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Abstract. Chameleon signatures are based on well established hash-
and-sign paradigm, where a chameleon hash function is used to compute
the cryptographic message digest. Chameleon signatures simultaneously
provide the properties of non-repudiation and non-transferability for the
signed message, i.e., the designated recipient is capable of verifying the
validity of the signature, but cannot disclose the contents of the signed
information to convince any third party without the signer’s consent.
One disadvantage of the initial chameleon signature scheme is that sig-
nature forgery results in the signer recovering the recipient’s trapdoor
information, i.e., private key. Therefore, the signer can use this informa-
tion to deny other signatures given to the recipient. This creates a strong
disincentive for the recipient to forge signatures, partially undermining
the concept of non-transferability. In this paper, we firstly propose a
chameleon hashing scheme in the gap Diffie-Hellman group to solve the
problem of key exposure. We can prove that the recipient’s trapdoor
information will never be compromised under the assumption of Com-
putation Diffie-Hellman Problem (CDHP) is intractable. Moreover, we
use the proposed chameleon hashing scheme to design a chameleon sig-
nature scheme.

Key words: Chameleon hashing, Gap Diffie-Hellman group, Key exposure,
Digital signatures.

1 Introduction

The ordinary digital signature provides the functions of integration, authen-
tication, and non-repudiation for the signed message. Anyone can verify the
signature with the signer’s public key. However, it may be undesirable in many
business situations that a signature can be verified universally. For example, dis-
closing a signed contract to a competitor can benefit one party but jeopardize the
interests of the other. This is the conflict between authenticity (non-repudiation)
and privacy (controlled verifiability) in the digital signatures. Chaum and Antwer-
pen [10] firstly introduced the notion of undeniable signatures to solve this con-
flict. The distinct property of undeniable signatures is that verification of a
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signature requires the collaboration of the signer. So the signer can control to
whom the signed document is being disclosed. After the initial work of Chaum
and Antwerpen, plenty of undeniable signature schemes were proposed [6, 9, 18,
16, 17, 23].

Chameleon signatures, introduced by Krawczyk and Rabin [22], are based
on well established hash-and-sign paradigm, where a chameleon hash function is
used to compute the cryptographic message digest. A chameleon hash function
is a trapdoor one-way hash function, which prevents everyone except the holder
of the trapdoor information from computing the collisions for a randomly given
input. Chameleon signatures simultaneously provide non-repudiation and non-
transferability for the signed message as undeniable signatures do, but the former
allows for simpler and more efficient realization than the latter.1 More precisely,
chameleon signatures are non-interactive and do not involve the design and com-
plexity of zero-knowledge proofs on which traditional undeniable signatures are
based. Though there exist non-interactive versions of undeniable signatures [21],
chameleon signatures are considerably less complex, at the sacrifice of not con-
ferring the signer the ability to engage in non-transferable secondary proofs of
signature (non-)validity [1].

One limitation of the initial chameleon signature scheme is that signature
forgery results in the signer recovering the recipient’s trapdoor information, i.e.,
private key. Such feather has some advantages in certain applications. For exam-
ple, the user can deny the forged message without revealing the original message.
However, the signer can use this information to deny other signatures given to
the recipient. In the worst case, the signer can sign any document or decrypt any
message on behalf of the recipient. In fact, exposure of secret keys is perhaps
the most important devastating attack on a cryptosystem [12]. This potential
damage will create a strong disincentive for the recipient to forge signatures and
thus weakens the property of non-transferability.

Ateniese and de Mederious [1] argue that non-transferability is more con-
vincing if the scheme is such that forgery of a hash does not compromise the
secret key of the recipient.2 They firstly introduced the idea of identity-based
chameleon hashing to solve this problem. Due to the distinguishing characteristic
of identity-based system, the signer can sign a message to an intended recipi-
ent, without having to first retrieve the recipient’s certificate.3 Furthermore, the
signer uses a different public key (corresponding a different private key) for each

1 There are some difference on non-transferability between undeniable signatures
and chameleon signatures. In undeniable signatures, the verification of the signa-
ture needs the cooperation of the signer, which ensures the non-transferability. In
chameleon signatures, the recipient is fully capable of providing any indistinguish-
able chameleon hashing inputs to satisfy the signature, thus the third party can not
trust the recipient’s claim.

2 This problem can be solved in any chameleon signature scheme if the signer changes
his key pair frequently, however, it is only meaningful in theory sense because the
key distribution problem arises.

