
Tail-MAC: A Message Authentication Scheme
for Stream Ciphers

Bartosz Zoltak

http://www.vmpcfunction.com
bzoltak@vmpcfunction.com

Abstract. Tail-MAC, A predecessor to the VMPC-MAC, algorithm for
computing Message Authentication Codes for stream ciphers is described
along with the analysis of its security. The proposed algorithm was de-
signed to employ some of the data already computed by the underlying
stream cipher in the purpose of minimizing the computational cost of
the operations required by the MAC algorithm. The performed analyses
indicate several problems with the security of the scheme and lead to a
new design which described in a paper ”VMPC-MAC: A Stream Cipher
Based Authenticated Encryption Scheme”. The new scheme solves all
the problems found at a cost of some compromise in the performance.

Keywords: authenticated encryption, MAC, stream cipher, VMPC

1 Introduction

The interest in message authentication algorithms has been concentrated mostly
on modes of operation of block ciphers in the past few years. Examples of some
recent designs include OCB [4], OMAC [7], XCBC [6], EAX [8], CWC [9]. Par-
allely a growing interest in stream cipher design can be observed, however there
appears to be a shortage of message authentication schemes for these algorithms.
Two recent proposals in this area include Helix and Sober-128 stream ciphers
with built-in MAC functionality. However a powerful attack against the MAC
algorithm of Sober-128 [10] and two weaknesses of Helix [12] have been recently
presented at FSE’04. This motivates that the field of message authentication
schemes for stream ciphers is open for further investigation.

The approach here proposed was designed to minimize the computational cost
of the additional-to-encryption MAC-related operations by employing some of
the internal-state data, already computed by the cipher. This approach allows
to achieve both simplicity of the design and high performance in software im-
plementations.

Sections 2-4 discuss the general features and definitions of the Tail-MAC scheme,
Section 5 outlines the VMPC stream cipher, sections 6-8 present an example ap-
plication of the Tail-MAC integrated with VMPC stream cipher along with test



vectors and performance rates and sections 9-10 discuss the security features of
the Tail-MAC scheme.

2 General characteristics of the Tail-MAC scheme

The scheme is based on an internal state being transformed along with the
progress of the encryption process in a manner determined by ciphertext-, key-
and Initialization Vector (IV)-derived data.

The details of the implementation of the scheme, integrated with a selected
stream cipher, will vary depending on what cipher is chosen. This results from
the fact that the scheme employs some of the cipher-specific internal-state-data.
This feature, when applied carefully, allows to significantly reduce the excessive
computational work required by the MAC algorithm besides the work already
performed by the underlying cipher.

Such approach results in the simplification of the complete authenticated en-
cryption process, obtaining high efficiency in software implementations and, ac-
cording to the further discussed analyses, ensuring a sufficient level of security.

3 Definition of a d-level Tail-MAC scheme

The definition assumes existence of a cipher generating a stream of b-bit words.

The internal state of the scheme consists of variables T and xw:

T : (8× d)-element table of b-bit words. Let T [n] denote n-th element of T .

x1, x2, . . . , xd: b-bit variables. Let [x1, x2, . . . , xd] denote a (b× d)-bit word com-
bining x1, x2, . . . , xd.

Let f denote a bijective function and iK(m) denote a part of the internal state
of the cipher in time m; f and iK will be specified differently, depending on
what cipher the Tail-MAC scheme is integrated with. Section 6 gives a proposed
f function and iK(m) for the VMPC stream cipher.

Let h denote a function combining T with the cryptographic key (K), with
the message-unique Initialization Vector (V ) and compressing them into a tag
(MAC); h will vary depending on what cipher is chosen to be integrated with
the Tail-MAC.

