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Abstract

Cryptographic applications using an elliptic curve over a finite field
filter curves for suitability using their order as the primary criterion:
e.g. checking that their order has a large prime divisor before accept-
ing it. It is therefore natural to ask whether the discrete log problem
(dlog) has the same difficulty for all curves with the same order; if so
it would justify the above practice. We prove that this is essentially
true by showing random reducibility of dlog among such curves, as-
suming the Generalized Riemann Hypothesis (GRH). Our reduction
proof works for curves with (nearly) the same endomorphism rings,
but it is unclear if such a reduction exists in general. This suggests
that in addition to the order, the conductor of its endomorphism ring
may play a role. The random self-reducibility for dlog over finite
fields is well known; the non-trivial part here is that one must relate
non-isomorphic algebraic groups of two isogenous curves. We con-
struct certain expander graphs with elliptic curves as nodes and low
degree isogenies as edges, and utilize the rapid mixing of random walks
on this graph. We also briefly look at some recommended curves, com-
pare “random” type NIST FIPS 186-2 curves to other special curves
from this standpoint, and suggest a parameter to measure how generic
a given curve is.

∗Partially supported by NSF grant DMS-0301172 and an Alfred P. Sloan Foundation
Fellowship.
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1 Introduction

Public key cryptosystems based on the elliptic curve discrete logarithm (dlog)
problem [22, 33] have received considerable attention because they are cur-
rently the most widely used systems whose underlying mathematical problem
has yet to admit subexponential attacks (see [2, 31, 45]). Hence it is impor-
tant to formally understand various aspects of dlog and selection of elliptic
curves. This turns out to be more intricate than the corresponding problem
of dlog over finite fields and their selection.

To motivate the questions in this paper, we begin with two observations.
First, we note that one typically picks an elliptic curve at random, and
examines its group order (e.g. to check if it is smooth) to decide whether to
keep it, or discard it and pick another one. It is therefore a natural question
whether or not dlog is of the same difficulty on curves with the same number
of points. Indeed, it is a theorem of Tate that curves E1 and E2 defined over
the same finite field have the same number of points if and only if they
are isogenous, i.e. there exists a nontrivial algebraic group homomorphism
φ : E1 → E2 between them. If this φ is efficiently computable and has a
smooth kernel, we can solve dlog on E1, given a dlog oracle for E2.

Secondly, we recall the observation that dlog on (Z/pZ)∗ has random
self-reducibility : given any efficient algorithm A(gx) = x that solves dlog
on a polynomial fraction of inputs, one can solve any instance y = gx by an
expected polynomial number of calls to A with random inputs of the form
A(gry). Thus dlog must be hard for all but a negligible fraction of inputs,
if it is hard on any polynomial fraction. This is comforting since for cryp-
tographic use we need the dlog problems to be hard with overwhelming
probability when we pick inputs at random. Such a random self-reduction
also holds true for any abelian group, and in particular for dlog on a fixed
elliptic curve. The question we consider is the following: given an efficient
algorithm to solve dlog on some µ-fraction of isogenous elliptic curves over
Fq, can we efficiently solve dlog for all curves in the same isogeny class? If
so, we would conclude that dlog must either be easy for almost all curves,
or else be hard for almost all curves. That of course would also give some jus-
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tification for the cryptographic practice of selecting curves at random within
an isogeny class. Unlike the above self-reductions which work on a fixed
group, we must now relate instances of dlog on an arbitrary E1 to those
on a randomly distributed E2; computing φ : E1 → E2 makes the problem
non-trivial.

Acknowledgements: It is a pleasure to thank William Aiello, Michael
Ben-Or, Dan Boneh, Henryk Iwaniec, Dimitar Jetchev, Neal Koblitz, Peter
Sarnak, and Adi Shamir for their discussions and helpful comments. We are
also indebted to Peter Montgomery for his factoring assistance in producing
Figure 1.

2 Our results

In this paper, we show that to a large extent one can indeed justify selecting
curves (over a fixed finite field Fq) at random, as well as treating isogeny
class as the only essential invariant for dlog. We state our results here; the
reader may consult Sections 3 and 4 for definitions and background about
elliptic curves and expander graphs, respectively.

It is very convenient to give each set of isogenous elliptic curves the struc-
ture of graph, whose nodes are arranged in stratified levels. This idea has
arisen before in papers of Mestre [32] and Galbraith [10] (see also [9]). First
one defines an isogeny graph, whose nodes represent elliptic curves over Fq and
whose edges represent isogenies (algebraic group homomorphisms) defined
over Fq having degree bounded by polylog(q). Here an isogeny φ : E1 → E2

of degree ` sends a point P = (x, y) ∈ E1 to a point Q ∈ E2 whose coordinates
are given by a rational function of degree ` in Fq(x, y).

Next one places the nodes in levels: two curves E1, E2 are in the same
level if they have identical endomorphism rings (denoted by End(Ei)). For
most “random” curves, the isogeny graph turns out to have only one level,
so one may ignore the level restriction for now as a technicality. Our main
contribution is the following theorem and its simple practical consequence
stated in the next corollary (see the end of Section 5 for the proof of the
Theorem, and Proposition 4.1 for the definition of “nearly Ramanujan” and
the implication to the Corollary).

Theorem 2.1. (Assuming GRH) The restriction of the isogeny graph to each
level is an nearly Ramanujan graph.
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Corollary 2.2. (Assuming GRH) At each level, the isogeny graph has the
rapid mixing property: that is, starting from any given E1, a random walk
over the graph will reach any other curve E2 with almost uniform probability
(i.e. with exponentially (in log q) small error) using a polynomial (in log q)
number of steps.

In particular these graphs are connected. This can not be guaranteed for
the ordinary case unless we take B on the order of (log q)2, whereas in the
supersingular case B ≤ 3 suffices (see also Remark 2.4). We conclude from
the above:

Theorem 2.3. (Assuming GRH) The dlog problem on elliptic curves is
random reducible in the following sense: given any algorithm A that solves
dlog on some µ-fraction of curves in a level, one can probabilistically solve
dlog on any given curve in the same level with 1

µ
polylog(q) expected queries

to A with random inputs.

We call the algorithm A in the last theorem a balanced attack if it succeeds
on a polynomial fraction of each level. For such an A, one may of course drop
the level restriction in the theorem.

