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Abstract

The currently known constructions of Boolean functions with
high nonlinearities, high algebraic degrees and high resiliency or-
ders do not seem to permit achieving sufficiently high algebraic
immunities. We introduce a construction of Boolean functions,
which builds a new function from three known ones. Assuming
that the three functions have some resiliency order, nonlinearity
and algebraic degree, as well as their sum modulo 2, the con-
structed function has the same resiliency order and can have the
same nonlinearity, but has potentially better algebraic degree and
algebraic immunity. The set of classical constructions together
with this new one (and with a simpler derived one, having the
same advantages) permit now to obtain functions achieving all
necessary criteria for being used in the pseudo-random generators
in stream ciphers.
We also apply this construction to obtain bent functions from
known ones.

Keywords : Algebraic attacks, Stream ciphers, Boolean Function,
Algebraic Degree, Resiliency, nonlinearity.

1 Introduction

Boolean functions, that is, {0, 1}-valued functions defined on the set F2
n

of all binary words of a given length n, are used in the pseudo-random
generators of stream ciphers and play a central role in their security.
The generation of the keystream consists, in many stream ciphers, of
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a linear part, producing a sequence with a large period, usually com-
posed of one or several LFSR’s, and a nonlinear combining or filtering
function f that produces the output, given the state of the linear part.
The main classical cryptographic criteria for designing such function f
are balancedness (f is balanced if its Hamming weight equals 2n−1) to
prevent the system from leaking statistical information on the plaintext
when the ciphertext is known, a high algebraic degree (that is, a high
degree of the algebraic normal form of the function) to counter linear
synthesis by Berlekamp-Massey algorithm, a high order of correlation
immunity (and more precisely, of resiliency, since the functions must be
balanced) to counter correlation attacks (at least in the case of combining
functions), and a high nonlinearity (that is, a large Hamming distance
to affine functions) to withstand correlation attacks (again) and linear
attacks.
Since the introduction of these criteria, the problem of efficiently con-
structing highly resilient functions with high nonlinearities and algebraic
degrees has received much attention. Few primary constructions are
known, and secondary constructions are also necessary to obtain func-
tions, on a sufficient number of variables, achieving or approaching the
best possible cryptographic characteristics.
The recent algebraic attacks have dramatically complicated this situa-
tion. Algebraic attacks recover the secret key by solving an overdefined
system of multivariate algebraic equations. The scenarios found in [18],
under which low degree equations can be deduced from the knowledge of
the nonlinear combining or filtering function, have led in [29] to a new
parameter of the Boolean function: its algebraic immunity, which must
be high.
No primary construction leading to functions with high algebraic immu-
nity is known. The main known primary constructions of highly nonlinear
resilient functions lead to functions with insufficient algebraic immunities.
The known secondary constructions use functions on Fm

2 , with m < n,
to obtain functions on F n

2 , and they do not seem to permit achieving
high algebraic immunity from functions with lower algebraic immuni-
ties. For instance, the 10-variable Boolean function used in the LILI
keystream generator (a submission to NESSIE European call for crypto-
graphic primitives) is built following [37] by using classical constructions;
see [40]. It has algebraic immunity 4 and is responsible for the lack of
resistance of LILI to algebraic attacks, as shown in [18]. Hence, we ar-
rive now to a quite new situation, which is problematic: no satisfactory
solution seems to exist for generating Boolean functions satisfying all
necessary cryptographic criteria at sufficiently high levels!
As shown in [29], and in [14], taking random balanced functions on suf-
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ficiently large numbers of variables could suffice to withstand algebraic
attacks on the stream ciphers using them. As shown in [30], it would
also permit to reach nonlinearities which would not be too far from the
optimal ones. But such solution is more or less a last resort, and it im-
plies using functions on large numbers of variables, which reduces the
efficiency of the corresponding stream ciphers. In any case, it does not
permit to reach nonzero resiliency orders.
In this paper, we introduce a construction of functions on F n

2 from func-
tions on F n

2 which, when combined with the classical primary and sec-
ondary constructions, leads to functions achieving high algebraic degrees,
high nonlinearities and high resiliency orders, and also permits to attain
potentially high algebraic immunity.
The paper is organized as follows. In Section 2, we recall the basic no-
tions and properties. We also recall the known constructions of highly
resilient (and bent) functions and we explain why, in practice, they build
functions whose algebraic immunity is too low. In Section 3, we intro-
duce the new construction and a derived construction which is simpler,
and we show why they lead potentially to functions with better algebraic
degree and algebraic immunity.

2 Preliminaries

In this paper, we will deal in the same time with sums modulo 2 and
with sums computed in Z. We denote by ⊕ the addition in F2 (but we
denote by + the addition in the field F2n and in the vectorspace F n

2 ,
since there will be no ambiguity) and by + the addition in Z. We denote
by

⊕
i∈... (resp.

∑
i∈...) the corresponding multiple sums. Let n be any

positive integer. Any Boolean function f on n variables admits a unique
algebraic normal form (A.N.F.):

f(x1, . . . , xn) =
⊕

I⊆{1,...,n}
aI

∏
i∈I

xi,

where the aI ’s are in F2. We call algebraic degree of a Boolean func-
tion the degree of its algebraic normal form. Affine functions are those
Boolean functions of degrees at most 1.
The Hamming weight wH(f) of a Boolean function f on n variables is the
size of its support {x ∈ F n

2 ; f(x) = 1}. The Hamming distance dH(f, g)
between two Boolean functions f and g is the Hamming weight of their
difference f ⊕ g (i.e. of their sum modulo 2). The nonlinearity of f is
its minimum distance to all affine functions. Functions used in stream or
block ciphers must have high nonlinearities to resist the attacks on these
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ciphers (correlation and linear attacks, see [3, 25, 26, 39]). The nonlinear-
ity of f can be expressed by means of the discrete Fourier transform of the
“sign” function χf (x) = (−1)f(x), equal to χ̂f (s) =

∑
x∈F2

n(−1)f(x)⊕x·s

(and called the Walsh transform): the distance dH(f, l) between f and
the affine function l(x) = s ·x⊕ ε (s ∈ F n

2 ; ε ∈ F2) and the number χ̂f (s)
are related by:

χ̂f (s) = (−1)ε(2n − 2dH(f, l)) (1)

and the nonlinearityNf of any Boolean function on F n
2 is therefore related

to the Walsh spectrum of χf via the relation:

