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Abstract

In this paper we focus on the three basic security requirements for
a cryptographic hash function, commonly referred as preimage, second
preimage and collision resistance. We examine these security require-
ments in the case of attacks which do not take advantage on how the hash
function is computed, expressing them as success probabilities of suitable
randomized algorithms. We give exact mathematical expressions for such
resistance indices, and obtain their functional behaviour in relation to the
amount of uniformity in the hash function outcomes. Our work provides
a mathematical framework for the study of cryptographic hash functions,
which enable us to give proofs for some prevailing beliefs.
Key words. Hash functions, Brute force attacks, resistance.

1 Introduction

Cryptographic hash functions play a basic role in modern cryptography: they
are especially employed for digital signatures and message authentication, but
are used for many other cryptographic applications, including data protection
and key derivation [10]. Hash functions take a message of variable length as
input and produce a �xed-length string as output, referred to as hash-code
or simply hash of the input message. The basic idea of cryptographic hash
functions is the use of hash-codes as compact and non-ambiguous images of
messages, from which the latter cannot be deduced. The term non-ambiguous
refers to the fact that the hash-code can be used as it were uniquely identi�able
with the source message. For that reason, a cryptographic hash is also called
digital �ngerprint or digest of the message. Both non-ambiguity of hash-codes
and preimages non-computability are important requirements for the security
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of communication schemes which use an hash function to provide message au-
thentication without con�dentiality [8, 14]; nevertheless, those properties are
impossible to be achieved in a strict sense for practical hash functions.
First, denoted by h : X ! Y a candidate hash function, it should be clear

that the only way to guarantee about non-computability of preimages x 2 X
from their digests y = h(x) would be to assign y in a truly random way, i.e. to
de�ne h as a really random function; but that results in a useless function for
virtually all cryptographic applications.
Furthermore, for a domain X and a range Y with cardinalities jXj > jY j,

the function h : X ! Y is many-to-one, implying the existence of at least a
collision, i.e. a pair of input messages with the same digest. Since in common
applications jXj � jY j, not only "perfect" non-ambiguity of digests is impossible
to achieve, but it can be di¢ cult to design an hash function good with such
respect, too.
Thus, both for evaluating the �tness of existing hash functions for crypto-

graphic purposes and for designing new ones, it turns out the importance of as-
sessing how much computational e¤ort is required by an hypothetical adversary
to �nd preimages and/or collisions for the hash function h under deployment or
investigation.
A rigorous approach should clearly be based on a computational model which

enables to specify both the kind of attacks that could be mounted against h
and the amount of resources available to the adversaries for such attacks. For
a general model, which aims to describe a generic hash function h, it makes
no sense to try to encompass all the di¤erent kinds of attack that could be
mounted against h. Two radically di¤erent ways have been followed in modern
cryptography to overcome the above di¢ culty:

(i) the adoption of complexity-theoretic settings, where assumptions do not
regard speci�c strategies that an adversary may use with respect to a given
hash function, but only refer to upper bounds on his/her computational
ability;

(ii) the imposition of suitable restrictions on the hash function and/or on the
kind of attacks that could be mounted against it.

On the framework (i) of complexity theory rely both the probabilistic Turing
machine model, which nowadays founds modern cryptography (for a compre-
hensive, rigorous treatment, see [4]), and the random access machine (RAM)
model, that was introduced in the context of hashing in [2], and used in [10]
as an alternative approach to the �rst one. Both these models allow formal
de�nitions for the three notions of resistance which were recognized (and only
informally de�ned) as basic security properties for an hash function in previous
works [9, 11], and which are often referred to in literature as preimage, second
preimage and collision resistance [8].
A typical approach which pertains to (ii) is to assume that the hash function

appears, from the attacker point of view, as a random function whose outcomes
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are uniformly distributed in its range. This is the case for the algorithmic-
independent attack approach [8] or equivalently, as pointed out in [15], for the
so called random oracle model [1]. This approach allows to derive helpful prob-
abilistic results; however it postulates an output behavior for the hash function,
rather than to provide means to evaluate it [15].
A recent work [3] takes the opposite direction with respect to such a typical

approach: �rst, the authors introduce the notion of balance for an hash function,
as a measure of its "closeness" to have a uniformly distributed output; secondly,
they provide estimates of the success-rate of the birthday attack, and the ex-
pected number of trial to �nd a collision, as a function of the balance of the
hash function being attacked; thirdly, they estimate experimentally the balance
of the restriction to various length inputs of the popular hash function SHA-1.
As pointed out by the authors, their work is intended to provide analytical tools
that contribute toward the goal of better understanding the security of existing
hash functions or building new ones.
In the present work we follow the new point of view adopted in [3], pur-

posely referring to the concept of resistance in a di¤erent way than in textbooks
on modern cryptography, i.e. as a quanti�able measure of the di¢ culty to
solve a computational problem (related to a given hash function) by using a
well-speci�ed class of algorithms. On the basis of the preliminary work [15], we
formalize the notion of (randomized) brute force attack and generalize some pre-
vious results [15] to hash functions with arbitrary distributed outcomes, giving
exact mathematical expressions for the success probabilities of three algorithms
designed to solve the preimage, second preimage and collision problem, respec-
tively. Since the above algorithms are optimal, in the sense that no algorithms
in the same class exist with larger success probabilities, it is natural to regard
these probabilities as measures of resistance for a generic hash function with
respect to brute force attacks.
We then analyze how those resistance indices depend from the hash function

being considered, obtaining a characterization of their functional behavior in
relation to the "amount of uniformity" in the probability distribution of that
function. We make use of the notion of majorization [5, 7] to measure the
amount of uniformity in hash functions outcomes. Majorization is indeed a pre-
ordering relationship in the set of N dimensional real arrays, such that arrays
are ordered with respect to the amount of di¤erences between their components,
the biggest elements being those with no di¤erences at all (i.e. all equal com-
ponents). Our results prove that, with respect to such preordering relationship,
collision resistance is an increasing function in the set of all possible probability
distribution for a range N hash function. The opposite is true for preimage
resistance. Thus, as conjectured by some authors, the less uniform is an hash
function, the more e¤ective results a birthday attack mounted against it. Con-
versely, preimage attacks becomes more e¤ective as uniformity increases. At a
�rst glance, the above results seem to indicate the impossibility to �nd the best
hash function with respect to both preimage and birthday attacks. However, an
analysis of the relationships among the three given notions of resistance demon-
strates that collision resistance is the most stringent security requirement for
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an hash function exposed to a brute force attack. Again, the previous result
has been so far only conjectured in literature, usually assuming that the hash
output approximates a uniform random variable.
Finally, we examine the notion of reduction among preimage and collision

searching problems in the context of brute force attacks, integrating some pre-
vious results in [15].

2 Preliminaries

This section provides some basic results and terminology, which we need later.
In § 2.1, we introduce the notion of distribution probability for a (�nite domain)
hash function h : X ! Y , showing that the multivariate random variable
representing the numbers of occurrences of x 2 X such that h(x) = y for any
�xed y 2 Y has multinomial distribution. In § 2.2, we deal with some concepts
and results from the theory of majorization, which will be useful to study the
e¤ects of varying the probability distribution of h on its resistance.

