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Abstract. We present an adaptive chosen-plaintext cryptanalysis of
Boneh, et al.’s bilinear spontaneous anonymous ad hoc group signature.
Then we present a patch, and an extension to a threshold version com-
plete with a security proof in the random oracle model (ROM).

1 Introduction

In an (n, t) threshold signature, t or more members can jointly generate a valid
signature, whereas t − 1 or fewer members cannot. There is almost always a
group secret. The signature verification depends on some proof that the group
of insiders (actual signers) jointly possess knowledge of that secret. Before the
signature generation and signature verification protocols, there is almost always
a setup stage where the group secret is generated (and then secret-shared) :

– centrally by a group mamanger or other kinds of TTP (trusted third party);
– distributively by joint actions of all n group members;
– hybrid.

The PKI support is usually assumed, and individual member’s PKI key pair is
often used to secure communication lines during the setup stage.

Recently, a new class of group cryptographic protocols, spontaneous anony-
mous group (SAG) cryptography, gained wide interests [5, 7, 1, 4]. One of the most
prominent characteristics of these group protocols is the absence of any group
secret. The verification depends on proof of certain partial knowledge of the PKI
secret keys of all n group members. There is also no setup stage. Any individual
entity with a published public key can spontaneously conscript anoth n−1 pub-
lished public key to form a group, and generate a publicly verifiable 1-out-of-n
signature. Furthermore, the signature is anonymous (signer-indistinguishable).
The privacy protection is also just about the maxmimum one can imagine: the
anonymity is unconditional (information-theoretic), irrevocable, and exculpable.
Even if the secret keys of all n members and all communications transacripts
are subpoemaed, anonymity remains.

Remark: Theoretically speaking, a group secret in the form of a binary re-
lation still exsist protocols. But it exhibits many distinguishing characteristics
different from traditional relations.
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SAG cryptographic protocols are perfectly suited to applications in ad hoc
groups. In an ad hoc groups, there is a frequent flow of new members joining and
old members leaving a group. Complicated group secret setup protocols cannot
be afforded. There are also many other reasons to use SAG cryptography in ad
hoc groups [4, 3].

Boneh and Franklin [2] introduced bilinear maps to cryptography. It gener-
ates many intriguing theoretical research topics concerning gap Diffie-Hellman
questions and co-Diffie-Hellman questions, bilinear maps in elliptic curve, Weil
pairing and Tate paring, and so on. It also has many practical applications in
IBE (identity-based encryption), short signatures, aggregate signatures, SAG
signatures, and so on.

Our contributions

1. A simple adaptive chosen-plantext cryptanalysis of Boneh, et al.’s bilinear
SAG (spontaneous anonymous group) signature.

2. A new bilinear threshold SAG signature which is existentially unforgeable by
adaptive chosen-plaintext adversary in the random oracle model, provided
the co-GDH Problem is hard.

Paper organization. The remainder of the paper is organized as follows: In
Section 2, we review related results from SAG (spontaneous anonymous group)
cryptography and from bilinear maps. In Section 3, we present the cryptanalysis.
In Section 4, we present the threshold signature. Concluding remarks in Section
5

2 Related Results

We review related results from SAG (spontaneous anonymous group) cryptog-
raphy for ad hoc groups and from bilinear maps.

2.1 SAG (Spontaneous Anonymous Group) cryptography

In the spontaneity paradigm for group cryptography, there is no (explicit) group
secret. That is, there is no group secret that can be simply specified as a number,
or a straightforward bit string. Consequently, there is no setup stage to generate
the group secret, and there is no setup stage to generate and distribute shares
of group secret by inter-member communications. In essentially all spontaneous
group cryptographic results, the insiders are indistinghuishable by information-
theoretic security or by a hard problem.

However, there is still a binary relation which can be viewed as the ”group
secret” of spontaneous anonymous group (SAG) cryptography.

Consider the binary relation with respect to DL public key cryptography:
R ⊂ Zq × Zp where (x, v) ∈ R if and only if (x, v) is a key pair. To prove the
security of a group cryptography protocol with a group secret, one often reduces
it to the problem of extracting/producing a witness x given a group public key
v. There is typically only one possible witness for a given public value.
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An (n, t) threhold SAG cryptosystem based on n public keys v1, · · ·, vn
correspond to the following binary relation R ⊂ Ztq × Znp , where

(x,v) ∈ R iff {gx1 , · · · , gxt} = {vi : i ∈ I} for some I ⊂ {1, · · · , n}, |I| = t.

where x = (x1, · · · , xt) and v = (v1, · · · , vn).
To prove the security of an SAG protocol, one should reduce it to the extrac-

tion of a witness x satisfying (x,v) ∈ R. There are
(
n
t

)
possible witnesses for

a given vector public key v.

