm)×Aff−1(Fn)

“equivalent” if they lead to the same public key, i.e., if we have

T ◦ P ′ ◦ S = P = T̃ ◦ P̃ ′ ◦ S̃ .
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In order to find equivalent keys, we consider the following transformations:

Definition 5.1.2 Let (S,P ′, T ) ∈ Aff−1(Fm)×MQ(Fn,Fm)× Aff−1(Fn), and
consider the four transformations σ, σ−1 ∈ Aff−1(Fn) and τ, τ−1 ∈ Aff−1(Fm).
Moreover, let

P = T ◦ τ−1 ◦ τ ◦ P ′ ◦ σ ◦ σ−1 ◦ S . (5.1)

We call the pair (σ, τ) ∈ Aff−1(Fn) × Aff−1(Fm) “sustaining transformations”
for an MQ-system if the “shape” of P ′ is invariant under the transformations
σ and τ . For short, we write (σ, τ) • (S,P ′, T ) for (5.1.2) and (σ, τ) sustaining
transformations (cf Figure 5.1).

Remark 5.1.3 In the above definition, the meaning of “shape” is still open. In
fact, its meaning has to be defined for each MQ-system individually. For exam-
ple, in HFE (cf Section 3.1.4), it is the bounding degree d ∈ N of the polynomial
P ′(X ′). In the case of MIA, the “shape” is the fact that we have a single mono-
mial with factor 1 as the central equation (cf Section 3.1.3). In general and for
σ, τ sustaining transformations, we are now able to produce equivalent keys for a
given private key by (σ, τ) • (S,P ′, T ). A trivial example of sustaining transfor-
mations is the identity transformation, i.e., to set σ = τ = id.

Lemma 5.1.4 Let σ ∈ Aff−1(Fn), τ ∈ Aff−1(Fm) be sustaining transformations.
If the two structures G := (σ, ◦) and H := (τ, ◦) form a subgroup of the affine
transformations, they produce equivalence relations within the private key space.

Proof. We start with a proof of this statement for G := (σ, ◦). First, we
have reflexivity as the identity transformation is contained in G. Second, we
have symmetry as subgroups are closed under inversion. Third, we also have
transitivity as subgroups are closed under composition. Therefore, the subgroup
G partitions the private key space into equivalence classes. The proof for the
subgroup H := (τ, ◦) is analogous. ¤

Remark 5.1.5 We want to point out that the above proof does not use special
properties of sustaining transformations, but the fact that these are a subgroup
of the group of affine transformations. Hence, the proof does not depend on the
term “shape” and is therefore valid even if the latter is not rigorously defined yet.
In any case, instead of proving that sustaining transformations form a subgroup
of the affine transformations, we can also consider normal forms of private keys.
As we see below, normal forms have some advantages to avoid double counts in
the private key space.
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5.2 Sustaining Transformations

In this section, we discuss several examples of sustaining transformations. In
addition, we consider their effect on the central transformation P ′.

5.2.1 Additive Sustainer

For n = m, let σ(X) := (X + A) and τ(X) := (X + A′) for some elements
A,A′ ∈ E. As long as the transformations σ, τ keep the shape of the central
equations P ′ invariant, they form sustaining transformations.

In particular, we are able to change the constant parts vs, vt ∈ F
n or VS , VT ∈

E of the two affine transformations S, T ∈ Aff−1(Fn) to zero, i.e., to obtain a
new key (Ŝ, P̂ ′, T̂ ) with Ŝ, T̂ ∈ Hom−1(Fn).

Remark 5.2.1 This is a very useful result for cryptanalysis as it allows us
to “collect” the constant terms in the central equations P ′. For cryptanalytic
purposes, we therefore only need to consider the case of linear transformations
S, T ∈ Hom−1(Fn).

The additive sustainer also works if we interpret it over the vector space F
n

rather than the extension field E. To distinguish this case clearly from the setting
above, we write a ∈ F

n, a′ ∈ F
m here. In particular, we can also handle the case

n 6= m now. However, in this case it may happen that we have a′ ∈ F
m and

consequently τ : F
m → F

m. Nevertheless, we can still collect all constant terms
in the central equations P ′.

If we look at the central equations as multivariate polynomials, the additive
sustainer will affect the constants αi and βi,j ∈ F for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
A similar observation is true for central equations over the extension field E: in
this case, the additive sustainer affects the additive constant A ∈ E and the linear
factors Bi ∈ E for 0 ≤ i < n.

5.2.2 Big Sustainer

We now consider multiplication in the (big) extension field E, i.e., we have
σ(X) := (BX) and τ(X) := (B′X) for B,B′ ∈ E

∗. Again, we obtain a sus-
taining transformation if this operation does not modify the shape of the central
equations as (BX), (B′X) ∈ Aff−1(Fn).

The big sustainer is useful if we consider schemes defined over extension fields
as it does not affect the overall degree of the central equations over this extension
field.
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5.2.3 Small Sustainer

We now consider vector-matrix multiplication over the (small) ground field F, i.e.,
we have σ(x) := Diag(b1, . . . , bn)x and τ(x) := Diag(b′1, . . . , b

′
m)x for the non-zero

coefficients b1, . . . , bn, b
′
1, . . . , b

′
m ∈ F

∗ and Diag(b),Diag(b′) the diagonal matrices
on both vectors b ∈ F

n and b′ ∈ F
m, respectively.

In contrast to the big sustainer, the small sustainer is useful if we consider
schemes which define the central equations over the ground field F as it only
introduces a scalar factor in the polynomials (p′1, . . . , p

′
m).

5.2.4 Permutation Sustainer

For the transformation σ, this sustainer permutes input-variables of the central
equations while for the transformation τ , it permutes the polynomials of the cen-
tral equations themselves. As each permutation has a corresponding, invertible
permutation-matrix, both σ ∈ Sn and τ ∈ Sm are also affine transformations.
The effect of the central equations is limited to a permutation of these equations
and their input variables, respectively.

5.2.5 Gauss Sustainer

Here, we consider Gauss operations on matrices, i.e., row and column permuta-
tions, multiplication of rows and columns by scalars from the ground field F, and
the addition of two rows/columns. As all these operations can be performed by
invertible matrices; they form a subgroup of the affine transformations and are
hence a candidate for a sustaining transformation.

The effect of the Gauss sustainer is similar to the permutation sustainer and
the small sustainer. In addition, it allows the addition of multivariate quadratic
polynomials. This will not affect the shape of some MQ-schemes.

5.2.6 Frobenius Sustainer

Definition 5.2.2 Let F be a finite field with q := |F| elements and E its n-
dimensional extension. Moreover, let H := {i ∈ Z : 0 ≤ i < n}. For a, b ∈ H we

call σ(X) := Xqa

and τ(X) := Xqb

Frobenius transformations (cf Lemma 2.1.5).

Obviously, Frobenius transformations are linear transformations with respect to
the ground field F. The following lemma establishes that they also form a group:

Lemma 5.2.3 Frobenius transformations are a subgroup in Hom−1(Fn).

Proof. First, Frobenius transformations are linear transformations, so associa-
tivity is inherited from them. Second, the set H from Definition 5.2.2 is not
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empty for any given F and n ∈ Z
+. Hence, the corresponding set of Frobenius

transformations is not empty either. In particular, we notice that the Frobenius
transformation Xq0

is the neutral element of this group.
In addition, the inverse of a Frobenius transformation is also a Frobenius

transformation: Let σ(X) := Xqa

for some a ∈ H. Working in the multiplicative
group E

∗ we observe that we need qa ·A′ ≡ 1 (mod qn − 1) for A′ ∈ N to obtain
the inverse function of σ. We notice that A′ := qa′

for a′ := n−a (mod n) yields

the required and moreover σ−1 := Xqa′

is a Frobenius transformation as a′ ∈ H.
So all left to show is that for any given Frobenius transformations σ, τ , the

composition σ ◦ τ is also a Frobenius transformation, i.e., that we have closure.

Let σ(X) := Xqa

and τ(X) := Xqb

for some a, b ∈ H. So we can write

σ(X) ◦ τ(X) = Xqa+b

. If a + b < n we are done. Otherwise n ≤ a + b < 2n, so
we can write qa+b = qn+s for some s ∈ H. Again, working in the multiplicative
group E∗ yields qn+s ≡ qs (mod qn − 1) and hence, we established that σ ◦ τ
is also a Frobenius transformation. This completes the proof that all Frobenius
transformations form a group. ¤

Frobenius transformations usually change the degree of the central equation
P ′. But taking τ := σ−1 cancels this effect and hence preserves the degree of P ′.
Therefore, we can speak of a Frobenius sustainer (σ, τ). So there are n Frobenius
sustainers for a given extension field E.

It is tempting to extend this result to the case of powers of the characteristic
of F. However, this is not possible as xcharF is not a linear transformation in F

for q 6= p where p denotes the characteristic of the finite field F and q := |F| the
number of its elements.

Remark 5.2.4 All six sustainers presented so far form groups and hence parti-
tion the private key space into equivalence classes (cf Lemma 5.1.4).

5.2.7 Reduction Sustainer

The reduction sustainer is quite different from the transformations studied so far.
The main reason is that it is not applied to a basic form of an MQ-trapdoor,
but to an MQ-trapdoor which uses the minus (or reduction) modification (cf
Section 3.2.1). We recall that we have P := R◦T◦P ′◦S here whereR : F

n → F
n−r

denotes a reduction or projection (see Section 2.4 for details). In addition, we
have S, T ∈ Aff−1(Fn) and P ′ ∈ MQ(Fn). More formally, we consider the
function R(x1, . . . , xn) := (x1, . . . , xn−r), i.e., we neglect the last r components
of the vector (x1, . . . , xn). Although this modification looks rather easy, we recall
from Chapter 4 that it proves powerful to defeat a wide class of cryptographic
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attacks against several MQ-schemes, including HFE and MIA, e.g., the attack
introduced in [FJ03].

For the corresponding sustainer, we consider the affine transformation T in
matrix representation, i.e., we have T (x) := Mx + v for some invertible matrix
M ∈ F

m×m and a vector v ∈ F
m. We observe that any change in the last r

columns of M or v does not affect the result of R (and hence P). Hence, we
can choose these last r columns without affecting the public key. Inspecting
Lemma 2.2.2, we see that this gives us a total of

qr
n−1∏

i=n−r−1

(
qn − qi

)

choices for v and M , respectively, that do not affect the public key equations P.
When applying the reduction sustainer together with other sustainers, we

have to make sure that we do not count the same transformation twice, cf the
corresponding proofs in the following section.

5.3 Application to Multivariate Quadratic
Schemes

All necessary tools at hand, we show how to apply suitable sustaining transforma-
tions to the multivariate schemes. We want to stress that the reductions in size
we achieve in this section represent lower rather than upper bounds: additional
sustaining transformations can further reduce the key space of these schemes.
The only exception for this rule is the MIA class: due to the tightness proof in
Section 5.4, we know that only the big sustainer and the Frobenius sustainer can
be applied here. Unfortunately, the details of this tightness proof are cumber-
some and we do not see how it can be extended in a straightforward way to the
other schemes discussed in this section.

5.3.1 Hidden Field Equations

We start with the HFE class (cf Section 3.1.4 for its definition) as the overall
proof ideas can be demonstrated most clearly here. In fact, we will use some of
these ideas again for the MIA class.

We recall that the central equation Y ′ = P (X ′) of HFE is represented over
the extension field E and that the degree of the polynomial P is bounded by d.
We need this condition to allow efficient inversion of the equation P (X ′) = Y ′

for given Y ′ ∈ E. So the shape of HFE is in particular this degree d of the
private polynomial P . Moreover, we observe that there are no restrictions on its
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coefficients C ′
i,j , B

′
k, A

′ ∈ E for i, j, k ∈ N0 and qi, qi + qj ≤ d. Hence, we can
apply both the additive and the big sustainer (cf sect. 5.2.1 and 5.2.2) without
changing the shape of this central equation.

Theorem 5.3.1 For K := (S, P, T ) ∈ Aff−1(Fn) × E[X] × Aff−1(Fn) a private
key in HFE, we have

n.q2n(qn − 1)2

equivalent keys.

Proof. To prove this theorem, we consider normal forms of private keys: let
S̃ ∈ Aff−1(Fn) being the affine transformation we start with. First we compute
Ŝ(X) := S̃(X)− S̃(0), i.e., we apply the additive sustainer. Obviously, we have
Ŝ(0) = 0 after this transformation and hence a special fix-point. Second we define
S(X) := Ŝ(X).Ŝ(1)−1, i.e., we apply the big sustainer. As the transformation
Ŝ : E → E is a bijection and we have Ŝ(0) = 0, we know that Ŝ(1) must be
non-zero. Hence, we have S(1) = 1, i.e., we add a new fix-point but still keep
the old fix-point as we have S(0) = Ŝ(0) = 0. Similar we can compute an affine
transformation T (X) with T (0) = 0 and T (1) = 1 as a normal form of the affine
transformation T̃ ∈ Aff−1(Fn). Note that both the additive sustainer and the
big sustainer keep the degree of the central polynomial P (X) so we can apply
both sustainers on both sides without changing the “shape” of P (X).

Applying the Frobenius sustainer is a little more technical. First we observe
that this sustainer keeps the fix-points S(0) = T (0) = 0 and S(1) = T (1) = 1 so
we are sure we still deal with equivalence classes, i.e., each given private key has
a unique normal form, even with the Frobenius sustainer applied. Now we pick
an element C ∈ E\{0, 1} for which g := S(C) is a generator of E

∗, i.e., we have
E
∗ = {gi | 0 ≤ i < qn}. As E is a finite field we know that such a generator g

exists. Given that S is surjective we know that we can find the corresponding

C ∈ E\{0, 1}. Now we compute gi := S(C)
qi

for 0 ≤ i < n. Using any total
ordering “<”, we obtain gc := min{g0, . . . , gn−1} for some c ∈ N as the smallest
element of this set. One example of such a total ordering would be to use a
bijection between the sets E↔ {0, . . . , qn − 1} and then exploiting the ordering
of the natural numbers to derive an ordering on the elements of the extension
field E. Finally, we define S(X) := [S(X)]q

c

as new affine transformation. To

cancel the effect of the Frobenius sustainer, we define T (X) := [T (X)]q
n−c

.
Hence, we have now computed a unique normal form for a given private key.