2.1 Hash functions and related distributions

Given an alphabet A, an (unkeyed) hash function is informally de�ned in the
computer science literature as a function which maps messages of arbitrary �nite
length to message of �nite length from A. Mathematically speaking, an hash
function h is any function

h : A� �! An

where An denotes the n-times Cartesian product of A and A� = [1i=1Ai.
Virtually any application based on the use of an hash function h requires -

at a minimum - that, for any input message x, h(x) depends of all the symbols
in x [10]; therefore it is impossible in practice to evaluate an hash function of
arbitrary length strings, and we can assume without a real restriction that
A� = [mi=1Ai for a suitable m� n. Moreover, in the sequel we are interested in
properties of hash functions depending mostly on the cardinality of their domain
and range, rather than on the nature of these two sets. Thus, we adopt from
[15] the following:

De�nition 1 Let M;N be positive integers such that M > N . An (M ;N ) hash
function is any h : X �! Y surjective function, where X and Y are �nite sets
of cardinality jXj =M and jY j = N .

In the sequel we will assume, without loss of generality, that

h(X) = Y = fy1; y2; :::; yNg.

Let h be an (M;N) hash function, since:

N[
n=1

h�1(yn) = X, h�1(yi)
\
h�1(yj) = ; (1 � i 6= j � N)
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it follows that
D : y 2 Y �! py = P (h

�1(y))

is a discrete probability distribution on Y for any probability space (X;
; P )
de�ned on X such that fh�1(y) : y 2 Y g � 
.
In particular, we can choose (X;P(X); P �) as probability space on X, where

P(X) is the family of subsets of X and P � is the probability function which
assigns the same value to the elementary events of P(X). In other words, we
consider the probability distribution induced by h on Y , given the uniform
probability distribution on X:

De�nition 2 Let h : X ! Y be an (M;N) hash function. The discrete distri-
bution

Dh : yn 2 fy1; y2; :::; yNg �! pn = P
�(h�1(yn)) = jh�1(yn)j=M (1)

is the probability distribution of h.

Obviously, the simplest case is when h maps the uniform distribution on
X to the uniform distribution on Y . For such case, it is natural to give the
following de�nition [15]:

De�nition 3 An (M;N) hash function h is said to be uniform if Dh is the
uniform distribution on Y .

Remark 1 If h is a uniform (M;N) hash function, then N divides M and each
subset h�1(y) has cardinality equal to M=N .

Given an (M;N) hash function h : X �! Y , consider the trial T of
evaluating y = h(x) where x is randomly chosen1 in X. Let T1;:::Tq (q 2 N)
be a series of q trials T related to the same h. Obviously, T1; ::Tq is a series of
independent trials, in each of which just one of the N mutually exclusive events
En = fx 2 X : h(x) = yng (1 � n � N) can occur. Moreover, the probability of
occurrence of event En is P �(En) = P �(h�1(yn)) = pn for each trial Ti.
If An (1 � n � N) is the random variable representing the number of

occurrences of the event En in T1;:::Tq, then the joint probability distribution of
the random vector (A1; ::::; AN ) is the multinomial distribution of parameters
(q; p1; :::; pN ) [6]:

P (A1 = q1; ::::; AN = qN ) =
q!

q1!:::qN !
pq11 :::p

qN
N , (2)

where qn 2 N0 for any 1 � n � N and
PN

n=1 qn = q. Moreover, any An has
binomial distribution with parameters (q; pn)[6]:

P (An = qn) =
q!

qn!(q � qn)!
pqnn (1� pn)q�qn (0 � qn � q). (3)

1We use this expression to concisely indicate the selection of an element x from a set X
whose elements have the same probability to be extracted.
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2.2 Majorizations

The following notation and terminology was introduced in [5], but the notion
of majorization has various origins and appeared in previous works; for a com-
prehensive treatment of theory of majorization see [7].

De�nition 4 Let x = (x1; x2; :::; xn) and y =(y1; y2; :::; yn) be two elements of
Rn. We say that

�
x[1]; x[2]; :::; x[n]

�
is a decreasing reordering of x if x[1]x[2]:::x[n]

constitutes a permutation of x1x2:::xnsuch that x[i] � x[i+1] for i = 1; ::; n � 1.
Moreover, we say that x is majorized by y ( y majorizes x ) and use the
notation x � y if are satis�ed the conditions

kX
i=1

x[i] �
kX
i=1

y[i] (k = 1; ::; n� 1),

nX
i=1

x[i] =
nX
i=1

y[i] ,

where
�
x[1]; x[2]; :::; x[n]

�
and

�
y[1]; y[2]; :::; y[n]

�
are decreasing rearrangements of

x and y, respectively.

Majorization is a preordering relationship, because it satis�es the re�ective
and transitive properties. Moreover, it is a partial ordering on the set

D = fx 2 Rn : x1 � x2::: � xng ,

since x � y and y � x imply that exists an order n permutation matrix � such
that x = �y. The following are some simple examples of majorizations which
are useful to illustrate the previous de�nition.

Example 1 Let Rn+ be the set of n dimensional arrays of non-negative real
numbers, and let x = (x1; x2; :::; xn) be any point in Rn+ with

Pn
i=1 xi = c > 0.

Then

� c
n
;
c

n
; :::;

c

n

�
� (x1; x2; :::; xn) � (c; 0; :::; 0) ;

This �rst example shows that, for any c > 0, the set Sc =
�
x 2 Rn+ :

Pn
i=1 xi = c

	
is bounded with respect to the ordering of majorization, with

min
Sc
x =

� c
n
;
c

n
; :::;

c

n

�
, max

Sc
x =(c; 0; :::; 0).

A simple way to "traverse" the set Sc with an increasing sequence of points is
by means of the function

f : t 2 [1; n]!
�
tc

n
;
n� t
n2 � nc; :::;

n� t
n2 � nc

�
. (4)
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Example 2 Let x = (x1; x2; :::; xn) be any point in Rn. If xi � xj, then for
any � � 0

(x1; x2; :::; xn) � (x1; ::; xi + �; ::; xj � �; :::; xn)
else if xi � xj, then for any 0 � � � xj � xi

(x1; x2; :::; xn) � (x1; ::; xi + �; ::; xj � �; :::; xn)

Example 3 Let x = (x1; x2; :::; xn) be any point in Rn and let
�
x[1]; x[2]; :::; x[n]

�
a decreasing reordering of x. Then for any � � 0�

x[1] + �; ::; x[i] + �; x[i+1]; :::; x[n] � i�
�
��

x[1] + �; ::; x[j] + �; x[j+1]; :::; x[n] � j�
�

only if i � j.

All the above examples indicate that the notion of majorization is a way
to precise the idea that the components of a vector x are "less spread out" or
"more nearly equal" than the components of a vector y. Indeed, the aim of the
theory of majorization is to allow the study of inequalities of the form

f(x1; x2; :::; xn) � f(y1; y2; :::; yn),

where x1; x2; :::; xn need not be all equal (as in many well-known elementary
inequalities), but only less spread out than y1; y2; :::; yn. For the ordering of
majorization, a real-valued, order-preserving function is said a Schur-convex
function [7].

De�nition 5 A real-valued function f de�ned on a set I � Rn is said to be
Schur-convex on I if x;y 2 I and x � y implies f(x) � f(y). If f(x) < f(y)
whenever x � y but x is not a permutation of y, then f is strictly Schur-
convex on I .Similarly, f is Schur-concave on I if x;y 2 I and x � y implies
f(x) � f(y), and strictly Schur-concave on I if f(x) > f(y) whenever x � y
but x is not a permutation of y.