2.2 Bilinear maps and Diffie-Hellman issues

We adopt notations from [3]. G1 (resp. G2) is a multiplicative cyclic groups of
prime order p with generator g1 (resp. g2). ψ : G2 → G1 with ψ(g2) = g1 is a
computable isomorphism, and e : G1 × G2 → GT is computable bilinear map
described in [3]. In a bilinear map, we have e(ua, vb) = e(u, v)ab, and e(g1, g2) 6=
1.

Computational co-Diffie-Hellman (co-CDH) Problem. Given g2, g
2
2 ∈

G2 and h ∈ G1 compute ha ∈ G1.
See [2, 3] for further discussions.

3 Cryptanalysis

We review Boneh, et al.’s bilinear SAG signature for ad hoc groups, present a
simple cryptanalysis, and discuss patches.

3.1 Review The Protocol

We first review Boneh, et al.’s scheme.
Key Generation For each user i, 1 ≤ i ≤ n, pick random xi ∈R Zp and

compute vi = gxi2 . All n public keys vi’s are assumed to be distinct.
Ring Signing Given public keys v1, · · ·, vn ∈ G2, a message M ∈ {0, 1}∗,

and a private key xs, 1 ≤ s ≤ n, pick random ai ∈R Zp for all i 6= s. Compute
h = H(M) ∈ G1 and set

σs = (h/ψ(
∏
i 6=s

vai1 ))1/xs .

For all i 6= s let σi = gai1 . Output the ring signature σ = (σ1, · · · , σn) ∈ Gn1 .
Ring Verification. Given public keys v1, · · ·, vn ∈ G2, a message M ∈

{0, 1}∗, and a ring signature σ, compute h = H(M) and verify that e(h, g2) =∏n
i=1 e(σi, vi).
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3.2 The Cryptanalyses

The adaptive chosen-plaintext attack
The forger F can generate an anonymous ad hoc group signature on any

given message M ∈ {0, 1}∗ for any set of public keys v1, · · ·, vn as follows

1. Twice, query the signing oracle with M and v1, · · ·, vn. Obtain two signatures
σ = (σ1, · · · , σn) and σ′ = (σ′1, · · · , σ′n).

2. Generate a forged signature onM and public keys v1, · · ·, vn: σ′′ = (σ′′1 , · · · , σ′′n)
where each σ′′i = (σiσ′i)

1/2 ∈ G1.

It is easy to show the forged signature is valid. The square root inG1 is usually
computable in polynomial time, for most bilinear realizations in the literature.
The signing oracle presented in Boneh, et al., upon two queries, generate two
distinct signatures with overwhelming probability. Most signing oracles in the
literature generate two distinct signatures upon queries with repeated message
M .

By computing σ′′i = (σi)a/(a+b)(σ′i)
b/(a+b) for integers a and b, additional

forged signatures can be generated.

3.3 A patch.

The protocol can be patched secure by replacing H(M) with H(M,L, ρ), where
L is the list of public keys, and ρ is is a tag randomly generated by the signer.
In a sense, this ”commits” the signature to L and ρ in addition to M . Then the
patched the scheme can be proven secure in ROM.

Subsequently, we will extend the patch to a threshold version, and present a
security proof. That proof of the threshold version implies a proof of the current
1-out-of-n version.

4 Bilinear SAG Threshold Signature

We patch Boneh, et al.’s bilinear anonymous ad hoc group signature, and then
extend it to a threshold version. Furthermore, we prove the security of the thresh-
old bilinear anonymous ad hoc group signature in the random oracle model.

4.1 The threshold extension

Let Hj , 0 ≤ j < t, be suitably chosen hash functions. We follow the notations
in [3], where G1, G2, g1, g2, e(·, ·) be bilinear parameters. Let R be a suitable
range of tag values.

We describe our security model, protocols, and proofs in that order.
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4.2 Security model

Entities: Dealer D, simulator S, forger F .
The Game:

1. D generates an instantiation of a hard problem, gives to S to solve. The hard
problem is: given gab1 and ga2 , compute gb1.

2. S constructs a list of public keys L and a threshold value t, requests F to
return a message-signature-tag triple (M , σ, ρ).

3. F delivers, after being allowed to query signing oracle SO and the random
oracle H which are both simulated by S.

4. S uses F ’s answer to solve the hard problem.

Further details:
The signing oracle model. We allow SO to be queried with any message and

any list of public keys in any list size, and for any (legitimate) threshold value.
In particular, we allow list-size-changing attackers described in Boneh, et al.’s
Section 5.4. ncluding list ize increase and list size decrease.

The static adversary model Our proof uses the static adversary model: When
S requests F to existentially generate a threshold-of-t message-signature pair
on the list of public keys L = (v1, · · · , vn), it also gives F the secret keys corre-
sponding to the first t− 1 public keys v1, · · ·, vt−1. Let R be a suitable domain
of tag values.