Nf = 2n−1 − 1

2
max
s∈F n

2

|χ̂f (s)|. (2)

It is upper bounded by 2n−1 − 2n/2−1 because of the so-called Parseval’s
relation

∑
s∈F n

2
χ̂f

2(s) = 22n. A Boolean function is called bent if its

nonlinearity equals 2n−1 − 2n/2−1, where n is necessarily even. Then, its
distance to every affine function equals the maximum 2n−1± 2n/2−1. But
the function cannot be balanced, i.e. uniformly distributed. Hence, it
cannot be used without modifications in the pseudo-random generator
of a stream cipher, since this would leak statistical information on the
plaintext, given the ciphertext.
A Boolean function f is bent if and only if all of its derivatives Daf(x) =
f(x) ⊕ f(x + a) are balanced, (see [34]). Hence, f is bent if and only if
its support is a difference set (cf. [20]).
If f is bent, then the dual Boolean function f̃ defined on F2

n by χ̂f (s) =

2
n
2 (χ

f̃
)(s) is bent. The dual of f̃ is f itself. The mapping f 7→ f̃ is an

isometry (the Hamming distance between two bent functions is equal to
that of their duals).
The notion of bent function is invariant under linear equivalence and it
is independent of the choice of the inner product in F2

n (since any other
inner product has the form 〈x, s〉 = x · L(s), where L is an auto-adjoint
linear isomorphism).
Rothaus’ inequality states that any bent function has algebraic degree at
most n/2 [34]. Algebraic degree being an important complexity param-
eter, bent functions with high degrees are preferred from cryptographic
viewpoint.
The class of bent functions, whose determination is still an open prob-
lem, is relevant to cryptography1 (cf. [28]), to algebraic coding theory (cf.

1Bent functions have a drawback from cryptographic viewpoint: they are not
balanced; but as soon as n is large enough (say n = 20), the difference 2n/2−1 between
their weights and the weight 2n−1 of balanced functions is negligible with respect to
this weight and cannot be used in attacks.
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[27]), to sequence theory (cf. [32]) and to design theory (any difference
set can be used to construct a symmetric design, cf. [1], pages 274-278).
More information on bent functions can be found in the survey paper [9].
We do not know many constructions of bent functions. A purpose of this
paper is to design new ones.

The class of bent functions is included in the class of the so-called
plateaued functions. This notion has been introduced by Zheng and
Zhang in [43]. A function is called plateaued if its squared Walsh trans-
form takes at most one nonzero value, that is, if its Walsh transform
takes at most three values 0 and ±λ (where λ is some positive integer,
that we call the amplitude of the plateaued function). Because of Parse-
val’s relation, λ must be of the form 2r where r ≥ n

2
, and the suppport

{s ∈ F n
2 / χ̂f (s) 6= 0} of the Walsh transform of a plateaued function of

amplitude 2r has size 22n−2r.

A more important class of Boolean functions for cryptography is that
of resilient functions. These functions play a central role in stream ci-
phers: in the standard model of these ciphers (cf. [38]), the outputs to n
linear feedback shift registers are the input to a Boolean function. The
output to the function produces the keystream, which is then bitwisely
xored with the message to produce the cipher. Some devide-and-conquer
attacks exist on this method of encryption (cf. [3, 25, 26, 39]) and lead to
criteria the combining function must satisfy. Two main criteria are the
following: the combining function must be balanced; it must also be such
that the distribution probability of its output is unaltered when any m of
its inputs are fixed [39], with m as large as possible. This property, called
m-th order correlation-immunity [38], is characterized by the set of zero
values in the Walsh spectrum [42]: f is m-th order correlation-immune
if and only if χ̂f (u) = 0, for all u ∈ F n

2 such that 1 ≤ wH(u) ≤ m, where
wH(u) denotes the Hamming weight of the n-bit vector u, (the number
of its nonzero components). Balanced m-th order correlation-immune
functions are called m-resilient functions. They are characterized by the
fact that χ̂f (u) = 0 for all u ∈ F n

2 such that 0 ≤ wH(u) ≤ m.
The notions of correlation-immune and resilient functions are not in-
variant under linear equivalence; they are invariant under translation
x 7→ x + a, since, if g(x) = f(x + a), then χ̂g(u) = χ̂f (u)(−1)a·u, and
under permutation of the input coordinates.
Siegenthaler’s inequality [38] states that any m-th order correlation-
immune function on n variables has degree at most n − m, that any
m-resilient function (0 ≤ m < n − 1) has algebraic degree smaller than
or equal to n−m−1 and that any (n−1)-resilient function has algebraic
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degree 1. We shall call Siegenthaler’s bound this property.
Sarkar and Maitra have shown that the Hamming distance between any
m-resilient function and any affine function is divisible by 2m+1. (this
divisibility bound is improved in [10, 15] for functions with specified al-
gebraic degrees). This has led to an upper bound on the nonlinearity of
m-resilient functions (also partly obtained by Tarannikov and by Zhang
and Zheng): the nonlinearity of any m-resilient function is smaller than
or equal to 2n−1 − 2m+1 if n

2
− 1 < m + 1, to 2n−1 − 2

n
2
−1 − 2m+1 if n is

even and n
2
− 1 ≥ m + 1 and to 2n−1 − 2m+1

⌈
2n/2−m−2

⌉
if n is odd and

n
2
− 1 ≥ m + 1. We shall call this set of upper bounds Sarkar et al.’s

bound. A similar bound exists for correlation-immune functions, but we
do not recall it since non-balanced correlation-immune functions present
small cryptographic interest.
Constructions providing resilient functions with degrees and nonlinear-
ities approaching or achieving the known bounds are necessary for the
design of stream ciphers. Two kinds of constructions can be identified.
Some constructions give direct definitions of Boolean functions. There
are few such primary constructions and new ideas for designing them
are currently lacking. Moreover, the only known primary construction
of resilient functions which leads to a wide class of such functions, the
Maiorana-McFarland’s construction, does not permit to design functions
with optimum degrees and nonlinearities (see e.g. [11, 12]), except for
small values of the number of variables. Modifications and generaliza-
tions of this construction have been proposed (see e.g. [11, 31, 36]), but
the generalizations lead to classes with the same properties as the orig-
inal class and the number of the functions the modifications permit to
construct is small (and they do not have good algebraic immunity, see be-
low). Non-primary constructions use previously defined functions (that
we shall call “building blocks” in the sequel) to build new ones and often
lead in practice to recursive constructions. They are called secondary con-
structions. No simple secondary construction using, as building blocks,
functions defined on the same space F n

2 as the constructed functions is
known (we recall below the two known examples of such constructions;
they need assumptions which are hard to satisfy). The purpose of the
present paper is to introduce such general construction and to study its
properties.