Suppose that I is a symmetric set in Rn, i.e. x 2 I implies that �x 2 I
for any order n permutation matrix �. Since majorization is invariant under
permutations, it follows that if f is Schur-convex or Schur-concave on I then f is
a symmetric function on I, namely f(x)=f(�x) for all x 2 I and all permutation
matrix �. Conversely, if f is symmetric on a set I and Schur-convex (concave)
on D \ I where

D = fx 2 Rn : x1 � x2::: � xng ,
then f is Schur-convex (concave) on I. Thus, in studying the Schur-convexity
(concavity) of a function f de�ned on a symmetric set I, we can restrict our
analysis to the set D \ I , provided that f is symmetric on I. On the other
hand, for x;y 2 D the majorization x � y is equivalent to the conditions:� exk � eyk (k = 1; ::; n� 1)exn = eyn,
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where exk = Pk
i=1 xi and eyk = Pk

i=1 yi. As a consequence, a function f is
Schur-convex on D only if

f(x1; x2; :::; xn) = f(ex1; ex2 � ex1; :::; exn � exn�1)
is increasing in exk for k = 1; :::; n�1 over the region where x = (x1; x2; :::; xn) 2
D. Moreover, because of the symmetry of f , it is su¢ cient to prove that,
�xed x3; :::; xn, f is an increasing function of ex1 for any ex2 such that x =
(x1; x2; :::; xn) 2 D.
The previous considerations summarize into the following:

Criterion 1 Let f be a real-valued function de�ned on a symmetric set I. Then
f is (strictly) Schur-convex on I only if f is symmetric on I and for all x 2 D\I
the function

�(�) = f(x1 + �; x2 � �; x3; :::; xn) (5)

is (strictly) increasing in the set

E = f� � 0 : (x1 + �; x2 � �; x3; :::; xn) 2 D \ Ig .

Conversely, f is (strictly) Schur-concave on I only if f is symmetric on I and
for all x 2 D \ I the function �(�) is (strictly) decreasing in the set E.

If f is continuous on D and di¤erentiable in its interior, then the following
alternative criterion holds [7]:

Criterion 2 Let f be a real-valued function, de�ned and continuous on D and
continuously di¤erentiable on the interior of D. Then f is Schur-convex or
Schur-concave on D depending that, respectively, the inequalities

@f

@xi
(x) � @f

@xi+1
(x) (i = 1; :::; n� 1)

or
@f

@xi
(x) � @f

@xi+1
(x) (i = 1; :::; n� 1)

are satis�ed for all x in the interior of D.

We conclude this section by observing that, as suggested by Example 1, the
notion of majorization is closely related to the entropy function

f(x) = �
nX
i=1

xi log xi ,

introduced by C. Shannon [13] as a measure of uncertainty in the information
conveyed by a discrete random variable X with probability distribution given
by xi = P (X = Xi), (i = 1; ::; n). That relation consists precisely in the fact
that, as one could easily deduce by one of the previous criteria, the entropy
function is strictly Schur-concave on the set S1[7].
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3 Cryptographic properties for hash functions

In the context of data security, hash functions are typically employed for digital
signatures and message authentication. In [14] are described the following six
basic uses of an hash function h, to guarantee a receiver B that a message x was
actually sent by a sender A:

Scheme 1 A sends to B y = Ck(xkh(x)), where C is a symmetric cipher and k
is a key shared only by A and B. B assumes that x1 = x only if C

�1
k (y) = x1kx2

with x2 = h(x1);

Scheme 2 A sends to B y = xkCk(h(x)), where C and k are as in the previous
case. B assumes that y1 = x only if y = y1ky2 with C�1k (y2) = h(y1);

Scheme 3 A sends to B y = xkC 0e(h(x)), where C 0 is an asymmetric cipher
and e is an A�s private key used as encryption key. B assumes that y1 = x only
if y = y1ky2 with C 0d(y2) = h(y1), where d is the A�s public key related to e;

Scheme 4 A sends to B y = Ck(xkC 0e(h(x)));where C, k are as in Case 1 and
C 0, e are as in the previous case. B assumes that x1 = x only if C

�1
k (y) = x1kx2

with C 0d(x2) = h(x1), where d is the A�s public key related to e;

Scheme 5 A sends to B y = xkh(xks) , where s is a string shared only by A
and B. B assumes that y1 = x only if y = y1ky2 with y2 = h(y1ks);

Scheme 6 A sends to B y = Ck(xkh(xks)), where C, k are as in Case 2 and s is
a string shared only by A and B. B assumes that x1 = x only if C

�1
k (y) = x1kx2

with x2 = h(x1ks);

Schemes 1, 4 and 6 provides both message secrecy and authentication, and
both of them follow from the use of conventional encryption rather than h.
Indeed, we can assume that plaintext sent from A to B belongs to a small subset
of X, i.e. the subset L of legitimate plaintexts from the alphabet A. That is
the case in the majority of applications of message authentication, namely in
any case in which the transmitted messages have some internal structure, which
depends on the nature of the application.
Under the above hypothesis, we could drop the use of the hash function h

for Cases 1, 4 and 6, replacing them with the following simpler one:

Scheme 7 Given x 2 L �X, A sends to B y = Ck(x), where C is a symmetric
cipher and k is a key shared only by A and B. B assumes that x1 = C

�1
k (y) is

equal to x only if x1 2 L.

Secrecy for Scheme 7 obviously follows from the cryptographic properties of
C and the assumption about k.
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As regard to authentication, let jXj =M and jLj = L. Then the probability
that a randomly chosen x0 2 X is a legitimate plaintext and x0 6= x is (1 �
1=L)L=M . Thus B can assume with probability

p = 1�
�
1� 1

L

�
L

M

that x1 = x if x1 2 L. Since typically L � M , then B is assured with high
probability p that the received message was the one sent by A, i.e. of the
authenticity of A�s message.
On the basis of the previous reasoning, one could wonder that no practi-

cal cryptographic protocol exists which employes Scheme 7 to provide message
authentication. The reason is that it may be di¢ cult (and/or computationally
costly) to de�ne a procedure that determines if x1 is a legitimate plaintext or
not. Moreover, that procedure must clearly depend on the structure of legiti-
mate plaintexts, which in turn - as previously pointed out - is strictly in�uenced
by the considered application.
On the contrary, the use of Schemes 1, 4, 6 leads to e¢ cient procedures to

establish if the received message must be accepted or not, provided that the
hash function h employed in such schemes can be e¢ ciently evaluated.
The remaining three schemes, namely Schemes 2, 3 and 5, provide message

authentication but not con�dentiality. When con�dentiality is not a require-
ment, these schemes have an advantage over those that encrypt the entire mes-
sage, in that less computation is required. Moreover, unlike message encryption
based schemes, these methods aren�t subject to export control laws in force in
some countries. As pointed out in [14], Case 3 is the essence of digital signature
technique, which is at present the most important application of hash functions
in data security.
However, the e¤ectiveness of such schemes don�t follow only by the easy

computability of h, but relies on some cryptographic properties of it.
Schemes 2 and 3 both rely on the di¢ culty to �nd an x0 2 L�fxg such that