Let g,m; i, j; q, r be temporary variables
Let Pt[m] denote m-th b-bit word of plaintext
Let Ct[m] denote m-th b-bit word of ciphertext



Table 1. Tail-MAC scheme

1. Set g, m, r to 0; Set q to 1

2. Encrypt Pt[m] and store output in Ct[m]

3. For j from d down to 2: execute step 4: *1

4. xj = (xj + xj−1) modulo 2b

5. x1 = f(x1, iK(m), Ct[m]× q)

6. xor T [g, g + 1, . . . , g + d− 1] with [x1, x2, . . . , xd] *2

7. g = (g + d) modulo (8× d)
8. r = r + 1− q
9. if (r ≥ (size of MAC in words)) and (g = 0): Go to step 14

10. Increment m
11. If m is lower than total number of plaintext words: Go to step 2

12. Set q to 0
13. Go to step 3

14. MAC = h(K, V, T )

*1 In the following (d− 1) steps j will take on values d, (d− 1), (d− 2), . . . , 2.
*2 xor T [g] with x1; xor T [g + 1] with x2; . . .; xor T [g + d− 1] with xd.



4 General security features of the scheme

The primary goal of the Tail-MAC scheme is to keep a sufficiently long record
of the information derived from ciphertext-, key- and IV-data in the tail com-
prising a set of variables x1, x2, . . . , xd and mark the T table with the tail in an
extent sufficient to make it infeasible to change the ciphertext in a way which
could produce collisions in the T table.

A mechanism of propagating any change of the ciphertext onto the elements
of the T table is ensured by the fact that f is bijective, followed by the addition
operations as they are performed on the tail-variables and further by the post-
processing phase (the final iterations, executed for q=0). Because f is bijective,
a change of one ciphertext word (Ct[m]) will cause an unconditional change in
x1. The addition operations performed on the tail-variables will unconditionally
change the values of x2 in iteration m + 1, x3 in iteration m + 2,... and xd in
iteration m + d − 1. In each of the iterations d elements of the T table will be
updated by the values of x1, x2, . . . , xd. This mechanism shows in further anal-
yses to provide a propagation of changes of the ciphertext onto T sufficient to
thwart attacks aimed at obtaining collisions in the T table. The general purpose
of the post-processing phase is to magnify the propagation effect. A more de-
tailed analysis of the role of this phase can be found in Section 9.

Selection of iK and the f function should be carried out in such way as to
ensure corruption of any predictable patterns of the ciphertext which could be
conveyed onto the tail and successively onto the T table in a chosen ciphertext
attack. iK and f should be based on secret non-linear parameters and can be
derived from the selected parts of the internal state of the underlying stream
cipher. The problem of the choice of iK and f is closely related to the charac-
teristics of a given cipher and for the sake of clarity it will be discussed on a
specific example found in Section 6, where a concrete Tail-MAC based authen-
ticated encryption scheme is described.

The value of the d parameter, defining the length of the tail, indirectly im-
plies the computational effort which would be required to forge the MAC in a
chosen ciphertext attack. Further analysis of the scheme suggests that d = 4
provides a well sufficient security level (analysed in detail in sections 9 and 10)
and enables a comfortable implementation of the system.

Applying the compression function h as the final step of the process (h can
be based either on the internals of the employed cipher or on a hash-function) is
aimed primarily at preventing a possible leakage of key-information. A dedicated
analysis of this aspect is required for a specific implementation of the Tail-MAC
scheme with a selected encryption algorithm. Further discussion on the choice
of h will follow in Section 9.

The purpose of this work is not to give a set of complete and universal criteria



for selecting the iK, f and h functions, but rather to outline the general require-
ments and the roles of each of the components and leave the choice and analysis
of specific implementations to the designers. The Tail-MAC scheme is presented
in this section as a general approach with general security requirements for its
components, while in sections 6-10 a specific Tail-MAC based scheme employing
the VMPC stream cipher is described along with a detailed discussion of its
security.

5 Description of the VMPC stream cipher and its KSA

VMPC was introduced at FSE 2004 as a simple and software-efficient stream ci-
pher with a specified Key Scheduling Algorithm (KSA) and Initialization Vector
management routine. The internals of VMPC can be comfortably employed to
construct an efficient authenticated encryption system based on the Tail-MAC
scheme. Following [13], the VMPC stream cipher generates a stream of 8-bit
words, as specified in Table 2.

Variables:

P : 256-byte table storing a permutation initialized by the VMPC KSA
s : 8-bit variable initialized by the VMPC KSA
n : 8-bit variable
L : desired length of the keystream in bytes
+ : addition modulo 256

Table 2. VMPC stream cipher

1. n = 0

2. Repeat steps 3-6 L times:
3. s = P [s + P [n]]
4. Output P [P [P [s]] + 1]
5. Temp = P [n]

P [n] = P [s]
P [s] = Temp

6. n = n + 1

The VMPC Key Scheduling Algorithm (Table 3) transforms a cryptographic key
(K) and (optionally) an Initialization Vector (V ) into the 256-element permu-
tation P and initializes variable s.