3 It is easily to see that any key-insulted systems with a physically secure device can
substitute the identity-based systems.



3

transaction with a recipient, so that signature forgery only results in the signer
recovering the trapdoor information associated to a single transaction. Therefore,
if the recipient produces a hash collision, the signer can recover the correspond-
ing trapdoor information to deny the forged signature by providing a different
collision. However, she will not be capable of denying signatures on any message
in other transactions. We argue that their scheme does not solve the problem
of key exposure essentially. The basic idea is still that the recipient’s public
keys are changed often.4 To the best of our knowledge, there seems no efficient
chameleon hashing scheme which enjoys the message hiding property without
exposing the private key. In this paper, we propose a novel chameleon hashing
scheme without key exposure under certificate-based systems, which enjoys all
the properties of traditional chameleon hashing schemes, but the trapdoor in-
formation cannot be compromised even if the recipient forges a hash collision.
Thus, the non-transferability is strengthened.

1.1 Related Work

There are plenty of research on the conflict between authenticity (non-repudiation)
and privacy (controlled verifiability) in the digital signatures. Undeniable signa-
tures enable the signer to decide when her signature can be verified. An extended
notion is “designated confirmer signatures” [8], where a designated confirmer,
instead of the signer, can be involved in the verification of the signature when the
signer is inconvenient to cooperate. In some applications, it is important for the
signer to decide not only when but also by whom her signature can be verified
due to the blackmailing [14, 20] and mafia [13] attacks. For example, the voting
center presents a proof to convince a certain voter that his vote was counted
while without letting him to convince others (e.g., a coercer) of his vote, which
is important to design a receipt-free electronic voting scheme preventing vote
buying and coercion. This is the motivation of the concept of “designated veri-
fier signatures” [21]. The designated verifier will trust the signer indeed signed a
message with a proof of the signer. However, he cannot present the proof to con-
vince any third party because he is fully capable of generating the same proof by
himself. Very recently, Steinfeld et al. [26] introduced the conception of “univer-
sal designated verifier signatures”, which can be viewed as an extended notion of
designated verifier signatures. Universal designated verifier signatures allow any
holder of the signature (not necessarily the signer) to designate the signature
to any desired designated verifier. The verifier can be convinced that the signer
indeed generated the signature, but cannot transfer the proof to convince any
third party. In some applications, it is also important for the recipient to decide
when and whom the signer’s signature should be verified. This facilitates the
concept of “limited verifier signatures” [2, 11].

4 In identity-based system, the identity information acts as the public key of the
user. Identity-based chameleon hash can be computed under a customized identity
J = C(IDRecipient||IDSigner||IDTransaction). The signer uses a different public key
J for each transaction with different IDTransaction.
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The rest of the paper is organized as follows: Some preliminary works are
given in Section 2. Our novel chameleon hashing scheme is given in Section 3. The
proposed chameleon signature scheme is given in Section 4. Finally, conclusions
will be made in Section 5.

2 Preliminary Works

In this Section, we will briefly describe the basic definition and properties of gap
Diffie-Hellman group. We also introduce the formal definition and properties of
chameleon hashing scheme.

2.1 Gap Diffie-Hellman Group

Let G be a cyclic multiplicative group generated by g with the prime order q.
Assume that the inversion and multiplication in G can be computed efficiently.
We introduce the following problems in G.

1. Discrete Logarithm Problem (DLP): Given two elements g and h, to find an
integer a ∈ Z∗q , such that h = ga whenever such an integer exists.

2. Computation Diffie-Hellman Problem (CDHP): Given (g, ga, gb) for a, b ∈
Z∗q , to compute gab.

3. Decision Diffie-Hellman Problem (DDHP): Given (g, ga, gb, gc) for a, b, c ∈
Z∗q , to decide whether c ≡ ab mod q.

We call G a gap Diffie-Hellman group if DDHP can be solved in polyno-
mial time but there is no polynomial time algorithm to solve CDHP with non-
negligible probability. Such group can be found in supersingular elliptic curve or
hyperelliptic curve over finite field. For more details, see [4, 5, 7, 15, 19].

We call < g, ga, gb, gc > a valid Diffie-Hellman tuple if c ≡ ab mod q.