Remark 2.4. (a) By earlier results of Pizer [37], in the case of supersin-
gular curves the GRH assumption and the level restriction can be dropped
(see Appendix B). (b) The Ramanujan property was first defined in [29]. It
characterizes the optimal separation between the two largest eigenvalues of
the graph adjacency matrix, and implies the expansion property. Invariably
the construction of explicit expanders and proof of their properties is nontriv-
ial. The nomenclature stems from the fact that [29] used known cases of the
Ramanujan conjectures in their proofs. The isogeny graph in the supersingu-
lar case is essentially a Ramanujan graph, and has been well studied in the
literature [18, 32, 36, 37]. However, both the definition of the isogeny graphs
in the ordinary case and the use of GRH as a tool for proving expansion are
new. The method in fact gives a (conditional) simple new family of expanders
on (Z/QZ)∗ for any Q > 0. The use and dependency of GRH here is akin
to that in bounding the least quadratic non-residue mod p. (c) Random walk
methods were introduced in [10, 11] as a heuristic for constructing isogenies.
A contribution of this paper is that we validate the heuristic mixing assump-
tions used in that work, by providing provable bounds for random walk mixing
probabilities (under the assumption of GRH). (d) One can perform a tighter
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analysis using the “set avoidance” results of [1, 14] or the Chernoff bounds
for random walks [13]. (e) For subexponential (instead of polynomial time)
reductions, one can replace the assumption of GRH by the weaker Lindelöf
hypothesis (see the remarks at the end of Section 6).

2.1 Using conductors to identify generic curves

Somewhat surprisingly, if the attack is not balanced then in addition to
#E(Fq) another parameter may have a role to play with respect to the hard-
ness of dlog. We will refer to this parameter as the conductor of E, denoted
c(E) = c(End(E)) ∈ Z>0, though this should not be confused with the arith-
metic conductor (see the remarks after Theorem 3.1 for definitions). We
define the conductor gap between two elliptic curves to be the largest prime
which divides one of their conductors but not the other. For an integer n, let
P (n) denote the largest prime which divides n. In Section 7 we explain why
P (c(E)) is typically quite small for random elliptic curves. In contrast, for
curves isogenous to an anomalous binary curve or CM curve [23] empirical
data suggests that the distribution of P (c(E)) is similar to that of P (n) for
random n, and thus is often quite large.

Lemma 2.5. (a) Given two curves with a conductor gap m, an isogeny
between them can be constructed in O(m4) field operations. (b) The conductor
gap m < 2

√
q.

For part (a) see Kohel [24]. Part (b) follows from the description following
Theorem 3.1 that the c(E) is a square factor of the discriminant, which is
bounded by 4q.

Remark 2.6. (a) Theorem 2.3 states that dlog is random reducible on
curves on the same level, i.e. which have the same c(E) and hence End(E).
The same applies if the gap is bounded by a polynomial in log q, since in this
case navigation between levels is feasible [24]. (b) When the gap m ≈ √

q,
even the construction referred to in Lemma 2.5(a) — which is currently the
fastest known — becomes impractically slow. Thus if m is large, it is unclear
if even a subexponential reduction for dlog exists. Unless algorithms exist
to overcome this large conductor gap, the dlog on generic and special curves
may indeed have different hardness; we may also not know which is harder—
akin to factorization of random integers, the problem may be easier in the
average case. Random walks cannot bridge large gaps between levels (see
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Theorem 3.1, part 5). Moreover, even given a polynomial time algorithm to
attack dlog on elliptic curves, it is currently unclear whether or not there is
a subexponential algorithm to compute an isogeny between curves that have
a conductor gap of size qε, for any fixed ε > 0.

Table of P (c(E)) for recommended curves: We can view the above
levelled graph as a pyramid, with the number of curves at each level rapidly
increasing as we go down (i.e. as c(E) increases). Most “random” or generic
curves belong to pyramids with very few levels, since c(E) is small (approxi-
mately 1), the exception being anomalous binary curves or CM curves, which
sit on the top level of a large pyramid containing curves with large P (c(E)).
A fuller discussion is found in Section 7. The structure of the edges between
levels is described in Theorem 3.2.

Remark 2.7. One may consider c(E) as a clear way to measure how generic
a given curve is. Sometimes in order to convince others that a curve is not
specially chosen, one gives the seed of a secure hash based generator for it.
However, the seed may have been picked with a large number of trials or
the hash function may have admitted some compromise. For this reason,
it may be a good standard practice to reveal c(E), preferably by giving the
complete factorization of the discriminant of the characteristic polynomial of
Frobenius. In Figure 1 we have indeed computed c(E) for all the curves in
the FIPS 186-2 standard; the computations took roughly a week on a cluster
of 100 computers and would not be within the reach of most users.

3 Preliminaries

Let E1 and E2 be elliptic curves defined over a finite field Fq of characteristic
p > 3. An isogeny φ : E1 → E2 defined over Fq is a non-constant ratio-
nal map defined over Fq which is also a group homomorphism from E1(Fq)
to E2(Fq) [41, §III.4]. The degree of an isogeny is its degree as a rational map.
Every isogeny of degree greater than 1 can be factored into a composition of
isogenies of prime degree [41, §II.2.12 and §III.4.12]. For any elliptic curve
E : y2 = x3 + ax + b defined over Fq, the Frobenius isogeny is the isogeny
π : E → E given by the equation π(x, y) = (xq, yq). It satisfies the equation

π2 − Trace(E)π + q = 0,
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Curve c (maximal conductor gap amongst isogenous curves) P(c) = largest prime factor of c
NIST P-192 1 1
NIST P-256 3 3
NIST P-384 1 1
NIST P-521 1 1
NIST K-163 45641·82153·56498081·P (c) 86110311
NIST K-233 5610641·85310626991·P (c) 150532234816721999
NIST K-283 1697·162254089·P (c) 1779143207551652584836995286271
NIST K-409 21262439877311·22431439539154506863·P (c) 57030553306655053533734286593

9021184135396238924389891(contd)
NIST K-571 3952463·P (c) 9451926768145189936450898(contd)

07769277009849103733654828039
NIST B-163 1 1
NIST B-233 1 1
NIST B-283 1 1
NIST B-409 1 1
NIST B-571 1 1

IPSec 3rdOG,F2155 1 1

IPSec 4thOG, F2185 1 1

Figure 1: A table of curves recommended as international standards [16,35].
Note that the maximum possible conductor gap between each standards curve
and its isogenous curves is small (at most 3), except for the curves in the
NIST K (=Koblitz curve) family.

where Trace(E) = q + 1 − #E(Fq) is the trace of the curve E over Fq.
The polynomial p(X) := X2 − Trace(E)X + q is called the characteristic
polynomial of E.