Variables as for VMPC stream cipher, with:



c : fixed length of the cryptographic key in bytes, 16 ≤ c ≤ 64
K : c-element table storing the cryptographic key
z : fixed length of the Initialization Vector in bytes, 16 ≤ z ≤ 64
V : z-element table storing the Initialization Vector
m : 16-bit variable
+ : addition modulo 256 According to [13] there are no known security problems

Table 3. VMPC Key Scheduling Algorithm

1. s = 0
2. for n from 0 to 255: P [n] = n

3. for m from 0 to 767: execute steps 4-6:
4. n = m modulo 256
5. s = P [s + P [n] + K[m modulo c]]
6. Temp = P [n]

P [n] = P [s]
P [s] = Temp

7. If Initialization Vector is used: execute step 8:

8. for m from 0 to 767: execute steps 9-11:
9. n = m modulo 256

10. s = P [s + P [n] + V [m modulo z]]
11. Temp = P [n]

P [n] = P [s]
P [s] = Temp

regarding this cipher and its KSA. The cipher is claimed to generate keystreams
undistinguishable from a truly random source and to have a number of security
advantages over the popular RC4 keystream generator. The KSA of VMPC is
reported to provide an undistinguishable from random diffusion of changes of
one bit or byte of the cryptographic key of size up to 64 bytes onto the gener-
ated P permutation and onto output generated by the cipher. The algorithm is
claimed to perform at a rate of about 12.7 clock-cycles per byte on a Pentium
4 processor. These features make the described cipher a plausible candidate to
illustrate a practical application of the Tail-MAC scheme on.

The diffusion effect of the KSA has important consequences for the design of
the h compression function of the further analysed VMPC-Tail-MAC scheme.
Section 5.1. outlines the analyses of this aspect of the KSA following [13].



5.1 Diffusion effect of the VMPC KSA

The VMPC Key Scheduling Algorithm was tested for diffusion of changes of the
cryptographic key onto the generated permutation and onto the VMPC cipher’s
output. A change of one byte of the cryptographic key of size 128, 256 and 512
bits appears to cause an undistinguishable from random change in the generated
permutation and in the cipher’s output.

In other words the analyses indicate that relations between two permutations
or two keystreams generated from keys K and K ′ differing in only one bit or
byte will be undistinguishable from relations between, accordingly, two random
permutations or two random data-streams.

The KSA was designed to provide the diffusion without the use of the Initial-
ization Vector and the tests were run without the IV (only steps 1-6 of the KSA
(Table 3 ) were used in the tests).

Given numbers of equal permutation elements probabilities Frequencies
of occurrence of situations where in two permutations, generated from keys dif-
fering in one byte, there occurs a given number (0, 1, 2, 3, 4, 5) of equal elements
in the corresponding positions and the average number of equal elements in the
corresponding positions – showed no statistically significant deviation from their
expected values in samples of 233.2 pairs of 128-, 256- and 512-bit keys.

Given numbers of equal Cipher’s outputs probabilities Frequencies of
occurrence of situations where in two 256-byte streams generated by the VMPC
stream cipher directly after running the KSA for keys differing in one byte, there
occurs a given number (0, 1, 2, 3, 4, 5) of equal values in the corresponding
byte-positions and the average number of equal values in the corresponding
byte-positions – showed no statistically significant deviation from their expected
values in samples of 233.2 pairs of 128-, 256- and 512-bit keys.

Equal corresponding permutation elements probabilities Frequencies of
occurrence of situations where the elements in the corresponding positions of
permutations generated from keys differing in one byte are equal (for each of the
256 positions) – showed no statistically significant deviation from their expected
value in samples of 233.2 pairs of 128-, 256- and 512-bit keys.

6 A d-level VMPC-Tail-MAC scheme

This section describes a specific scheme, where the Tail-MAC is integrated with
the VMPC stream cipher. The security of this particular scheme is investigated
in Section 9 and 10.