2.2 Chameleon Hashing

A chameleon hashing function is a trapdoor collision resistant hash function,
which is associated with a key pair (sk, pk). Anyone who knows the public key
pk can efficiently compute the hash value for each input. However, there exists
no efficient algorithm for anyone except the holder of the secret key sk, called a
trapdoor, to find collisions for every given input. Formally, a chameleon hashing
scheme consists of the following efficient algorithms:

– System Parameters Generation PG: An efficient probabilistic algorithm
that, on input a security parameter k, outputs the system parameters SP .

– Key Generation KG : An efficient algorithm that, on input the system
parameters SP , outputs a secret/public key pair (sk, pk) for each user.

– Hashing Computation H: An efficient probabilistic algorithm that, on
input the public key pair pk of a certain user, a message m, and a random
integer r ∈ Z∗q , outputs the hash value h = Hash(m, r).
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– Collision Computation F : An efficient algorithm that, on input the secret
key sk of the user, a message m, a random integer r, and another message
m′, outputs an integer r′ ∈ Z∗q that satisfies

Hash(m′, r′) = Hash(m, r)

A secure chameleon hashing scheme satisfies the following properties:

– Collision resistance: Without the knowledge of trapdoor information sk,
there exists no efficient algorithm that, on input a message m, a random
integer r, and another message m′, outputs a random integer r′ that satisfy
Hash(m′, r′) = Hash(m, r), with non-negligible probability.

– Semantic security: For all pairs of message m and m′, the probability
distribution of the random value Hash(m′, r) and Hash(m, r) are computa-
tionally indistinguishable.

3 The Proposed Chameleon Hashing Scheme

We describe our scheme in two stages. First we present a basic chameleon hashing
scheme without key exposure which enjoys the properties of message hiding and
semantic security. However, it is not secure against collision forgery if a signer
tries to re-use the hashing scheme for a same recipient. The only reason for
describing the basic scheme is to make the presentation easier to follow. We then
propose our full chameleon hashing scheme without key exposure in Section 3.3.

3.1 The Basic Chameleon Hashing Scheme

– System Parameters Generation PG: Let G be a Gap Diffie-Hellman
group generated by g, whose order is a prime q. The system parameters are
SP = {G, q, g}.

– Key Generation KG : Each user randomly chooses an integer x ∈ Z∗q as
his private key, and publishes his public key y = gx. The validity of y can
be ensured by a certificate issued by a trusted third party.

– Hashing Computation H: On input the public key y of a certain user.
Randomly chooses an integer a ∈ Z∗q , and computes (ga, ya). Our novel hash
function is defined as

h = Hash(m, ga, ya) = gmya

– Collision Computation F : For any valid hash value h, the algorithm F
can be used to compute a hash collision with the trapdoor information x

F(x, h, m, ga, ya,m′) = (ga′ , ya′),

where ga′ = gagx−1(m−m′) and ya′ = yagm−m′
.
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Note that

Hash(m′, ga′ , ya′) = gm′
ya′

= gm′
yagm−m′

= gmya

= Hash(m, ga, ya)

and < g, y, ga′ , ya′ > is a valid Diffie-Hellman tuple. Therefore, the forgery is
successful.

3.2 Security Analysis

We firstly introduce two variants of CDHP in G:

1. Square Computation Diffie-Hellman Problem (Squ-CDHP): Given (g, ga) for
a ∈ Z∗q , to compute ga2

.
2. Inverse Computation Diffie-Hellman Problem (Inv-CDHP): Given (g, ga) for

a ∈ Z∗q , to compute ga−1
.

Lemma 1. Squ-CDHP, Inv-CDHP and CDHP are polynomial-time equivalent
to each other in G [3, 24, 27].

Proof. Iv-CDHP =⇒ Squ-CDHP: Given (g, y = ga) for a ∈ Z∗q , then g = ya−1
.

Suppose we can solve Iv-CDHP in G, then we can compute ya = ga2
from

(y, ya−1
). Thus, we can solve Squ-CDHP in G.

Squ-CDHP =⇒ CDHP: Given (g, ga, gb) for a, b ∈ Z∗q , suppose we can solve
Squ-CDHP in G, then we can compute ga2

, gb2 , and g(a+b)2 respectively. Note
that g2ab = g(a+b)2/ga2+b2 , we can compute gab by using the algorithm of [25].
Thus, we can solve CDHP in G

CDHP =⇒ Iv-CDHP: Given (g, y = ga) for a ∈ Z∗q , then g = ya−1
. Suppose

we can solve CDHP in G, then we can compute ya−2
= ga−1

from (y, g, g). Thus,
we can solve Iv-CDHP in G. ut
Theorem 1. The basic chameleon hashing scheme is resistant to forgery pro-
vided that the CDHP in G is intractable.