Until recently, a high algebraic degree, a high resiliency order (at least
in the case of combining functions) and a high nonlinearity were the only
requirements needed for the design of the function f used in a stream
cipher. The recent algebraic attacks [18] have changed this situation by
adding a new criterion of considerable importance to this list. Algebraic
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attacks recover the secret key by solving an overdefined system of multi-
variate algebraic equations. These attacks exploit multivariate relations
involving key/state bits and output bits of f . If one such relation is found
that is of low degree in the key/state bits, algebraic attacks are very ef-
ficient [17]. It is demonstrated in [18] that low degree relations and thus
successful algebraic attacks exist for several well known constructions of
stream ciphers that are immune to all previously known attacks. These
low degree relations are obtained by producing low degree polynomial
multiples of f , i.e., by multiplying the Boolean function f by a well cho-
sen low degree function g, such that the product function f ∗ g (that is,
the function which support equals the intersection of the supports of f
and g) is again of low degree.
The scenarios found in [18], under which low degree multiples of a Boolean
function may exist, have been simplified in [29] into two scenarios: (1)
there exists a non-zero Boolean function g of low degree whose support is
disjoint from the support of f (such a function g is called an annihilator
of f); (2) there exists a non-zero Boolean function g of low degree whose
support is included in the support of f (i.e. such that g is an annihilator
of f ⊕ 1). We write then: g � f .
The algebraic immunity AI(f) of a Boolean function f is the minimum
value of d such that f or f ⊕ 1 admits an annihilator of degree d. It
should be high enough (at least equal to 6).

2.1 The known constructions of resilient and bent
functions and the corresponding degrees and
nonlinearities

2.2 Primary constructions

2.2.1 Maiorana-McFarland constructions

Maiorana-McFarland class (cf. [21]) is the set of all the (bent) Boolean

functions on F n
2 = {(x, y), x, y ∈ F

n
2

2 } (n even) of the form :

f(x, y) = x · π(y)⊕ g(y) (3)

where π is any permutation on F
n
2

2 and g is any Boolean function on F
n
2

2 .
The dual of f is then f̃(x, y) = y · π−1(x) ⊕ g(π−1(x)). Notice that the
degree of f can be n/2, i.e. be optimal.
In [2] is introduced a construction of resilient functions based on the same
idea:
let m and n = r + s be any integers such that r > m ≥ 0, s > 0, g any
Boolean function on F s

2 and φ a mapping from F s
2 to F r

2 such that every
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element in φ(F s
2 ) has Hamming weight strictly greater than m, then the

function:
f(x, y) = x · φ(y)⊕ g(y), x ∈ F r

2 , y ∈ F s
2 (4)

is m-resilient, since we have χ̂f (a, b) = 2r ∑
y∈φ−1(a)(−1)g(y)⊕b·y.

The degree of f and its nonlinearity have been studied in [11, 12]. The
functions of the form (4), for n

2
−1 < m+1, can have high nonlinearities.

However, optimum or nearly optimal functions could be obtained with
this construction only with functions in which r was large and s was
small. The functions being then concatenations of affine functions on
a pretty large number of variables, their algebraic immunity can hardly
achieve high values. This can be checked by computer experiment. In the
case n

2
−1 ≥ m+1, no function belonging to Maiorana-McFarland’s class

and having nearly optimal nonlinearity could be constructed, except in
the limit case n

2
− 1 = m + 1. Generalizations of Maiorana-McFarland’s

construction exist (see e.g. [11]) but they have more or less the same
behavior as the original construction. Modifications have also been pro-
posed (see e.g. [33], in which some affine functions, at least one, are
replaced by suitably chosen nonlinear functions) but it is shown in [29]
that the algebraic immunities of these functions are often low.

2.2.2 Effective partial-spreads constructions

In [21] is also introduced the class of bent functions called PSap (a sub-
class of the so-called Partial-Spreads class), whose elements are defined
the following way:

F
n
2

2 is identified to the Galois field F
2

n
2
; PSap is the set of all the func-

tions of the form f(x, y) = g(x y2
n
2 −2) (i.e. g(x

y
) with x

y
= 0 if x = 0 or

y = 0) where g is a balanced Boolean function on F
n
2

2 . We have then
f̃(x, y) = g( y

x
). The degree of f can be optimal, even if g is affine.

This idea is used in [8] to obtain a construction of correlation-immune
functions:
Let s and r be two positive integers and n = r+ s, g a function from F2r

to F2, φ a linear mapping from F s
2 to F2r and u an element of F2r such

that u+φ(y) 6= 0, ∀y ∈ F s
2 .

Let f be the function from F2r × F s
2 ∼ F n

2 to F2 defined by:

f(x, y) = g

(
x

u+φ(y)

)
⊕ v · y, (5)

where v ∈ F s
2 . If, for every z in F2r , φ∗(z) ⊕ v has weight greater than

m, where φ∗ : F2r 7→ F s
2 is the adjoint of φ, then f is m-resilient.
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The same observations as for Maiorana-McFarland’s construction on the
ability of these functions to have nonlinearities near Sarkar-Maitra’s
bound can be made. However, these functions have potentially higher
algebraic immunities, as can be checked by computer experiment. So
this class of functions, which has, until now, not been much used to con-
struct functions, may present more interest now. Nevertheless, this class
of functions is small and gives little opportunity to satisfy additional
conditions needed in practice (because of the implementation, ...).

2.3 Secondary constructions

We shall call constructions with extension of the number of variables
those constructions using functions on Fm

2 , with m < n, to obtain func-
tions on F n

2 .

2.3.1 General constructions with extension of the number of
variables

All known such constructions of bent functions are particular cases of a
general construction given in [7]:
Let m and r be two positive even integers. Let f be a Boolean function
on Fm+r

2 such that, for any element x′ of F r
2 , the function on Fm

2 :

fx′ : x→ f(x, x′)

is bent. Then f is bent if and only if for any element u of Fm
2 , the

function
ϕu : x′ → f̃x′(u)

is bent on F r
2 .