Let x1, x2, . . . , xd, T , Pt, Ct, m, g, q be defined as in Section 3

Let P , s, n, L, V , z be defined as in Section 5

Let “(+)” denote addition modulo 256

Let b = 8 and d = 4

Table 4. VMPC-Tail-MAC scheme

1. Run the VMPC Key Scheduling Algorithm
2. Set T , x1, x2, x3, x4, m, g, n to 0; Set q to 1

3. s = P [s (+) P [n]]
4. if q = 1: Ct[m] = Pt[m] xor P [P [P [s]] (+) 1]

5. For j from 4 down to 2: execute step 6:
6. xj = xj (+) xj−1

7. x1 = P [x1 (+) s (+) Ct[m]× q]

8. For j from 0 to 3: execute step 9:
9. xor T [g + j] with xj

10. Temp = P [n]; P [n] = P [s]; P [s] = Temp

11. g = (g + 4) modulo (8× 4)
12. n = n (+) 1
13. Increment m
14. If m = L: Set q to 0
15. If m < (L + 8× 3): Go to step 3

16.1. Store table T in table V
16.2. Set z to (8× 4)
16.3. Execute step 8 of the VMPC Key Scheduling Algorithm (Table 3)
17.1. Set L to 20
17.2. Execute steps 1 and 2 of the VMPC stream cipher (Table 2) and

save the 20 generated outputs as a 160-bit MAC

7 Test values of the VMPC-Tail-MAC scheme

Table 5 gives an example 20-byte tag generated by the VMPC-Tail-MAC scheme
for a given 16-byte key (K), a given 16-byte Initialization Vector (V ) and for
a 256-byte plaintext Message consisting of consecutive numbers from 0 to 255
(Message[x] = x for x ∈ {0, 1, . . . , 255}).



Table 5. Test vectors of VMPC-Tail-MAC

K; c = 16 [hex] 96, 61, 41, 0A, B7, 97, D8, A9, EB, 76, 7C, 21, 17, 2D, F6, C7

V ; z = 16 [hex] 4B, 5C, 2F, 01, 3E, 67, F3, 95, 57, A8, D2, 6F, 3D, A2, B1, 55

Message [dec] 0, 1, 2, 3, . . ., 253, 254, 255

MAC [hex] 5C, 04, 54, 7E, C9, 47, 63, 62, 72, E3, C1, BB, 90, 71, 78, 1E,
BA, F7, EA, F6

8 Performance of the VMPC-Tail-MAC scheme

Performance of a moderately optimized 32-bit assembler implementation of the
Tail-MAC scheme integrated with the VMPC stream cipher, measured on an
Intel Pentium 4, 2.66 GHz processor, is given in Table 6. Table 7 gives a perfor-
mance rate of the bare Tail-MAC scheme, computed as a difference between the
speed of the VMPC-Tail-MAC and the bare VMPC stream cipher.

Table 6. Performance rates of VMPC-Tail-MAC

MBytes/s MBits/s cycles/byte

127 1016 20.9

Table 7. Performance rates of bare Tail-MAC scheme

MBytes/s MBits/s cycles/byte

324 2592 8.2

9 Security of the VMPC-Tail-MAC scheme

The scheme described in Section 6 was designed to conform the general security
requirements discussed in Section 4. It makes use of the diffusion effect provided
by the VMPC KSA in the construction of the h function (steps 16.1-17.2) to
make h corrupt any possible patterns that might occur in the T table. The h
function this way magnifies the avalanche effect ensured by the post-processing
phase in steps 3-15 for q = 0, which yields a hard to control or predict correlation
of the ciphertext-, key- and IV-data with the resulting MAC.

The h function inherits the diffusion effect of the VMPC KSA and the undistin-
guishability from randomness of the output of the VMPC stream cipher, which
provides a significant level of resistance against attempts of deducing any infor-
mation about the cipher’s internal state, (the P permutation), from the resulting



MAC. Even in a chosen ciphertext attack model the information about the in-
ternal state passed onto x1 in step 7 will be corrupted by the post-processing
phase and by the h function, which ensures that any information about the inter-
nal state will undergo an undistinguishable from random transformation before
being revealed as the 20-byte MAC.