Moreover, we can “reverse” these computations and derive an equivalence class
of size n.q2n.(qn − 1)2 this way as we have

(BXqc

+A,B′Xqn−c

+A′) • (S,P ′, T ) for B,B′ ∈ E
∗, A,A′ ∈ E and 0 ≤ c < n .

¤
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Remark 5.3.2 To the knowledge of the author, the additive sustainer for HFE
has first been reported in [Tol03]; it was used there for reducing the affine trans-
formations to linear ones. In addition, a weaker version of the above theorem
can be found in [WP05c].

For q = 2 and n = 80, the number of equivalent keys per private key is ≈ 2326.
In comparison, the number of choices for S and T is ≈ 212,056. This special choice
of parameters has been used in HFE Challenge 1 [Pat96b].

HFE-

We recall that HFE- is the original HFE-class with the minus modification (cf
sections 3.2.1 and 5.2.7). In particular, this means that the “shape” of the central
polynomial P ′(X ′) is still the same, i.e., all considerations from the previous
theorem also apply to HFE-.

Theorem 5.3.3 For K := (S, P, T ) ∈ Aff−1(Fn) × E[X] × Aff−1(Fn) a private
key in HFE and a reduction parameter r ∈ N we have

n.q2n(qn − 1)(qn−r − 1)
n−1∏

i=n−r−1

(qn − qi)

equivalent keys. Hence, the key-space of HFE- can be reduced by this number.

Proof. This proof uses the same ideas as the proof of Theorem. 5.3.1 to obtain a
normal form of the affine transformation S, i.e., applying the additive sustainer,
the big sustainer and the Frobenius sustainer on this side. Hence, we have a
reduction by n.qn(qn − 1) keys here.

For the affine transformation T , we also have to take the reduction sustainer
into account: we use T̃ (X) : F

n → F
n−r and fix T̃ (0) = 0 by applying the

additive sustainer and T̃ (1) = 1 by applying the big sustainer, which gives us
qn−r and qn−r − 1 choices, respectively. To avoid double counting with the
reduction sustainer, all computations were performed in Ẽ := GF(qn−r) rather
than E. Again, we can compute a normal form for a given private key and reverse
these computations to obtain the full equivalence class for any given private key
in normal form. Moreover, we observe that the resulting transformation T̃ allows
for qr

∏n−1
i=n−r−1(q

n − qi) choices for the original transformation T : F
n → F

n

without affecting the output of T̃ and hence, keeping the two fix points T̃ (0) = 0

and T̃ (1) = 1. Therefore, there are a total of qn−r ·qr ·(qn−r−1)·
∏n−1

i=n−r−1(q
n−qi)

possibilities for the transformation T without changing the public key equations.
Multiplying out the intermediate results for S and T yields the theorem. ¤
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For q = 2, r = 7 and n = 107, the number of equivalent keys for each private
key is ≈ 22129. In comparison, the number of choices for S and T is ≈ 223,108.
This special choice of parameters has been used in the repaired version Quartz-7m
of Quartz [CGP01, WP04].

HFEv

Another important variation of Hidden Field Equations is HFEv. In particular, it
was used in the signature scheme Quartz (cf Section 6.1.2). It is due to [KPG99]
(see Section 3.2.7 for an outline of this idea). As we only considered the general
form of the vinegar modification in this section, we now outline the special case
of HFEv, as the details of the central polynomial are crucial for understanding
Theorem 5.3.5.

Definition 5.3.4 Let E be a finite field with degree n′ over F, v ∈ N the
number of vinegar variables, and P(X) a polynomial over E. Moreover, let
(z1, . . . , zv) := sn−v+1(x1, . . . , xn), . . . , sn(x1, . . . , xn) for si the polynomials of
S(x) in multivariate representation and X ′ := φ−1(x′1, . . . , x

′
n′), using the canon-

ical bijection φ−1 : F
n → E and x′i := si(x1, . . . , xn) for 1 ≤ i ≤ n′ as hidden

variables. Then define the central equation as

P ′
z1,...,zv

(X ′) :=
∑

0≤i,j≤d

qi+qj≤d

Ci,jX
′qi+qj

+
∑

0≤k≤d

qk≤d

Bk(z1, . . . , zv)X ′qk

+A(z1, . . . , zv)

where





Ci,jX
′qi+qj

for Ci,j ∈ E are the
quadratic terms,

Bk(z1, . . . , zv)X ′qk

for Bk(z1, . . . , zv) depending
linearly on z1, . . . , zv and

A(z1, . . . , zv) for A(z1, . . . , zv) depending
quadratically on z1, . . . , zv

and a degree d ∈ N, we say the central equations P ′ are in HFEv-shape.

The condition that the Bk(z1, . . . , zv) are affine functions (i.e., of degree 1 in
the zi at most) and A(z1, . . . , zv) is a quadratic function over F ensures that the
public key is still quadratic over F (cf Section 2.4).

Theorem 5.3.5 For K := (S, P, T ) ∈ Aff−1(Fn) × E[X] × Aff−1(Fm) a pri-
vate key in HFEv, v ∈ N the number of vinegar variables, E an n′-dimensional
extension of F where n′ := n− v = m we have

n′qn+n′+vm(qn′

− 1)2
v−1∏

i=0

(qv − qi)
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equivalent keys. Hence, the key-space of HFEv can be reduced by this number.

Proof. In contrast to HFE-, the difficulty now lies in the computation of a nor-
mal form for the affine transformation S rather than the affine transformation T .
For the latter, we can still apply the big sustainer and the additive sustainer and
obtain a total of qm · (qm − 1) = qn′

· (qn′

− 1) equivalent keys for a given trans-
formation T . Moreover, the HFEv modification does not change the “absorbing
behaviour” of the central polynomial P and hence, the proof from Theorem. 5.3.1
is still applicable.

Instead, we have to concentrate on the affine transformation S here. In order
to simplify the following argument, we apply the additive sustainer on S and
obtain a linear transformation. This reduces the key-space by qn. In order to
make sure that we do not count the same linear transformation twice, we consider
a normal form for the now (linear) transformation S

(
Em Fm

v

0 Iv

)
with Em ∈ F

m×m, Fm
v ∈ F

m×v .

In the above definition, we also have Iv the identity matrix in F
v×v. Moreover,

the left-lower corner is the all-zero matrix in F
v×m. The reason for this non-

symmetry: we may not introduce vinegar variables in the set of oil variables, but
due to the form of the vinegar equations, we can introduce oil variables in the
set of vinegar variables. This is done by the following matrix. In particular, for
each invertible matrix MS , we have a unique matrix

(
Im 0
Gv

m Hv

)
with an invertible matrix Hv ∈ F

v×v.

which transfers MS to the normal form from above. Again, Im is an identity
matrix in F

m×m. Moreover, we have some matrix Gv
m ∈ F

v×m. This way, we

obtain qvm
∏v−1

i=0 (qv−qi) equivalent keys in the “v” modification alone. As stated
previously, the identity matrix Im ensures that the input of the HFE component
is unaltered. However, we do not have such a restriction on the input of the
vinegar part and can hence introduce the two matrices Gv

m and Hv: they are
“absorbed” into the random terms of the vinegar polynomials Bk(z1, . . . , zv) and
A(z1, . . . , zv).

For the HFE component over E, we can now apply the big sustainer to S and
obtain a factor of (qn′

− 1). In addition, we apply the Frobenius sustainer to the
HFE component, which yields an additional factor of n′. Note that the Frobenius
sustainer can be applied both to S and T , and hence, we can make sure that it
cancels out and does not affect the degree of the central polynomial Pz1,...,zv

(X).
Again, we can reverse all computations and therefore, obtain equivalence classes
of equal size for each given private key in normal form. ¤
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For the case q = 2, v = 7 and n = 107, the number of equivalent keys for each
private is ≈ 21160. In comparison, the number of choices for S and T is ≈ 221,652.

HFEv-

Here, we combine both the HFEv and the HFE- modification to obtain HFEv-.
In fact, the original Quartz scheme (cf Section 6.1.2) was of this type.

Theorem 5.3.6 For K := (S, P, T ) ∈ Aff−1(Fn)×E[X]×Aff−1(Fm+v,Fm+r) a
private key in HFEv, v ∈ N vinegar variables, a reduction parameter r ∈ N and
E an n′-dimensional extension of F where n′ := n− v and n′ = m+ r we have

n′qr+2n′+vn′

(qn′

− 1)2
v−1∏

i=0

(qv − qi)

n′−1∏

i=n′−r−1

(qn′

− qi)

equivalent keys. Hence, the key-space of HFEv can be reduced by this number.

Proof. This proof is a combination of the two cases HFEv and HFE-. Given
that the difficulty for the HFE- modification was in the T -transformation while
the difficulty of HFEv was in the S-transformation, we can safely combine the
known sustainers without any double-counting. ¤

For the case q = 2, r = 3, v = 4 and n = 107, n′ = 103, the number of
redundant keys is ≈ 21258. In comparison, the number of choices for S and T is
≈ 222,261. This special choice of parameters has been used in the original version
of Quartz [CGP01], as submitted to NESSIE [NES].

5.3.2 Matsumoto-Imai Scheme A

As HFE, the MIA class uses a finite field F and an extension field E. However, the
choice of the central equation is far more restrictive than in HFE as we only have
one monomial here, cf Section 3.1.3. We recall that the central polynomial has the

form P ′(X ′) := X ′qλ+1 with the condition gcd(qn−1, qλ +1) = 1. This condition
is necessary to allow efficient inversion of P ′(X ′). Hence the overall “shape” of
MIA is this degree qλ +1 and the fact that we only have a monomial rather than
a polynomial. So in this setting, we cannot apply the additive sustainer, as this
monomial does not allow any linear or constant terms. Moreover, the monomial
requires a factor of one. Hence, we also have to preserve this property. The
only sustainers suitable are the big sustainer (cf Sect. 5.2.2) and the Frobenius
sustainer (cf Sect. 5.2.6). As we will see in Section 5.4, these are the only two
sustainers applicable. Hence, we use both in the following
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Theorem 5.3.7 For K := (S, P, T ) ∈ Aff−1(Fn) × E[X] × Aff−1(Fn) a private
key in MIA we have

n(qn − 1)

equivalent keys. Hence, the key-space of MIA can be reduced by this number.

Proof. To prove this statement, we consider normal forms of keys in MIA.
In particular, we concentrate on a normal form of the affine transformation S
where S is in univariate representation. As for HFE and w.l.o.g., let B := S(1)
be a non-zero coefficient on position 1. Unlike HFE we cannot enforce that
S(0) = 0, so we may have S(1) = 0. However, in this case set B := S(0).
Applying σ−1(X) := B−1X will ensure a normal form for S. In order to “repair”
the monomial P (X), we have to apply an inverse transformation to T . So let

τ(X) := (Bqλ+1)−1X. This way we obtain

P = T ◦ τ−1 ◦ τ ◦ P ◦ σ ◦ σ−1 ◦ S

= T̃ ◦ (B(qλ+1).(−1).Bqλ+1.Xqλ+1) ◦ S̃

= T̃ ◦ P ◦ S̃ ,

where S̃ is in normal form. In contrast to HFE (cf Theorem. 5.3.1), we cannot
chose the transformations σ and τ independently: each choice of σ implies a
particular τ and vice versa. However, the fix point 1 is still preserved by the
Frobenius sustainer and so we can apply this sustainer to the transformation S.
As for HFE, we compute a normal form for a given generator and a total ordering

of E; again, we “repair” the monomial Xqλ+1 by applying an inverse Frobenius
sustainer to T and hence have

(BXqc

, B−qλ−1Xqn−c

) • (S, P, T ) where B ∈ E
∗ and 0 ≤ c < n for c ∈ N ,

which leads to a total of n · (qn − 1) equivalent keys for any given private key.
Since all these keys form equivalence classes of equal size, we reduced the private
key space of MIA by this factor. ¤

Corollary 5.3.8 For K := (S, P, T ) ∈ Aff−1(Fn)× E[X] × Aff−1(Fn) a private
key in MIO (cf Section 6.4.1) we have

n(qn − 1)

equivalent keys. Hence, the key-space of MIO can be reduced by this number.

The above corollary can be proven in exactly the same way as Theorem 5.3.7. In
particular, the fact that MIO is defined over odd rather than even characteristic
does not impose a restriction in this context.
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Remark 5.3.9 Patarin observed that it is possible to derive equivalent keys by
changing the monomial P [Pat96a]. As the aim of this chapter is the study of
equivalent keys by chaining the affine transformations S, T alone, we did not
make use of this property. A weaker version of the above theorem can be found
in [WP05c]; in particular, it does not take the MIO class into account.

Moreover, we observed in this section that it is not possible for MIA to change
the transformations S, T from affine to linear. But from Section 4.5, we recall
that Geiselmann et al. showed how to reveal the constant parts of these transfor-
mations [GSB01]. Hence, having S, T affine instead of linear does not seem to
enhance the overall security of MIA.

For q = 128 and n = 67, we obtain ≈ 2469 equivalent private keys per class.
The number of choices for S, T is ≈ 263,784 in this case. This special choice of
parameters has been used in Sflashv3 [CGP03a].

MIA-

As we recall from the cryptanalysis section, MIA itself is insecure, due to a very
efficient attack by Patarin [Pat95]. However, for well-chosen parameters q, r, its
variation MIA- (or C∗−−) is believed to be secure: as in the case of HFE and
HFE-, we use the original MIA scheme and apply the minus modification, cf
sections 3.2.1 and 5.2.7.

Theorem 5.3.10 For K := (S, P, T ) ∈ Aff−1(Fn)×E[X]×Aff−1(Fn) a private
key in MIA and a reduction number r ∈ N we have

n.(qn − 1)qr
n−1∏

i=n−r−1

(qn − qi)

equivalent keys. Hence, the key-space of MIA- can be reduced by this number.

Proof. This proof is similar to the one of MIA, i.e., we apply both the Frobe-
nius and the big sustainer to S and the corresponding inverse sustainer to the
transformation T . This way, we “repair” the change on the central monomial

Xqλ+1. All in all, we obtain a factor of n · (qn − 1) equivalent keys for a given
private key.