A particular case of the general construction of bent functions given
above is a construction due to Rothaus in [34]. We describe it because it
will be related to the construction studied in the present paper: if f1, f2,
f3 and f1 ⊕ f2 ⊕ f3 are bent on Fm

2 (m even), then the function defined
on any element (x1, x2, x) of Fm+2

2 by:

f(x1, x2, x) =

f1(x)f2(x)⊕f1(x)f3(x)⊕f2(x)f3(x)⊕[f1(x)⊕f2(x)]x1⊕[f1(x)⊕f3(x)]x2⊕x1x2

is bent.

The classical secondary constructions of resilient functions are the
following:
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Direct sums of functions: if f is an r-variable t-resilient function and
if g is an s-variable m-resilient function, then the function:

h(x1, . . . , xr, xr+1, . . . , xr+s) = f(x1, . . . , xr)⊕ g(xr+1, . . . , xr+s)

is (t + m + 1)-resilient. This comes from the easily provable relation
χ̂h(a, b) = χ̂f (a)×χ̂g(b), a ∈ F r

2 , b ∈ F s
2 . We have also d◦h = max(d◦f, d◦g)

and, thanks to Relation (2), Nh = 2r+s−1 − 1
2
(2r − 2Nf )(2

s − 2Ng) =
2rNg + 2sNf − 2NfNg.

Siegenthaler’s construction: Let f and g be two Boolean functions
on F r

2 . Consider the function

h(x1, . . . , xr, xr+1) = (xr+1 ⊕ 1)f(x1, . . . , xr)⊕ xr+1g(x1, . . . , xr)

on F r+1
2 . Then:

χ̂h(a1, . . . , ar, ar+1) = χ̂f (a1, . . . , ar) + (−1)ar+1 χ̂g(a1, . . . , ar).

Thus, if f and g are m-resilient, then h is m-resilient; moreover, if for
every a ∈ F r

2 of Hamming weight m + 1, we have χ̂f (a) + χ̂g(a) = 0,
then h is (m + 1)-resilient. And we have: Nh ≥ Nf + Ng. If f and g
achieve maximum possible nonlinearity 2r−1 − 2m+1 and if h is (m+ 1)-
resilient, then the nonlinearity 2r − 2m+2 of h is the best possible. If
the supports of the Walsh transforms of f and g are disjoint, then we
have Nh = 2r−1 + min(Nf ,Ng); thus, if f and g achieve maximum pos-
sible nonlinearity 2r−1− 2m+1, then h achieves best possible nonlinearity
2r − 2m+1. But we could not obtain good algebraic immunity with such
functions. The reason is the following: we have (xr+1 ⊕ 1)f ′ ⊕ xr+1g

′ �
(xr+1 ⊕ 1)f ⊕ xr+1g⊕ 1 if and only if f ′ � f ⊕ 1 and g′ � g⊕ 1, and the
degree of (xr+1 ⊕ 1)f ′⊕ xr+1g

′ is upper bounded by the degree of f ′⊕ g′

plus 1; it seems difficult to avoid the existence of annihilators f ′ and g′

of f and g such that f ′⊕g′ has low degree, and to achieve high resiliency
order and/or high nonlinearity with h.

Tarannikov’s construction: Let g be any Boolean function on F2
r.

Define the Boolean function h on F2
r+1 by h(x1, . . . , xr, xr+1) = xr+1 ⊕

g(x1, . . . , xr−1, xr ⊕ xr+1). The Walsh transform χ̂h(a1, . . . , ar+1) is equal
to

∑
x1,...,xr+1∈F2

(−1)a·x⊕g(x1,...,xr)⊕arxr⊕(ar⊕ar+1⊕1)xr+1 , where we write a =

(a1, . . . , ar−1) and x = (x1, . . . , xr−1); it is null if ar+1 = ar and it equals
2 χ̂g(a1, . . . , ar−1, ar) if ar = ar+1 ⊕ 1. Thus: Nh = 2 Ng; If g is m-
resilient, then h is m-resilient. If, additionally, χ̂g(a1, . . . , ar−1, 1) is null
for every vector (a1, . . . , ar−1) of weight at most m, then h is (m + 1)-
resilient.
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Tarannikov in [41], and after him, Pasalic et al. in [35] used this con-
struction to design a more complex one, that we call Tarannikov et
al.’s construction, which permitted to achieve maximum tradeoff be-
tween resiliency, algebraic degree and nonlinearity. It uses (see [35]) two
(n − 1)-variable m-resilient functions f1 and f2 achieving Siegenthaler’s
and Sarkar et al.’s bounds to design an (n+ 3)-variable (m+ 2)-resilient
function h also achieving these bounds, assuming that f1+f2 has same de-
gree as f1 and f2 and that the supports of the Walsh transforms of f1 and
f2 are disjoint. The two restrictions h1(x1, . . . , xn+2) = h(x1, . . . , xn+2, 0)
and h2(x1, . . . , xn+2) = h(x1, . . . , xn+2, 1) have then also disjoint Walsh
supports, and these two functions can then be used in the places of
f1 and f2. This permits to generate functions achieving Sarkar et al.’s
and Siegenthaler’s bounds on sufficiently high numbers of variables. But
Tarannikov et al.’s construction does not seem either to permit to achieve
high algebraic immunities.
Tarannikov et al.’s construction has been in its turn generalized (see [13]):

Theorem 1 Let r, s, t and m be positive integers such that t < r and
m < s. Let f1 and f2 be two r-variable t-resilient functions. Let g1 and
g2 be two s-variable m-resilient functions. Then the function h(x, y) =
f1(x)⊕g1(y)⊕(f1⊕f2)(x) (g1⊕g2)(y), x ∈ F r

2 , y ∈ F s
2 is an (r+s)-variable

(t+m+1)-resilient function. If f1 and f2 are distinct and if g1 and g2 are
distinct, then the algebraic degree of h equals max(d◦f1, d

◦g1, d
◦(f1⊕f2)+

d◦(g1 ⊕ g2)); otherwise, it equals max(d◦f1, d
◦g1). The Walsh transform

of h takes value

χ̂h(a, b) =
1

2
χ̂f1(a) [χ̂g1(b) + χ̂g2(b)] +

1

2
χ̂f2(a) [χ̂g1(b)− χ̂g2(b)] . (6)

If the Walsh transforms of f1 and f2 have disjoint supports and if the
Walsh transforms of g1 and g2 have disjoint supports, then

Nh = min
i,j∈{1,2}

(
2r+s−2 + 2r−1Ngj

+ 2s−1Nfi
−Nfi

Ngj

)
. (7)

In particular, if f1 and f2 are two (r, t,−, 2r−1 − 2t+1) functions with
disjoint Walsh supports, if g1 and g2 are two (s,m,−, 2s−1− 2m+1) func-
tions with disjoint Walsh supports, and if f1 +f2 has degree r− t−1 and
g1 + g2 has degree s −m − 1, then h is a (r + s, t + m + 1, r + s − t −
m − 2, 2r+s−1 − 2t+m+2) function, and thus achieves Siegenthaler’s and
Sarkar et al.’s bounds.