Constructions of the f function and iK(m) (step 7) fulfill their roles described in
Section 4. The f function is bijective because P is a permutation, which ensures
that x1 will undergo an unconditional change in consequence of a change of a
ciphertext word, as discussed in Section 4. As a result of the pseudo-randomness,
key- and IV-dependence and secrecy of the P permutation and the s variable,
any possible pattern an attacker might want to convey from a chosen ciphertext
onto x1 and consecutively onto x2, x3, x4 and T will be corrupted by P and s.

The scheme was intended to make it computationally unfeasible to obtain two
identical T tables at any moment when processing two different messages en-
crypted with the same key and the same Initialization Vector. The extent of
this difficulty is partly established by the value of the d parameter (here d = 4)
determining the length of the tail, and magnified by the fact that T keeps record
of (8× 4) past values of x1, x2, x3, x4. A forgery attack would need to revert all
the changes of the x1, . . . , x4 variables and of the T table. The size of T (32
words) and a proposed length of the tail, d = 4, appear to provide a comfortable
resistance to attacks aimed at changing the message in a way to revert these
changes and obtain collisions in T , as discussed in detail in Section 10.

Observation of other messages encrypted with the same key and IV (in prac-
tical applications the IV should be message-unique for messages encrypted with
the same key) would not give a noticeable advantage to an attacker capable
of performing authenticating and verifying queries. The advantage the attacker
might acquire (e.g. by trying to learn about the behavior of the f function by in-
troducing different ciphertexts, observing the resulting MACs and trying to use
this knowledge to revert the changes of x1, . . . , x4 and T for an intercepted mes-
sage or to produce a new valid message) would be practically negligible mostly
because of the use of the h compression function in the final step. Following the
analyses of the VMPC stream cipher quoted in Section 5, the h function pro-
duces undistinguishable from random outputs and thus corrupts any regularities
of T , from observing which the attacker might benefit.

The post-processing of the T table (the final (8 × 3) iterations initialized in
step 14) is intended to prevent possible forgery attempts through processing very
short messages (one or a few bytes long), through manipulating only one or a few
first or last bytes of the message or through appending or prepending attacker-
chosen data to the message, which might be aimed at obtaining two messages
with minor differences but producing the same T tables. The post-processing
phase propagates all the changes of the message or data appended/prepended



to the message onto variables x1, x2, x3, xd and onto all the (8 × 4) elements of
the T table, which makes these changes hard to control. This effect is further
magnified by the h compression function transforming T into an undistinguish-
able from random tag, MAC.

The choice of the number of iterations of the post-processing phase (here 8×3 =
24) can be determined by the desired length of the MAC (here 20 words). The
number of post-processing iterations being greater than the length of the MAC
ensures a comfortable feature, that the probability - that all inputs to the post-
processing phase (all values of x1 set in step 7) will set all the elements of the
T table in a desired way (256−24) - is lower than the probability of a correct
random guess of the MAC (256−20).

A desirable feature of an authenticated encryption scheme is a proof of secu-
rity. However such proofs are mostly obtained for MAC algorithms based on
primitives, which are assumed secure (block ciphers, for example in the EAX
mode or hash functions, as for example in the HMAC scheme). Assuming that
the underlying primitives are random functions or permutations, it is possible
to build a proof of a given notion of security of the MAC algorithm.

Here the MAC algorithm is not based on such primitive, instead it reuses selected
parts of the cipher’s internal state to produce a tag of the encrypted message.
It is rather unlikely that a formal proof of security of a similar scheme can be
constructed. However the same applies to the security of any block or stream
cipher, the security of which lies in the belief in the practical impossibility of
finding feasible attacks, rather than in formal proofs of their security.

Following this observation we believe that the fact that Tail-MAC does not have
a formal proof of its security is not a meaningful disadvantage of the scheme.
This is additionally compensated by the high level of simplicity of the scheme,
which may lead to accepting the Tail-MAC as a secure and easy to analyse
scheme of authenticated encryption with the VMPC stream cipher or with other
ciphers if such proposals appear in the future.

10 A chosen-ciphertext attack against the Tail-MAC
scheme

The attack model described here is not the fastest method of breaking the Tail-
MAC scheme. The new scheme VMPC-MAC (described in a paper ”VMPC-
MAC: A Stream Cipher Based Authenticated Encryption Scheme”) , which is
an evolution of the Tail-MAC, was redesigned so that no attack other than the
described in this section could be applied to it, according to all the analyses
which were carried out by the author.

