
A Characterization of Authenticated-Encryption
as a Form of Chosen-Ciphertext Security

T. Shrimpton ∗

October 18, 2004

Abstract

In this note we introduce a variation of the standard definition of chosen-ciphertext security,
which we call IND-CCA3, and prove that IND-CCA3 is equivalent to authenticated-encryption.

1 Introduction

An authenticated-encryption scheme, formalized by Bellare and Namprempre [1], Bellare and Rog-
away [2], and Katz and Yung [4], achieves two security goals: privacy and authenticity. We refer to
this combination of goals as authenticated-encryption. When privacy is defined as indistinguisha-
bility under a chosen-plaintext attack, and authenticity as existential unforgeablility of ciphertexts,
then authenticated-encryption is the strongest known notion of security for a symmetric encryp-
tion scheme [1]. Specifically, it is stronger than the Rackoff-Simon notion of chosen-ciphertext
security [5], dubbed IND-CCA2 in [3].

In this note we introduce a new and succinct definition of authenticated-encryption. We call
it IND-CCA3, as it is a variation, and a strengthening, of IND-CCA2. Informally, the IND-CCA3
notion says that it should be hard for an adversary to distinguish between two worlds. In the first
world, the adversary is given an a pair of oracles EK(·),DK(·) that perform real encryption and
decryption of strings of its choosing under some secret key K. In the second, the adversary is given
a pair of oracles EK($|·|),⊥(·). The first of these oracles returns the encryption of random strings
of the appropriate length, and the second tells the adversary that every ciphertext it queries is
invalid. The presence of this bogus decryption oracle ⊥(·) in the second world is, syntactically,
all that differentiates the IND-CCA3 and IND-CCA2 definitions. But this small difference seems
crucial to achieving authenticated-encryption in a chosen-ciphertext attack model: our main result
proves that the IND-CCA3 and authenticated-encryption are equivalent notions.

Our new notion effectively binds together the adversarial goals of distinguishing and forging,
which had previously been considered separately. The intuition is this: if an adversary cannot
easily distinguish between these two pairs of oracles, then ciphertexts produced by E do not help
the adversary to forge new, valid ciphertexts; similarly, the decryption algorithm D does not help
the adversary to distinguish real ciphertexts from bogus ones.

2 Syntax and Notation

Fix a key space Key, a message space Message ⊆ {0, 1}∗, and a ciphertext space Ciphertext ⊆ {0, 1}∗.
The set Key is finite or is otherwise endowed with a distribution (the understood distribution on

∗ Department of Computer Science, Portland State University Portland, Oregon, 97201, USA. E-mail:
teshrim@cs.pdx.edu WWW: www.cs.pdx.edu/~teshrim/

a finite set being the uniform one). We insist that Message has the structure that if M ∈ Message

then {0, 1}|M | ⊆ Message. An encryption scheme Π = (K, E ,D) is a triple of algorithms. The
probabilistic key generation algorithm K returns a key K ∈ Key; we write K

$←K. The encryption
algorithm E could be probabilistic or stateful. It takes a key K ∈ Key and a message M ∈ Message

to return a ciphertext C ∈ {0, 1}∗ ∪ {Invalid}; we write C
$←EK(M). (If randomized, it flips

new coins on each invocation. If stateful, it uses and then updates state that is maintained across
invocations.) The distinguished symbol Invalid is returned if M /∈ Message. The decryption
algorithm D is deterministic. It takes a key K ∈ Key and a string C ∈ {0, 1}∗ to return some
M ∈ Message ∪ {Invalid}; we write M ← DK(C). When DK(C) returns M = Invalid it denotes
that C is not authentic. We require that DK(EK(M)) = M for any K ∈ Key and M ∈ Message.

An adversary is a probabilistic algorithm that may have access to oracles. When it is necessary
to make an algorithm’s oracles explicit, we write them as superscripts. When we write A ⇒ b we
are referring to the event that adversary A outputs the bit b. We insist that once an adversary
outputs it also halts.

3 Preliminaries

Privacy. We begin by giving two standard definitions of privacy, following [3]. Let A be an
adversary and let Π = (K, E ,D) be an encryption scheme. We define

Advind-cpa
Π (A) = Pr

[
K

$←K : AEK(·) ⇒ 1
]
− Pr

[
K

$←K : AEK($|·|) ⇒ 1
]

Advind-cca2
Π (A) = Pr

[
K

$←K : AEK(·),DK(·) ⇒ 1
]
− Pr

[
K

$←K : AEK($|·|),DK(·) ⇒ 1
]

The oracle EK(·), on input M , returns the encryption EK(M). The oracle EK($|·|), on input M ,
returns the encryption of |M | random bits. The oracle DK(·), on input C, returns the decryption
DK(C). Informally, IND-CPA captures the intuition that a good encryption scheme should produce
ciphertexts that look like the encryption of random plaintexts. The IND-CCA2 notion says that
encryptions should still look random even in the presence of a decryption oracle. Alternatively,
IND-CCA2 says that it should be hard for an adversary to distinguish between a “real” world in
which it interacts with a pair of real oracles for encryption and decryption, and a “bogus” world in
which it interacts with a pair consisting of a bogus encryption oracle and a real decryption oracle.