Note that function h, defined this way, is the concatenation of the four
functions f1, f1 ⊕ 1, f2 and f2 ⊕ 1, in an order controled by g1(y) and
g2(y).
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The proof of this theorem and examples of such pairs (f1, f2) (or (g1, g2))
can be found in [13].

Another construction: There exists a secondary construction of re-
silient functions from bent functions (see [8]): let r be a positive integer,
m a positive even integer and f a function such that, for any element
x′, the function: fx′ : x → f(x, x′) is bent. If, for every element u of

Hamming weight at most t, the function ϕu : x′ → f̃x′(u) is (t−wH(u))-
resilient, then f is t-resilient (the converse is true).

Rothaus’ construction has been modified in [8] into a construction of
resilient functions: if f1 is t-resilient, f2 and f3 are (t − 1)-resilient and
f1⊕f2⊕f3 is (t−2)-resilient, then f(x1, x2, x) is t-resilient (the converse
is true).
This construction does not seem able to produce functions with higher
algebraic immunities than the functions used as building blocks.

2.3.2 Constructions without extension of the number of vari-
ables

Such constructions, by modifying the support of highly nonlinear resilient
functions without decreasing their characteristics, seem more appropriate
for trying to increase the algebraic immunities of such functions, previ-
ously obtained by classical constructions. There exist, in the literature,
two such constructions.

Modifying a function on a subspace: Dillon proves in [21] that if a
binary function f is bent on F n

2 (n even) and if E is an n
2
-dimensional

flat on which f is constant, then, denoting by 1E the indicator (i.e. the
characteristic function) of E, the function f ⊕ 1E is bent too. This is
generalized in [5]:
Let E = b ⊕ E ′ be any flat in F2

n (E ′, the direction of E, is a linear
subspace of F2

n). Let f be any bent function on F2
n. The function

f ? = f⊕1E is bent if and only if one of the following equivalent conditions
is satisfied :

1. for any x in F2
n \E ′, the function: y 7→ f(y)⊕f(x⊕y) is balanced

on E;

2. for any a in F2
n, the restriction of the function f̃(x)⊕ b · x to the

flat a⊕ E ′⊥ is either constant or balanced.

If one of these conditions is satisfied, then E has dimension greater than
or equal to r = n/2 and the degree of the restriction of f to E is at
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most dim(E)− r+1. If E has dimension r, then this last condition (i.e.,
the fact that the restriction of f to E is affine) is also sufficient and the

function f̃ ?(x) is equal to :

f̃(x)⊕ 1E′⊥(u⊕ x),

where u is any element of F2
n such that for any x in E : f(x) = u ·x⊕ ε.

This construction has been adapted to correlation-immune functions in
[8]: let t, m and n any positive integers and f a t-th order correlation-
immune function from F n

2 to Fm
2 ; assume there exists a subspace E of

F n
2 , whose minimum nonzero weight is greater than t and such that

the restriction of f to the orthogonal of E (i.e. the subspace of F n
2 :

E⊥ = {u ∈ F n
2 | ∀x ∈ E, u · x = 1}) is constant. Then f remains t-th

order correlation-immune if we change its constant value on E⊥ into any
other one.

Hou-Langevin construction X.-D. Hou and P. Langevin have made
in [24] a very simple observation:
Let f be a Boolean function on F2

n, n even. Let σ = (σ1, · · · , σn) be a
permutation on F2

n such that

dH(f,
n∑

i=1

ai σi) = 2n−1 ± 2
n
2
−1; ∀a ∈ F2

n.

Then f ◦ σ−1 is bent.
A case of application of this fact, pointed out in [23], is when f belongs
to MaioranaMcFarland class (3), with π = id and when the coordinate
functions of σ are all of the form xi1yj1 ⊕ . . . ⊕ xikyjk

⊕ l(x, y) ⊕ h(y),
where k < n/2 and il < jl for every l ≤ k; the function h is any Boolean

function on F
n/2
2 and l is affine.

Another case of application is given in [24] when f has degree at most
3: assume that for every i = 1, · · · , n, there exists a subset Ui of F2

n and
an affine function hi such that:

σi(x) =
∑
u∈Ui

(f(x)⊕ f(x⊕ u))⊕ hi(x).

Then f ◦ σ−1 is bent.
Only examples of potentially new bent functions have been deduced by
Hou and Langevin from these results.

This idea of construction can be adapted to resilient functions: if
dH(f,

∑n
i=1 ai σi) = 2n−1 for every a ∈ F2

n of weight at most k, then

13



f ◦ σ−1 is k-resilient.

But these two secondary constructions without extension of the number
of variables above need strong hypothesis on the functions used as buiding
blocks to produce resilient functions. Hence, they seem inefficient to
construct classes of new functions.

3 A new secondary construction of Boolean

functions

3.1 A modification of Rothaus’ construction

Rothaus’ construction was the first non-trivial construction of bent func-
tions to be obtained in the literature. It is still one of the most interesting
known constructions nowadays, since the functions it produces can have
degrees near n/2, even if the functions used as building blocks don’t. But
it has at least two drawbacks: the constructed functions are not defined
on the same space as the functions used as building blocks, and they have
a very particular form. It is possible to derive a construction having the
same nice property but having not the same drawbacks, thanks to the
following observation.