Next we observe that the reduction sustainer applied to the transformation
T alone allows us to change the last r rows of the vector vT ∈ F

n and also
the last r rows of the matrix MT ∈ F

n×n. This yields an additional factor of
qr
∏n−1

i=n−r−1(q
n − qi) on this side.

Note that the changes on the side of the transformation S and the changes on
the side of the transformation T are independent: the first computes a normal
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form for S while the second computes a normal form on T . Hence, we may
multiply both factors to obtain the overall number of independent keys. ¤

For q = 128, r = 11 and n = 67, we obtain ≈ 26180 equivalent private keys per
class. The number of choices for S, T is ≈ 263,784 in this case. This particular
choice of parameters has been used in Sflashv3 [CGP03a].

5.3.3 Unbalanced Oil and Vinegar Schemes

We now move on to the Unbalanced Oil and Vinegar (UOV) class (see Sec-
tion 3.1.1 for a formal definition). In contrast to the two schemes considered in
the previous sections, UOV does not mix operations over two different fields E

and F but only performs computations over the ground field F. Hence, we have
to consider different kind of sustainers. As we recall from previous sections, UOV
omit the affine transformation T but use S ∈ Aff−1(Fn). To fit in our framework,
we set it to be the identity transformation, i.e., we have T = τ = id.

The “shape” of UOV is the fact that a system in the oil variables alone is
linear. Hence, we may not mix vinegar variables into the set of oil variables.
Still, there is an asymmetry here: while we may not “contaminate” the set of
oil variables, there is no restriction on the set of vinegar variables: here, we may
introduce any input variable. So for UOV, we can apply the additive sustainer
and also the Gauss sustainer (cf sect. 5.2.1 and 5.2.5). However, in order to ensure
that the shape of the central equations does not change, we have to ensure that
the Gauss sustainer influences the oil variables independently from the vinegar
variables.

Theorem 5.3.11 Let K := (S, P, id) ∈ Aff−1(Fn) ×MQ(Fn,Fm) × Aff−1(Fn)
be a private key in UOV. Then we have

qn+mn
n−m−1∏

i=0

(qn−m − qi)

m−1∏

i=0

(qm − qi)

equivalent keys. Hence, the key-space of UOV can be reduced by this number.

Proof. As in the case of the schemes before, we compute a normal form for
a given private key. First, applying the additive sustainer reduces the affine
transformation S to a linear transformation. This results in a factor of qn in
terms of equivalent keys. Second, applying the Gauss sustainer separately within
vinegar and oil variables, we can enforce the following structure, denoted R ∈
F

n×n, on the matrix MS ∈ F
n×n of the (now only) linear transformation S:

R :=




Im 0 Am

0 In−2m Bn−2m
m

0 0 Im


 .
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In this context, the matrices Im, In−2m are the identity elements of F
m×m and

F
(n−2m)×(n−2m), respectively. Moreover, we have the matrices Am ∈ F

m×m and
Bn−2m

m ∈ F
(n−2m)×m. For a given central equation P ′, each possible matrix R

leads to the same number of equivalent keys. Let

E :=

(
Fn−m 0
Gm

n−m Hm

)

be an (n× n)-matrix. Here, we require that the matrices Fn−m ∈ F
(n−m)×(n−m)

and Hm ∈ F
m×m are invertible (cf Lemma 2.2.2). For Gm

n−m ∈ F
m×(n−m), we

have no restrictions. This way, we define the transformation σ(x) := Ex where
x ∈ F

n. Note that these transformations σ form a subgroup within the affine
transformations. So we have

(Ex+ a, id) • (S,P ′, id) for a ∈ F
n and E as defined above.

As this choice of σ partitions the private key space into equivalence classes of
equal size, and due to the restrictions on E, we reduced the size of the private
key space by an additional factor of qmn

∏n−m−1
i=0 (qn−m− qi)

∏m−1
i=0 (qm− qi) . ¤

For q = 2,m = 64, n = 192, we obtain 232,956 equivalent keys per key — in
comparison to 237,054 choices for S. If we increase the number of variables to
n = 256, we obtain 257,596 and 265,790, respectively. Both choices of parameter
have been used in [KPG03].

5.3.4 Stepwise-Triangular Systems

As pointed out previously, the UOV and the STS class are quite similar and
both are from the single-field class. Therefore, the following proof on stepwise-
triangular schemes uses the same ideas as the proof for the UOV class. As for
UOV we exploit the fact that we can use Gauss operations within any given
layer — and use again the fact that equations of layer l depend on all variables of
the layers 1, . . . , l, i.e., we may also perform Gauss operations on these previous
layers, as long as the result only affects the given Layer l. We prove the following
theorem for general STS, i.e., stepwise triangular systems in their most general
form, cf Section 3.1.2 for STS and its notation.

Theorem 5.3.12 Let F be a finite field with q := |F| elements, n ∈ N the number
of variables, m ∈ N the number of equations and L ∈ N the number of layers.
Moreover, let (n1, . . . , nL) ∈ N

L be a vector of integers such that n1+. . .+nL = n
and m1, . . . ,mL ∈ N integers such that m1 + . . . + mL = m. Then for K :=
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(S, P, T ) ∈ Aff−1(Fn)× E[X]×Aff−1(Fn) a private key in STS we have

qm+n
L∏

i=1


qni(n−

Pi
j=1 ni)

ni−1∏

j=0

(qni−qj

)




L∏

i=1


qmi(m−

Pi
j=1 mi)

mi−1∏

j=0

(qmi−qj

)




equivalent keys. Hence, the key-space of STS can be reduced by this number.

Proof. For this proof, we apply both the additive sustainer and the Gauss
sustainer. The latter is applied independently on each layer.

First, we observe that we can apply the additive sustainer both to the trans-
formation S ∈ Aff−1(Fn) and T ∈ Aff−1(Fm) to obtain their usual normal form
S(0) = T (0) = 0. As a result, we obtain a factor of qm+n and may assume
S ∈ Hom−1(Fn) and T ∈ Hom−1(Fm) for the remainder of this proof.

As in the proof of Theorem 5.3.11, we impose a special structure on the linear
transformation S. Therefore, we consider the matrix

MS :=




In1
∗ ∗ · · · ∗ ∗

0 In2
∗ ∗

0 0 In3

...
. . .

...

InL−2
∗ ∗

0 0 InL−1
∗

0 0 · · · 0 0 InL




In Ms ∈ F
n×n, sub-matrices Ini

are identity matrices in F
ni×ni for 1 ≤ i ≤ n.

The left lower portion of MS is zero while the upper right portion of MS consists
of elements of F. To obtain this matrix MS , we make use of

E :=




An1
0 0 · · · 0 0

∗ An2
0 0

∗ ∗ An3

...
. . .

...

AnL−2
0 0

∗ ∗ AnL−1
0

∗ ∗ · · · ∗ ∗ AnL




In this matrix E ∈ F
n×n, we have invertible components Ani

∈ F
ni×ni for 1 ≤

i ≤ L. Moreover, the upper right portion of the matrix E is zero while the left
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lower portion of E consists of elements of F. We see that the above matrix is
sufficient to impose this special structure on MS . Moreover, for each choice of
E, we obtain another linear transformation S and hence, MS is a normal form
of S.

Counting the number of possible matrices E we obtain a total of

L∏

i=1


qni(n−

Pi
j=1 ni)

ni−1∏

j=0

(qni−qj

)




possibilities (cf Lemma 2.2.2 for the count of invertible matrices). To see the
correctness of the above computation, we specialise it for n1: we see that the
term

∏n1−1
j=0 (qn1−qj

) computes the number of choices for the matrix An1
while

qn1(n−n1) computes the number of choices in the (n1 × (n − n1)) column over
F below the matrix An1

. By induction on ni we obtain the above formula. In
particular, asMS is in normal form, there exists exactly one matrix E of the above
form for any given S ∈ Hom−1(Fn). Hence, we have established the existence of
an equivalence class of this size.

The corresponding proof for the transformation T is analogous. We just have
to replace variables by equations here. In particular, we can still add equations
layer-wise. So we have

(Ex+ a,E′x+ a′) • (S,P ′, T ) for a ∈ F
n, a′ ∈ F

m and E,E′ defined as above.

As this choice of σ, τ partitions the private key space into equivalence classes of
equal size, and due to the restrictions on E,E ′, we reduced the size of the private
key space by the above number. ¤

Corollary 5.3.13 For regular STS with step-width r ∈ N, L ∈ N layers and
n := Lr variables, the above formula simplifies to

q2n

(
L∏

l=1

qr(n−(l−1)r)
r−1∏

i=0

(qr − qi)L

)2

.

Choosing a regular STS scheme and q = 2, r = 4, L = 25, n = 100, we obtain
211,315 equivalent keys for each given private key. For comparison: the number of
choices for the two affine transformations S, T is 220,096. Changing the number of
layers to 20, and consequently having r = 5, we obtain a total of 211,630 equivalent
keys. This special choice of parameters has been suggested in [KS04c].
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5.4 Tightness for MIA and MIO

All theorems in this chapter suffer from the same problem: we do not know if
the size-reductions are “tight”, i.e., if the sustainers applied are the only ones
possible. In this section we proof that for the MIA/MIO class (cf sections 3.1.3
and 6.4.1), the big sustainer and the Frobenius sustainer are actually the only
possible way to achieve equivalent keys for MIA and MIO. We recall that both
classes use a finite field F with q := |F| elements and an extension field E of

dimension n over F. Over E, they use the monomial Y ′ := X ′qλ+1 as central
equation for 1 ≤ λ < n. While MIA needs q to be even, MIO is defined for
q being odd. The proof for the MIA case is based on a so far unpublished
observation by Prof. Dobbertin. Its extension to the MIO class is due to the
author.

The starting point of the proof is the following equation which needs to hold
for any two equivalent keys for the MIA / MIO class as we may only use affine
transformations to transfer one private key to another one (cf Definition 5.1.1).

Xqλ+1 = T ◦Xqλ+1 ◦ S ,

which we can rewrite as

Xqλ+1 ◦ S−1 = T ◦Xqλ+1 .

Exploiting that affine transformations form a group (cf Section 2.2.3), this also
applies to their univariate representation (cf Definition 2.2.6). We express the
above equation as

(
n−1∑

i=0

BiX
qi

+A

)qλ+1

=

n−1∑

i=0

B̃i

(
Xqλ+1

)qi

+ Ã ,

with the coefficients A, Ã,Bi, B̃i ∈ E. Note that we have (A+B)p = Ap +Bp in
a finite field of characteristic p and consequently (A+B)q = Aq +Bq for q = pk

and some k ∈ Z
+. We now use a matrix representation of the above equation,

similar to the matrix used by Kipnis and Shamir in their cryptanalysis of HFE,
cf Section 4.6.1. This yields



Aqλ+1 AB
qλ

0 Xqλ
AB

qλ+1

1 Xqλ+1
. . . AB

qλ+n−1

n−1 Xqλ+n−1

B0Aqλ
X B

qλ+1
0 Xqλ+1 B0B

qλ

1 Xqλ+1+1 B0B
qλ

n−1Xqλ+n−1+1

B1Aqλ
Xq B1B

qλ

0 Xqλ+q B
qλ+1
1 Xqλ+1+q . . . B1B

qλ

n−1Xqλ+n−1+q

.

.

.
.
.
.

. . .
.
.
.

Bn−1Aqλ
Xqn−1

Bn−1B
qλ

0 Xqλ+qn−1
Bn−1B

qλ

1 Xqλ+1+qn−1
. . . B

qλ+1
n−1 Xqλ+n−1+qn−1
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=




Ã 0 . . . 0

0 B̃
qλ+1
0 Xqλ+1 0 0

0 B̃
qλ+1+q
1 Xqλ+1+q 0

.

.

.
. . .

.

.

.

0 0 0 . . . B̃
qλ+(n−1)+qn−1

n−1 Xqλ+n−1+qn−1




(∗)

As we work in E which has qn elements, we can reduce all powers larger than or
equal to qn by qn − 1.

Lemma 5.4.1 For F a finite field with q > 2 elements, the MIA and the MIO
class can only use the big sustainer and the Frobenius sustainer to derive equiv-
alent private keys.

Proof. For this proof we show that the equations given by (∗) imply that A = 0
and all Bi except one are zero. Note that B0 = . . . = Bn−1 = 0 implies that
S(X) is no bijection anymore but the transformation S(X) = A for any input
X ∈ E and fixed A ∈ E. Hence, there must exist at least one non-zero coefficient
Bi. W.l.o.g., we assume that B0 is non-zero. Moreover, we assume an extension
field of dimension n ≥ 2. Note that this lemma is trivially true for n = 1.

For the proof, we make use of the fact that we can reduce all powers in E by
qn − 1. For powers of the form qi this means that we can reduce the power i
by n, i.e., all computations are done in the ring Z/nZ and we can hence assume
0 ≤ a, b, c, d < n in the sequel. Moreover, we can distinguish the following three
types of equations in (∗):

1. Equations of the form ABqλ+a + Bqb

b A
qλ

= 0 for a + λ ≡ b (mod n). We
call them equations of type A. Note that they are related to terms with

monomial of the form Xqb

for 0 ≤ b < n.

2. Equations of the form Bqλ+a

a Bqb

b = 0 with the condition a+λ ≡ b (mod n)
on the powers. We call them equations of Hamming weight 1 and say that
they are self-dual. Note that each row / column in the above matrix con-
tains exactly one equation of Hamming weight 1 and that they correspond

to terms with a monomial of the form X2qb

for 0 ≤ b > n. As we have
q > 2 there is no reduction of the power here.

3. Equations of the form Bqλ+a

a Bqb

b + Bqλ+c

c Bqd

d = 0 with the following con-
ditions on their powers: first, we have a 6= b, c 6= d, as we otherwise would
include equations from the diagonal. Obviously, we cannot make the as-
sumption anymore that the right-hand side is equal to zero in this case.
Second, we have a + λ 6≡ b (mod n) and c + λ 6≡ d (mod n) as we ob-
tain equations of Hamming weight 1 otherwise. Third, we need a + λ ≡ d
(mod n) and c+λ ≡ b (mod n) to ensure that the powers in the monomial
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Xqb+qd

actually match. We call the pair (a, b) the dual of the pair (c, d).
Note that this relation is reflexive, i.e., (c, d) is the dual of (a, b). We call
these equations of type B.