Proof. (sketch) Given two collisions (m, ga, ya) and (m′, ga′ , ya′) which satisfy
Hash(m′, ga′ , ya′) = Hash(m, ga, ya), i.e., gm′

ya′ = gmya, we can easily deduce
gx−1

= (ga/ga′)(m
′−m)−1

. From Lemma 1, we know it is equivalent to solve the
CDHP in G. ut
Theorem 2. The basic chameleon hashing scheme is semantically secure.

Proof. The proof is similar to [1]. Given a hash value h, and any message m,
there exists exactly one pair (ga, ya) such that h = Hash(m, ga, ya). ut
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3.3 The Full Chameleon Hashing Scheme

In the basic scheme, collision forgery will result in the signer recovering the infor-
mation gx−1

. Though the secret key x cannot be recovered from this information,
it enables the signer to compute the hash collisions if he re-uses the hash func-
tion for other transactions with the same recipient. Therefore, the signer should
use different public key for each transaction with the recipient, i.e., the recipient
should change his private key often. Identity-based chameleon hashing scheme
also has this disadvantage: Though the signer does not need to retrieve the cer-
tificate of the intended recipient, the recipient should apply for his private key
whenever he wants to compute a collision.

We propose our full chameleon hashing scheme without key exposure by
using the idea of “Customized Identities” [1]. Let H : {0, 1}∗ → G∗ is a secure
cryptographic hash function, define I = H(IDS ||IDR||IDT ), where IDS , IDR,
and IDT denote the identity of signer, recipient, and transaction, respectively.

3.3.1 The scheme

– System Parameters Generation PG: Let G be a Gap Diffie-Hellman
group generated by g, whose order is a prime q. Define a secure cryp-
tographic hash function H : {0, 1}∗ → G∗. The system parameters are
SP = {G, q, g, H}.

– Key Generation KG : Each user randomly chooses an integer x ∈ Z∗q as
his private key, and publishes his public key y = gx. The validity of y can
be ensured by a certificate issued by a trusted third party.

– Hashing Computation H: On input the public key y of a certain user.
Randomly chooses an integer a ∈ Z∗q , and computes (ga, ya). Our novel hash
function is defined as

h = Hash(m, I, ga, ya) = (g ∗ I)mya,

where I is a customized identity.
– Collision Computation F : For any valid hash value h, the algorithm F

can be used to compute a hash collision

F(x, h,m, ga, ya, m′, I) = (ga′ , ya′),

where ga′ = ga(g ∗ I)x−1(m−m′) and ya′ = ya(g ∗ I)m−m′
.

Note that

Hash(m′, I, ga′ , ya′) = (g ∗ I)m′
ya′

= (g ∗ I)m′
ya(g ∗ I)m−m′

= (g ∗ I)mya

= Hash(m, I, ga, ya)

and < g, y, ga′ , ya′ > is a valid Diffie-Hellman tuple. Therefore, the forgery is
successful.
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3.3.2 Security Analysis

Theorem 3. The full chameleon hashing scheme is resistant to forgery under
the assumption of CDHP in G is intractable.

Proof. Given (g′, g′x), let g = g′/I, where I is the customized identity. Define
the chameleon hash function h = Hash(m, I, ga, ya) = (g∗I)mya. Given collisions
(m, ga, ya) and (m′, ga′ , ya′) that satisfy Hash(m′, I, ga′ , ya′) = Hash(m, I, ga, ya),
i.e., (g∗I)m′

ya′ = (g∗I)mya, we can deduce g′x
−1

= (g∗I)x−1
= (ga/ga′)(m

′−m)−1
.

That is, we can solve CDHP in G.
Note that the signer uses a different customized identity for each transaction.

We remark that collision forgery in a transaction I will result in the signer re-
covering the information (g∗I)x−1

, however, the signer cannot use it to compute
the information of (g ∗ I ′)x−1

for a different transaction I ′. Otherwise, he can
compute (I ′I−1)x−1

, which is equivalent to solve CDHP in G. Therefore, the
recipient does not need to change his key pair even if the hash function is reused
by the same signer. ut

Theorem 4. The full chameleon hashing scheme is semantically secure.