Given three Boolean functions f1, f2 and f3, there is a nice relation-
ship between their Walsh transforms and the Walsh transforms of two of
their elementary symmetric related functions:

Lemma 1 Let f1, f2 and f3 be three Boolean functions on F n
2 . Denote

by σ1 the Boolean function equal to f1 ⊕ f2 ⊕ f3 and by σ2 the Boolean
function equal to f1f2⊕f1f3⊕f2f3. Then we have f1+f2+f3 = σ1+2σ2.
This implies

χ̂f1 + χ̂f2 + χ̂f3 = χ̂σ1 + 2χ̂σ2 . (8)

Proof. The fact that f1 + f2 + f3 = σ1 + 2σ2 (recall that the sums are
computed in Z and not mod 2) can be checked easily and directly implies
χf1 + χf2 + χf3 = χσ1 + 2χσ2 , thanks to the equality χf = 1− 2f (valid
for every Boolean function). The linearity of the Fourier transform with
respect to the addition in Z implies then relation (8). �

We use now this observation to derive constructions of resilient func-
tions with high nonlinearities. In the following theorem, saying that a
function f is 0-order correlation immune does not impose any condition
on f and saying it is 0-resilient means it is balanced.
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Theorem 2 Let n be any positive integer and k any non-negative integer
such that k ≤ n. Let f1, f2 and f3 be three k-th order correlation-
immune (resp. k-resilient) functions. Then the function σ1 = f1⊕f2⊕f3

is k-th order correlation-immune (resp. k-resilient) if and only if the
function σ2 = f1f2 ⊕ f1f3 ⊕ f2f3 is k-th order correlation immune (resp.
k-resilient). Moreover:

Nσ2 ≥
1

2

(
Nσ1 +

3∑
i=1

Nfi

)
− 2n−1 (9)

and if the Walsh supports of f1, f2 and f3 are pairwise disjoint (that is,
if at most one value χ̂fi

(s), i = 1, 2, 3 is nonzero, for every vector s),
then

Nσ2 ≥
1

2

(
Nσ1 + min

1≤i≤3
Nfi

)
. (10)

Proof. Relation (8) and the fact that for every non-zero vector a of weight
at most k we have χ̂fi

(a) = 0 for i = 1, 2, 3 imply that χ̂σ1(a) = 0 if
and only if χ̂σ2(a) = 0. Same property occurs for a = 0 in the case f1, f2

and f3 are resilient. Relation (8) implies the relation maxs∈F n
2
|χ̂σ2(s)| ≤

1
2

(∑3
i=1

(
maxs∈F n

2
|χ̂fi

(s)|
)

+ maxs∈F n
2
|χ̂σ1(s)|

)
and Relation (2) implies

then Relation (9). If the Walsh supports of f1, f2 and f3 are pairwise
disjoint, then Relation (8) implies the relation

max
s∈F n

2

|χ̂σ2(s)| ≤
1

2

(
max
1≤i≤3

(
max
s∈F n

2

|χ̂fi
(s)|

)
+ max

s∈F n
2

|χ̂σ1(s)|
)

and Relation (2) implies then Relation (10). �
Remark: We have σ2 = f1 ⊕ (f1 ⊕ f2)(f1 ⊕ f3). Hence, another pos-
sible statement of Theorem 2 is: if f1, f1 ⊕ f2 and f1 ⊕ f3 are k-th
order correlation-immune (resp. k-resilient) functions, then the function
f1 ⊕ f2 ⊕ f3 is k-th order correlation-immune (resp. k-resilient) if and
only if the function f1 ⊕ f2f3 is k-th order correlation-immune (resp. k-
resilient): change f2 into f1 ⊕ f2 and f3 into f1 ⊕ f3 in the statement of
Theorem 2.

We show in Appendix a way of applying Theorem 2.

We use now the invariance of the notion of correlation-immune (resp.
resilient) function under translation to deduce a more practical (but less
general) result.
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Proposition 1 Let n be any positive integer and k any non-negative
integer such that k ≤ n. Let f and g be two k-th order correlation-
immune (resp. k-resilient) functions on F n

2 . Assume that there exist
a, b ∈ F n

2 such that Daf ⊕ Dbg is constant. Then the function h(x) =

f(x) ⊕ Daf(x)(f(x) ⊕ g(x)), that is, h(x) =

{
f(x) if Daf(x) = 0
g(x) if Daf(x) = 1

is

k-th order correlation-immune (resp. k-resilient). Moreover:

Nh ≥ Nf +Ng − 2n−1 (11)

and if the Walsh support of f is disjoint of that of g, then

Nh ≥ min (Nf , Ng) . (12)

Note that finding hihgly nonlinear resilient functions with disjoint sup-
ports is easy, by using Tarannikov et al.’s construction.

Proof. Let Daf ⊕ Dbg = ε. Taking f1(x) = f(x), f2(x) = f(x + a)
and f3(x) = g(x), the hypothesis of Theorem 2 is satisfied, since σ1(x) =
Daf(x)⊕g(x) = Dbg(x)⊕ε⊕g(x) = g(x+b)⊕ε is k-th order correlation-
immune (resp. k-resilient). Hence, h(x) = f(x) ⊕ Daf(x)(f(x) ⊕ g(x))
is k-th order correlation-immune (resp. k-resilient). Relation (11) is a
direct consequence of Relation (9). Note that the Walsh support of f2

equals that of f1 = f , since we have χ̂f2(s) = (−1)a·sχ̂f (s) and that the
Walsh support of σ1 equals that of f3 = g. Hence, if the Walsh support
of f is disjoint of that of g, then Relation (8) implies the relation

max
s∈F n

2

|χ̂h(s)| ≤ max

(
max
s∈F n

2

|χ̂f (s)|,max
s∈F n

2

|χ̂g(s)|
)

and Relation (2) implies then Relation (12). �

Example: choose f and g in Maiorana-McFarland’s class; that is, f(x, y) =
x · φ(y) ⊕ h(y), g(x, y) = x · ψ(y) ⊕ k(y), x ∈ F r

2 , y ∈ F s
2 , where every

element in φ(F s
2 ) and in ψ(F s

2 ) has Hamming weight greater than m. For
every a, b ∈ F r

2 and c, d ∈ F s
2 , we have: D(a,c)f(x, y) = x · Dc φ(y) ⊕ a ·

φ(y+ c)⊕Dc h(y) and D(b,d)g(x, y) = x ·Dd ψ(y)⊕ b ·ψ(y+ d)⊕Dd k(y).
Hence, if there exist c and d such that Dc φ = Dd ψ, and a and b such
that a · φ(y + c) ⊕ Dc h(y) ⊕ b · ψ(y + d) ⊕ Dd k(y) is constant, then
the function h equal to f(x, y) if D(a,c)f(x, y) = 0 and to g(x, y) if
D(a,c)f(x, y) = 1 is m-resilient. If the sets φ(F s

2 ) and ψ(F s
2 ) are dis-

joint, then we have Nh ≥ min (Nf , Ng). Note that, in general, h does not
belong to Maiorana-McFarland’s class.
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Remark: The notion of resilient function being also invariant under any
permutation of the input coordinates x1, . . . , xn, Proposition 1 is also
valid if we replace Daf by f(x1, . . . , xn)⊕ f(xτ(1), . . . , xτ(n)) and Dbg by
g(x1, . . . , xn)⊕ g(xτ ′(1), . . . , xτ ′(n)), where τ and τ ′ are two permutations
of {1, . . . , n}.