An endomorphism of an elliptic curve E defined over Fq is an isogeny
E → E defined over Fqm for some m. The set of endomorphisms of E
together with the zero map forms a ring under the operations of pointwise
addition and composition; this ring is called the endomorphism ring of E
and denoted End(E). The ring End(E) is isomorphic either to an order in a
quaternion algebra or to an order in an imaginary quadratic field [41, V.3.1];
in the first case we say E is supersingular and in the second case we say E
is ordinary. In the latter situation, the Frobenius isogeny π can be regarded
as an algebraic integer which is a root of the characteristic polynomial.

Two elliptic curves E1 and E2 defined over Fq are said to be isogenous
over Fq if there exists an isogeny φ : E1 → E2 defined over Fq. A theorem
of Tate states that two curves E1 and E2 are isogenous over Fq if and only
if #E1(Fq) = #E2(Fq) [42, §3]. Hence the property of being isogenous is an
equivalence relation. We define an isogeny class to be an equivalence class
of elliptic curves under this relation. Curves in the same isogeny class are
either all supersingular or all ordinary. We assume for the remainder of this
paper that we are in the ordinary case, which is the more interesting case
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from the point of view of cryptography anyhow. The supersingular case is
discussed further in Appendix B.

The following theorem describes the structure of elliptic curves within an
isogeny class from the point of view of their endomorphism rings.

Theorem 3.1. Let E and E ′ be ordinary elliptic curves defined over Fq which
are isogenous over Fq. Let K denote the imaginary quadratic field containing
End(E), and write OK for the maximal order (i.e. ring of integers) of K.

1. The order End(E) satisfies the property Z[π] ⊆ End(E) ⊆ OK.

2. The order End(E ′) also satisfies End(E ′) ⊂ K and Z[π] ⊆ End(E ′) ⊆
OK.

3. The following are equivalent:

(a) End(E) = End(E ′).

(b) There exist two isogenies φ : E → E ′ and ψ : E → E ′ of relatively
prime degree.

(c) [OK : End(E)] = [OK : End(E ′)].

(d) [End(E) : Z[π]] = [End(E ′) : Z[π]].

4. Let φ : E → E ′ be an isogeny from E to E ′ of prime degree `. Then
either End(E) contains End(E ′) or End(E ′) contains End(E), and the
index of the smaller in the larger divides `.

5. Suppose ` is a prime that divides one of [OK : End(E)] and [OK :
End(E ′)], but not the other. Then every isogeny φ : E → E ′ has degree
equal to a multiple of `.

Proof. [24, §4.2].

For any order O ⊆ OK , the conductor of O is defined to be the integer
[OK : O]. The fieldK is called the CM field of E. We write cE for the conduc-
tor of End(E) and cπ for the conductor of Z[π]. Note that this is not the same
thing as the arithmetic conductor of an elliptic curve [41, §C.16], nor is it
related to the conductance of an expander graph [21]. It follows from [4, (7.2)
and (7.3)] that End(E) = Z + cEOK and D = c2EdK , where D (respectively,
dK) is the discriminant of the order End(E) (respectively, OK). Applying
the same reasoning to Z[π], we find that the characteristic polynomial p(X)
has discriminant disc(p(X)) = Trace(E)2 − 4q = disc(Z[π]) = c2πdK , with
cπ = cE · [End(E) : Z[π]].
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Following [9] and [10], we say that an isogeny φ : E1 → E2 of prime degree
` is “down” if [End(E1) : End(E2)] = `, “up” if [End(E2) : End(E1)] = `,
and “horizontal” if End(E1) = End(E2). The following theorem classifies the
number of degree ` isogenies of each type in terms of the Legendre symbol(

D
`

)
.

Theorem 3.2. Let E be an ordinary elliptic curve over Fq, with endomor-
phism ring End(E) of discriminant D. Let ` be a prime different from the
characteristic of Fq.

• Assume ` - cE. Then there are exactly 1 +
(

D
`

)
horizontal isogenies

φ : E → E ′ of degree `.

– If ` - cπ, there are no other isogenies E → E ′ of degree `.

– If ` | cπ, there are `−
(

D
`

)
down isogenies of degree `.

• Assume ` | cE. Then there is one up isogeny E → E ′ of degree `.

– If ` - cπ

cE
, there are no other isogenies E → E ′ of degree `.

– If ` | cπ

cE
, there are ` down isogenies of degree `.

Proof. [9, §2.1] or [10, §11.5].

It follows that the maximal conductor gap referred to in Section 2.1 is
achieved between a curve at the top level (with End(E) = OK) and a curve
at the bottom level (with End(E) = Z[π]). The structure of these isogenies
is diagrammed in Appendix D.

3.1 Isogeny Graphs

Recall from Section 1 that an isogeny graph is a graph whose nodes con-
sist of all elliptic curves in Fq belonging to a fixed isogeny class, up to
Fq-isomorphism (so that two elliptic curves which are isomorphic over Fq

represent the same node in the graph). We define two curves E1 and E2 to
have the same level if End(E1) = End(E2). Note that a horizontal isogeny
always goes between two curves of the same level; likewise, an up isogeny
enlarges the size of the endomorphism ring and a down isogeny reduces the
size. Since there are fewer elliptic curves at higher levels than at lower levels,
the isogeny graph under the level interpretation visually resembles a “pyra-
mid” or a “volcano” [9], with up isogenies ascending the structure and down
isogenies descending.
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The edges of the graph consist of the isogenies between such elliptic curves
having prime degree less than the bound (log q)2+δ for some fixed δ > 0. The
degree bound must be small enough to permit the isogenies to be computed,
but large enough to allow the graph to be connected and to have the rapid
mixing properties that we want. We will show in Section 5 that a bound of
(log q)2+δ satisfies all the requirements, provided that we restrict the isogeny
graph to a single level.