For these definitions we make the following assumptions: the adversary A makes only well-
formed queries, never repeats a query, and when given two oracles it never queries C of its right
oracle if C was the result of previous left-oracle query. The first two assumptions are without loss
of generality, and the third is made to prevent a trivial distinguishing adversary for IND-CCA2.

Authenticity. Here we give a notion of authenticity of ciphertexts for encryption schemes,
following [1, 2, 4]. Fix an encryption scheme Π = (K, E ,D). Let A be a adversary having an
encryption oracle EK . We say that A forges if it outputs a ciphertext C such that C was not the
response to any EK(M) query and DK(C) �= Invalid. We write

Advauth
Π (A) = Pr

[
K

$←K : AEK(·) forges
]

We assume that A makes only well-formed queries, and outputs a well-formed ciphertext C. These
assumptions are without loss of generality.

Note that the exact formalization of authenticity given in [1] is called INT-CTXT and it is
different than AUTH. We chose to use the AUTH formalization of [2] because it is simpler to state,

2

and since INT-CTXT is qualitatively equivalent to AUTH it makes no qualitative difference to our
results.

Since we think of an authenticated-encryption scheme as one achieving both IND-CPA and
AUTH, we will often write AE for IND-CPA ∧ AUTH.

Resource-parameterized definitions. If Π is a scheme and A is an adversary and Advxxx
Π (A)

is a measure of adversarial advantage already defined, then we write Advxxx
Π (R) to mean the

maximal value of Advxxx
Π (A) over all adversaries A that use resources bounded by R. Here R is

a list of variables specifying the resources of interest for the adversary in question. Adversarial
resources to which we pay attention are: t—the worst case running time of the adversary; q—the
total number of queries asked by the adversary of its oracles; and µ—the aggregate length of these
queries, plus the length of the adversary’s output, measured in bits. By convention, the running
time of an algorithm includes the description size of that algorithm, relative to some standard
encoding.

4 A New Notion: IND-CCA3

Here we formalize our new notion, IND-CCA3. The definition is identical to that for IND-CCA2
except for one thing: we replace the decryption oracle in the bogus world with an oracle that always
returns Invalid.

Let adversary A be an algorithm with access to an oracle and let Π = (K, E ,D) be an encryption
scheme. We define the IND-CCA3 advantage measure as

Advind-cca3
Π (A) = Pr

[
K

$←K : AEK(·),DK(·) ⇒ 1
]
− Pr

[
AEK($|·|),⊥(·) ⇒ 1

]

As before, the oracle EK(·), on input M , returns the encryption EK(M), and the oracle EK($|·|), on
input M , returns the encryption of |M | random bits. The oracle DK(·), on input C, returns the
decryption DK(C). The oracle ⊥(·) returns Invalid on any input.

As we did for IND-CCA2, we assume that an IND-CCA3 adversary A makes only well-formed
queries, never repeats a query, and it never queries C of its right oracle if C was the result of
previous left-oracle query. The first two assumptions are without loss of generality, and the third
is made to prevent a trivial distinguishing adversary.

5 IND-CCA3 is Authenticated-Encryption

We now prove that any scheme that achieves security relative to our IND-CCA3 definition is
an authenticated-encryption scheme. We first show that every encryption scheme meeting the
IND-CCA3 notion also meets both the IND-CPA notion and the AUTH notion; symbolically, we
write IND-CCA3 ⇒ AE. Next, we prove the converse is also true, so that any scheme meeting
the IND-CPA and AUTH notions also meets the IND-CCA3 notion. For this statement we write
AE ⇒ IND-CCA3. While the first implication is tight, the second loses a factor of q — the
number of queries made — in the security bound. This is due to the fact that the IND-CCA3
definition effectively allows for q forgery attempts, while the AUTH definition allows for just one.
In this way, IND-CCA3 is closer to capturing our intuition about authenticated-encryption than
the combination IND-CPA ∧ AUTH.

Both results rely on Lemma 3, whose statement and proof we postpone until the end of this
section.