Note that equations of type A and equations of Hamming weight 1 do not mix
as we have q > 2. Moreover, equations of Hamming weight 1 may not lie on
the diagonal as we would have λ + a ≡ a (mod n) in this case and hence λ ≡ 0
(mod n), but this violates 0 < λ < n. So far, we did not include any equation
from the diagonal in our analysis. We come back to them later.

Inspecting the equation Bqλ

0 Bqλ

λ = 0 of Hamming weight 1, we see that it
implies Bλ = 0 as we have B0 6= 0 (see above). In addition, this implies A = 0

as we have ABqλ

0 + Bqλ

λ Aqλ

= 0 as an equation of type A. For n = 2, we
are done. For n ≥ 3, we can now use all equations of type B of the form

Bqλ

0 Bqb

b +Bqλ+c

c Bqλ

λ = 0. We notice that we need to meet the following conditions:
b 6= 0, λ and c 6= 0, λ but c+ λ ≡ b (mod n). We see that we can construct pairs
(b, c) meeting this conditions for all b ∈ Z/nZ\{0, λ, 2λ} with 0 < b < n. Using
the above equation we have established that all coefficients Bb = 0 as B0 6= 0
and Bλ = 0. Note that λ 6≡ 2λ (mod n) as we have 0 < λ < n. Moreover,
2λ 6≡ 0 (mod n) is not true either, which we see with the following argument:
due to the size condition on λ, we know that we need to have 2λ = n to make
the above equation hold. We use the condition gcd(qn − 1qλ + 1) = 1 for MIA
and gcd(qn− 1qλ + 1) = 2 for MIO to show that 2λ = n is impossible. Therefore
we observe that (q2λ − 1) = (qλ + 1)(qλ − 1), i.e., the gcd condition is violated
for n = 2λ.

All left to show is that the coefficient B2λ is also equal to zero. To this end,

we use the equation Bq3λ

2λ Bq0

0 + Bq0

−λB
q3λ

3λ = 0 of type B. In order to force the
coefficient B2λ equal to zero, we need B−λ = 0 or B3λ = 0. Therefore, we use
the equation B−λq

0B0q
0 = 0 of type Hamming weight 1. As we have B0 6= 0,

this implies B−λ and hence B2λ = 0.
We have now established that all coefficients A = B1 = . . . = Bn−1 = 0.

Using the equations on the diagonal, these conditions also propagate through
to the coefficients of the affine transformation T , i.e., to Ã, B̃a for 0 < a < n.
Given that all coefficients but B0 are zero, all equations which have terms of the
form BaBb for a 6= 0, b 6= 0 on the left hand side are now also zero, i.e., they do

not influence the equations of the form Bqλ+i

i Bqi

i = B̃qλ+j

j B̃qj

j for some i, j with
0 ≤ i, j < n. We can not assume i = j here as the matrix on the right hand side
may have been rotated by a constant r ∈ N with 0 ≤ r < n. This is equivalent to
the application of a Frobenius transformation. Still, we established that S, T may
have only one non-zero coefficient in their univariate representation. Therefore,
we know that the big sustainer and the Frobenius sustainer are the only two
sustainers applicable to Multivariate Quadratic systems of the MIA and the
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MIO type. ¤

Unfortunately, the above proof is not valid in the case q = 2. The reason is
that the equations of type A and Hamming weight 1 are mapped to one type of

equation, namely ABqλ+a

a +Bqb

b A
qλ

+Bqλ+a−1

a−1 Bqb−1

b−1 = 0 for a+ λ ≡ b (mod n).
All other powers are also reduced (mod n). However, as soon as we assume
A = 0, the above equation collapses to the original equation of Hamming weight
1, and the rest of the proof is again applicable. Alternatively, we could assume
that any Bi = 0, and derive a similar proof starting with equations of type B.
This leads to the following

Corollary 5.4.2 For q = 2, the affine transformation S in univariate represen-
tation either has all coefficients A,B0, . . . , Bn−1 not equal to zero or exactly one
coefficient Bi non-equal to zero and all other coefficients equal to zero. The same
condition holds for the coefficients Ã, B̃0, . . . , B̃n−1 of the transformation T .

Still, we could not derive a contradiction with the assumption that all of the
above values are non-equal to zero, so we have to leave the proof for the case
q = 2 as an open problem. However, due to the very high number of equations of
O(n2) compared to only O(n) free variables, we conjecture that the above lemma
also holds for q = 2 although we expect a far more technical proof in this case.

Table 5.1: Summary of the reduction results of this thesis

Scheme (Section) Reduction

UOV (5.3.3) qn+mn
∏n−m−1

i=0 (qn−m − qi)
∏m−1

i=0 (qm − qi)

STS (5.3.4) qm+n
∏L

i=1

(
qni(n−

Pi
j=1 ni)

∏ni−1
j=0 (qni−qj

)
)

∏L
i=1

(
qmi(n−

Pi
j=1 mi)

∏mi−1
j=0 (qmi−qj

)
)

MIA (5.3.2) n(qn − 1)

MIA- (5.3.2) n(qn−r − 1)qr
∏n−1

i=n−r−1(q
n − qi)

HFE (5.3.1) nq2n(qn − 1)2

HFE- (5.3.1) nqn(qn − 1)qn−r(qn−r − 1)
∏n−1

i=n−r−1(q
n − qi)

HFEv (5.3.1) n′qn+n′+vm(qn′

− 1)2
∏v−1

i=0 (qv − qi)

HFEv- (5.3.1) n′qr+2n′vn′

(qn′

− 1)2
∏v−1

i=0 (qv − qi)
∏n′−1

i=n′−r−1(q
n′

− qi)
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5.5 Discussion

In this chapter, we showed through the examples of Hidden Field Equations
(HFE), Matsumoto-Imai Scheme A (MIA), Unbalanced Oil and Vinegar schemes
(UOV), and Stepwise-Triangular Systems (STS) that Multivariate Quadratic
systems allow many equivalent private keys and hence have a lot of redundancy
in their key spaces, cf Table 5.1 for an overview and Table 5.2 for numerical
examples; the symbols used in Table 5.1 are explained in the corresponding sec-
tions.

Table 5.2: Numerical examples for the reduction results of this thesis

Scheme Parameters Choices for S, T Reduction
(in log2) (in log2)

UOV q = 2,m = 64, n = 192 37,054 32,956
q = 2,m = 64, n = 256 65,790 57,596

STS q = 2, r = 4, L = 25, n = 100 20,096 11,315
q = 2, r = 5, L = 20, n = 100 20,096 11,630

HFE q = 2, n = 80 12,056 326
HFE- q = 2, r = 7, n = 107 23,108 2129
HFEv q = 2, v = 7, n = 107 21,652 1160
HFEv- q = 2, n = 107 22,261 1258

MIA q = 128, n = 67 63,784 469
MIA q = 128, n = 67 63,784 6173

We see applications of our results in different contexts. First, they can be used
for memory efficient implementations of the above schemes: using the normal
forms outlined in this chapter, the memory requirements for the private key can
be reduced without jeopardising the security of these schemes. Second, they apply
to cryptanalysis as they allow to concentrate on special forms of the private key:
an immediate consequence from Section 5.2.1 (additive sustainers) is that HFE
does not gain any additional strength from the use of affine rather than linear
transformations. Hence, this system should be simplified accordingly. Third,
constructors of new schemes may want to keep these sustaining transformations
in mind: there is no point in having a large private key space — if it can be
reduced immediately by applying sustainers. Moreover, the results obtained in
this chapter shine new light on cryptanalytic results, in particular key recovery
attacks: as each private key is only a representative of a larger class of equivalent
keys, each key recovery attack can only recover it up to these equivalences.
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We want to stress that the sustainers from Section 5.2 are probably not the
only ones possible. We therefore invite other researchers to look for even more
powerful transformations. The only case where we know for certain that we found
all sustainers possible, is the MIO/MIA class, cf Section 5.4 for the corresponding
proof. In addition, there are other multivariate schemes which have not been
discussed in this thesis. We are confident that they can be analysed using similar
techniques as outlined in this thesis but have to leave the concrete proof as an
open problem.



Chapter 6

Interesting Variants

While cryptography has many fascinating aspects in its theory, one of the main
questions for most cryptographic ideas is how to apply them in practice. The
same is true for Multivariate Quadratic schemes: although they can be a fasci-
nating subject in their own right, it is even more fascinating to see them applied.
In this chapter we therefore outline some practical instances of MQ-schemes,
either used in practice or proposed for practical usage. In particular, we will
see how the different trapdoors and modifiers “click” in place to derive practical
signature schemes. In addition, we see why they cannot be used for encryption
schemes so far.

Our own contribution in this section is a discussion of possible application
domains of Multivariate Quadratic schemes (Section 6.3), and the development
of two secure tweaks of Quartz, namely Quartz-7m and Quartz-513d. Moreover,
we were the first to put the schemes Rainbow, enhanced TTS, and Tractable
Rational Map (cf Section 6.2) into the taxonomy developed in Chapter 3. Parts of
this chapter have been previously published in [Wol02a, Wol02b, WP04, WP05a,
WP05d].

6.1 NESSIE Contributions

Following historical development, we start with Multivariate Quadratic signa-
ture systems in the context of the NESSIE project [NES]. NESSIE stands for
New European Schemes for Signatures, Integrity, and Encryption and aimed at
a better understanding of cryptography. In particular, it dealt with several cryp-
tographic primitives, e.g., symmetric ciphers and cryptographic hash functions;
another area were public key signature algorithms. We see that both Multi-
variate Quadratic contributions to NESSIE used schemes from the “mixed field

109
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class”, i.e., HFE and MIA. As a side-note, we want to mention that both were
developed by the group around Jacques Patarin. We start with the submission(s)
from the MIA class.

6.1.1 Flash / Sflash

Both Flash and Sflash have been submitted for use in restricted environments,
e.g., smart cards. Here, we describe both algorithms and their modification
during the NESSIE process. When not stated otherwise, this section is based on
[CGP00a, CGP00c, CGP02]. In the final evaluation of the NESSIE, Sflashv2 was
selected as a signature algorithm for special application domains.

Table 6.1: Parameters for the first version of Flash and Sflash

Parameter Sflash Flash

q = |F| 128 = 27 256 = 28

n = ∂i(t) 37
r (equations removed) 11

P (x) x12811+1 x25611+1

Signature Length 259 bits 296 bits
Private Key Size 0.35 KByte 2.75 KByte
Public Key Size 2.2 KByte 18KByte

Both Flash and Sflash are MIA- signature schemes and hence use a bijection
as private polynomial. In contrast to schemes of the HFE class, the central
polynomial P is not private, but publicly known. The reason is the fact that
both signature algorithms have so many public equations removed that this is
not expected to be a threat for Flash’s or Sflash’s security. As we see in Table 6.1,
there is a markable difference in the public key size of Flash and Sflash. In fact,
this difference is much higher than expected: as Flash is based on the finite
field F = GF(28) and has a public key size of 18 KByte, Sflash is based on
the finite field F = GF(27). Therefore we would expect a public key size of
18KByte 7

8 ≈ 16KByte. The reason for this difference is due to the “subfield
trick” from Section 3.2.3, i.e., the restriction of the coefficients in both affine
transformations S and T to a subfield of F. In this case, coefficients for these
two transformations come from F̃ = GF(2) rather than F = GF(27). And in fact,
18KByte 1

8 ≈ 2.2KByte, so the public key size (and accordingly the private key
size) are within the expected range.

However, due to the attack from [GM02] (cf Section 4.5), the submission of
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Table 6.2: Parameters for the second version of Sflash

Parameter Sflash

q = |F| 128 = 27

n = ∂i(t) 37
r (equations removed) 11

P (x) x12811+1

Signature Length 259 bits
Private Key Size 2.45 KByte
Public Key Size 15.4 KByte

Sflash was changed. Moreover, Martinet suggested in [Mar01] to concentrate on
either Flash and Sflash but not both algorithms as they are very similar. Due to
the shorter signature length, the higher speed and also the shorter public key, she
suggested to concentrate on Sflash. According to [PBO+02], NESSIE followed
this suggestion, so Flash was not considered in the second phase of the evaluation
process of NESSIE.

In fact, in order to avoid the attack from [GM02], Sflash does no longer

use a subfield F̃ of the finite field F but chooses the coefficients for the two
affine transformations S and T from the whole field F = GF(128). The overall
parameters for Sflash, version 2, are summarised in Table 6.2.

Development after NESSIE

After Sflashv2 was approved by NESSIE, [CGP03b] announced Version 3 of Sflash.
The reason was the cryptanalytic result of [Cou04]. In particular, the number
of equations has been increased in the third version, cf Table 6.3. We want to
stress that [Cou04] was later revoked and hence, we may assume that Sflashv2

is still secure. All parameters presented here have been taken from [CGP03a].
Shortly afterwards, Geiselmann et al. showed in [GSB01] how the constant parts
of the two affine transformations S,T can be recovered for Sflashv3. As a reaction,
[CGP03b] was published where these constant terms were declared to be “semi-
public” parameters. As correctly pointed out there, an attacker cannot make
use of them to discover the full transformations S, T ∈ Aff−1(Fn) as they are
independently generated from the (still secret) matrices of S and T . However,
we find this tweak rather unsatisfactory and suggest to skip the constant terms
altogether: the security ofMultivariate Quadratic schemes lies in their quadratic
parts, not in their linear (or even) constant terms. Hence, having constant terms
does only increase the memory and also the computational complexity of an
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Table 6.3: Parameters for the third version of Sflash

Parameter Sflash

q = |F| 128 = 27

n = ∂i(t) 67
r (equations removed) 11

P (x) x12833+1

Signature Length 469 bits
Private Key Size 7.8 KByte
Public Key Size 112.3 KByte

implementation of Sflash. Still, the designers of Sflash decided to include linear
and constant terms.

Discussion

As [Mar01] points out, Sflash (she was dealing with the first version of Sflash) has
very well chosen parameters to avoid all known attacks against it. In fact, the
change from Version 1 of Sflash to Version 2 of Sflash as outlined above, follows
exactly this path. We observe a similar behaviour for Sflash Version 3. So from
our current knowledge, Sflash (both versions 2 and 3) is secure against all known
attacks. On the other hand, it is very new and the last attack dates back only
three years. So for high security applications, Sflash is probably too new to be
used at present. Still, for low and medium range security, Sflash is an interesting
option, due to its suitability for restricted environments.