h(x0) = h(x) for any given x 2 L. Indeed, for any such x0 B assumes erroneously
that y1 = x0, so that the lack of the previous requirement expose both procedures
to attacks based on message forgery. This cryptographic requirement for an hash
function is often referred to in literature as second preimage resistance.
A related, stronger property is collision resistance, that can be informally

stated as the di¢ culty to �nd any two x; x0 2 L such that x 6= x0 and h(x) =
h(x0). Collision resistance is often invoked for Schemes 2 and 3 to protect them
against message forgery attacks based on the birthday paradox [14, 8].
Finally, Scheme 5 relies on the di¢ culty to �nd, for y 2 h(X), a preimage

of y under h, which is usually referred to as preimage resistance. If indeed
preimage resistance wasn�t satis�ed for the hash function h in such scheme,
then an adversary could derive xks from its digest and easily compute the shared
secret s from x. Preimage resistance is also required for Case 3, i.e. for digital
signatures, otherwise an attacker E could achieve a certain level of disruption
simply by issuing messages with random content purporting to come from a
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legitimate user A. That can be obtained precisely as follows: (a) E chooses a
random value z and uses A�s public key d to compute C 0d(z) = y; (b) since
preimage resistance for h doesn�t hold, E can compute an x 2 h�1(y); (c) at
this point, E could claim that the message x was signed by A. Since C 0d and h
can be e¢ ciently evaluated, steps (a) and (b) can be eventually repeated many
times to �nd a legitimate message x of practical use for E, leading in such a
case to an e¤ective message forgery attack.
The sense of the previous cryptographic properties for an hash function has

been sometimes misused in literature, leading to ambiguous theoretical conclu-
sions and deceptive requirements for the practical construction of such functions.
The above notions of resistance are indeed only informal and cannot be consid-
ered real de�nitions: as a matter of fact, what one should intend for "di¢ cult
to �nd" in the de�nitions of preimage, second preimage and collision resistance
given before?
Many authors (e.g. [8, 14]) employ the expression "computationally infea-

sible" rather than "di¢ cult", but that results in no more than conveying the
idea that the intended obstacle is algorithmic in nature and impossible to over-
come in practice. Others [12] prefer the term "hard", perhaps with an implicit
reference to complexity theory terminology.
In any way, a rigorous approach clearly requires a precise de�nition of the

model of computation, used by an hypothetical adversary, to �nd elements
in X (or, more properly, in L) which satisfy given requirements with respect
to their images under an hash function h. Moreover, terms as "easy" and
"computationally infeasible" (and all their clones) should be interpreted relative
to precise resource bounds for the adversaries, and expressed in terms of cost
units in the above model of computation.
In other words, rigorous notions of resistance for an hash function h require a

mathematical model which enables to specify both the kind of attacks that could
be mounted against h and the amount of resources available to the adversaries
for such attacks.
For a model which aims to encompass generic hash functions, that is a

di¢ cult task: many e¤orts have been done on the subject, resulting in di¤erent,
not equivalent formal de�nitions of preimage, second preimage and collision
resistance. Reviewing them is out of the scope of this article; we simply remark
that both approaches based on probabilistic Turing machines, random access
machines (RAM) and the random oracle model haven�t led to concrete methods
to evaluate how much secure an existing hash function is.
In contrast, our aim is to deploy a framework which leads to quantitative

measurements of how much resistance a real hash function has with respect to
a class of attacks of practical relevance.

4 Brute force attacks on hash functions
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Brute force attacks are by far the simplest way to seek for breaking a crypto-
graphic primitive. They are typically used to �nd a cipher secret key, by means
of an exhaustive search in the cipher key space, following a "trial-and-error"
approach. These methods don�t take advantage in any way on how the crypto-
graphic primitive is computed, but only on the speed at which this computation
occurs. The analysis of their e¤ectiveness (and performance) can thus be ac-
complished simply by assuming that an adversary, for any suitable input, can
compute the output of the primitive; more important, the above analysis only
depends on combinatorial properties of the cryptographic primitive involved.
In our context, given an hash function h, brute force attacks simply consist

in repeated evaluation of the image h(x) for x 2 L until some condition on h(x),
depending of the nature of the attack, is satis�ed. Since our analysis is purely
combinatorial, we can assume in the sequel, without loss of generality, that
X = L . Moreover, instead of considering exhaustive, deterministic brute force
algorithms, in which the entire domain X of h is progressively scanned element
by element until the condition on h(x) occurs, we will consider randomized ones.
More precisely, we will consider algorithms which select x at random in the set
X for a maximum number q of times, where q is an input parameter. It turns
out that those are Las Vegas algorithms, since they always give a correct answer
or do not respond.

De�nition 6 Let h : X ! Y be an (M;N) hash function. Let � : N ! X
be a pseudo-random generator with �(f1; 2; ::;Mg) = X such that its output
is uniformly distributed on X. A Las Vegas brute force (LVBF) algorithm for
h is an algorithm which executes at most q steps and returns a correct answer
or NULL with probabilities p = p(h; q) and 1� p, respectively. At each step, the
algorithm generates elements of the search space X using the pseudo-random
generator �.

We stress that, in the previous de�nition, the pseudo-random generator is
required only to have good statistical properties, not to provide a cryptograph-
ically secure (i.e. unpredictable) stream of random elements. A such generator
can be obtained by applying a suitable bijective transformation from the out-
put of a traditional statistical pseudo-random number generator (PRNG) to the
set X, provided that the period length of the PRNG is greater or equal than
M . Since a statistical PRNG outputs all the numbers between 0 and its period
exactly once and then repeats the sequence , we are guaranteed that LVBF
algorithms exist. The following are three of such algorithms to solve preimage,
second preimage and collision �nding problems, respectively. They implement
the generator � via the procedure rho. As any PRNG based on a determin-
istic algorithm, rho requires an initial value - called seed - which is used as a
starting point to generate the sequence fxi = �(i)gi; this sequence is uniquely
determined by the seed value, and di¤erent seed values result in di¤erent se-
quences. The choice of the seed value should be done in a truly random way
for such algorithms to be e¤ective; we don�t detail here how to choose the seed,
but simply assume that its randomness in achieved by means of the use of the

12



"black-box" random, which could also represent the output of a suitable physical
device.

Algorithm 1 FindPreimage requires in input an hash function h : X �! Y ,
a digest y 2 Y and an integer q indicating the maximum number of trials to
run. It returns x if a preimage x of y was found after at most q steps and NULL
otherwise.

FindPreimage(h,y,q)
begin
found=false
counter=1
seed=random()
repeat
x=rho(counter,seed)
yc=h(x)
counter=counter + 1
if (y=yc)

found=true
endif

until(counter>q OR found)
if(found)

return x
else

return NULL
endif

end
In the next algorithm q equals as before the maximum number of possible

evaluations of h, but the number of trials of the algorithm is now q� 1, because
one function evaluation is spent to compute the image y. This choice is because
we measure the performance of these algorithms in terms of the number of
evaluations of h.

Algorithm 2 Find2ndPreimage requires as input an hash function h : X �!
Y , a message x 2 X and an integer q indicating the maximum number of
evaluations of h. It outputs x0 in case that a preimage x0 2 h�1(h(x)) such that
x0 6= x was found after at most q steps, NULL otherwise.