Accordingly, fix a level of the isogeny graph, and let End(E) = O be the
common endomorphism ring of all of the elliptic curves in this level. Denote
by G the graph whose vertices are elliptic curves over Fq with endomorphism
ring O, and whose edges are horizontal isogenies defined over Fq of prime
degree ≤ (log q)2+δ. By standard facts from the theory of complex multi-
plication [4, §10], each ideal a ⊂ O produces an elliptic curve C/a defined
over some number field L ⊂ C (called the ring class field of O) [4, §11]. The
curve C/a has complex multiplication by O, and two different ideals yield
isomorphic curves if and only if they belong to the same ideal class. Likewise,
each ideal b ⊂ O defines an isogeny C/a → C/ab−1, and the degree of this
isogeny is the norm N(b) of the ideal b. Moreover, for any prime ideal P in L
lying over p, the reductions mod P of the above elliptic curves and isogenies
are defined over Fq, and every elliptic curve and every horizontal isogeny in
G arises in this way [10, §3]. Therefore, the graph G is isomorphic to the
corresponding graph H whose nodes are elliptic curves C/a with complex
multiplication by O, and whose edges are complex analytic isogenies repre-
sented by ideals b ⊂ O and subject to the same degree bound as before. This
isomorphism preserves the degrees of isogenies, in the sense that the degree
of any isogeny in G is equal to the norm of its corresponding ideal b in H.

The graph H has an alternate description as a Cayley graph on the ideal
class group Cl(O) of O. Indeed, each node of H is an ideal class of O, and
two ideal classes [a1] and [a2] are connected by an edge if and only if there
exists a prime ideal b of norm ≤ (log q)2+δ such that [a1b] = [a2]. Therefore,
the graph H (and hence the graph G) is isomorphic to the Cayley graph of
the group Cl(O) with respect to the generators [b] ∈ Cl(O), as b ranges over
all prime ideals of O of norm ≤ (log q)2+δ.

Remark 3.3. The graph G consists of objects defined over the finite field
Fq, whereas the objects in the graph H are defined over the number field L.
One passes from H to G by taking reductions mod P, and from G to H by
using Deuring’s Lifting Theorem [7, 10, 25]. There is no known polynomial
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time or even subexponential time algorithm for computing the isomorphism
between G and H [10, §3]. For our purposes, such an explicit algorithm is
not necessary, since we only use the complex analytic theory to prove abstract
graph-theoretic properties of G.

Remark 3.4. A priori, the graph G is a directed graph, since an isogeny
φ : E1 → E2 is an asymmetric relation between E1 and E2. However, the
graph is in fact symmetric, because every isogeny φ has a unique dual isogeny
φ̂ : E2 → E1 of the same degree as φ in the opposite direction [41, §III.6].
From the viewpoint of H, an isogeny represented by an ideal b ⊂ O has its
dual isogeny represented simply by the complex conjugate b̄. This symmetry
allows us to treat G as undirected and to apply known results about undirected
expander graphs (as in the following section) to G.

4 Expander Graphs

Let G = (V , E) be a finite graph on h vertices V with undirected edges E .
Suppose G is a regular graph of degree k, i.e. exactly k edges meet at each
vertex. Given a labelling of the vertices V = {v1, . . . , vh}, the adjacency
matrix of G is the symmetric h × h matrix A whose ij-th entry Ai,j = 1 if
an edge exists between vi and vj and 0 otherwise.

It is convenient to identify functions on V with vectors in Rh via this
labelling, and therefore also think of A as a self-adjoint operator on L2(V).
All of the eigenvalues of A satisfy the bound |λ| ≤ k. Constant vectors are
eigenfunctions of A with eigenvalue k, which for obvious reasons is called
the trivial eigenvalue λtriv. A family of such graphs G with h → ∞ is
said to be a sequence of expander graphs if all other eigenvalues of their
adjacency matrices are bounded away from λtriv = k by a fixed amount.1

In particular, no other eigenvalue is equal to k; this implies the graph is
connected. A Ramanujan graph [29] is a special type of expander which has
|λ| ≤ 2

√
k − 1 for any nontrivial eigenvalue which is not equal to−k (this last

possibility happens if and only if the graph is bipartite). The supersingular
isogeny graphs in Appendix B are sometimes Ramanujan, while the ordinary
isogeny graphs in Section 3.1 are often not considered to be, partly because

1Expansion is usually phrased in terms of the number of neighbors of subsets of G, but
the spectral condition here is equivalent for k-regular graphs and also more useful for our
purposes.
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their degree is not bounded. Nevertheless, they still share the most important
properties of expanders as far as our applications are concerned. In particular
their degree k grows slowly (as a polynomial in log |V|), and they share a
qualitatively similar eigenvalue separation: instead the nontrivial eigenvalues
λ can be arranged to be O(k1/2+ε) for any desired value of ε > 0. Of course
the exponent of k can sometimes be reduced by increasing k (which in fact
happens for our isogeny graphs). Obtaining any nontrivial exponent is really
the key challenge for many applications, and accordingly we shall focus on
what we call “nearly Ramanujan” graphs: families of graphs whose nontrivial
eigenvalues satisfy the bound λ = O(kβ) for some β < 1.

A fundamental use of expanders is to prove the rapid mixing of the ran-
dom walk on V along the edges E . For convenience we present the rapid
mixing result below and its proof in Appendix A. For more information, see
[5, 28,39].

Proposition 4.1. Let G be a regular graph of degree k on h vertices. Suppose
that the eigenvalue λ of any nonconstant eigenvector satisfies the bound |λ| ≤
c for some c < k. Let S be any subset of the vertices of G, and x be any

vertex in G. Then a random walk of length at least log 2h/|S|1/2

log k/c
starting from

x will land in S with probability at least |S|
2h

= |S|
2|G| .

In our application the quantities k, k
c
− 1, and h

|S| will all be bounded

by polynomials in log(h). Under these hypotheses, the probability is at least
1/2 that some polylog(h) trials of random walks of polylog(h) length starting
from x will reach S at least once. This mixing estimate is the source of our
polynomial time random reducibility (Theorem 2.3).