3

Theorem 1 (IND-CCA3 ⇒ AE) Fix t, q, µ > 0. Let Π = (K, E ,D) be an encryption scheme.
Then

Advind-cpa
Π (t, q, µ) ≤ Advind-cca3

Π (t, q, µ)

Advauth
Π (t, q, µ) ≤ 2 ·Advind-cca3

Π (t′, q + 1, µ + 1)

where t′ = t + O(µ).

Proof: The first result is trivial, so we focus on the second. Let A gain δ = Advauth∗
Π (A), run in

time t and ask q queries of its oracle, these totaling µ bits. Now,

δ = Pr[K ← Key : AEK (·),DK(·) ⇒ 1]− Pr[K $←K : AEK(·),⊥(·) ⇒ 1]

=
(
Pr[K $←K : AEK(·),DK(·) ⇒ 1]− Pr[K $←K : AEK($|·|),⊥(·) ⇒ 1]

)
+

(
Pr[K $←K : AEK($|·|),⊥(·) ⇒ 1]− Pr[K $←K : AEK(·),⊥(·) ⇒ 1]

)

= Advind-cca3
Π (A) +

(
Pr[K $←K : AEK($|·|),⊥(·) ⇒ 1]− Pr[K $←K : AEK(·),⊥(·) ⇒ 1]

)

To bound the second addend above, let B be an IND-CCA3 adversary for Π that runs A, answers A’s
left-oracle queries by querying its own oracle and returning the result to A, answers A’s right-oracle
queries with Invalid. When A outputs bit b, adversary B outputs 1− b. Clearly

Pr[K $←K : AEK($|·|),⊥(·) ⇒ 1]− Pr[K $←K : AEK (·),⊥(·) ⇒ 1] ≤ Advind-cca3
Π (B)

and so δ ≤ Advind-cca3
Π (A) + Advind-cca3

Π (B). Considering the resources used by A and B, we can
conclude Advauth∗

Π (t, q, µ) ≤ 2 ·Advind-cca3
Π (t, q, µ). Appealing to Lemma 3 finishes the proof.

Theorem 2 (AE ⇒ IND-CCA3) Fix t, q, µ > 0. Let Π = (K, E ,D) be an encryption scheme.
Then

Advind-cca3
Π (t, q, µ) ≤ Advind-cpa

Π (t, q, µ) + q ·Advauth
Π (t′, q, µ)

where t′ = t + O(q).

Proof: Let A be an adversary that gains δ = Advind-cca3
Π (A), runs in time t, asks q queries, these

totaling µ bits. Then,

δ = Pr[K $←K : AEK(·),DK(·) ⇒ 1]− Pr[K $←K : AEK ($|·|),⊥(·) ⇒ 1]

=
(
Pr[K $←K : AEK(·),DK(·) ⇒ 1]− Pr[K $←K : AEK(·),⊥(·) ⇒ 1]

)
+

(
Pr[K $←K : AEK(·),⊥(·) ⇒ 1]− Pr[K $←K : AEK($|·|),⊥(·) ⇒ 1]

)

= Advauth∗
Π (A) +

(
Pr[K $←K : AEK (·),⊥(·) ⇒ 1]− Pr[K $←K : AEK($|·|),⊥(·) ⇒ 1]

)

4

To bound the second addend above, let B be an ind-cpa-adversary for Π that runs A, answers A’s
left-oracle queries by querying its own oracle and returning the result to A, answers A’s right-oracle
queries with Invalid, and outputting whatever bit A does. Clearly

Pr[K $←K : AEK(·),⊥(·) ⇒ 1]− Pr[K $←K : AEK($|·|),⊥(·) ⇒ 1] ≤ Advind-cpa
Π (B)

and so δ ≤ Advauth∗
Π (A) + Advind-cpa

Π (B). Appealing to Lemma 3, we have the claimed result.

The following lemma says that the experiment used to define AUTH (an adversary, given
an EK(·) oracle, attempts to forge a new ciphertext given) can be recast as an experiment in which
the adversary, given an EK(·) oracle, attempts to distinguish between a real decryption oracle and
a bogus decryption oracle that returns Invalid on every input ciphertext.

Let Π = (K, E ,D) be an encryption scheme. We define the following advantage measure,

Advauth∗
Π (A) = Pr

[
K

$←K : AEK (·),DK(·) ⇒ 1
]
−

[
K

$←K : AEK(·),⊥(·) ⇒ 1
]

where ⊥(·), as before, returns Invalid on every query. The adversary is forbidden, as usual, from
asking C of its right oracle if C was the result of a previous left-oracle query. We lift this definition
to a resource-parameterized one in the usual way.