Computer experiment shows that the secondary construction of Theo-
rem 2 and its particular case given in Proposition 1 permit to increase the
algebraic immunity, while keeping the same resiliency order and the same
nonlinearity. The reason is in the fact that the support of σ2 (resp. h) is,
in general, more complex than those of f1, f2 and f3 (resp. f and g). This
was not the case with the previously known secondary constructions.

Theorem 3 Let n be any positive even integer. Let f1, f2 and f3 be
three bent functions. Denote by σ1 the function f1 ⊕ f2 ⊕ f3 and by σ2

the function f1f2 ⊕ f1f3 ⊕ f2f3. Then:
1. if σ1 is bent and if σ̃1 = f̃1 ⊕ f̃2 ⊕ f̃3, then σ2 is bent and σ̃2 =
f̃1f̃2 ⊕ f̃1f̃3 ⊕ f̃2f̃3;
2. if σ2 is bent, or if more generally χ̂σ2(a) is divisible by 2n/2 for every
a (e.g. if σ2 is plateaued), then σ1 is bent.

Proof. By hypothesis, we have for i = 1, 2, 3 and for every vector a:

χ̂fi
(a) = (−1)f̃i(a) 2n/2.

1. If σ1 is bent and if σ̃1 = f̃1 ⊕ f̃2 ⊕ f̃3, then we have:

χ̂σ1(a) = (−1)f̃1(a)⊕f̃2(a)⊕f̃3(a) 2n/2.

Relation (8) implies:

χ̂σ2(a) =
[
(−1)f̃1(a) + (−1)f̃2(a) + (−1)f̃3(a) − (−1)f̃1(a)⊕f̃2(a)⊕f̃3(a)

]
2(n−2)/2

= (−1)f̃1(a)f̃2(a)⊕f̃1(a)f̃3(a)⊕f̃2(a)f̃3(a)2n/2.

2. if χ̂σ2(a) is divisible by 2n/2 for every a, then the number χ̂σ1(a),

equal to
[
(−1)f̃1(a) + (−1)f̃2(a) + (−1)f̃3(a)

]
2n/2 − 2χ̂σ2(a), is congruent

with 2n/2 mod 2n/2+1 for every a. This is sufficient to imply that σ1 is
bent, according to Lemma 1 of [6]. �

Remark: Here again, it is possible to state Theorem 3 differently. For
instance, if f1, f1 ⊕ f2 and f1 ⊕ f3 are three bent functions such that
f1 ⊕ f2f3 has Walsh spectrum divisible by 2n/2, then σ1 = f1 ⊕ f2 ⊕ f3

is bent. Notice that a sufficient condition for f1 ⊕ f2f3 having Walsh
spectrum divisible by 2n/2 is that f2f3 = 0 or that f2 � f3 (i.e. that the
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support of f3 includes that of f2). In particular, if f is a bent function
and if E and F are two disjoint (n/2)-dimensional flats on which f is
affine, the function f ⊕ 1E ⊕ 1F is bent.

We give in Appendix a primary construction of resilient functions
deduced from Theorem 2 and a generalization of Lemma 1.
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4 Appendix

Proposition 2 let t and n = r + s be any positive integers (r > t >
0, s > 0). Let g1, g2 and g3 be any boolean functions on F s

2 and φ1, φ2

and φ3 any mappings from F s
2 to F r

2 such that for every element y in F s
2 ,

the vectors φ1(y), φ2(y), φ3(y) and φ1(y)⊕ φ2(y)⊕ φ3(y) have Hamming
weights greater than t. Then the function:

f(x, y) = [x · φ1(y) ⊕ g1(y)] [x · φ2(y) ⊕ g2(y)] ⊕

[x·φ1(y) ⊕ g1(y)] [x·φ3(y) ⊕ g3(y)]⊕ [x·φ2(y) ⊕ g2(y)] [x·φ3(y) ⊕ g3(y)]

is t-resilient.

Note that, according to Theorem 2 and because of the property of the
Walsh transform of Maiorana-McFarland’s functions recalled after Re-
lation (4), if the sets φ1(F

s
2 ), φ2(F

s
2 ), and φ3(F

s
2 ) are disjoint, then the

nonlinearity of f is at least equal to the mean of:
- the nonlinearity of the Maiorana-McFarland’s function x ·φ(y) ⊕ g(y),
where φ = φ1 + φ2 + φ3 and g = g1 ⊕ g2 ⊕ g3,
- the minimum of the nonlinearities of the functions x · φi(y) ⊕ gi(y),
i = 1, 2, 3. Hence, f can be nearly optimum with respect to Siegen-
thaler’s and Sarkar et al.’s bounds; and its algebraic immunity may be
higher than those of Maiorana-Mcfarland’s nearly optimum functions.

Proposition 3 Let n be any positive even integer. Let π1, π2, π3 be
three permutations on F

n/2
2 such that π1 ⊕ π2 ⊕ π3 is also a permutation

and such that the inverse of π1 ⊕ π2 ⊕ π3 equals π−1
1 ⊕ π−1

2 ⊕ π−1
3 . Then

the function

f(x, y) = [x · π1(y)] [x · π2(y)]⊕ [x · π1(y)] [x · π3(y)]⊕ [x · π2(y)] [x · π3(y)]

is bent.
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The proof is a direct consequence of the first alinea of Theorem 3 and of
the properties of Maiorana McFarland’s class recalled above. Note that
the result is still valid if an affine function g in y is added to the x ·πi(y)’s
in the expression of f(x, y).