5 Proofs of our results

5.1 Navigating the Isogeny Graph

Let G, H, and O be as in Section 3.1. The graph G has exponentially many
nodes and thus is too large to be stored. However, given a curve E and a
prime `, it is possible to efficiently compute the curves which are connected
to E by an isogeny of degree `. These curves E ′ have j-invariants which can
be found by solving the modular polynomial relation Φ`(j(E), j(E ′)) = 0;
the cost of this step is O(`3) field operations [10, 11.6]. In this way, it is
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possible to navigate the isogeny graph locally without computing the entire
graph. We shall see that it suffices to have the degree of the isogenies in the
graph be bounded by (log q)2+δ to assure the Ramanujan properties required
for G to be an expander.

5.2 θ-Functions and Graph Eigenvalues

The graph H (and therefore also the graph G) has one node for each ideal
class of O. Therefore, the total number of nodes in the graph G is the ideal
class number of the order O, and the vertices V can be identified with ideal
class representatives {α1, . . . , αh}. Using the isomorphism between G and
H, we see that the generating function

∑
Mαi,αj

(n)qn for degree n isogenies
between the vertices αi and αj of G is given by

∞∑
n =1

Mαi,αj
(n) qn :=

1

e

∑
z ∈α−1

i αj

qN(z)/N(α−1
i αj) , (5.1)

where e is the number of units in O (which always equals 2 for disc(O) >
4). The sum on the right hand side depends only on the ideal class of
the fractional ideal α−1

i αj; by viewing the latter as a lattice in C, we see
that N(z)/N(α−1

i αj) is a quadratic form of discriminant D where D :=
disc(O) [4, p. 142]. That means this sum is a θ-series, accordingly denoted
as θα−1

i αj
(q). It is a holomorphic modular form of weight 1 for the congruence

subgroup Γ0(|D|) of SL(2,Z), transforming according to the character
(

D
·

)
(see [19, Theorem 10.9]).

Before discussing exactly which degrees of isogenies to admit into our
isogeny graph G, let us first make some remarks about the simpler graph on
V = {α1, . . . , αh} whose edges represent isogenies of degree exactly equal to n.
Its adjacency matrix is of course the h×hmatrixM(n) =

[
Mαi,αj

(n)
]
{1≤i,j≤h}

defined by series coefficients in (5.1). It can be naturally viewed as an op-
erator which acts on functions on V = {α1, . . . , αh}, by identifying them
with h-vectors according to this labelling. We will now simultaneously di-
agonalize all M(n), or what amounts to the same, diagonalize the matrix
Aq =

∑
n≥1M(n)qn for any value of q < 1 (where the sum converges ab-

solutely). The primary reason this is possible is that for each fixed n this
graph is an abelian Cayley graph on the ideal class group Cl(O), with gener-
ating set equal to those classes αi which represent an n-isogeny. The eigen-
functions of the adjacency matrix of an abelian Cayley graph are always
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given by characters of the group (viewed as functions on the graph), and
their respective eigenvalues are sums of these characters over the generating
set. This can be seen in our circumstance as follows. The ij-th entry of Aq is
1
e
θα−1

i αj
(q), which we recall depends only on the ideal class of the fractional

ideal α−1
i αj. If χ is any character of Cl(O), viewed as the h-vector whose

i-th entry is χ(αi), then the i-th entry of the vector Aqχ may be evaluated
through matrix multiplication as

(Aqχ)(αi) =
1

e

∑
αj ∈Cl(O)

θα−1
i αj

(q)χ(αj) =
1

e

 ∑
αj ∈Cl(O)

χ(αj) θαj
(q)

χ(αi) ,

(5.2)
where in the last equality we have reindexed αj 7→ αi αj using the group struc-
ture of Cl(O). Therefore χ is in fact an eigenvector of the matrix eAq, with
eigenvalue equal to the sum of θ-functions enclosed in parentheses, known
as a Hecke θ-function (see [19, §12]). These, which we shall denote θχ(q),
form a more natural basis of modular forms than the ideal class θ-functions
θαj

because they are in fact they are Hecke eigenforms. Using (5.1), the
L-functions of these Hecke characters can be written as

L(s, χ) = L(s, θχ) =
∑

integral ideals a⊂K

χ(a) (Na)−s =
∞∑

n =1

an(χ)n−s ,

(5.3)
where

an(χ) =
∑

integral ideals a⊂K
Na = n

χ(a) (5.4)

is in fact simply the eigenvalue of eM(n) for the eigenvector formed from
the character χ as above, which can be seen by isolating the coefficient of qn

in the sum on the right hand side of (5.2).

5.3 The Isogeny Graph

Our isogeny graph is a superposition of the previous graphs M(n), when n
is a prime bounded by a parameter m (which we recall is (log q)2+δ for some
fixed δ > 0). This corresponds to a graph on the elliptic curves represented
by ideal classes in an order O of K = Q(

√
d), whose edges represent isogenies

of prime degree ≤ m. The graphs with adjacency matrices {M(p) | p ≤ m}

14



above share common eigenfunctions (the characters χ of Cl(O)), and so their
eigenvalues are of the form

λχ =
1

e

∑
p≤m

ap(χ) =
1

e

∑
p≤m

∑
integral ideals a⊂K

Na = p

χ(a) . (5.5)

When χ is the trivial character, λtriv equals the degree of the regular graph
G. Since roughly half of rational primes p split in K, and those which do split
into two ideals of norm p, λtriv is roughly π(m)

e
∼ m

e log m
by the prime number

theorem. This eigenvalue is always the largest in absolute value, as can
be deduced from (5.5) because |χ(a)| always equals 1. For the polynomial
mixing of the random walk in Corollary 2.2 we will require a separation
between the trivial and nontrivial eigenvalues of size 1/polylog(m). This
would be the case, for example, if for each nontrivial character χ there merely
exists one ideal a of prime norm ≤ m with Reχ(a) ≤ 1 − 1

polylog(m)
. This

is analogous to the problem of finding a small prime nonresidue modulo
say a large prime Q, where one merely needs to find any cancellation at
all in the character sum

∑
p≤m

(
p
Q

)
. However, the latter requires a strong

assumption from analytic number theory, such as the Generalized Riemann
Hypothesis (GRH). In the next section we will accordingly derive such bounds
for λχ, under the assumption of GRH. As a consequence of the more general
Lemma 6.3 we will show the following.