Lemma 3 Fix t, q, µ > 0. Let Π = (K, E ,D) be an encryption scheme. Then

Advauth
Π (t, q, µ) ≤ Advauth∗

Π (t′, q + 1, µ + 1)

Advauth∗
Π (t, q, µ) ≤ q ·Advauth

Π (t′′, q, µ)

where t′ = t + O(µ) and t′′ = t + O(q).

Proof: We begin with the first result. Let A gain δ = Advauth
Π (A), run in time t and ask q queries,

these totaling µ bits. Let B be an auth∗ adversary for Π that runs A and answers all of its queries
by querying its own left oracle (which is an EK oracle). When A halts with its forgery attempt
C, let B ask its right oracle C: if this is answered by Invalid, B outputs 0; otherwise it outputs
1. Clearly δ ≤ Advauth∗

Π (B) and the resource of B are those claimed in the first part of lemma
statement.

To prove the second result, let A gain δ = Advauth∗
Π (A), run in time t, ask qE queries to its left

oracle and qD queries of its right oracle, these totaling µ bits. Let q = qE + qD. We construct an
adversary B for attacking Π in the auth sense; this adversary is implicitly parameterized by an
integer j > 0. Let B run A, answering left-oracle queries with its own EK oracle. Adversary B will
maintain a counter (initialized to 0) of A’s right-oracle queries. When the counter is less than j,
A’s right-oracle queries are answered with Invalid. When A makes its jth right-oracle query C, B
outputs C as its forgery. To finish the specification of B, it remains to fix a value for j, which we
do now.

Consider the advantage δ gained by A. Let E be the event that A asks at least one valid right-oracle
query C (i.e., DK(C) �= Invalid) during its execution. We can write

δ =
(
Pr[K $←K : AEK(·),DK(·) ⇒ 1 ∧ E] + Pr[K $←K : AEK(·),DK(·) ⇒ 1 ∧ E]

)
−

5

(
Pr[K $←K : AEK(·),⊥(·) ⇒ 1 ∧ E] + Pr[K $←K : AEK (·),⊥(·) ⇒ 1 ∧ E]

)

=
(
Pr[K $←K : AEK(·),DK(·) ⇒ 1 ∧ E]− Pr[K $←K : AEK(·),⊥(·) ⇒ 1 ∧ E]

)
+

(
Pr[K $←K : AEK(·),DK(·) ⇒ 1 ∧ E]− Pr[K $←K : AEK(·),⊥(·) ⇒ 1 ∧ E]

)

Notice that if event E does not occur, then all right oracle queries are answered with Invalid
whether A had been provided a DK oracle or a ⊥ oracle. Thus, the second addend above is zero.
Continuing,

δ =
(
Pr[K $←K : AEK(·),DK(·) ⇒ 1 ∧ E]− Pr[K $←K : AEK(·),⊥(·) ⇒ 1 ∧ E]

)

=
(
Pr[K $←K : AEK(·),DK(·) ⇒ 1 | E]− Pr[K $←K : AEK(·),⊥(·) ⇒ 1 | E]

)
Pr[E]

≤ Pr[E]

Let Ej , j ∈ [1..qD], be the event that E occurs on the jth right-oracle query. Then Pr[E] =
Pr[E1 ∨ · · · ∨ EqD] ≤ ∑qD

j=1 Pr[Ej]. It must be the case that Pr[Ej] ≥ δ/qD for some j: fix this
value of j in the description of B. Thus, for this value of j

δ ≤ qD · Pr[Ej]

≤ qD · Pr[B forges]

= qD ·Advauth
Π (B)

≤ q ·Advauth
Π (B)

It is easy to verify that B uses at most the resources claimed in the second result.

6

References

[1] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. Advances in Cryptology— Asiacrypt ’00, Lec-
ture Notes in Computer Science, vol. 1976, T. Okamoto, ed., Springer-Verlag, 2000.

[2] M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit nonces or
redundancy in plaintexts for efficient cryptography. Advances in Cryptology— Asiacrypt ’00.
Lecture Notes in Computer Science, vol. 1976, T. Okamoto, ed., Springer-Verlag, 2000.

[3] M. Bellare, A. Desai, E. Jokipii and P. Rogaway. A concrete security treatment of symmetric
encryption: Analysis of the DES modes of operation. Proceedings of 38th Annual Symposium
on Foundations of Computer Science (FOCS 97), IEEE, 1997.

[4] J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes of oper-
ation. Fast Software Encryption (FSE 2000), Lecture Notes in Computer Science, vol 1978,
B. Schneier, ed., Springer, pp. 284–299, 2001.

[5] C. Rackoff and D. Simon Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. Advances in Cryptology— CRYPTO ’91, Lecture Notes in Computer
Science, vol. 576, J. Feigenbaum, ed., Springer-Verlag, 1991

7