In this context, we have one final comment: due to the choice of parameters,
in particular qr , Sflash is not suitable for an encryption scheme. Moreover, due
to the known attacks against the MIA and in particular the MIA- class, it is not
possible to derive a secure encryption scheme.

6.1.2 Quartz

In Section 3.2, we looked at two important modifications ofMQ-schemes, namely
the minus (Section 3.2.1) and the vinegar (Section 3.2.7) modification. In par-
ticular, they can be used in the context of HFE and are then called HFE- and
HFEv, respectively. In this section, we see how they can be combined to obtain a
practical signature scheme, namely Quartz. It was submitted to NESSIE [NES]
but rejected. The purpose of this section is to describe why it failed.
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Historical Note

The design goal of Quartz was not only to withstand all known attacks but also
to have good chances to withstand future attacks as well. So the parameters
in Quartz have been chosen rather conservatively, which results in a rather long
signature time, namely 10 s on average on a Pentium II 500 MHz [CGP01]. As we
know now (October 2005), the choice of parameters was not conservative enough.
We discussed this point in more detail in Section 4. When not stated otherwise,
this section is based on [CGP01] and describes the second, revised version of
Quartz. The changes made from the first version (cf [CGP00b]) to the second
version of Quartz are not due to security problems. Quite the contrary, they
were made to speed up the whole algorithm without jeopardising its security. In
addition, they allow a security proof for Quartz [Cou01]. We want to mention
that this security proof has been disputed in [Gra05]. In the same paper, a new
security proof is given. Unfortunately, the corresponding construction is not as
efficient as the one given in [Cou01]. Still, it is the only construction of a “Patarin
Chained Construction”, for which a non-disputed security proof exists.

System Parameters

As we see in Table 6.4, the signature length (128 bits) is 21 bits larger than
expected: as the extension field E has dimension 103 and there are 4 vinegar
variables added, we would expect a signature length of 107 bits. The reason for
this difference lies in the fact that Quartz uses a so-called “Chained Patarin Con-
struction” (CPC, called “Feistel-Patarin network” in the submission to NESSIE)
to compute the signature. Within this construction, the HFE algorithm is called
four times to compute a signature, i.e., this involves solving the underlying HFE
problem four times (cf Table 6.3 and Section 6.1.2). This way, we need to add 4
times 7 bits to the number of public equations and obtain a signature length of
100 + 4 · 7 = 128 bits.

System Description

To deal with the security features of Quartz, we try to deduce if they enhance
or jeopardise the security of Quartz. First of all, the private polynomial P has
full coefficients, i.e., it has non-trivial coefficients from E and also all possible
coefficients, i.e., every power which has Hamming weight two or lower up to
degree 129. Together with the vinegar variables (denoted z1, . . . , z4), the private
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Table 6.4: Parameter for Quartz

Parameter Quartz

q = |F| 2
n = ∂i(t) 103

transformation S F
107 → F

107

transformation T F
103 → F

103

l (equations removed) 3
v (vinegar variables) 4

m (equations) 100
n (variables) 107
d (degree) 129

Signature Length 128 bits
Private Key Size 3 KByte
Public Key Size 71 KByte

polynomial P of Quartz can be expressed as:

P(z1,...,z4)(x) :=
∑

0≤i,j≤7

qi+qj≤129

Ci, jxqi+qj

+
∑

0≤k≤7

qk≤129

Bk(z1, . . . , zv)xqk

+A(z1, . . . , zv)

for Ci,j ∈ E,

Bk(z1, . . . , zv) are affine in (z1, . . . , zv), and

A(z1, . . . , zv) is at most quadratic in (z1, . . . , zv)

As the polynomial has all coefficients and the degree is rather high, Quartz
withstood at design time all known attacks up to a complexity level of 280 3-DES
computations — this level was requested for signature algorithms in NESSIE.
This is also true if there is no v modification. In fact, the degree is very high as
in 2000 a degree of 25–33 was believed to be sufficient. In addition, Quartz is
a HFEv rather than a “basic” HFE scheme. This modification was expected to
further enhance the security of Quartz. Moreover, Quartz is also a HFE- scheme
with three equations kept secret. As Quartz uses a very general polynomial P
and also the v modification, the attacks known against basic HFE do not apply
against Quartz. So removing only three equations from the public key seemed
sufficient for Quartz and actually enhanced its overall security against all attacks
known so far. We call the parts of Quartz discussed above the “HFE”-step, i.e.,
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HFE(x) := T ◦ P ◦ S(x) and its inverse HFE−1(y) := S−1 ◦ P−1 ◦ T−1(y).

message M

?
Precomputations

? ? ? ?
h1 h2 h3 h4

Network

? ? ? ? ?
s := s̃ || g1 || g2 || g3 || g4

Figure 6.1: Overall Structure of Quartz for Signature Generation

Precomputations and HFE-step

Although the HFE-step itself looks quite secure, there is an obvious attack using
the birthday paradox: by computing 250 different versions of the message M
and by applying the public key to 250 different values for x1, . . . , xn ∈ GF(2)
we expect to obtain a valid signature for one version of the message M . This
is true as the HFE step alone uses only 100 public equations over GF(2) in
100 variables each. Hence, we can expect a collision after 2100/2 = 250 steps.
The general principle is called a “birthday attack” [MvOV96, Sect. 9.7.1]. This
is far less than the complexity level of 280 required in NESSIE. To overcome
this problem, Quartz combines four invocations of the HFE-step in a so-called
“Chained Patarin Construction”. The key idea of this network is not to store four
times a full signature (i.e., a signature of 428 bits in total) but to save only the
last signature completely. In addition, it stores 7 bits for each of the 4 signatures
computed. The reason for this lies in the fact that the HFE-step of Quartz has
only 100 bits of input but a 107 bit output. These additional 7 bits compensate
for this expansion. The overall structure of Quartz is shown in Figure 6.1. As
we see there, signature generation with Quartz requires a precomputation step
(see Figure 6.2) before applying the Chained Patarin Construction itself (see
Figure 6.3). The key idea of the precomputation step is to use three calls of
a 160-bit hash function (SHA-1 in Quartz, cf [FIP] for SHA-1) to “expand” a
160-bit hash (denoted m0 in Figure 6.2) to four 100-bit values h1, h2, h3 and h4.
During this process, the original hash m0 is concatenated (operator ·||·) with the
8 bit values 0x00, 0x01 and 0x02 (notation for the hexadecimal numbers 0, 1
and 2, e.g., in C, C++, or Java) to obtain three 168 bit values. Each of them is
hashed individually using a 160 bit hash function and then concatenated. The
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message M

- Hash-160 -m0

? ? ?
m0||0x00 m0||0x01 m0||0x02

? ? ?
Hash-160 Hash-160 Hash-160

? ? ?
480 bits

400 bits

? ? ? ?
h1 h2 h3 h4

Figure 6.2: Precomputation in Quartz

resulting 480 bit number is truncated to 400 bits and yields four 100-bit strings.
If Quartz used a hash function with a 512 bit output rather than 160 bit, the
precomputation step would be obsolete. Such functions have been accepted in
the NESSIE project (e.g., algorithm “Whirlpool”) and are also suggested by the
NIST (only the SHA-512 algorithm in [FIP01]). But for the complexity level of
280, it is sufficient to use a 160 bit hash function and to expand its output to
400 bits as done in the precomputation step of Quartz. Still, in the light of recent
attacks against hash functions, it seems highly advisable to move from SHA-1 to
SHA-512. On the other hand, these attacks were not known during the NESSIE
evaluation and hence, the choice of SHA-1 was adequate at design time.

Chained Patarin Construction

We now concentrate on the “Chained Patarin Construction” itself as outlined
in Figure 6.3. It uses the output of the precomputation step as input. We
first describe the initial step of the network. After loading the counter i with
the value 0, it “xors” h0 with 0 to obtain the intermediate value y. This is
certainly obsolete as h0 “xor” 0 = h0. However, during the run of the algorithm,
h1, h2, h3 are “xored” with the output of the previous step, so this “xor” operation
is required for symmetry of the four steps. After this initialisation, the 100-bit
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h1 h2 h3 h4

?⊕- -
6

0 if i = 1

if i > 1

hi

y - y||∆ - Hash-160 - Hash-160 -

?
r || z

¾

y || r
? ¾

? ?
z

HFE−1(y || r)

?
x

?

if i = 4

if i < 4

?
s̃ xi

Figure 6.3: Central Structure of the Chained Patarin Construction for Quartz

value y is hashed together with a secret 80 bit parameter ∆ to obtain the random
variables r (3 bit) and the vinegar variables z (4 bit). Both are fed into the HFE
step to obtain a valid signature of 107 bits. According to [CGP01, Sec. 5.3] the
probability to obtain a valid signature at the first attempt is ≈ 60%. This idea
has already been introduced in Section 2.3.2 of this thesis. If there is no valid
signature, the hash of (y || ∆) is rehashed. This is repeated until a valid signature
is obtained. The probability that there is no valid signature at all for a given
message M is estimated to be ≤ 2−183 and hence negligible [CGP01, Sec. 5.3].
If a valid 107 bit signature is found, the least significant 100 bits of x are fed
back into the network while the most significant 7 bits are stored as output g1.
The other three steps are similar but hi is not “xored” with 0 but with the least
significant 100 bits of x. In the final step, these 100 bits are not fed into the
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network but yield the output s̃. In each step, it is possible that there is not only
one, but up to d = 129 different solutions for the equation x = HFE(y || r).
The Quartz-specification states that only one is chosen, namely the one with the
least hash value (bit-wise comparison without sign bit, most-significant-bit being
on the left-hand side).

Signature Verification

In order to verify the validity of a signature, this network is reversed. As the pub-
lic key consists of 100 polynomials p1, . . . , p100 in 107 input variables x1, . . . , x107,
the 7 bit values g1, . . . , g4 are used to obtain 107 bits input for the public key
during each run. In addition, as the four 100 bit values h1, . . . , h4 are “xored”
each time, a signature is only valid if the overall output of this scheme is 0. In
this case the signature is accepted.

Note that during signature verification, it is not possible to check if the solu-
tion with the smallest hash value has been chosen. Hence, for an attack against
Quartz, it is sufficient to compute any solution x ∈ F

n for the equation y =
HFE(x). Due to the Chained Patarin Construction, we need to compute such a
solution four times.

Discussion

The Chained Patarin Construction is certainly a rather complicated security
feature. However, as each signature depends on a 400 bit input (which is obtained
from a 160 bit hash value), it seemed to be a rather strong signature system.
Moreover, as Quartz uses the 160-bit hash function as a kind of cryptographically
secure random number generator, it is deterministic, so each message has always
the same signature (for the same private keyK). In fact, there is no known attack
against the CPC so far. In the original specification of HFE as a signature scheme
it seemed to be necessary to use “real” randomness to obtain valid signatures.
As real randomness often is a problem (e.g., in a stand-alone server without user
interaction), the deterministic version using a pre-stored 80-bit secret, makes it
possible to use Quartz in more application domains. On the other hand, we
saw that the security proof of Quartz is unfortunately flawed [Gra05]. Therefore
it seems advisable to replace the Chained Patarin Construction with the new
construction from [Gra05] — or to fix the flaw in the security proof.

As we saw in the Section 4.6, Quartz as proposed in [CGP01] can no longer
considered to be secure; main reason is the attack from [FJ03]. Consequently,
it has not been recommended by NESSIE [PBO+03]. In fact, this attack on its
HFE step is the reason that Quartz failed in the end.

Due to its choice of parameters, we would need 27 · 10 seconds, i.e., around
20 minutes if we were to use Quartz in an encryption scheme. This obviously too
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long. The value of 10 seconds on a Pentium II with 500 Mhz for one inversion of
Quartz has been reported in [CGP01].

Secure Versions of Quartz

Assuming that there is a fix for the security proof from [Cou01], we see at present
two possibilities to obtain a secure version of the Quartz signature algorithm
which is able to withstand the attack from [FJ03]. The first uses a degree of 513
for the public polynomial and keeps the other parameters unchanged. We call this
version Quartz-513d and expect an attack complexity of ≈ 282. However, due to
the very large degree of the private polynomial, and hence the also high signature
generation time, we do not expect this version to be of practical interest.

Therefore, we concentrate on a different modification: replace the 4 vinegar
variables by removing 4 equations. The corresponding system has still the same
signature size as Quartz but an estimated attack complexity of ≈ 286. It therefore
meets the NESSIE-requirements of 280 3-DES-computations.

Table 6.5: Parameter for different versions of Quartz

Parameter Quartz Quartz-7m Quartz-513d

q = |F| 2
∂i(t) (degree E) 103 107 103

transformation S F
107 → F

107

transformation T F
103 → F

103
F

107 → F
107

F
103 → F

103

l (equations removed) 3 7 3
v (vinegar variables) 4 0 4

m (equations) 100
n (variables) 107
d (degree) 129 129 513

Signature Length 128 bits
Private Key Size 3 KByte 3KByte 4KByte
Public Key Size 71 KByte

Security Level 262 282 286

Although these versions (cf Table 6.5) are secure against the recent attack
from Faugère and Joux, we argue to be cautious as they have not been indepen-
dently studied by other researchers. It is therefore well possible that they carry
unnoticed weaknesses.
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6.2 Mixed Schemes

After concentrating on two examples from the mixed field class, we now move on
to examples of the mixed schemes class. In total, we describe three interesting,
but rather new schemes, namely enhanced TTS [YC04b], tractable rational map
[WHL+05], and Rainbow [DS05b]. All three schemes use an STS structure as
overall layout and “plug in” trapdoors of other schemes in the individual layers.
Hence, they do not use STS in its “pure” form but mix it with other trapdoors.
This motivates the name “mixed schemes”. As we saw in Section 4.4, pure STS
can neither be used for signature nor encryption schemes. So we consider this
new way of using STS a clever move to cut down memory and computational
complexity when implementing Multivariate Quadratic schemes in practice.