The success probability of the attack is 2−144, which can be considered a well-



sufficient security level in any practical applications in the possible to predict
future. In case a higher level of resistance to the discussed attack was required
- it can be obtained by increasing the d parameter.

The attack assumes that the adversary has full passive and active access to
the ciphertext and can use an unlimited number of verification queries for the
new message. The purpose of the attacker is to introduce a new valid ciphertext
(a ciphertext that was not MACed through an authenticating query, but which is
deemed valid in the verification query). The most efficient attack approach found
assumes that the attacker bases on a valid message (which was intercepted or
obtained through an authenticating query) and attempts to change it in such
way as to make the message generate the same MAC as the original message did.

The attack model begins with a random (or intended by the attacker) change
of one bit (or byte) of the ciphertext - Ct[m]. The purpose of the attacker is to
hide this change by manipulating the remaining part of the ciphertext in such
way as to leave the resulting MAC unchanged.

The attack is illustrated on an example of the system described in Section 6, for
d = 4 and b = 8, however analogous approach would apply for different values
of d and b parameters and different choice of ciphers.

Let xw(m) denote the value of the xw variable of the tail in iteration m;
w ∈ {1, 2, 3, 4}
Let n = (m modulo 8)×4
Let “(+)” denote addition modulo (8× 4)

A change of Ct[m] unconditionally causes a change of x1(m), since P is a per-
mutation.

Because x1(m) and only x1(m) directly updates x2(m + 1) and indirectly up-
dates x3(m+2) and x4(m+3), the variables x2(m+1), x3(m+2) and x4(m+3)
will be unconditionally changed too.
The following elements of table T will be updated and unconditionally changed
by those variables: T [n] changed by x1(m), T [n(+)5] changed by x2(m + 1),
T [n(+)10] changed by x3(m + 2) and T [n(+)15] changed by x4(m + 3).

The most efficient method of reverting these changes found forces the attacker
to perform the following changes of the ciphertext:

1. Change Ct[m + 1] in such way as to make x4(m + 4) return to its origi-
nal value. The unavoidable cost of this is a change of x1(m + 1), x2(m + 2) and



x3(m + 3). 1 [x3(m + 3) must be changed in such way as to make x4(m + 4) =
(x4(m + 3) + x3(m + 3)) modulo 256 return to its original value 2 ].
As a result T [n(+)4] is changed by x1(m+1), T [n(+)9] is changed by x2(m+2)
and T [n(+)14] is changed by x3(m + 3). T [n(+)19] remains unchanged because
the change of x4(m + 4) was reverted.

2. Change Ct[m + 2] in such way as to make x3(m + 4) return to its origi-
nal value. The unavoidable cost of this is a change of x1(m + 2) and x2(m + 3).
As a result T [n(+)8] is changed by x1(m + 2) and T [n(+)13] is changed by
x2(m + 3). T [n(+)18] remains unchanged because the change of x3(m + 4) was
reverted.

3. Change Ct[m + 3] in such way as to make x2(m + 4) return to its origi-
nal value. The unavoidable cost of this is a change of x1(m + 3).
As a result T [n(+)12] is changed by x1(m + 3). T [n(+)17] remains unchanged
because the change of x2(m + 4) was reverted.

4. Change Ct[m + 4] in such way as to make x1(m + 4) return to its origi-
nal value. As a result T [n(+)16] remains unchanged.

At this moment the attacker succeeded in stopping the avalanche of changes
of elements of T , resulting from a change of Ct[m], by reverting the changes
of x1, x2, x3, x4 in the earliest possible iteration m + 4. The cost of this is an
unavoidable change of 10 elements of the T table (T [n, n(+)4, n(+)5, n(+)8,
n(+)9, n(+)10, n(+)12, n(+)13, n(+)14, n(+)15]).