Lemma 5.1. Let D < 0 and let O be the quadratic order of discriminant
D. If χ is a nontrivial ideal class character of O, then the Generalized
Riemann Hypothesis for L(s, χ) implies that the sum (5.5) is bounded by
O(m1/2 log |D|) when m = polylog(|D|).

Proof of Theorem 2.1: This follows from the lemma, as the eigenvalues
of the adjacency matrix for a given level are given by (5.5). In particular we
have chosen m = (log q)2+δ, and so the nontrivial eigenvalues are bounded
by λχ = O(λβ

triv) for any β > 1
2

+ 1
δ+2

.

6 The Prime Number Theorem for Modular

Form L-functions

In this section we prove Lemma 5.1, assuming the Generalized Riemann
Hypothesis (GRH) for the L-functions (5.3). Our argument is more general,
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and in fact gives estimates for sums of the form
∑

p≤m ap, where ap are the
prime coefficients of any L-function. This can be thought of as an analog of
the Prime Number Theorem because for the simplest L-function, ζ(s), ap = 1
and this sum is in fact exactly π(x). As a compromise between readability
and generality, we will restrict the presentation here to the case of modular
form L-functions (including (5.3)). Background references for this section
include [19, 20, 34]; for information about more general L-functions see also
[12,38].

We shall now consider a classical holomorphic modular form f , with
Fourier expansion

f(z) =
∞∑

n =0

cn e
2 π i n z . (6.1)

We will assume that f is a Hecke eigenform, since this condition is met in
the situation of Lemma 5.1 (see the comments between (5.2) and (5.3)). It is
natural to study the renormalized coefficients an = n−(k−1)/2cn, where k ≥ 1
is the weight of f (in Section 5.2 k = 1, so an = cn). The L-function of such
a modular form can be written as the Dirichlet series

L(s, f) =
∞∑

n=1

an n
−s =

∏
p

(1− αp p
−s)−1 (1− βp p

−s)−1 , (6.2)

the last equality using the fact that f is a Hecke eigenform. The L-function
L(s, f) is entire when f is a cusp form (e.g. a0 = 0). The Ramanujan
conjecture (in this case a theorem of Deligne [6]) asserts that |αp|, |βp| ≤ 1.

Lemma 5.1 is concerned with estimates for the sums

S(m, f) :=
∑

p≤m ap . (6.3)

As with the prime number theorem, it is more convenient to instead analyze
the weighted sum

ψ(m, f) :=
∑

pk bpk log p (6.4)

over prime powers, where the coefficients bn are those appearing in the Dirich-
let series for −L′

L
(s):

− L′

L
(s) =

∑∞
n =1 bn Λ(n)n−s =

∑
p, k bpk log(p) p−k s ,

i.e. bpk = αk
p + βk

p .
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Lemma 6.1. For a holomorphic modular form f one has ψ(m, f) =∑
p≤m ap log p + O(m1/2).

Proof. The error term represents the contribution of proper prime powers.
Since |bpk | ≤ 2, it is bounded by twice∑
pk ≤m
k≥ 2

log p ≤
∑

p≤m1/2

2≤ k≤ log m
log p

log p ≤
∑

p≤m1/2

log p
logm

log p
≤ π(m1/2) logm,

(6.5)
which is O(m1/2) by the Prime Number Theorem.

Lemma 6.2. (Iwaniec [20, p. 114]) Assume that f is a holomorphic modular
cusp form of level2 N and that L(s, f) satisfies GRH. Then ψ(m, f) =
O(m1/2 log(m) log(m2N)).

We deduce that

S ′(m, f) :=
∑

p≤m ap log p = O(m1/2 log(m) log(N)) for m = O(N) .
(6.6)

Finally we shall estimate sums S(m, f) from (6.3) by removing the log p
using a standard partial summation argument. We have included a proof in
Appendix C for completeness.

Lemma 6.3. Suppose that f is a holomorphic modular cusp form of level
N and L(s, f) satisfies GRH. Then for m = O(N) one has that S(m, f) =
O(m1/2 logN).

Subexponential Reductions via Lindelöf Hypothesis: In this last
lemma we have assumed GRH. It seems very difficult to get a corresponding
unconditional bound for S(m, f). However, a slightly weaker statement can
be proven by assuming only the Lindelöf hypothesis (which is a consequence
of GRH). Namely, one has that

2Actually in [20] N equals the conductor of the L-function, which in general may be
smaller than the level. The lemma is of course nevertheless valid.
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∑
n≤m an = Oε(m

1/2+εN ε) , for any ε > 0 (6.7)

([19, (5.61)]). The fact that this last sum is over all n ≤ m, not just primes,
is not of crucial importance for our applications. However, the significant
difference here is that the dependence on N is not polynomial in logN ,
but merely subexponential. This observation can be used to weaken the
hypothesis in Theorem 2.3 from GRH to the Lindelöf hypothesis, at the
expense of replacing “polynomial” by “subexponential”.

7 Distribution of c(E)

Recall that the largest prime divisor of c(π) for “random” NIST curves in
Figure 1 was ≤ 3, while the corresponding values for Koblitz curves were
quite large. We now present some elementary arguments to explain these
observations.

First we consider the small size of c(π) for the random NIST curves.
Recall from Section 3 that c(π) is the square part of the discriminant D,
which is equal to D = t2 − 4q, where t = Trace(E). Statistically speaking,
most integers (a proportion of 6

π2 ≈ .61) are square-free, explaining why c(E)
would often be 1 or at least fairly small [44].

One can say more about the expected sizes of the largest prime factor of
c(π), i.e. the largest prime which divides D to order at least 2. By a result
of Lenstra [26], the trace t has a fairly uniform distribution — at least as far
as the q-aspect is concerned — in [−2

√
q, 2

√
q]. Namely, for any subset S of

integers contained in H = (q + 1− 2
√
q, q + 1 + 2

√
q),

|S|−2
|H|

1
(log q)

� Prob[#E(Fq) ∈ S] � |S|
|H| (log q log log q)2 ;

this probability is taken as one samples over a suitable family of elliptic
curves. Of course this is still much cruder than the precise conjectured an-
swers (e.g. Sato-Tate) described for example in [40]. Nevertheless, it serves
to provide the useful heuristic that −D = 4q − t2 is typically of size q.