6.2.1 Enhanced TTS

In [YC04b], Yang and Chen give several constructions of the so-called enhanced
TTS schemes (enTTS). For all these schemes, only the central equations P ′

change. We concentrate on their first proposal as all other schemes developed only
vary the security parameters, but keep the same idea, i.e., using an overall STS
structure with an UOV trapdoor in each layer. For this construction, they use
the following central polynomials, cf Figure 6.4. Here we have γ ′i,j ∈R F random

p′i := x′i +

7∑

j=1

γ′i,jx
′
jx

′
8+(i+j mod 9) , for i = 8 . . . 16;

p′17 := x′17 + γ′17,1x
′
1x

′
6 + γ′17,2x

′
2x

′
5 + γ′17,3x

′
3x

′
4 + γ′17,4x

′
9x

′
16 +

+γ′17,5x
′
10x

′
15 + γ′17,6x

′
11x

′
14 + γ′17,7x

′
12x

′
13;

p′18 := x′18 + γ′18,1x
′
2x

′
7 + γ′18,2x

′
3x

′
6 + γ′18,3x

′
4x

′
5 + γ′18,4x

′
10x

′
17 +

+γ′18,5x
′
11x

′
16 + γ′18,6x

′
12x

′
15 + +γ′18,7x

′
13x

′
14;

p′i := x′i + γ′i,0x
′
i−11x

′
i−9 +

i∑

j=19

γ′i,j−18x
′
2(i−j)−(i mod 2)x

′
j +

+γ′i,i−18x0, xi +

27∑

j=i+1

γ′i,j−18x
′
i−j+19x

′
j , for i = 19 . . . 27.

Figure 6.4: Central Map for enhanced TTS

coefficients. We note that the central polynomials do not have linear or constant
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random terms. As the security of the MQ-problem lies in the quadratic part of
these equations alone, this is certainly a good idea as it saves both evaluation
time and private key memory.

Having a closer look at the polynomials p′8, . . . , p
′
16 we see that they only

depend on the input variables x′1, . . . , x
′
16, and hence they form the first layer

of an STS scheme. The second layer is formed by the two polynomials p′17, p
′
18,

which also depend on x′17, x
′
18, and the last layer is formed by p′19, . . . , p

′
27, which

depend on all 28 input variables x′0, . . . , x
′
27.

For inverting this trapdoor function, we first assign random values to x′
1, . . . , x

′
7,

which gives a degree 1 system of equations in y′i = p′i for i = 8 . . . 16. Note that
we do not always get a solution here. However, in this case we just assign new
random values to x′1, . . . , x

′
7 and try again (cf [YC04b] for more details). Second,

we notice that the variables x′17 and x′18 are free variables in the polynomials p′17
and p′18. Hence, no matter which value the other terms in these two polynomial
have, we can always choose x′17 and x′18 such that the corresponding equations
are satisfied. Hence, there will always be a solution at this stage. The final step
is to assign a random value to the variable x′0, which guarantees a solution at
this level of the internal equations, too. Hence, we see that the overall structure
of enTTS follows UOV. However, in order to speed up computations and to save
memory, the equations have been made very sparse (see Figure 6.4). We want to
point out that this sparsity gave some unexpected structure and hence allowed
the author of [DY04] to break an earlier version of the scheme which was pre-
sented in [YC04a]. The only difference between [YC04a] and [YC04b] is a slight
modification in the last block of equations, see first summation and the missing
term between the two summations:

p′i := x′i + γ′i,0x
′
i−11x

′
i−9 +

i∑

j=19

γ′i,j−18x
′
2(i−j)x

′
j +

+

27∑

j=i+1

γ′i,j−18x
′
i−j+19x

′
j , for i = 19 . . . 27.

We see that this is only a very small modification. Still, it is able to overcome the
attack from [DY04]. At present, we are not aware of any weaknesses of enTTS.

Taking a second look at the scheme from Figure 6.4, we see that the two
polynomials p′17 and p′18 actually can further be classified as UOV with two
branches: while p′17 does not depend on x′18, the formula for p′18 is independent
from x′17. This is the reason that we can say enTTS uses a kind of branching
structure for these two polynomials. However, as the overall scheme uses more
an STS structure, this small branching part cannot be used to launch the attacks
mentioned in Section 3.2.4.
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As for the schemes discussed so far, we cannot use enTTS for encryption, as
inverting the UOV step requires too many computations, namely 28·11 = 288.
This is clearly above our computational threshold of 280 3-DES computations.

6.2.2 Tractable Signature Schemes

After enTTS, we move on to the tractable signature scheme from [WHL+05],
which is again a scheme with an STS structure. This time, it uses a total of five
layers. However, the twist in comparison with a normal STS scheme lies in the
fact that computations in the different layers are done in extension fields El for
l = 2 . . . 5 rather than in the ground field F only. In the following, we denote with
“·” multiplication in the corresponding extension field and with φl for l = 2 . . . 5
the corresponding canonical bijection (cf Definition 2.1.6).

First Layer. The first layer uses the variables x′1, . . . , x
′
8 as an input and poly-

nomials of the form p′i := x′i, i.e., we have the simplest polynomials possible for
our purpose. Moreover, we assign random values to these variables and hence,
there is no need for an extension field in this layer.

Second Layer. We have E2 = F
6 and the second layer as

P ′
2 := φ(φ−1(x′9, . . . , x

′
14) · φ

−1(x′1, . . . , x
′
6)) +




c′1x
′
1x

′
2

c′2x
′
2x

′
3

...
c′6x

′
6x

′
7


+




c′7x
′
3

c′8x
′
4

...
c′12x

′
8


 .

We notice that the second layer becomes linear if the variables x′1, . . . , x
′
6 are

given. In addition, we have c′1, . . . , c
′
12 ∈R F random coefficients.

Third Layer. We have E3 = F
2 in the third layer

P ′
3 := φ([φ−1(x′15, x

′
16)]

2)

+

(
c′13x

′
1x

′
2 + c′14x

′
3x

′
4 + . . .+ c′19x

′
13x

′
14

c′20x
′
14x

′
1 + c′21x

′
2x

′
3 + . . .+ c′26x

′
12x

′
13

)
+

(
c27x

′
1

c28x
′
2

)
.

At first glance, the new variables x′15, x
′
16 do not introduce a permutation. For

brevity, we write X ′ := φ−1(x′15, x
′
16). However, as the above construction is

only specified over fields of characteristic 2, we have X ′2 being a bijection. Un-
fortunately, [WHL+05] does not go into details how to invert this function, but
assuming gcd(2, q2 − 1)) = 1 as for the parameters proposed in [WHL+05], we
can use the same technique as for the MIA trapdoor (cf Section 3.1.3) to invert
the function Y ′ = X ′2 for given Y ′ ∈ E3 and unknown X ′ ∈ E3.
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Again we notice that this bijection does not depend on the variables of the
previous layers, i.e., on x′1, . . . , x

′
14. Moreover, we have c′13, . . . , c

′
28 ∈R F random

coefficients.

Fourth Layer. We have E4 = F
3 here and

P ′
4 := φ(φ−1(x′17, x

′
18, x

′
19) · φ

−1(x′8, x
′
9 + x′11 + x′12, x

′
13 + x′15 + x′16))

+




c′29x
′
4x

′
16

c′30x
′
5x

′
10

c′31x
′
15x

′
16


+




c′32x
′
9

c′33x
′
10

c′34x
′
11


 .

We have c′19, . . . , c
′
34 ∈R F random coefficients. Moreover, we notice that the

fourth layer becomes linear if the old variables x′1, . . . , x
′
16 are given.

Fifth Layer. We have E5 = F
9 and

P ′
5 := φ(φ−1(x′20, x

′
21, . . . , x

′
28)

·φ−1(x′1, x
′
2 + x′6 + x′11, x

′
3 + x′7 + x′12, x

′
4 + x′8 + x′13, x

′
5 + x′9 + x′14,

x′10 + x′14 + x′16, x
′
11 + x′15 + x′17, x

′
12 + x′16 + x′18, x

′
13 + x′17 + x′19))

+




c′35x
′
18x

′
19

c′36x
′
17x

′
13

c′37x
′
16x

′
14

c′38x
′
12x

′
13

c′39x
′
15x

′
14

c′40x
′
19x

′
12

c′41x
′
18x

′
10

c′42x
′
12x

′
6

c′43x
′
13x

′
5




+




c′44x
′
1

c′45x
′
2

...
c′52x

′
9


 .

We have c′35, . . . , c
′
52 ∈R F random coefficients. Moreover, we notice that this last

layer becomes linear if the old variables x′1, . . . , x
′
19 are given.

As an overall result, we see that the tractable rational map signature scheme
is an instance of an STS scheme with sparse polynomials. In contrast to the
enhanced TTS from the previous sections, these polynomials are over different
extension fields rather than the ground field. Hence, these extension fields have
to be chosen carefully to allow fast multiplication and inversion. We refer to
[WHL+05] for details on these choices. Using the taxonomy developed in this
thesis, we see that the first and the second layer can actually be combined to
one: we view this new layer one/two as a UOV step with x′1, . . . , x

′
7 the vinegar

and x′9, . . . , x
′
14 the oil variables.

[WHL+05] claims that all known attacks have been taken into account for
this construction and it does not cover any hidden weakness. As for enhanced
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TTS, we suggest to wait a while until using this construction as the sparsity of
the polynomials may open the door for previously unknown attacks, in particu-
lar as the corresponding encryption scheme from [WC04] has been successfully
cryptanalysed in [JKJMR05], using observations on the linearity of the overall
system. Using the proofs from [JKJMR05], we expect Gröbner attacks to have
a rather low running time, too, against the scheme from [WC04]. However, the
attacks from [JKJMR05] do not extend to [WHL+05].

The version [WHL+05] has the unfortunate property that we may not obtain
a valid signature with the first choice of random variables in all cases; we already
noticed a similar behaviour for enhanced TTS, see above. To verify that tractable
rational maps have this problem, too, we observe that x′1 = . . . = x′8 = 0 is a
valid assignment in the first layer. Now, in the second layer, the multiplication
in the extension field E2 always yields 0. Hence, no matter which values we
choose for x′9, . . . , x

′
14, we cannot fulfil the equations y′9 = p′9, . . . , y

′
14 = p′14 for

y′9, . . . , y
′
14 all non-zero. Although the probability for such a behaviour is rather

low (2−64), it is not zero and hence, tractable rational maps do not have a con-
stant signing time. We can draw similar conclusions for Layer 4: assume we have
x′8 = x9 + x′11 + x′12 = x′13 + x′15 + x′16 = 0. This event happens with probability
2−24. Moreover, assume that the other terms in the corresponding equation are
non-zero. This happens with probability 1 − 2−24. Now, we cannot compute a
valid solution in the fourth layer and hence, cannot find a valid signature. Note
that we do not encounter such a problem in the third layer as we can always
compute the inverse of [φ−1(x′15, x

′
16)]

2 for any given input. In any case: both
problems were independently noticed by the author of [WHL+05] who suggested
the following tweak in their presentation at PKC 2005 [Wan05]: instead of as-
signing random values to all variables, they suggest to select the first 8 variables
x′1, . . . , x

′
8 ∈R F

∗, i.e., without the possibility of getting 0 for any of these hidden
variables. This way, they can guarantee that for each try they obtain a valid
signature. While we do not expect security problems here, we find it too drastic
a solution: just enforcing x′1 6= 0 and x′8 6= 0 would have been sufficient to over-
come the problem of not obtaining a valid signature in all tries.

In any case: both mixed schemes are rather complicated to cryptanalyse as
they use very specific polynomial equations. In particular for the latter scheme,
the rationals behind choosing specific structures has not been made explicit.
Hence, it is difficult for an outsider to judge if these choices are in fact rational
or not. In particular, some more explanation by the author of [WHL+05] would
certainly help here.

As for the schemes discussed so far, we cannot use tractable rational maps for
encryption, as inverting the first step requires too many computations, namely
28·11 = 288. This is clearly above our computational threshold of 280 3-DES com-
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putations. Moreover, the encryption scheme from [WC04] has been successfully
broken in [JKJMR05], which further indicates a security problem of encryption
schemes of the tractable map class.

6.2.3 Rainbow

This scheme has been suggested in [DS05b]. Following our classification, it is
an STS construction which uses an UOV trapdoor at each layer. In the first
layer, the vinegar variables are assigned randomly. In all next layers, the vinegar
variables are the variables from the previous layers. As for the two schemes
discussed above, it may happen that we do not obtain a solution for a given set
of vinegar and oil variables. As above, we simply try again in this case.

From a security point of view, the ideas of rainbow are sound. In particular
the suggested sets of parameters in [DS05b, Sec. 2.2] take all practical attacks
into account. Here we have a ground field of size q = 256, a total of n = 33
variables in m = 27 equations, and four layers. The first layer has six oil and
six vinegar variables, the second and the third layers add both five new (oil)
variables, and the final fourth layer adds additionally 11 oil variables. The latter
is due to rank attacks as discussed, e.g., in [WBP04].

There is also an improved version of Rainbow, discussed in [DS05b, Sec. 5].
Again we have q = 256, n = 33 and m = 27. Moreover, the number of variables in
the first and the last layer are the same. However, all intermediate layers now only
have one new variable each. Hence, the number of layers increases accordingly.
This way, we always obtain a solution at these intermediate layers. Therefore, the
overall number of repetitions until we get a valid signature drops considerably.
A more detailed discussion of this idea can also be found in Section 6.4.2.

As Rainbow is derived from the UOV class, it is clearly not feasible to derive
a secure encryption scheme with this construction.

6.2.4 Discussion

We notice that all three schemes use an overall STS structure to obtain a secure
construction for signature generation. In addition we see that they guide their
initial layer, i.e., have q2n1 ≥ C for n1 ∈ N the number of variables in the
initial layer and C ∈ N the minimal workload for an attacker, i.e., the security
parameter of the system. This is due to the low-rank attack from Section 4.4.2
which directly depends on the number of variables in this layer. In addition,
they guard their final layer, i.e., have qmL ≥ C for mL ∈ N the number of new
equations in their last layer L ∈ N. The latter is due to the high-rank attack
from Section 4.4.2.