An example of the choice of π1, π2 and π3: Take π1 a per-
mutation on F

n/2
2 such that π1 ⊕ π−1

1 ⊕ Id is an involutive permuta-
tion (where Id is the identity mapping). Define then π2 = π−1

1 and
π3 = π1 ⊕ π−1

1 ⊕ Id (resp. π3 = Id). Then π1 ⊕ π2 ⊕ π3 = Id
(resp. = π1 ⊕ π−1

1 ⊕ Id) and Id−1 = Id = π−1
1 ⊕ π−1

2 ⊕ π−1
3 (resp.

(π1 ⊕ π−1
1 ⊕ Id)−1 = π1 ⊕ π−1

1 ⊕ Id = π−1
1 ⊕ π−1

2 ⊕ π−1
3 ).

It is also easy to apply Theorem 3 to class PSap: the condition on
the dual of σ1 is automatically satisfied if σ1 is bent. But this does not

lead to new functions, since if fi(x, y) = gi(x y
2

n
2 −2) for i = 1, 2, 3, then

σ1 and σ2 have the same forms.

We can also apply this property to the class of resilient functions de-
rived from the PSap construction: Let n and m be two positive integers,
g1, g2 and g3 three functions from F2m to F2, φ a linear mapping from
F n

2 to F2m and a an element of F2m such that a⊕ φ(y) 6= 0, ∀y ∈ F n
2 .

Let b1, b2 and b3 ∈ F n
2 such that, for every z in F2m , φ∗(z)⊕ bi, i = 1, 2, 3

and φ∗(z)⊕b1⊕b2⊕b3 have weight greater than t, where φ∗ is the adjoint
of φ, then the function

f(x, y) =(
g1

(
x

a⊕ φ(y)

)
⊕ b1 · y

)(
g2

(
x

a⊕ φ(y)

)
⊕ b2 · y

)
⊕

(
g1

(
x

a⊕ φ(y)

)
⊕ b1 · y

)(
g3

(
x

a⊕ φ(y)

)
⊕ b3 · y

)
⊕

(
g2

(
x

a⊕ φ(y)

)
⊕ b2 · y

)(
g3

(
x

a⊕ φ(y)

)
⊕ b3 · y

)
is t-resilient. The complexity of the support of this function may permit
getting a good algebraic immunity.

4.1 A generalization of Lemma 1

Proposition 4 can be generalized to more than 3 functions. This leads to
further methods of constructions.
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Proposition 4 Let f1, . . ., fm be Boolean functions on F n
2 . For every

positive integer l, let σl be the Boolean function defined by

σl =
⊕

1≤i1<...<il≤m

l∏
j=1

fij if l ≤ m and σl = 0 otherwise.

Then we have f1 + . . . + fm =
∑

i≥0 2i σ2i. Denoting by f̂ the Fourier

transform of f , that is, f̂(s) =
∑

x∈F2
n f(x)(−1)x·s, this implies f̂1 + . . .+

f̂m =
∑

i≥0 2i σ̂2i. Moreover, if m + 1 is a power of 2, say m + 1 = 2r,
then

χ̂f1 + . . .+ χ̂fm =
r−1∑
i=0

2i χ̂σ2i
. (13)

Proof. Let x be any vector of F n
2 and j =

∑m
k=1 fk(x). According to Lu-

cas’ Theorem (cf. [27]), the binary expansion of j is
∑

i≥0 2i
((

j
2i

)
[mod 2]

)
.

It is a simple matter to check that
(

j
2i

)
[mod 2] = σ2i(x). Thus, f1+ . . .+

fm =
∑

i≥0 2i σ2i . This implies f̂1 + . . .+ f̂m =
∑

i≥0 2i σ̂2i .
The linearity of the Walsh transform with respect to the addition in Z
implies then directly f̂1 + . . .+ f̂m =

∑
i≥0 2i σ̂2i .

If m + 1 = 2r, then we have m =
∑r−1

i=0 2i. Thus, we deduce χf1 + . . . +
χfm =

∑r−1
i=0 2i χσ2i

from f1 + . . .+ fm =
∑r−1

i=0 2i σ2i . The linearity of the
Walsh transform implies then relation (13). �

Corollary 1 Let n be any positive integer and k any non-negative in-
teger such that k ≤ n. Let f1, . . ., f7 be seven k-th order correlation
immune (resp. k-resilient) functions. Assume that the function σ4 =⊕
1≤i1<...<i4≤7

l∏
j=1

fij is k-th order correlation immune (resp. k-resilient).

Then the function σ1 = f1 ⊕ . . . ⊕ f7 is k-th order correlation immune
(resp. k-resilient) if and only if the function σ2 = f1f2⊕f1f3⊕ . . .⊕f6f7

is k-th order correlation immune (resp. k-resilient).

Proof. Relation (13) and the fact that for every (non-zero) vector a of
weight at most k we have χ̂fi

(a) = 0 for i = 1, . . ., 7 and χ̂σ4(a) = 0
imply that χ̂σ1(a) = 0 if and only if χ̂σ2(a) = 0. �

Corollary 2 Let n be any positive even integer and f1, . . ., fm bent
functions on F n

2 . Assume that, for every a ∈ F n
2 , the number σ̂4(a) is

divisible by 2n/2−1. Then
- if σ1 is bent, m = 5 and σ̃1 = f̃1 ⊕ . . .⊕ f̃5 ⊕ 1 then σ2 is bent;
- if σ1 is bent, m = 7 and σ̃1 = f̃1 ⊕ . . .⊕ f̃7, then σ2 is bent;
- if σ2 is bent, or if more generally χ̂σ2(a) is divisible by 2n/2 for every a,
then σ1 is bent.
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Proof. By hypothesis, we have for i = 1, . . ., m and for every vector a:

χ̂fi
(a) = (−1)f̃i(a) 2n/2.

- If σ1 is bent, then we have

χ̂σ2(a) =
[
(−1)f̃1(a) + . . .+ (−1)f̃m(a) − (−1)σ̃1(a)

]
2(n−2)/2

and thus χ̂σ2(a) = ±2n/2 thanks to the hypothesis;
- if χ̂σ2(a) is divisible by 2n/2 for every a, then the number χ̂σ1(a) being

equal to
[
(−1)f̃1(a) + . . .+ (−1)f̃m(a)

]
2n/2−2χ̂σ2(a), it is congruent with

2n/2 mod 2n/2+1 and σ1 is bent, according to Lemma 1 of [6]. �
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