With this in mind, let us now return to the issue of estimating how
frequently elliptic curves will have a large conductor gap. We mentioned in
Remark 2.6 that our random reducibility result applies between curves whose
levels have a conductor gap which is bounded by a polynomial in log q. Thus
there is a random reducibility to curves with level c(E) = 1 from any level
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for which c(E)’s prime factors are all bounded by β = polylog(q). Given
the heuristic that −D is a random number of (the much larger) size q, the
probability that c(E) has a prime factor exceeding β can be loosely estimated

as O(1/β). This is because roughly a fraction of ρ =
∏√

q

p > β (1 − p−2) integers
of size q have no square prime factor p > β. It is easy to see that log(ρ) =
O(

∑
n>β n

−2) = O(1/β), so that 1− ρ = O(1/β) as suggested.
Let us now consider the second issue, which is that the values of P (c(π))

for Koblitz curves y2+xy = x3+1 over the binary field F2n appear to be large.
This is because their discriminants have a specially factored form: since a
Koblitz curve has CM by Q(

√
−7), its discriminant is D = −7c2, where c is

the conductor (see the remarks after Theorem 3.1). Since D = t2 − 4q has
approximate size 2n, we have that c ≈ 2n/2. Assuming c is a random integer
of that size, the distribution of its largest prime factor P (c) is governed by
the usual smoothness bounds, and hence P (c) is usually large [44]. It is
nevertheless conceivable that there are some curves of Koblitz type which
have small P (c).

A Appendix: Proof of Proposition 4.1

Proof. There are kr random walks of length r starting from x. One would
expect in a truly random situation that roughly |S|

h
kr of these land in S. The

lemma asserts that for r ≥ log 2h/|S|1/2

log k/c
at least half that number of walks in

fact do. Denoting the characteristic functions of S and {x} as χS and χ{x},
respectively, we count that

# {walks starting at x and landing in S} = 〈χS , A
rχ{x} 〉 , (A.1)

where 〈·, ·〉 denotes the inner product of functions in L2(V). We estimate
this as follows. Write the orthogonal decompositions of χS and χ{x} as

χS =
|S|
h

1 + u and χ{x} =
1

h
1 + w , (A.2)

where 1 is the constant vector and 〈u,1〉 = 〈w,1〉 = 0. Then (A.1) equals the

expected value of |S|
h
kr, plus the additional term 〈u,Arw〉, which is bounded

by ‖u‖ ‖Arw‖. Because w ⊥ 1 and the symmetric matrix Ar has spectrum
bounded by cr on the span of such vectors,

‖u‖ ‖Arw‖ ≤ cr ‖u‖ ‖w‖ ≤ cr ‖χS‖ ‖χ{x}‖ = cr |S|1/2 . (A.3)
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For our values of r this is at most half of |S|
h
kr, so indeed at least 1

2
|S|
h
kr of

the paths terminate in S as was required.

B Supersingular Case

In this section we discuss the isogeny graphs for supersingular elliptic curves
and prove Theorem 2.1 in this setting. The isogeny graphs were first consid-
ered by Mestre [32], and were shown by Pizer [36,37] to have the Ramanujan
property. We have decided to give an account here for completeness, mainly
following Pizer’s arguments. Actually the isogeny graphs we will present
here differ from those in the ordinary case in that they are directed. This
will cause no serious practical consequences, because one can arrange that
only a bounded number of edges in these graphs will be unaccompanied by a
reverse edge. Also, the implication about rapid mixing used for Corollary 2.2
carries over as well in the undirected setting with almost no modification.
It is instructive to compare the proofs for the ordinary and supersingular
cases, in order to see how GRH plays a role analogous to the Ramanujan
conjectures.

Every supersingular elliptic curve in characteristic p is defined over either
Fp or Fp2 [41], so it suffices to fix Fq = Fp2 as the field of definition for this
discussion. Thus, in contrast to ordinary curves, there is a finite bound g on
the number of curves that can belong to any given isogeny class (this bound
is in fact the genus of the modular curve X0(p), which is roughly p+1

12
). It

turns out that all supersingular curves defined over Fp2 belong to the same
isogeny class [32]. Because the number of supersingular curves is so much
smaller than the number of ordinary curves, correspondingly fewer of the
edges need to be included in order to form a Ramanujan graph. For a fixed
prime value of ` 6= p, we define the vertices of the supersingular isogeny graph
G to consist of these g curves, with directed edges indexed by equivalence
classes of degree-` isogenies as defined below. In fact, we will prove that G
is a directed k = ` + 1-regular graph satisfying the Ramanujan bound of
|λ| ≤ 2

√
` = 2

√
k − 1 for the nontrivial eigenvalues of its adjacency matrix.

The degree ` in particular may be taken to be as small as 2 or 3.
For the definition of the equivalence classes of isogenies — as well as later

for the proofs — we now need to recall the structure of the endomorphism
rings of supersingular elliptic curves. In contrast to the ordinary setting (Sec-
tion 3), the endomorphism ring End(E) is a maximal order in the quaternion
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algebra R = Qp,∞ ramified at p and ∞. Moreover, isomorphism classes of
supersingular curves Ei isogenous to E are in 1-1 correspondence with the
left ideal classes Ii := Hom(Ei, E) of R. Call two isogenies φ1, φ2 : Ei → Ej

equivalent if there exists an automorphism (=invertible endomorphism) α of
Ej such that φ2 = αφ1. Under this relation, the set of equivalence classes of
isogenies from Ei to Ej is equal to I−1

j Ii modulo the units of Ij. This cor-
respondence is degree preserving, in the sense that the degree of an isogeny
equals the reduced norm of the corresponding element in I−1

j Ii, normalized

by the norm of I−1
j Ii itself. This is the notion of equivalence class of isoge-

nies referred to in the definition of G in the previous paragraph. Thus, for
any integer n, the generating function for the number Mij(n) of equivalence
classes of degree n isogenies from Ei to Ej (i.e. the number of edges between
vertices representing elliptic curves Ei and Ej) is given by

∞∑
n=0

Mij(n) qn :=
1

ej

∑
α∈ I−1

j Ii

qN(α)/N(I−1
j Ii) (B.1)

where ej is the number of units in Ij (equivalently, the number of automor-
phisms of Ej). One knows that ej ≤ 6, and in fact ej = 2 except for at most
two values of j – see the further remarks at the end of this section. Proofs
for the statements in this paragraph can be found in [15,37].