Find2ndPreimage(h,x,q)
begin
found=false
counter=1
y=h(x)
seed=random()
while(counter<q AND !found)
xc=rho(counter,seed)

13



yc=h(xc)
counter=counter+1
if (x!=xc AND y=yc)

found=true
endif

end
if(found)

return xc
else

return NULL
endif

end

The third and last algorithm is to solve the collision searching problem.
It uses the function ismember(a[1:k],b) which returns the index i of an
a[i]such that a[i]=b if b belongs to the vector a[1:k], and zero otherwise.
We stress that this algorithm realizes a randomized birthday attack. Birthday
attacks derive their name from the birthday paradox [8, 14], and their relevance
to hash functions is because it has been conjectured that, in case of algorithm-
independent attacks, to �nd a collision is easier than to �nd a preimage2 . As we
shall see in §6, that conjecture is indeed true in the more general case of LVBF
attacks.

Algorithm 3 FindCollision requires as input an hash function h : X �! Y
and an integer q indicating the maximum number of trials to run. It returns
the couple (x; x0) if two messages x0 6= x were found after no more than q steps
such that h(x0) = h(x), NULL otherwise.

FindCollision(h,q)
begin

found=false
counter=1
seed=random()
repeat

x[counter]=rho(counter,seed)
y[counter]=h(x[counter])
if ((i=ismember(y[1:counter-1],y[counter]))>0)

found=true
endif
counter=counter+1

until(counter>q OR found)
if(found)
return (x[i],x[counter])

2Algorithm-independent attacks are those which treat the hash function being attacked as
a black-box, whose only signi�cant characteristics are its output bitlength and the running
time for one hash operation [8].
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else
return NULL

endif
end

The above algorithms are very similar to the homonymous ones presented
in [15] and, as in that article, we will consider the probability pALG that the
algorithm ALG solves the related problem (i.e. doesn�t return NULL) at most
after q evaluations of the hash function h3 . However, in [15] these algorithms
were analyzed in the random oracle model. That model consists of the following
additional assumptions regarding the hash function h:

� h : X ! Y is a randomly chosen function in the set of all functions from
X to Y ;

� an algorithm is given only oracle access to h, i.e. h appears as a black-box
and no advantage on how h actually is the algorithm can take at all.

As a consequence of these two assumptions, the following independence prop-
erty holds [15]:

Proposition 3 Suppose that h : X ! Y satis�es the above assumptions and
that the values yi = h(xi) have been determined for 1 � i � q. Then

P (h(x) = y�y
1
= h(x

1
); :::; yq = h(xq)) =

1

N

for any x 2 X � fx
1
; :::; xqg and any y 2 Y .

From the previous result it follows that the random oracle model doesn�t
catch the combinatorial properties of the hash function h being used, in that
all functions appear in the model to be as uniform hash functions4 . Thus, the
random oracle model is ine¤ective to establish how much secure a given hash
function is with respect to Las Vegas brute force attacks. To solve the question,
we need to describe h in terms of its probability distribution, and to analyze our
algorithms in the framework of the calculus of probability. This is accomplished
by the following theorems, which establish what is the success probability of the
above three LVBF algorithms for an input (M;N) hash function of arbitrary
probability distribution.

Theorem 4 Let be h : X ! Y an (M,N) hash function with probability distrib-
ution (1).The success probability of algorithm FindPreimage , averaged over all
y 2 Y is given by:

pFP = 1�
1

N

NX
n=1

(1� pn)q (6)

3Analogously to [15], we will denote as (p; q)-LVBF an LVBF algorithm which requires at
most q evaluations of h and has a success probability equal to p.

4Alternatively, we could say that the random oracle model encompasses only algorithmic-
independent attacks.
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Proof. Since y 2 Y , then y = yn for some 1 � n � N . Let fxi = �(i),
1 � i � qg be a q-length sequence obtained by the pseudo-random generator
�, and let be the trial of evaluating h(xi). It follows thatfTi; 1 � i � qg is a
sequence of independent trials in each of which the events:

E(i)n = fh(xi) = yng, 1 � i � q

can occur with probability pn = P �(h�1(yn)) for any 1 � i � q. From (3) it
follows that the probability that at least one of the events E(i)n occurs in the q
trials Ti (i.e. the probability of occurrence of [qi=1E

(i)
n ) is given by:

P (

q[
i=1

E(i)n ) = P (An � 1) = 1� P (An = 0) = 1� (1� pn)q, (7)

where An is the random variable indicating the number of occurrences of the
event En = fh(x) = yng in the q trials. Therefore:

pFP =
NX
n=1

1

N
(1� (1� pn)q) = 1�

1

N

NX
n=1

(1� pn)q

Theorem 5 Let h : X ! Y be an (M;N) hash function with probability dis-
tribution (1).The success probability of algorithm Find2ndPreimage, averaged
over all x 2 X , is given by:

pF2P = 1�
NX
n=1

pn

�
1� pn +

1

M

�q�1
(8)

Proof. Say h(x) = yn; we have to consider the events:

E(i)n = fh(xi) = yn & xi 6= xg, 1 � i � q � 1

and from the conditional probability rule it follows that:

P (E(i)n ) = P �(xi 6= x�h(xi) = yn)P �(h(xi) = yn)

Since P �(h(xi) = yn) = pn and

P �( xi 6= x = h(xi) = yn) =
jh�1(yn)j � 1
jh�1(yn)j

= 1� 1

Mpn
(9)

from the previous relationship it follows that, for any 1 � i � q � 1:

P (E(i)n ) = pn �
1

M
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Now we can apply the same reasoning than in Theorem 1, obtaining that the
probability that at least one of the above events E(i)n occurs in the q trials Ti is
given by:

P (

q�1[
i=1

E(i)n ) = 1�
�
1� pn +

1

M

�q�1
Finally, averaging over all x 2 X:

pF2P =

NX
n=1

pn

 
1�

�
1� pn +

1

M

�q�1!
= 1�

NX
n=1

pn

�
1� pn +

1

M

�q�1

The following theorem gives the exact expression of the success-rate pFC for
the randomized birthday attack, rather than estimating it, as in [3].

Theorem 6 Let h : X ! Y be an (M;N) hash function with probability distri-
bution (1).The success probability of algorithm FindCollision is given by:

pFC =

8><>:
1 for q > N

1�
P

C
(1;:::;N)
q

q! pj1 ::pjq for q � N (10)

where C(1;:::;N)q denotes the set of all combinations of size q from f1; 2; ::; Ng.

Proof. The result for q > N is trivial, thus we can assume q � N . Let E(i)n
and An have the same meaning than in Theorem 1. From (2) it follows that the
probability that in q trials no collisions occur is:

P (A1 � 1; ::::; AN � 1) =
X

q1::qN2S

q!

q1!:::qN !
pq11 :::p

qN
N ,

where S is the set of all N dimensional arrays of exactly q ones and N �q zeros.
Thus, if C(1;:::;N)q denotes the set of all combinations j1 j2::: jq of size q from
f1; 2; ::; Ng, it follows that:

P (A1 � 1; ::::; AN � 1) =
X

C
(1;:::;N)
q

q! pj1 ::pjq

and
pFC = 1� P (A1 � 1; ::::; AN � 1) = 1�

X
C
(1;:::;N)
q

q! pj1 ::pjq

In the special case that h is a uniform (M;N) hash function, we obtain the
following:

17



Corollary 7 Let h : X ! Y be an (M,N) uniform hash function. Then the
success probability of algorithms FindPreimage, Find2ndPreimage and Find-
Collision is given, respectively, by:

pFP = 1�
�
1� 1

N

�q
, (11)

pF2P = 1�
�
1� 1

N
+
1

M

�q�1
(12)

and

pFC =

(
1 for q > N

1� N !
(N�q)!Nq for q � N

(13)

Proof. The �rst two equalities easily follows by putting pn = 1=N in (6) and
(8), respectively. To obtain the third one, it su¢ ces to observe than in (10) the
set C(1;:::;N)q has cardinality �

N

q

�
=

N !

q!(N � q)!