To complete a successful forgery, the attacker needs to revert the changes of
these elements of T , too. Operations similar to steps 1-4 need to be performed
to refrain x1, x2, x3, x4 from causing more damage to T and the additional re-
quirement - to revert the already caused changes to T - needs to be satisfied.
The most efficient approach found achieves that in the following steps 5-9:

5. Change Ct[m + 8] in such way as to change x1(m + 8) in such way as to
revert the change of T [n], make x2(m + 9) change in such way as to revert the
change of T [n(+)5], make x3(m+10) change in such way as to revert the change
of T [n(+)10], and make x4(m + 11) change in such way as to revert the change
of T [n(+)15].

6. Change Ct[m + 9] in such way as to make x4(m + 12) return to its original

1 The algorithm can be varied into making some of the variables (e.g. x2(m + 2))
remain unchanged, which yields an apparent improvement, however further analysis
shows that this actually leads to higher complexity of the complete attack.

2 The approach by which the first variable to return to its original value is x4, rather
than e.g. x1 or x2, in further analysis shows to lead to much lower complexities of
the complete attack.



value, make x1(m + 9) change in such way as to revert the change of T [n(+)4],
make x2(m + 10) change in such way as to revert the change of T [n(+)9], make
x3(m + 11) change in such way as to revert the change of T [n(+)14]. T [n(+)19]
remains unchanged because the change of x4(m + 12) was reverted.

7. Change Ct[m + 10] in such way as to make x3(m + 12) return to its original
value, make x1(m +10) change in such way as to revert the change of T [n(+)8],
make x2(m + 11) change in such way as to revert the change of T [n(+)13].
T [n(+)18] remains unchanged because the change of x3(m + 12) was reverted.

8. Change Ct[m + 11] in such way as to make x2(m + 12) return to its orig-
inal value, make x1(m + 11) change in such way as to revert the change of
T [n(+)12]. T [n(+)17] remains unchanged because the change of x2(m+12) was
reverted.

9. Change Ct[m + 12] in such way as to make x1(m + 12) return to its orig-
inal value. As a result T [n(+)16] remains unchanged.

The success probability of the described attack is determined by the total num-
ber of changes to variables x1, x2, x3, x4 and T [0, 1, . . . , 31], which need to be
reverted. Steps 1-9 determine this probability, for the assumed d = 4 and b = 8,
to 256−18 = 2−144.

Extending the length of the tail to d = 5 would, in an analogous attack, yield
a success probability of 256−25 = 2−200 (which would also imply an increase of
the size of the MAC to 25 or more bytes), however the implementation of the
scheme would not be as comfortable as for d = 4 (while still easily achievable)
which, given the fact that 2−144 is a well out of reach security level, encourages
to propose d = 4 as sufficient for possible practical applications of the Tail-MAC
scheme.

11 A 2−32 break of the Tail-MAC scheme

The main attack finds collisions in T. It asumes appending one byte to the ci-
pherptext message and relies on the fact that the post-processing phase and the
encryption phase of the MAC algorithm are equivalent (in a sense that they gen-
erate the same output from a given input) and on the fact that the probability
that x1,x2,x3,x4 will not change T in the last step of processing the one-byte-
longer-message is 2−32.

The solution to this problem is introducing a variable R in the post-processing
phase in the new VMPC-MAC scheme.

The other problem with the Tail-MAC is that if for a new message x1 grows
by 128 (or any other integer D=256/integer), then the propagation of changes



of the variables x1,x2,x3,x4 is significantly limited due to their linearity (only
the addition operation x(n)=x(n)+x(n-1)). As a result in even numbers of over-
lapping loops the x variables do not change at all since the addition is modulo
256 (128+128 mod 256=0). This significantly limits the number of elements of
T which are affected by the change of the one (or more) bytes of the message.

The solution to this problem is modification of step 6 of the scheme from
xj = xj (+) xj−1 into xj = P [xj (+) xj−1]. The P permutation corrupts the
linearity of the addition operation and avoids the problem.

12 Conclusions

This paper presents a predecessor to the VMPC-MAC scheme, which is a Mes-
sage Authentication Scheme dedicated only to the VMPC Stream Cipher. The
aim of the more specialised approach applied in the new scheme was to gain
clarity. Security analysis of a MAC scheme based on a stream cipher’s inter-
nal state without actually defining the cipher, as was the primary goal of the
Tail-MAC, is too much of a hypothetical approach to provide it with a proper
security analysis in the belief of the author.