The θ-series on the righthand side of (B.1) is a weight 2 modular form
for the congruence subgroup Γ0(p), and the matrices

B(n) :=

M11(n) · · · M1g(n)
...

. . .
...

Mg1(n) · · · Mgg(n)


(called Brandt matrices) are simultaneously both the n-th Fourier coefficients
of various modular forms, as well the adjacency matrices for the graph G.
A fundamental property of the Brandt matrices B(n), in fact, is that they
represent that the action of the nth Hecke operator T (n) on a certain basis of
modular forms of weight 2 for Γ0(p) (see [36]). Thus the eigenvalues of B(n)
are given by the nth coefficients of the weight-2 Hecke eigenforms for Γ0(p).
These eigenforms include a single Eisenstein series, with the rest being cusp
forms. Now we suppose that n = ` is prime (mainly in order to simplify the
following statements). The nth Hecke eigenvalue of the Eisenstein series is
n + 1, while those of the cusp forms are bounded in absolute value by 2

√
n
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according to the Ramanujan conjectures (in this case a theorem of Eichler
[8] and Igusa [17]). Thus the adjacency matrix of G has trivial eigenvalue
equal to `+1 (the degree k), and its nontrivial eigenvalues indeed satisfy the
Ramanujan bound |λ| ≤ 2

√
k − 1.

Finally, we conclude with some comments about the potential asymmetry
of the matrix B(n). This is due to the asymmetry in the definition of equiv-
alence classes of isogenies. Indeed, if Aut(E1) and Aut(E2) are different in
size, then two isogenies E1 → E2 can sometimes have equivalent dual isoge-
nies even if the original isogenies themselves are not equivalent. This problem
arises only if one of the curves Ei has complex multiplication by either

√
−1

or e2πi/3, since otherwise the only possible automorphisms of Ei are the scalar
multiplication maps ±1 [41, §III.10]. In the supersingular setting, one can
avoid curves with such unusually rich automorphism groups by choosing a
characteristic p which splits in both Z[

√
−1] and Z[e2πi/3], i.e. p ≡ 1 mod 12

(see [36, Prop. 4.6]). In the case of ordinary curves, however, the quadratic
orders Z[

√
−1] and Z[e2πi/3] both have class number 1, which then renders

the issue moot because the isogeny graphs corresponding to these levels each
have only one node.

C Proof of Lemma 6.3

Proof. First define ãp to be ap, if p is prime, and 0 otherwise. Then∑
p≤m

ap =
∑
p≤m

[ãp log p]
1

log p
=

∑
n≤m

[ãn log n]
1

log n
.

By partial summation over 2 ≤ n ≤ m, we then find∑
p≤m

ap =
∑
n < m

S ′(n, f)

(
1

log(n)
− 1

log(n+ 1)

)
+

S ′(m, f)

logm

�
∑
n < m

(
n1/2 log n logN

) ∣∣∣∣ ddn (
(log n)−1

)∣∣∣∣ + m1/2 logN

�
∑
n < m

n1/2 log(n) log(N)
1

n(log n)2
+ m1/2 logN

so in fact

S(m, f) =
∑
p≤m

ap = O(m1/2 log(N)) for m = O(N) . (C.1)
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D Diagram of concepts from Section 3

Surface Endomorphism ring

Floor

Figure 2: Ordinary elliptic curves over Fq have complex multiplication by

imaginary quadratic number fields K = Q(
√
d). An isogeny class can be

subdivided into collections of curves having the same endomorphism ring,
which is always an order in K. The nodes at the top of this figure represent
ordinary curves whose endomorphism ring is the maximal order, i.e. the ring
of integers of Q(

√
d). Lower nodes represent curves with smaller endomor-

phism rings; nodes on different levels are connected by isogenies of potentially
high degree (“the conductor gap”), depending on the relative sizes of their
associated orders. In particular our results demonstrate that a random walk
via low degree isogenies mixes rapidly on a given horizontal level, but does
not necessarily bridge the conductor gap when this separation is, say, a large
prime.
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[32] J.-F. Mestre, La méthode des graphes. Exemples et applications, Proceedings of the
international conference on class numbers and fundamental units of algebraic number
fields (Katata, 1986), 1986, pp. 217–242 (French).MR 88e:11025

25



[33] Victor S. Miller, Use of elliptic curves in cryptography, Advances in cryptology—
CRYPTO ’85 (Santa Barbara, Calif., 1985), 1986, pp. 417–426.MR 88b:68040

[34] M. Ram Murty, Problems in analytic number theory, Graduate Texts in Mathemat-
ics, vol. 206, Springer-Verlag, New York, 2001. Readings in Mathematics.MR1803093
(2001k:11002)

[35] National Institute of Standards and Technology, Digital Signature Standard (DSS),
Technical Report FIPS PUB 186–2, January 2000.
http://www.csrc.nist.gov/publications/fips/fips186-2/
fips186-2-change1.pdf.

[36] Arnold K. Pizer, Ramanujan graphs and Hecke operators, Bull. Amer. Math. Soc.
(N.S.) 23 (1990), no. 1, 127–137.MR 90m:11063

[37] , Ramanujan graphs, Computational perspectives on number theory (Chicago,
IL, 1995), 1998, pp. 159–178.MR 99b:11046

[38] Zeév Rudnick and Peter Sarnak, Zeros of principal L-functions and random matrix
theory, Duke Math. J. 81 (1996), no. 2, 269–322. A celebration of John F. Nash, Jr.

[39] Peter Sarnak, Some applications of modular forms, Cambridge Tracts in Mathematics,
vol. 99, Cambridge University Press, Cambridge, 1990.MR 92k:11045

[40] Jean-Pierre Serre, Abelian l-adic representations and elliptic curves, McGill University
lecture notes written with the collaboration of Willem Kuyk and John Labute, W. A.
Benjamin, Inc., New York-Amsterdam, 1968.MR0263823 (41 #8422)

[41] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathemat-
ics, vol. 106, Springer-Verlag, New York, 1994.MR 95m:11054

[42] John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2
(1966), 134–144.MR0206004 (34 #5829)

[43] John T. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179–
206.MR0419359 (54 #7380)
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