We remark that (11), (13) and (12) (with the term 1=M neglected, which
is a good approximation if, as supposed, M � N) are the success probabilities
derived in [15]. This perfectly agrees with our previous observations about the
random oracle model.

5 E¤ects of the probability distribution

Scope of this section is the analysis of the e¤ects of varying the hash function on
the success probabilities of LVBF algorithms introduced in the previous section.
As pointed out by many authors, that is a crucial step in the deployment of
a soundness approach to hash function design and parameter choices. Since in
the framework of LVBF algorithms an hash function is completely characterized
by its probability distribution, it su¢ ces to study how, given N > 0, those
probabilities varies in the set

S =

�
p 2 RN+ :

XN

n=1
pn = 1

�
. (14)

Theorem 8 Let h : X ! Y be an (M;N) hash function. The success probabil-
ity pFP of algorithm FindPreimage(h; y; q) is Schur-concave on S if q = 1 and
strictly Schur-concave on S if q > 1.

Proof. From (6) it follows that pFP is a symmetric function on the set S and
that the function � de�ned by (5) is given by

�(�) = 1� 1

N

"
(1� p1 � �)q + (1� p2 + �)q +

NX
n=3

(1� pn)q
#
.
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Moreover for any p 2 S \ D, where D =
�
p 2 RN+ : p1 � p2::: � pN

	
, the fol-

lowing equality holds

E = f� � 0 : (p1 + �; p2 � �; p3; :::; pN ) 2 S \Dg = [0; p2 � p3]

and � is di¤erentiable in [0; 1] � E with

d�

d�
(�) = � q

N

�
(1� p2 + �)q�1 � (1� p1 � �)q�1

�
.

The above result implies that, for any p 2 S \ D, � is constant in E if q = 1
and strictly decreasing in E if q > 1. Thus the assertion follows from Criterion
1.
The behavior of the success probability pF2P for Find2ndPreimage algorithm

is not so sharp as in the previous case (and, as we will show later, as in the case
of the algorithm FindCollision). Except than for q = 2, it turns out that pF2P
is neither convex nor concave on the set S, and that we have to consider the
restriction of pF2P to suitable symmetric subsets of S to obtain Schur properties.

Theorem 9 Let h : X ! Y be an (M;N) hash function. Moreover, given an
integer q � 2, let S0qand S00q denote the following symmetric subsets of S:

S0q =

�
p 2 I : p[3] �

2

q

�
1 +

1

M

��
,

S
00

q =

�
p 2 I : p[1] + p[2] � p[3] �

2

q

�
1 +

1

M

��
,

where (p[1]; p[2]; :::; p[n]) is a decreasing reordering of p =(p1; p2; :::; pn).For any
q, the success probability pF2P of algorithm Find2ndPreimage(h; x; q) is strictly
Schur-concave on S0q and strictly Schur-convex on S

00

q .

Proof. The expression (8) for pF2P shows that pF2P is a symmetric function
on the set S; moreover, from (5) it follows that

�(�) = 1� (p1 + �)(1� p1 � �+
1

M
)q�1 � (p2 � �)(1� p2 + �+

1

M
)q�1 +

�
NX
n=3

pn(1� pn +
1

M
)q�1.

Recall that for algorithm Find2ndPreimage(h; x; q) must be q � 2. As before,
for any p 2 S \D, E = [0; p2 � p3] and � is di¤erentiable in E. On the other
hand, simple algebra leads in this case to

d�

d�
(�) = q[(c2+�)

q�1�(c1��)q�1]�(q�1)
�
1 +

1

M

�
[(c2+�)

q�2�(c1��)q�2],

where c1 = 1+ 1
M �p1 and c2 = 1+

1
M �p2. It is easy to verify that, if p 2 S\D

and 0 < � � p2 � p3, then
1

M
< c1 � � < c2 + � � 1 +

1

M
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If q = 2 the previous expression for the derivative of � becomes

d�

d�
(�) = 2(c2 � c1 + 2�),

thus the statement follows from Criterion 1, since in this case S0q = ; and S
00

q = I.
If instead q > 2, let consider the function:

'(x) = qxq�1 � (q � 1)
�
1 +

1

M

�
xq�2

It results that
d�

d�
(�) = '(c2 + �)� '(c1 � �)

and
d'

dx
(x) = (q � 1)xq�3

�
qx� (q � 2)

�
1 +

1

M

��
.

Thus the derivative of � is a strictly negative function of � if

sup
�
(c2 + �) = 1 +

1

M
� p3 �

�
1� 2

q

��
1 +

1

M

�
and, conversely, it is a strictly positive function of � for

inf
�
(c1 � �) = 1 +

1

M
� p1 � p2 + p3 �

�
1� 2

q

��
1 +

1

M

�
.

The above inequalities are equivalent, respectively, to

p3 �
2

q

�
1 +

1

M

�
and

p1 + p2 � p3 �
2

q

�
1 +

1

M

�
;

that, again on the basis of Criterion 1, proves the statement for q > 2.

Remark 2 Clearly S0q \ S
00

q = ; for any integer q; moreover, it is easy to show
that S0q = ; for q � 6 and that S

00

q = ; for q > 2N . If q = 2 then, as previously
noted, S

00

q = I.

Theorem 10 Let h : X ! Y be an (M,N) hash function. The success proba-
bility pFC of algorithm FindCollision(h; q) is strictly Schur-convex or Schur-
convex on S depending if q � N or q > N , respectively.
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Proof. The second part of the statement trivially follows from (10). If q � N ,
from (10) it follows that pFC is symmetric on S and that

�(�) = 1� (p1 + �)
X

C
(3;:::;N)
q�1

q! pj1 ::pjq�1 � (p2 � �)
X

C
(3;:::;N)
q�1

q! pj1 ::pjq�1

�(p1 + �)(p2 � �)
X

C
(3;:::;N)
q�2

q! pj1 ::pjq�2 �
X

C
(3;:::;N)
q

q! pj1 ::pjq ,

where C(3;:::;N)q , C(3;:::;N)q�1 and C(3;:::;N)q�2 are the sets of all combinations j1 j2:::
jn from f3; :::; Ng of sizes q, q � 1 and q � 2, respectively. Since

d�

d�
(�) = (p1 � p2)

X
C
(3;:::;N)
q�2

q! pj1 ::pjq�2 + 2�
X

C
(3;:::;N)
q�2

q! pj1 ::pjq�2

and since p 2 S \D implies p1 � p2 � 0 and pn � 0 (n = 1; :::; N), the proof
easily follows from Criterion 1.
Since, as shown in the Example 1, the set S with respect to the ordering of

majorization is a bounded set with:

min
S
(p1; p2; :::; pN ) =

�
1

N
;
1

N
; :::;

1

N

�
, max

S
(p1; p2; :::; pN ) = (1; 0; :::; 0) ,

a �rst important consequence of the previous results is that the minimum chance
to �nd a collision with a LVBF algorithm is in the case that the hash function
being attacked is uniform, whereas for that type of hash function the chance
to �nd a preimage is at its maximum. At a �rst glance, that seems to indicate
the impossibility to �nd the best hash outcomes distribution with respect to all
the three types of attacks. As we shall see in the next section this is not the
case, since collision resistance has to be considered the most stringent security
requirement for an hash function exposed to a brute force attack.