Due to these two attacks, all constructions based on STS must respect this
construction principle. In fact, enTTS, TRMS, and Rainbow only differ in the
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trapdoor they use to this aim: enTTS and Rainbow only use the UOV trapdoor,
while TRMS also uses ideas from the mixed field class. In fact, they can use this
additional structure to speed up the signature generation time.

Until now, no secure encryption schemes based on the STS class are known.
This is similar to the mixed field class which also knows only signature schemes.

6.3 Applications

As we saw in the previous sections, multivariate quadratic schemes have rather
large public keys in the range of 8 KByte – 112 KByte. The private key can be
smaller, e.g., down to 512 byte in UOV. In terms of signature or message sizes, we
can go down until 128 bits (Quartz). In any case, signature verification and en-
cryption take less than 1 ms on a Pentium II with 500 MHz [CGP02]. For Quartz
we obtain numbers in the range of 10 s on the same machine [CGP01]. Other
schemes report up to 100 ms [YC04b]. Hence, the strong points of multivariate
quadratic schemes are short signatures, low message overhead/short signature
sizes and fast encryption/signature verification.

Using the observations stated above, we outline application domains which
could profit fromMultivariate Quadratic schemes and develop specific instances
ofMultivariate Quadratic signature schemes which can be used in this context.
All proposals in this section have an expected security level of 280 — based on
our current knowledge of cryptanalysis. A level of 280 3-DES computations has
been identified in the European project [NES] as an adequate security level for
nowadays cryptographic applications; this section has been previously published
in [WP05a].

6.3.1 Electronic Stamps

The idea here is to replace the current stamping machines by digitally signed
stamps which can then be printed on any normal printer — if they are printed
more than once, the person who has bought the stamp will be caught, cf [NS00,
PV00] for a thorough discussion of this idea. In a nutshell, we have two objectives
in this context. First, we want the corresponding signature to be as short as pos-
sible — for example, using message recovery techniques, cf [MvOV96]. Second,
the signature verification time should be low as the postal service has to verify
the signed stamps at a rather high rate.

The characteristics of our proposal are summarised in Table 6.6. We base our
proposal on Sflashv3 as this is a bijection and hence, we will be able to obtain a
valid signature in any case. The overall idea is to compute a 160-bit hash of the
whole message, using a cryptographically secure hash function. The remaining
392-160=232 bits are used to encode a part of the message to sign. Hence, the
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Table 6.6: Proposed scheme for electronic stamps

Hash Parameter Priv. Key Pub. Key Sign Verify Expansion
[bit] [KByte] [KByte] [ms] [ms] [bit]

q = 128
160 n = 67 7.8 112.3 < 1 < 1 237

r = 11

overall message expansion becomes 77 + 160 = 237 bits although the whole
signature has — strictly speaking — a size of 469 bits (cf Section 6.1.1 for details
on Sflashv3).

6.3.2 Product Activation Keys

For product activation keys, nowadays mostly symmetric key techniques are used.
To the knowledge of the author, the idea to use public key techniques for this
problem is due to [Ber03]. In contrast to symmetric key techniques, crackers
cannot retrieve the symmetric key and hence, they are not able to compute valid
activation keys — even if they manage to get a copy of the (public) key of the
corresponding product. Therefore, techniques based on asymmetric cryptology
are clearly superior — if they allow similar size and speed as their symmetric
counterparts. In this thesis, we propose to use a construction based on HFE- as
outlined in [CGP01] and with the tweaks proposed in [WP04], cf Section 6.1.2.
In particular, we suggest to compute an 80-bit hash from a user-ID of 20/40 bits.

Table 6.7: Proposed schemes for product activation keys

User-ID Key Parameter Priv. Key Pub. Key Gen. Ver. Signature
[bit] [char] [byte] [KByte] [s] [ms] [bit]

q = 2
20 21 n=107 3264 71 ≈ 10 < 1 107

r = 7

q = 2
40 25 n=127 4509 119 ≈ 15 < 2 127

r = 7

The product activation key is then the signature of the 100/120 bits concatena-
tion of the user-ID and the corresponding hash. In symbols: m := i || h(i) where
m is the 100/120 bit message to be signed, i the 20/40-bit user-id, h(·) a crypto-
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graphically secure hash function and ·||· the concatenation of bit-strings. In this
context we want to point out that this proposal is not vulnerable to the birthday
paradox and hence, we do not need a hash-length of 160 bits to achieve a security
level of 280. Therefore, we can avoid the use of the Chained Patarin Construction
(cf Section 6.1.2) here. In order to distinguish different products, we suggest to
use different public (and hence private) keys for each product as this rules out
attacks using valid signatures for one product for another product. In particu-
lar, if these products have different prices, it would be an interesting attack to
“reuse” the activation key for the cheapest product on the more expensive ones.
We want to stress that a public key size in the suggested range is not a problem
to be put on a product CD/DVD and hence the additional memory requirement
is negligible. Finally, we give the length of the corresponding activation key in
characters, assuming a code with 36 symbols. For information: Microsoft uses
a 25 character code for its products. The verification and signature timings are
extrapolations from [CGP01].

6.3.3 Fast One-Way functions

The last application we see are fast but secure one-way functions. In this case,
we do not need a trapdoor but merely the intractability of the MQ-problem.
Hence, we suggest to generate random MQ-polynomials with the parameters
as suggested in Table 6.8. As for Table 6.6, the evaluation timings are based

Table 6.8: Proposed schemes for one-way functions

Seed Parameter MQ-System Evaluation
[bit] [KByte] [ms]

259 q = 128, n = 37 23 < 1

469 q = 128, n = 67 134 < 1

on [CGP03a]. A similar construction — but based on sparse polynomials over
large finite fields — has been used by Purdy in [Pur74] to construct a kind of
hash function. While this proposal is based on the intractability of univariate
polynomial equations of large degree, our proposal is based on the difficulty of
solving polynomial-equations of small degree, but with a high number of vari-
ables. Although the construction we propose here is difficult to invert, it is not
resistant against collisions. The reason is a general attack from [Pat96b, Sect. 3,
“Attack with related messages”] againstMQ-schemes which can be applied here.
To counter this attack, we would need to use equations of degree 3 rather than
degree 2 — which gives us a largerMQ-system: as we saw in Section 2.2, the size
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of the public key grows in O(nd+1) for n ∈ N the number of variables and d ∈ N

the overall degree. Hence, for quadratic systems we obtain O(n3) while cubic
systems grow with O(n4). So instead of around 10 kByte, we expect a value in
the range of 1 MByte for the public key. Obviously, the public key evaluation for
a given input x ∈ F

n time will increase accordingly.

6.4 New Schemes and Open Questions

Using the taxonomy developed in this thesis, we are able to derive new schemes —
not previously considered in other publications. In particular, we want to stress
that mixed schemes should be kept rather simple, so it is possible to determine
the strength of the underlying trapdoors. As an overall lesson from the schemes
known so far we want to point out that a larger q seems to allow smaller public
keys: we have 71 KByte for the public key of Quartz with q = 2 in comparison
to 15.4 KByte for Sflashv2 with q=128, and 8.7 KByte for enhanced TTS and
tractable rational signatures with q = 256. The reasons for this at first glance
rather strange behaviour are the following: a large field size q to decreases the
number of variables. But given that the public key is a function of O(n3 log2 q),
we see that decreasing n in contrast to q allows us to construct schemes with
smaller public keys. However, we cannot do this endlessly: having a very large
q, we would obtain n = 1 and hence, are in the univariate rather than the
multivariate case. Therefore, a choice of q = 256 = 28 or q = 65536 = 216 seems
reasonable at present. After these initial considerations, we now move on to some
concrete examples of new schemes.

We are not aware of any successful constructions using variations of UOV or
STS. However, STS- may be worthwhile as the minus modification could make
the rank attacks difficult. On the other hand, STSi is certainly not a good idea as
this boils down increasing the number of variables in the first layer of STS, i.e.,
STS and STSi are actually the same scheme. We can draw similar conclusions
for UOV. As an overall result, we see that more research in this area may be
worthwhile. We now outline some schemes which we expect to be worth further
research.

6.4.1 MIO

When looking at the taxonomy developed in Section 3.1.5, we see that three of
the four schemes, namely HFE, STS, and UOV do allow — at least in principle
— odd characteristics. The situation is fundamentally different for MIA: by
construction, it only allows even characteristic as the equation gcd(qn − 1, qλ +
1) = 1 does not have any solution λ ∈ N otherwise for given q, n ∈ N with odd q.
In order to ensure that we have a full list of all possible schemes, we develop a
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version of MIA which also works for odd characteristic, called “Matsumoto-Imai
odd” (MIO).

As outlined before, we cannot expect any solution for gcd(qn− 1, qλ +1) = 1;
the closest we get is gcd(qn − 1, qλ + 1) = 2. Hence, the inversion step in MIO
consists of two parts:

1. Using an h such that h·(qλ+1) ≡ 2 (mod qn−1) we compute A := (Y ′)h =
(X ′)2 in the extension field E

2. Using a general root finding algorithm, we solve the equation (X ′)2 = A
for given A ∈ E and unknown X ′ (cf Section 3.1.4)

The advantage of such a scheme lies in the fact that root finding becomes more
difficult with the degree of the polynomial. Having a degree of 2, the corre-
sponding algorithm will be rather efficient. In contrast to MIA, MIO may not
be so efficient as finite fields of even characteristic are particularly well suited for
microprocessors.

From a cryptanalytic point of view, MIO offers a few minor advantages over
MIA. In particular, the cryptanalysis of [Pat95] is no longer applicable as this
paper needs that the scheme in question is a bijection. However, the techniques
developed in [FJ03] are certainly applicable. Hence, MIO is not stronger than
MIA. But from a mathematical point of view, it is satisfying to have a complete
list of all possible schemes, therefore, we decided to include MIO in this chapter.

6.4.2 STS⊥h

With this construction, we want to test the limits of the STS idea as used already
in constructions for mixed schemes (cf sections 6.2.1 and 6.2.2). In particular,
we want to see which kind of parameters we can use for secure constructions to
obtain a lower limit on the public key sizes for schemes of this kind.

We start with noticing that the enhanced TTS class from Section 6.2.1 used
linear terms for the new variables of the medium layer and hence, always got a
solution here regardless of the input. Similar, the tractable rational map class
uses the same trick to ensure that we always obtain a signature for any input.
We can sum up this trick under the “⊥” modifier: each equation is independent
from all other equations and hence, we can compute the results for one variable
independently from all other variables. Next, we recall that the linear and con-
stant terms do not give us any gain in the security of the corresponding scheme.
Therefore, in order to obtain smaller public keys, we should avoid them. Actu-
ally, this idea has been outlined in the “h” modifier. Finally, STS schemes can
be attacked quite successfully both from the highest and the lowest layer, each
time using the rank. Hence, a minimal scheme would only use two layers: one
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with a small rank big enough not to allow any attack here and one with a big
rank big enough not to allow any attack from this side.

Remark 6.4.1 Obviously, we can use a scheme which uses only one layer. How-
ever, we are then in the class UOV (cf Section 6.4.3 for a version with secure
parameters).

Hence, the scheme we propose in this section has the following structure for its
two layers. We use the notation a ∈ N for the input variables for the quadratic
polynomials of layer 1, α ∈ N for the linear variables of layer 1. Similar, we
denote with b ∈ N the input of the quadratic polynomials of layer 2 and with
β ∈ N the linear variables of layer 2. Hence, we have b = a + α, the number of
equations is m = α + β and the number of variables is n = b+ β, cf Figure 6.5.
Here, we have πi for 1 ≤ i ≤ m being homogeneous degree 2 polynomials with

p′1(x
′
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′
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Figure 6.5: STS⊥h with Two Layers

random coefficients. Therefore, all polynomials p′i are homogeneous degree 2
polynomials. Hence, using S ∈ Hom−1(Fn) and T ∈ Hom−1(Fm) for the two
transformations we obtain a public key which does not contain any linear or
constant terms. So the “homogenising modification” has already been built into
the trapdoor used. Moreover, the first layer can be inverted by assigning random
values to the variables x′1, . . . , x

′
a as we saw it, e.g., for UOV (cf Section 3.1.1).

There are three important attacks we have to take into account for this
scheme: first, we need to make sure that the low rank attacks do not apply
and hence, we need q2a ≥ C for some security parameter C: as we saw in Sec-
tion 4.4, the corresponding attack is a function of the rank of the corresponding
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matrix. Inspecting the matrix in Figure 4.2 we see that this rank grows with 2a
for sparse private key polynomials of the above form. Second, we need the high

rank attacks to be inefficient. Therefore, we obtain 2qn−b

= 2β ≥ C, again using
the cryptanalysis of Section 4.4. Finally, we need to make sure that the overall
construction does not fall to the attacks for schemes from the UOV class, i.e., we
need qb−β−1 ≥ C. In all cases, we omitted polynomials for the corresponding at-
tacks as we are more interested in the overall asymptotic complexity rather than
a “close match”. Moreover, we use a security bound of C = 280 for the following
constructions. Such a security bound has been suggested, e.g., in the European
NESSIE project [NES]. To our knowledge, the follow-up project Ecrypt did not
raise this security requirement until now.

Now, with q = 256 = 28 the following sets of parameters allows a secure
construction: a = 5, α = 16, i.e., b = 21. Moreover, we choose β = 10 and obtain
a total of n = 31 variables and m = 26 equations. This translates to a public
key size of 12,896 bytes. As we see, this is worse than the parameters used in
enhanced TTS or rational tractable maps. However, these construction use more
than two layers and hence, obtain a higher number of quadratic variables for the
last layer. Therefore, attacks using the UOV structure of this construction are
less efficient. Similar, the Rainbow construction uses several layers and hence,
allows less variables in the final layer. In any case: the other attacks outlined
in this thesis did not prove efficient against this kind of schemes and are hence
omitted from the above security analysis.

Finally, we also give the parameters for q = 65536 = 216. Here we obtain
a = 3, α = 8, i.e., b = 11 and β = 5 and obtain a total of n = 16 variables and
m = 13 equations. This translates to a public key size of 3536 bytes. As we saw,
the previously mentioned rational to choose q rather large helped up obtaining
a (far) smaller public key. However, as we need operations over GF(216) now,
the corresponding scheme may be less suited for smart card implementations
as low-end cards still widely use 8-bit microprocessors. However, [WHL+05]
discusses some tricks to use “towers of fields” like GF(216) = GF((28)2) in this
context. Moreover, we have to take the running time of Gröbner algorithms
into account now. Unfortunately, we are not aware of a systematic study of the
exact behaviour of Gröbner attacks and hence, have to leave the security of the
parameters proposed here as an open problem.