Proof. Given a hash value h, a customized identity I, and any message m, there
exists exactly one pair (ga, ya) such that h = Hash(m, I, ga, ya). ut

4 The Proposed Chameleon Signature Scheme

4.1 Precise Definition

A chameleon signature is generated by digitally signing a chameleon hash value
of the message. The signer cannot repudiate his signature, but he can deny an
invalid signature if he can provide a collision of the chameleon hash function.
A good chameleon signature should satisfy the properties of unforgeability, non-
transferability, non-repudiation, deniability, message hiding [1, 22]. Besides, we
add the property of key exposure freeness, i.e., collision forgery does not result in
the signer recovering the recipient’s trapdoor information. Formally, a chameleon
hashing scheme consists of the following efficient algorithms and a specific denial
protocol:

– System Parameters Generation PG: An efficient probabilistic algorithm
that, on input a security parameter k, outputs the system parameters SP .

– Key Generation KG : An efficient algorithm that, on input the system
parameters SP , outputs a secret/public key pair (sk, pk) for each user.

– Signature Generation SG: An efficient probabilistic algorithm that, on
input the public key pair pkR of the recipient, the secret key skS of the
signer, a message m, a customized identity I, and a random integer a ∈ Z∗q ,
outputs a signature σ on the chameleon hash value h = Hash(m, I, ga, ya).
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– Signature Verification SV: An efficient deterministic algorithm that, on
input the public key pkR of the recipient, the public key pkS of the signer,
a message m, a customized identity I, ga, ya, and a chameleon signature σ,
outputs a verification decision b ∈ {0, 1}.

– Denial Protocol DP: A non-interactive protocol between the signer and
the judge. Given a signature σ on the message m, the signer computes a
different collision (m′, ga′ , ya′). If and only if m 6= m′ and < g, y, ga′ , ya′ > is
a valid Diffie-Hellman tuple, the judge claims that the signature is a forgery.

4.2 Our Scheme

There are two users, a signer S and a recipient R, in our scheme. When dispute
occurs, a judge J is involved in the scheme.

– System Parameters Generation PG: Let G be a gap Diffie-Hellman
group generated by g, whose order is a prime q. Define a secure cryp-
tographic hash function H : {0, 1}∗ → G∗. The system parameters are
SP = {G, q, g, H}.

– Key Generation KG: Each user U randomly chooses an integer xU ∈ Z∗q
as his private key, and publishes his public key yU = gxU . The validity of yU

can be ensured by a certificate issued by a trusted certification authority.
– Signature Generation SG: Suppose the signed message is m. The signer

S randomly chooses an integer a ∈ Z∗q , and computes the chameleon hash
function value h = (g∗I)mya

R, here yR denotes the public key of the recipient
R. Assume SIGN is any secure signature scheme based on the assumption
that CDHP in G is intractable. The signature σ for the message m consists
of

(m, I, ga, ya
R, SIGNxS (h)).

Where xS denotes the private key of the singer S.
– Signature Verification SV: Given a signature σ, the recipient first verifies

whether < g, yR, ga, ya
R > is a valid Diffie-Hellman tuple. If tuple is invalid,

he rejects the signature; else, he then computes the chameleon hash value
h = (g ∗ I)mya

R and verifies the validity of SIGNxS (h) with the public key
yS of the signer.

– Denial Protocol DP: When dispute occurs, i.e., the recipient provides
a signature of the signer σ=(m∗, I, ga∗ , ya∗

R ,SIGNxS
(h)) to the judge J .

The judge then asks the signer to provide a collision (m′, ga′ , ya′
R ) for the

chameleon hash. If the signer can provide such a collision which satisfy that
< g, yR, ga′ , ya′

R > is a valid Diffie-Hellman tuple and m 6= m′, the judge can
be convinced that the recipient forged the signature. If the signer cannot
provide such a collision, the judge can be convinced that the signer indeed
generated the signature.
The signer can simply provide (m, ga, ya) as the hash collision. However, it
will reveal the information of the original message m, which is undesirable
in some applications. In section 4.3, we will show in detail how the signer
can provide a different collision to ensure the property of message hiding .
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4.3 Security Analysis

Theorem 5. The proposed chameleon signature scheme satisfies the properties
of unforgeability, non-transferability, non-repudiation, deniability, message hid-
ing, key exposure freeness.