6 Relationships among properties

Relationships among preimage, second preimage and collision searching prob-
lems have been considered by many authors. It is obvious that, both for hash
function design and usage, it is very useful to establish if, at least for some
suitable models of computation, one of the above problems is more di¢ cult to
solve than another.
For conciseness, let us denote respectively with P(�), P 0(�) and C(�) the

sets of hash functions which satisfy the properties of preimage, second preimage
and collision resistance with respect to a given model of computation �. The
relation among P 0(�) and C(�) is a trivial question. It is obvious that any
solution of the second preimage problem is a solution to the collision problem,
too; thus

C(�) � P 0(�) (15)
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independently of �. In our approach (15) becomes the following inequality,
satis�ed for all q;M;N 2 N and any (p1; p2; :::; pN ) 2 S, with S given by (14):

pF2P (q;M;N; p1; p2; :::; pN ) � pFC(q;M;N; p1; p2; :::; pN )

which, because of (8) and (10), results in:

1�
NX
n=1

pn

�
1� pn +

1

M

�q�1
� 1�

X
C
(1;:::;N)
q

q! pj1 ::pjq

By considering the limit for M ! +1 of the �rst member, it follows that:

1�
NX
n=1

pn (1� pn)q�1 � 1�
X

C
(1;:::;N)
q

q! pj1 ::pjq , q 2 N (16)

Relation (16) furnishes a very rough lower bound for the more complex expres-
sion of success probability for algorithm FindCollision; much better (lower
and upper) bounds on pFC were derived in [3], but only for q values not greater
than a quantity depending both on N and the balance of h.
A more intriguing problem are the relationships among preimage and colli-

sion searching problems. Indeed, on the contrary than in the previous case, the
answer to this question depends both on the adopted model of computation and
on properties of the particular hash function considered.
Under the generic assumption than an adversary knows how the hash func-

tion is computed, which is the essence of Kerkho¤�s principle, universally adopted
in theory and practice of cryptography, examples can be produced of both col-
lision but not preimage resistant hash functions and preimage but not collision
resistant ones.
It presents no di¢ culty to understand why P(�) * P 0(�) which, in view of

(15), implies P(�) * C(�). Functions h : X ! Y such that

h 2 P(�) and h =2 P 0(�)

are indeed characterized by the property that it is easy in � to derive x0 2
h�1(y)�fxg from a previously known preimage x of y 2 Y . A classical example
is the modular squaring function:

h(x) = x2modn,

where n = pq and p,q are appropriate, randomly chosen secret primes [8].
At this point, the last matter to be discussed in order to completely solve

our problem is that C(�) * P(�). For this purpose, it turns useful the following
example. Given X =

Sm
i=1f0; 1gi, Y = f0; 1gl (m > l) and an hash function

g : X ! Y , let us consider the function:

h : x 2 X !
�

x if jxj = l
g(x) otherwise
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Since x = y = h�1(y) for all y 2 Y , it follows that h =2 P(�). On the other hand,
if h(x) = h(x0) and x 6= x0 then only two alternatives are possible: (a) both jxj
and jx0j are di¤erent from l; (b) just one of jxj and jx0j is equal to l, say jx0j.
Finding a collision for h is equivalent to �nd a collision for g in case (a) and a
preimage of g (di¤erent from jx0j) in case (b), thus h 2 C(�) if g 2 C(�)

T
P(�).

We reiterate that, with the exception of relation (15), the above conclu-
sions are only valid for computational models � which retain the Kerkho¤�s
principle. Clearly, this is not the case for any purely combinatorial model, as
the random oracle model and our model based on the brute force approach.
In such models, mutual relationships among preimage, second preimage and
collision resistance properties for hash functions can be adequately described
using the results of §4. Indeed, it is straightforward to realize that algorithms
FindPreimage, Find2ndPreimage and FindCollision are optimal, in the sense
that no other LVBF algorithms exist which solve the same problems with larger
success probabilities. Thus, it is natural to regard the success probabilities de-
rived in §4 as measures of resistance for a generic hash function with respect to
brute force attacks. In this respect, inequality (16) has to be considered the proof
that C(�) � P 0(�) in our model of computation. In general, for that model,
we must conclude that X (�) � Y(�) if pY � pX for any hash function and
any number of trials q, where X ;Y 2 fC;P;P 0g and pY ; pX 2 fpFP ; pF2P;pFCg.
Since pFP , pF2P and pFC are increasing functions of q, the previous require-
ment on the number of trials can be relaxed to be true only for q � q0, where
q0 is a number of trials such that the attack can be easily mounted in practice.
Following this idea, we can prove that, in the context of brute force attacks,
it is easier to �nd collision for an hash function than to �nd preimages. The
above has been so far only conjectured by many authors, usually assuming that
the hash output approximates a uniform random variable; the next theorem
demonstrates that conjecture in the general case, i.e. for hash functions with
arbitrary probability distribution.

Theorem 11 Let h be an (M;N) hash function with probability distribution
(1), and let q, pFC , pFP denote the number of trials and the corresponding
success probabilities for algorithms FindCollision and FindPreimage, respec-
tively. Then, for any q > 2 and for any choice of the probability distribution
(p1; p2; :::; pN ):

pFC(q;M;N; p1; p2; :::; pN ) � pFP (q;M;N; p1; p2; :::; pN ) ,

where the equality is attained only for N = 1.

Proof. The case N = 1 is trivial, because then pFC = pFP = 1. Let now
suppose N > 1. Since pFC = 1 if q > N and, for N , q such that N � q > 2 ,
it results:

N !

(N � q)!Nq
=

q�1Y
i=1

�
1� i

N

�
<

�
1� 1

N

�q
,

from Corollary 7 it follows that pFC > pFP for any (M;N) uniform hash func-
tion. On the other hand, from Theorems 8 and 10, it follows that pFC � pFP is
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a Schur-convex function in the set S de�ned by (14). Since

min
S
(p1; p2; :::; pN ) =

�
1

N
;
1

N
; :::;

1

N

�
,

that concludes the proof.

7 Reductions among problems

In our algorithmic approach to hash function security, it can be useful to know
how many chances we have in solving one of the problems of �nding preimages,
second preimages or collisions by using an algorithm designed to solve a di¤er-
ent problem among those. That task pertains to the notion of reduction among
problems. The general notion of reduction is from complexity theory, where it
denotes a procedure which solves a computational problem (the one to be re-
duced) by using functionally-speci�ed procedure calls to another computational
problem. Since we are concerned with reductions of a searching problem S to a
searching problem S 0, it is su¢ ces to consider Karp-type reductions, which op-
erate as follows: given an instance u for S, the reduction computes an instance
u0 for S 0, invokes a procedure to compute a solution s0 for S 0 = S 0(u0) and then
uses s0 to compute a solution s for S = S(u). Of course, we are only interested in
e¢ cient reductions, which in complexity theory means that the reduction takes
polynomial time. Following the preliminary work in [15], we reformulate the
above in terms of the success probabilities of Las Vegas algorithms as follows:

De�nition 7 Let S and S 0 be two problems for which Las Vegas solving al-
gorithms exist. S is said to be "-reducible to S 0 if, given a Las Vegas (p; q)-
algorithm ALG which is optimal for S 0, it is possible to construct a Las Vegas
("p; q)-algorithm which optimally solves S by invoking ALG as procedure.