Definition 1. The (n + 1)-tuple σ = (σ1, · · · , σn, ρ) ∈ Gn1 × R is an (n, t)-
signature on the message M and the list of public keys L = (v1, · · · , vn) ∈ Gn2 if
the following t equalities all hold:

e(Hj(M,L, t, ρ), g2) =
n∏
i=1

e(σi, vi
j

i ),

for each j, 0 ≤ j < t.

Theorem 1. There exists a PPT bilinear (n, t)-signature generation algorithm,
which is existentially unforgeable by adaptive chosen-plaintext adversaries in the
random oracle model, provided the co-CDH Problem is hard.

4.3 Proof

We prove our Theorem by rewinding once, and back patch t places in the second
fork. To accomplish a proof with in ROM, we proceed as follows:

1. Exhibit a pair of signature generation algorithm (SIGN) and a signature
verification algorithm (VERIFY). Prove its soundness and other ancillary
properties.

2. Show S can generate a valid signature, given a list L of n public keys, a set
of t secret keys corresponding to t public keys in L, and a message M .
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3. (Signing Oracle (SO)) Show S can generate a valid signature, once given a
message M , a list L consisting of n′ public keys, the threshold t′; and S can
do so without any secret key, but by simulating (controlling) H.

4. Witness Extraction (W.E.) Show S can embed the hard problem instan-
tiation into a signature request to F , and by simulating H and SO and
processing the answers returned by F , solve the hard problem instantiation.

5. Specify the entire algorithm S. Show its timing, success probability, and
complexity are all satisfactory.

VERIFY: Given a signature σ = (σ1, · · · , σn, ρ) ∈ Gn1 × R on message M
and the list of public keys L = (v1, · · · , vn), verify the following t equalities all
hold:

e(Hj(M,L, t, ρ), g2) =
n∏
i=1

e(σi, vi
j

i ),

for each j, 0 ≤ j < t.
SIGN: Let I ⊂ {1, · · · , n}, |I| = t. Given public keys vi = gxi2 , 1 ≤ i ≤ n,

message M , hashing functions Hj , 0 ≤ j < t, and private keys xi, i ∈ I, generate
signature σ = (σ1, · · · , σn, ρ) as follows:

1. For each i ∈ {1, · · · , n} \ I, randomly pick ui, compute σi = gui1 . Randomly
pick ρ ∈ R.

2. Solve for {σxss : s ∈ I} in the following system

Hj(M,L, t, ρ) = (
∏
s∈I

σxss
j

s )(
∏
i/∈I

ψ(vi)uii
j

), for 0 ≤ j < t.

Solution is alwasy feasible because, by properties of the Vandermonde ma-
trix, there exists matrices A(I) and B(I) such that

σxss = (
∏

0≤j<t

Hj(M,L, t, ρ)A
(I)
s,j )(

∏
i/∈I

ψ(vuii )B
(I)
s,i )

for each s ∈ I.

Soundness: Straightforward.
Other properties: Our threshold signature is synchronized in the sense that

all individual insiders (signers) use the same value ρ and the same values ui,
i /∈ I. It is otherwise non-interactive in the sense that once ρ and ui, i /∈ I,
are synchronized, each individual insider can generate its share of the threshold
signature by itself without any interaction with other users and send its share to
a combiner who can then compute the threshold signature. The insider share is
(s, σxss ), for insider s ∈ I.. If robustness is an issue, insider s can be required to
send a proof-of-correctness by attaching a proof-of-knowledge of xs along with
its signature share which can then be verified against its public key vs by the
combiner. In this extended abstract, we omit discussions on proof-of-correctness
or robustness.
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Simulating S.O. Given threshold value t′, message M ′ and a list of public
keys L′ = (v′1, · · · , v′n′), SO generates an (n′, t′)-signature for M ′ and L′ as
follows: Randomly picks ui, 1 ≤ i ≤ n. Randomly picks ρ′ ∈ R. Back patch to

Hj(M ′, L′, t′, ρ′) = ψ(
n∏
i=1

(v′i)
uii

j

),

for 0 ≤ j < t′. Return the signature (gu1
1 , · · · , gun1 , ρ′).

D asks S to solve a hard problem. D randomly generates a and b,
computes Z = gab1 and Y = ga2 . Gives Z and Y to S and asks for Z1/a back.
S constructs a question to ask F : For each i, 1 ≤ i ≤ n, randomly picks

xi. randomly picks s ∈R {t, · · · , n}. Ask F to generate a message-(n, t)-signature
pair on the public keys L = (gx1

2 , · · · , gxt−1
2 , Y xt , · · · , Y xn}).

W.E. The witness extraction is via back patching t critical queries, one for
each Hj(· · ·), 0 ≤ j < t, in the second fork run, and then solve for a Vandermonde
system of t linear equations.