Using sparse polynomials for πi with 1 ≤ i ≤ m would allow faster generation
of the public key and also faster inversion. However, generating secure sparse
polynomials is outside of the scope of this thesis. Still, we believe that such a
modification would allow a more efficient scheme.
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6.4.3 UOV⊥h

The starting point of this construction are [YC04a] and [DS05b]. In a nutshell,
they solve the problem of UOV that not all tries in the private key yield a valid
signature. They do so by forcing a special matrix structure on the oil variables:
no matter which values we choose for the vinegar variables, the oil variables
always yield a matrix of full rank, and hence, we can always compute a solution.
This can be summarised under the ⊥ idea (cf previous section).

Here, we use this idea with a slight twist, i.e., with the homogenising modifier.
We construct the UOV trapdoor as shown in Figure 6.6 having o = m and n =
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′
v) + x′1x

′
v+o

Figure 6.6: UOV with Branching and Homogenising Modifiers

v+ o (cf Section 3.1.1). By choosing x′1 ∈R F
∗, i.e., non-zero, we always obtain a

valid signature. Moreover, if we choose the polynomials π1, . . . , πm homogeneous
of degree 2, we obtain a central map P ′ which is also homogeneous of degree 2.
So, having the two transformations S ∈ Hom−1(Fn) and T ∈ Hom−1(Fm) linear
rather than affine, we hide this internal structure using the T -transformation and
do not introduce any linear terms with the S-transformation. As a consequence,
the public key does not have linear or constant terms and hence, we save m(n+1)
coefficients in total. The overall scheme does still have the same security as UOV,
i.e., all known attacks apply and we need to choose the parameter accordingly.

In any case, multiplying the monomials x′1x
′v + i for i = 1 . . . o with random

coefficients γ′i,1,v+i ∈R F
∗ does not improve the security of UOV⊥h: applying the

ideas developed in [WP05c] we see that such coefficients would lead to equivalent
keys and are hence a waste of memory.

Possible parameters for this scheme over GF(256) are m = o = 20 and v = 40.
This leads to n = 60 and therefore to a public key of length 36,000 bytes. Over
GF(216), a choice of m = o = 10 and v = 20 would be secure, assuming the
attacker cannot compute 280 3-DES operations In particular, this leads to n = 30
variables and an overall public key of 8300 bytes.

As for any other scheme, choosing the vinegar polynomials π1, . . . , πm sparse
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rather than dense allows a speed-up.

STS-

A quite interesting but recent development are schemes of the STS- class, as
suggested in [KS05]. The overall construction described there is based on the
(broken) RSE(2)PKC and RSSE(2)PKC (cf Section 4.4.5 for details).

In short, they suggest the use of the STS class together with the reduction
transformation (cf Section 2.4) for details. It is interesting to notice that the rank
attacks described in Section 4.4 are in vain here: in all cases, they need to recon-
struct the affine transformation T first. However, as parts of this transformation
are missing now, this is no longer uniquely possible. On the other hand, the
initial birational permutation scheme of Shamir [Sha93] already used the minus
modification and was broken in [CSV97] nevertheless. It would be interesting to
see if this cryptanalysis was possible due to some special properties of birational
permutations or if there are intrinsic properties of the STS class which make the
minus modification non-effective.

If the latter is not the case, STS- could be used in form of regular STS with
a field size of q = 256 and a only r = 1 new variables on each layer plus r′ = 1
one equation missing in the reduction transformation. Obviously, such a scheme
could be used for encryption. Still, a thorough security analysis is imperative
before using it.

6.5 Discussion

In this thesis, we gave a concise overview of an alternative class of public key
schemes, called “Multivariate Quadratic” schemes. In particular — using the
variations HFE- and MIA- — we developed practical instantiations for the prob-
lems of fast one-way functions, electronic stamps, and product activation keys.
In all cases, the short signature verification times and also the rather short sig-
nature generation times (resp., encryption and decryption) are a clear advantage
over schemes based on RSA and ECC. In particular, the author is not aware
of patent-restrictions for HFE- and MIA-. The situation is different for HFEv,
where Axalto (former Schlumberger) seems to hold a patent [CGP01]. Hence,
HFE- and MIA- are a good alternative for projects where patent royalties are a
serious consideration. We also want to point out that the predecessor of Sflashv3,
i.e., Sflashv2 has been recommended by NESSIE for special application domains.
Similar, Quartz was a recommendation in NESSIE for applications which require
particularly short signatures.

In addition, we were able to develop special variations in this thesis, namely
UOV⊥h and STS⊥h. Both are kind of “tweaked” in comparison to their original



6.5. DISCUSSION 135

versions: in both cases, we always obtain a valid signature and hence, are not
forced to repeat the signing process. Moreover, the structure of the private key
allows for fast inversion and hence, signature generation. Still, we know from
Chapter 5 that these two modification do not allow attacks. Finally, we get
rather small public keys, especially for the version over GF(216). An interesting
research problem in this context is the STS- class: if secure, it would allow
efficient encryption schemes based onMultivariate Quadratic polynomials. Still,
the chances are rather slim as pointed out in the previous section.
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Chapter 7

Conclusions

In this thesis, we described the state of the art of Multivariate Quadratic pub-
lic key cryptography. We saw that all schemes known so far fit into an easy
taxonomy of only four basic classes, namely unbalanced oil and vinegar (UOV),
stepwise triangular systems (STS), Matsumoto-Imai Scheme A (MIA), and hid-
den field equations (HFE). With this taxonomy it was possible to spot a missing
scheme, namely the version for odd characteristic of MIA, denoted MIO. More-
over, this taxonomy allows to put existing schemes in perspective and hence helps
developing new schemes.

Apart from these four basic classes, we also found ten basic modifiers, cf
Table 3.1 for an overview. Using both the basic classes and the modifiers, we
are actually able to express any Multivariate Quadratic scheme in the termi-
nology developed in this thesis. We demonstrated this in Chapter 6 where we
showed that the group around Patarin mainly concentrated on schemes from the
mixed field class (HFE and MIA), while the new schemes from Ding (Rainbow),
Chen/Yang (enTTS), and Wang (TRMS) all belong to the class of single field
schemes and are actually instances of the STS class. This shows that any break-
through in the cryptanalysis of the STS class will defeat these new schemes.
Hence, cryptanalytic work in this area is certainly worthwhile.

Moreover, we saw that all Multivariate Quadratic signature schemes suffer
from the same drawbacks, i.e., rather large public keys in the range of 8 kByte
(e.g., enTTS) up to 71 kByte (e.g., Quartz); all these key-sizes are for a se-
curity level of 280 3-DES computations, cf Section 6 for more details on their
performance. As reducing the number of variables makes certain types of at-
tacks easier, we do not expect that the key size decreases significantly in the
near future. In particular as constructions like the subfield modification “⊥”
were broken in the cases of MIA and UOV (cf Chapter 4). Although there is no
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general result showing that the “⊥” modification is insecure, we do not expect
that it can be safely used with any practical scheme. In addition, we saw that
Multivariate Quadratic constructions only allows secure signature schemes so
far. Still, signature generation is generally fast and can be computed, e.g., on
a low-end smart-card without a cryptographic co-processor. This makes MQ-
schemes an interesting choice for restricted environments and further research
in this direction is certainly worthwhile. Taking their disadvantages and advan-
tages into account, we were able to point to possible application domains such as
electronic stamps, product activation keys and fast one-way functions. In each
case, the disadvantages of Multivariate Quadratic systems are outweighed by
their advantages.

From a mathematical point of view, the question of equivalent keys (cf Chap-
ter 5) proved interesting. An important property in this context is that equivalent
keys allow to reduce the memory requirements for Multivariate Quadratic sys-
tems without jeopardising their security. As we see the main application domain
of MQ-systems in (memory) restricted environments, this result has practical
applications — although it was derived from a purely theoretical point of view,
namely studying the structure of the key spaces ofMQ-schemes. An additional
benefit of these results can be a lower computational requirement for someMulti-
variate Quadratic systems: taking equivalent keys into account, we can compute
a normal form of a given private key. This normal form has a very specific form
which can be exploited in a fast implementation. One example is using the fact
that many terms have to be multiplied with a constant of 1 or 0, i.e., we are able
to omit this multiplication and sometimes even the corresponding term.

Hence, Multivariate Quadratic public key systems are an interesting and
worthwhile research topic. At present, not as much work as for RSA or ECC
has been done. On the down-side, this means that the security of Multivari-
ate Quadratic systems is not as well understood as this is the case for other
schemes. On the up-side, this indicates that there are still many open questions.
In particular, finding better attacks for some of the basic schemes or basic schemes
combined with some modifiers is worthwhile. A very interesting topic in this
context is the construction of an encryption scheme based onMultivariate Qua-
dratic polynomials. Until now, there is no practical solution for this primitive.
The only exception so far is HFEi from Ding. However, as his construction MIAi
was broken shortly after its publication, it seems reasonable to wait a while until
using HFEi. Given that the whole area of Multivariate Quadratic public key
systems has not been investigated deeply by many independent researchers, it
seems reasonable to wait 5–10 years before using them in practical applications.
However, for low-security applications with a clearly defined, small risk, they can
already be an option. All in all, we hope that the subject of MQ-systems will
attract more attention over the coming years.
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tov, E. Oñate, J. Périaux, and D. Knörzer, editors, Jyväskylä University,
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verlässigkeit, LNI — Lecture Notes in Informatics, pages 413–424, April
5–8 2005. Extended version http://eprint.iacr.org/2004/236/.

[WP05b] Christopher Wolf and Bart Preneel. Equivalent keys in HFE, C∗, and
variations. In Proceedings of Mycrypt 2005, volume 3715 of Lecture Notes
in Computer Science, pages 33–49. Serge Vaudenay, editor, Springer, 2005.
Extended version http://eprint.iacr.org/2004/360/, 15 pages.

[WP05c] Christopher Wolf and Bart Preneel. Superfluous keys in Multivariate
Quadratic asymmetric systems. In PKC [PKC05], pages 275–287. Ex-
tended version http://eprint.iacr.org/2004/361/.

[WP05d] Christopher Wolf and Bart Preneel. Taxonomy of public key schemes based
on the problem of multivariate quadratic equations. Cryptology ePrint



148 Bibliography

Archive, Report 2005/077, 12th of May 2005. http://eprint.iacr.org/

2005/077/, 64 pages.

[YC04a] Bo-Yin Yang and Jiun-Ming Chen. Rank attacks and defence in Tame-like
multivariate PKC’s. Cryptology ePrint Archive, Report 2004/061, 23rd

February 2004. http://eprint.iacr.org/, 17 pages.

[YC04b] Bo-Yin Yang and Jiun-Ming Chen. Rank attacks and defence in Tame-like
multivariate PKC’s. Cryptology ePrint Archive, Report 2004/061, 29rd

September 2004. http://eprint.iacr.org/, 21 pages.

[YG01] Amr M. Youssef and Guang Gong. Cryptanalysis of Imai and Matsumoto
scheme B asymmetric cryptosystem. In Progress in Cryptology — IN-
DOCRYPT 2001, volume 2247 of Lecture Notes in Computer Science,
pages 214–222. C. Pandu Rangan and Cunsheng Ding, editors, Springer,
2001.



Index

R : F
n → F

m, 27
αi, 15
βi,j , 15
η0, 17
ηi, 17
γi,j,k, 15
Non-deterministic Polynomial-time,

29
⊥ (modification), 47
φ, 13
τd(Fn), 14
τ(d)(F

n), 14
+ (modification), 44
- (modification), 43
/ (modification), 47
P, 13
E, 12
F, 11
MQ-D, 30
MQ-GF(2), 29
MQ-N, 32
MQ-Z, 32
NP-algorithm, 29
Aff0(F

n,Fm), 18
Aff0(F

n), 18
Aff−1(Fn,Fm), 18
Aff−1(Fn), 18
Vd

n, 13
h̃ (modification), 56
Hom0(F

n,Fm), 18
Hom0(F

n), 18
Hom−1(Fn,Fm), 18

Hom−1(Fn), 18
MQ(Fn,Fm), 15
MQ(Fn), 15
3-SAT, 29

additive neutral, 11
additive sustainer, 88
affine approximation attack, 63
affine group, 18
affine pair algorithm, 64–66
affine transformation, 18
affine triple algorithm, 64, 65
assignment, 29
associativity, 11
attack

affine approximation, 63
Daum-Felke-Courtois, 63
Faugère-Joux, 81
high-rank, 69
inversion, 59
inversion STS, 72
key recovery, 59
key recovery HFE, 81
key recovery STS, 74
key recovery UOV, 61
Kipnis-Shamir HFE, 81
Kipnis-Shamir UOV, 61
linearisation, 60
low-rank, 70

automorphism
Frobenius, 12

Bi-Quadratic C∗, 7

149



150 Index

big sustainer, 88
bijection

φ, 13
canonical, 13

Birational Permutations, 8
branching, 47

Caesar, 2
canonical bijection, 13
chain of kernels, 68
Chained Patarin Construction, 113
challenge

HFE I, 81, 93
RSE(2)PKC, 76

cipher
perfect, 3

coefficients
constant, 15
linear, 15
quadratic, 15

commutativity, 11
CPC, 113
Cryptography

Public-Key, 4

Daum-Felke-Courtois attack, 63
discrete logarithm

ElGamal, 5
quantum time, 6

distributivity, 11
domain, 30
Dragon, 7

ElGamal, 5
Enhanced TTS, 120
Equations

Multivariate, 14
equivalent keys, 86
extension field, 12

f (modification), 49
factoring

quantum time, 6
RSA, 5

Faugère-Joux attack, 81
Feistel-Patarin network, 113
field, 11

axioms, 11
extension, 12
prime, 12

fixing modification, 49
Frobenius automorphism, 12
Frobenius sustainer, 89

Gauss sustainer, 89
general stepwise triangular systems,

37
generic cryptanalysis, 60
group

additive, 11
affine, 18
linear, 18
multiplicative, 11
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