As shown in [15], the most interesting questions are those concerning reduc-
tion from the collision problem to the preimage problem. It turns out that, for
generic Las Vegas algorithms, the amount of reduction can greatly vary, depend-
ing on the probability distribution of the hash function under investigation and
on the assumptions (in term of success probabilities) that are made about the
algorithm ALG designed to solve the preimage searching problem. If, for exam-
ple, we suppose that M >> N and that ALG has the same success probability
to �nd a preimage of y for any y 2 Y , then " can be made very close to one by
increasing the computational e¤ort (i.e. the number q of hash evaluations) for
ALG. On the other hand, we might have a Las Vegas preimage-�nding algo-
rithm that is successful only if y 2 Y has a unique preimage, and in that case
" = 0. The following results concern the reduction from collision to preimage in
the special case of LVBF algorithms.

Theorem 12 Let h : X ! Y be an (M;N) hash function with probability
distribution (1).Then the collision searching problem for h is "-reducible to the
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preimage searching problem with

" =
q

q + 1

1� N
M �

NP
n=1

(1� pn)q
�
pn � 1

M

�
1� 1

N

NP
n=1

(1� pn)q
, (17)

where q represents the number of evaluations of h.

Proof. The following is a LVBF algorithm which solves the collision searching
problem by calling FindPreimage as procedure:
Coll2Preimg(h,q)
begin
success=false

seed=random()
x=rho(counter,seed)
y=h(x)
xc=FindPreimage(h,y,q)
if (xc!=NULL AND x!=xc)

success=true
endif
return success

end
It should be clear that Coll2Preimg is an optimal LVBF algorithm for

�nding a collision by a call to FindPreimage. The success probability pC2P (yn)
of Coll2Preimg for y = yn is given by:

pC2P (yn) = P
�(h(x) = yn) pFP (yn)P

�(x0 6= x�h(x) = h(x0))

where pFP (yn) is the success probability of algorithm FindPreimage for y = yn.
Thus from (7) and (9) it follows that:

pC2P (yn) = pn(1� (1� pn)q)
�
1� 1

Mpn

�
= (1� (1� pn)q)

�
pn �

1

M

�
and the success probability of Coll2Preimg is given by:

pC2P =
NX
n=1

pC2P (yn) = 1�
N

M
�

NX
n=1

(1� pn)q
�
pn �

1

M

�
(18)

On the other hand, Coll2Preimg computes at most q + 1 evaluations of the
hash function h, since one evaluation is spent to calculate the input y for
FindPreimage and q are the evaluations of h computed by the latter algorithm
in the worst case. Thus Coll2Preimg is a (pC2P ; q + 1)-LVBF algorithm and
from (6) it follows the equality (17).
For a uniform hash function, clearly we obtain the same result derived in

[15] under the assumption that the algorithm designed to solve the preimage
problem has the same success probability for any y 2 Y ; namely:
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Corollary 13 Let h : X ! Y be an (M;N) uniform hash function. Then the
collision searching problem for h is "-reducible to the preimage searching problem
with

" =
q

q + 1

�
1� N

M

�
,

where q is the number of evaluations of h.

If h is a uniform hash function, then pn = 1=N for all 1 � n � N and
from the previous theorem it follows that the collision searching problem is
"-reducible to the preimage searching problem with:

" =
q

q + 1

1� N
M �

NP
n=1

�
1� 1

N

�q � 1
N �

1
M

�
1� 1

N

NP
n=1

�
1� 1

N

�q =
q

q + 1

�
1� N

M

�

This last theorem shows that we can have a better reducibility than in the
uniform case only in a suitable "neighborhood" of p =(1=N; 1=N; :::; 1=N), which
became smaller as the number of evaluations of the hash function increases.

Theorem 14 Let q be an integer and let h : X ! Y be an (M;N) hash function
with a probability distribution (1) such that

p[1] �
1

N
+

2

q + 1

�
1� 1

N

�
, (19)

where (p[1]; p[2]; :::; p[N ]) is a decreasing reordering of p =(p1; p2; :::; pN ) 2 S and
S is the set de�ned by (14). Then the collision searching problem for h is "-
reducible to the preimage searching problem with

" � q

q + 1

�
1� N

M

�
.

Proof. The proof relies on the fact that the function " = "(p) given by (17)
is Schur-convex on the subset of S de�ned by the inequality (19). Indeed, from
(17) it follows that

@"

@pn
(pn) =

q

q + 1

(1� pn)q�1
p2FP

h
(q + 1)pFP pn �

qpFP
M

� qpC2P
N

� pFP
i
,

where pFP and pC2P are given by (6) and (18), respectively. Let now consider
the function:

g(x) = (1� x)q�1
h
(q + 1)pFPx�

qpFP
M

� qpC2P
N

� pFP
i
.

Since

dg

dx
(x) = q(1� x)q�2

�
(q � 1)pFP

M
+
(q � 1)pC2P

N
+ 2pFP � (q + 1)pFPx

�
,
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it follows that @"
@pn

is a decreasing sequence in n for any (p[1]; p[2]; :::; p[N ]) 2 S
such that

p[1] �
2

q + 1
+
q � 1
q + 1

�
1

N

pC2P
pFP

+
1

M

�
,

Thus, on the basis of Criterion 2, it follows the Schur-convexity of " = "(p)
on the subset of S de�ned by the previous inequality. That subset, because of
Corollary 12 and the Schur-convexity of ", contains the one de�ned by inequality
(19).

8 Conclusion and future work

Our work provides a mathematical framework for the study of the basic security
requirements for an hash function in the case of brute force attacks, which enable
us to give rigorous proofs for some widely accepted conjectures in the theory of
cryptographic hash functions.
As pointed out in [3], despite of the fact that hash functions are usually

designed to resemble to random functions, if one wants the best possible pro-
tection against both birthday (which, in view of our results, implies protection
against brute force attacks in general) and cryptanalytic attacks, one should
design that function subject to being as uniform as possible. This last task is
more di¢ cult than designing a "simple" pseudorandom hash function, so that
the latter remains the design goal and it is useful to have tools that enable de-
signers to measure the impact of deviations from uniformity in the hash function
outcomes and �ne tune its output length if necessary.
In view of Theorem 6 and of the results of §§ 5 and 6, it su¢ ces to compute

expression (10) to assess how much secure a given hash function is with respect
to brute force attacks. However, a direct computation of (10) poses a computa-
tional challenge, because of the very large values of N used in practically useful
hash functions (e.g., N = 2128 = O(1038) for MD5 and N = 2160 = O(1048)
for RIPEMID-160 and SHA-1). It turns out the importance of both suitable,
simpler estimates for (10) and for its expectation value - as the ones derived in
[3] - and the study of computational strategies and algorithms to evaluate them
e¢ ciently and accurately.
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