The new paper ”VMPC-MAC: A Stream Cipher Based Authenticated Encryp-
tion Scheme” is available at the ePrint archive of year 2004 and also at the
VMPC website at http://www.VMPCfunction.com.



References

1. Federal Information Processing Standards Publication 198:
The Keyed-Hash Message Authentication Code (HMAC), 2002
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

2. Mihir Bellare, Ran Canetti, Hugo Krawczyk: Message Authentication using Hash
Functions the HMAC Construction, CryptoBytes, Vol 2, No. 1, RSA Laboratories,
1996

3. Mihir Bellare, Chanathip Namprempre: Authenticated Encryption: Relations
among Notions and Analysis of the Generic Composition Paradigm, Proceedings
of ASIACRYPT 2000, LNCS vol. 1976 Springer-Verlag, 2000

4. Phillip Rogaway, Mihir Bellare, John Black, Ted Krovetz: OCB: A Block-Cipher
Mode of Operation for Efficient Authenticated Encryption (2001), Eighth ACM
Conference on Computer and Communications Security (CCS-8) (August 2001),
ACM Press.

5. Mihir Bellare, Roch Guerin, Philip Rogaway: XOR MACs: New Methods for
Message Authentication Using Finite Pseudorandom Functions, Proceedings of
CRYPTO 1995, LNCS vol. 963, Springer-Verlag, 1995.

6. V. Gligor, P. Donescu: Fast Encryption and Authentication: XCBC Encryption and
XECB Authentication Modes, 2nd NIST Workshop on AES Modes of Operation,
Santa Barbara, USA, 2001.

7. T. Iwata, K. Kurosawa: OMAC: One-key CBC MAC, Proceedings of Fast Software
Encryption 2003, LNCS vol. 2887, Springer-Verlag 2003.

8. Mihir Bellare, Philip Rogaway, David Wagner: The EAX Mode of Operation Pre-
proceedings of Fast Software Encryption 2004, pages 367-384.

9. Tadayoshi Kohno, John Viega, Doug Whiting: CWC: A High-Performance Con-
ventional Authenticated Encryption Mode, Pre-proceedings of Fast Software En-
cryption 2004, pages 385-402.

10. Dai Watanabe, Soichi Furuya: A MAC forgery attack on SOBER-128, Pre-
proceedings of Fast Software Encryption (FSE) 2004, pages 448-458.

11. Niels Ferguson, Doug Whiting, Bruce Schneier, John Kelsey, Stefan Lucks, Ta-
dayoshi Kohno: Helix: Fast Encryption and Authentication in a Single Crypto-
graphic Primitive, Proceedings of FSE 2003, LNCS vol. 2887, Springer-Verlag 2003.

12. Fredric Muller: Differential Attacks Against the Helix Stream Cipher, Pre-
proceedings of Fast Software Encryption 2004, pages 75-88.

13. Bartosz Zoltak: VMPC One-Way Function and Stream Cipher, Pre-proceedings of
Fast Software Encryption 2004, pages 190-204.

14. NESSIE consortium: Performance of Optimized Implementations of the NESSIE
Primitives, 2003 www.cryptonessie.org

15. Lars R. Knudsen, Willi Meier, Bart Preneel, Vincent Rijmen, Sven Verdoolaege:
Analysis Methods for (Alleged) RC4. Proceedings of ASIACRYPT 1998, LNCS,
vol. 1514, Springer-Verlag, 1998.

16. Scott R. Fluhrer, David A. McGrew: Statistical Analysis of the Alleged RC4
Keystream Generator. Proceedings of FSE 2000, LNCS, vol. 1978, Springer-Verlag,
2001.

17. Itsik Mantin, Adi Shamir: A Practical Attack on Broadcast RC4. Proceedings of
FSE 2001, LNCS, vol. 2355, Springer-Verlag, 2002.

18. Scott Fluhrer, Itsik Mantin, Adi Shamir: Weaknesses in the Key Scheduling Algo-
rithm of RC4. Proceedings of SAC 2001, LNCS, vol. 2259, Springer-Verlag 2001.

19. Jovan Dj. Golic: Linear Statistical Weakness of Alleged RC4 Keystream Generator.
Proceedings of EUROCRYPT 1997, LNCS, vol. 1233, Springer-Verlag 1997.