Among all Hj-queries combined, S randomly picks the `-th query Hj`(M`,
L`, t`, ρ`) and rewind. Let Xj` denote the hash query outcome during the first
simulation run, Xj` = Hj`(M`, L`, t`, ρ`). In the rewind, S back patches to

Hj`(M`, L`, t`, ρ`)← XZ.

and S back patches to, if possible,

Hj(M`, L`, t`, ρ`)← Xjg
arj
1 ,

for j 6= j`, 0 ≤ j < t, where rj is randomly picked by S during the second run,
Xj = Hj(M`, L`, t`, ρ`) during the first run. These t−1 back patches are possible
if their queries have not been made before the `-th query.

Let σ = (σ1, · · · , σn) and σ′ = (σ′1, · · · , σ′n) denote the two signatures re-
turned by F . on messages M and M ′ respectively, if F were successful in both
runs. If (M,L, t) = (M ′, L, t) = (M`, L`, t`), then we have, for j = j`,

e(X, g2) =
n∏
i=1

e(σi, vi)i
j

=
t−1∏
s=1

e(σs, gxs2 )s
j
n∏
i=t

e(σi, Y xi)i
j

=
t−1∏
s=1

e(σs, gxs2 )s
j
n∏
i=t

e(σxii , Y )i
j

=
t−1∏
s=1

e((σs)xs/a, Y )s
j
n∏
i=t

e(σxii , Y )i
j

and

e(XZ, g2) =
t−1∏
s=1

e((σ′s)
xs/a, Y )s

j
n∏
i=t

e((σ′i)
xi , Y )i

j
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and therefore

e(Z, g2) = e(Z1/a, Y ) =
t−1∏
s=1

e((
σ′s
σs

)xs/a, Y )s
j
n∏
i=t

e((
σ′i
σi

)xi , Y )i
j

Z1/a =
t−1∏
s=1

(
σ′s
σs

)xss
j/a

n∏
i=t

(
σ′i
σi

)xii
j

(1)

And we have, for j 6= j`, 0 ≤ j < t,

g
rj
1 = Tj

t−1∏
s=1

(
σ′s
σs

)xss
j/a

where

Tj =
n∏
i=t

(
σ′i
σi

)xii
j

for 0 ≤ j ≤ t.
We have t unknowns: Z1/a and (σ′i/σi)

1/a, 1 ≤ i < t, in a Vandermonde
system of t linear equations. By properties of the Vandermonde matrix, there
exists a matrix C such that

(σ′s/σs)
1/a =

∏
j 6=j`,0≤j<t

(grj1 /Tj)
Cs,j

for 1 ≤ s ≤ t− 1. The right-hand side of each equation above can be computed.
Therefore the right-hand side of Equation (1) can be computed.

The above witness extraction works provided the t − 1 ”critical” queries
Hj(M`), j 6= j`, 0 ≤ j < t, have not been made by F prior to the forking point
in a direct Hj query or indirectly via an SO query.

The sequencing, complexity and probability of S. We use the classifi-
cation proof technique. We assume F is an (T, ε) forger, i.e. its average running
time is T and its probability of success is ε. Assume F makes a combined total
of qH queries to all of Hj , 0 ≤ j < t, and it makes qS queries to SO with public
key list L′ not longer than nmax. The total number of H queries is no more than
qT := qH + nmaxqS .
S constructs the signature request to F as described above. For each `,

1 ≤ qT , S performs the Witness Extraction described above, rewinding to the
`-th H-query, and back patching t queries, one for each Hj , if possible.

Let p` denote the probability that F succeeds and the `-th query is the first
among all queries whose input (M,L, t, ρ) corresponds to F ’s answer. Note that
by the lunchtime attack arguments, the probability of F not having made these t
queries before delivery the signature to S is negligible. There exists `, 1 ≤ ` ≤ qT ,
such that p` ≥ ε/qT .

By the RoS lemma [6], F ’s probability of successfully producing a signature
during the second fork is p`, in the `-th round of S. Therefore, the probability
of S’s successful witness extraction is essentially

∑
` P

2
` ≥ (ε/qT )2.
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Summarizing, S successfully solves the hard problem on behalf of D in time
2(qH + nmaxqS)T with probability ε/(qH + nmaxqS)2. ut

Remark: Our proof uses one rewind and t back patches on the second fork. We
also obtained a proof using t back patches but no rewinding by directly extending
the proof in Boneh, et al.’s [3]. That proof has better simulation efficiency, but
is wordier to describe.

5 Discussions

We cryptanalyzed the bilinear anonymous ad hoc group signature of Boneh, et al.
Then we modified it and extended it to a threshold scheme, and provide security
proof under the random oracle model. Finally we break our proven-secure scheme
when a certain kind of hashing function is used, namely the (partially) first-
component homomorphic hashing function.
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