Proof. We prove the proposed chameleon signature scheme satisfies the above
properties one by one.

– Unforgeability : It is trivial because we assume SIGN is a secure signature
scheme based on the assumption that CDHP is intractable. Though the
recipient can generate random collisions for the chameleon hash function, it
is meaningless since the judge can detect this forgery after the signer provides
a different collision.

– Non-transferability : Note that the semantic security of a chameleon hashing
scheme implies the non-transferability of the corresponding chameleon sig-
nature scheme [1]. Therefore, in our scheme, the recipient cannot transfer a
signature of the signer to convince any third party.

– Non-repudiation: Given a valid signature σ = (m, ga, ya
R, SIGNxS (h)), the

signer cannot generate a valid hash collision (m′, ga′ , ya′
R ) which satisfies

h = Hash(m′, ga′ , ya′
R ) and m 6= m′ because it is equivalent to computing the

CDHP in G.
– Deniability : It is ensured by the denial protocol.
– Message hiding : Given a forgery σ′ = (m′, ga′ , ya′

R , SIGNxS (h)) of the recipi-
ent, the signer can provide (m, ga, ya

R) as the collision in the denial protocol.
However, this will reveal the information of the original message m. Note
that T = (g ∗ I)x−1

R = (ga/ga′)(m−m′)−1
, the signer can provide any other

collision (m∗, ga∗ = gaTm−m∗
, ya∗

R = ya
R(g ∗ I)m−m∗

) to ensure the confiden-
tiality of the original message m even against the judge.

– key exposure freeness: Given a collision (m, ga, ya) and (m′, ga′ , ya′), the
information of (g ∗ I)x−1

R can be recovered. However, it is impossible for
anyone to compute xR from (g ∗ I)x−1

R . Therefore, collision forgery cannot
result in the signer recovering the recipient’s trapdoor information xR, which
strengthens the property of non-transferability.

ut

4.4 Convertibility

In our chameleon signature scheme, it is impossible for the signer to prove which
message was the original one, which is similar to the previous schemes [1, 22]. In
some applications, it is more desirable that the signer can confirm the original
message if required. Our scheme can be converted into a universally verifiable
instance as [1]. The signer encrypts the message using a semantically secure
probabilistic encryption algorithm ENC and includes the ciphertext in the sig-
nature.5 That is, the signature σ for the message m becomes:

σ = (m, I, ga, ya, SIGNxS (h, ENC(m))).
5 As [1] stated, the signer can just include the hash of the ciphertext in the signature.
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Our scheme can also achieve selective convertibility by having the signer expose
the random bits used for the specific probabilistic encryption algorithm, and
complete convertibility by exposing the decryption key. For more details, refer
to [22].

4.5 Comparison with Two Previous Schemes

The proposed chameleon hashing scheme is almost as efficient as the two previ-
ous schemes. Our scheme needs one more modular exponentiation computation
in G. Besides, our scheme needs a (very) little more communication cost than
the previous schemes. However, we argue that it is worthy to add a (very) little
computation and communication expense to overcome the limitation of key ex-
posure. In the Table 1, we present the comparison between our scheme and two
previous schemes.

Properties Assumption System Key exposure Message hiding

Krawczyk et al.′s scheme DLP CA-based Yes Yes

Ateniese et al.′s scheme RSA ID-based Yes Yes

Our scheme CDHP CA-based No Yes

Table 1. Comparison with two previous schemes

5 Conclusions

Chameleon signatures are based on well established hash-and-sign paradigm,
where a chameleon hash function is used to compute the cryptographic message
digest. Chameleon signatures simultaneously provide non-repudiation and non-
transferability for the signed message, thus can be used to solve the conflict
between authenticity and privacy in the digital signatures. One limitation of the
initial chameleon signature scheme is that signature forgery results in the signer
recovering the recipient’s trapdoor information, i.e., private key. Therefore, the
signer can use this information to deny other signatures given to the recipient.
This creates a strong disincentive for the recipient to forge signatures, partially
undermining the concept of non-transferability.

In this paper, we firstly propose a chameleon hashing scheme in the gap
Diffie-Hellman group to solve the problem of key exposure. We can prove that
the recipient’s trapdoor information will never be compromised under the as-
sumption of CDHP in the group is intractable. Moreover, we use the proposed
chameleon hashing scheme to design a chameleon signature scheme, which enjoys
all advantages of the previous schemes.
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