
Parallel Algorithm for Multiplication on Elliptic

Curves

Juan Manuel Garcia Garcia1 and Rolando Menchaca Garcia2

1 Department of Computer Systems

Instituto Tecnologico de Morelia

Morelia, Mexico

jmgarcia@sekureit.com
2 Center for Computing Research

Instituto Politecnico Nacional

Mexico City, Mexico

menchaca@pollux.cic.ipn.mx

Abstract. Given a positive integer n and a point P on an elliptic curve

E, the computation of nP , that is, the result of adding n times the point

P to itself, called the scalar multiplication, is the central operation of

elliptic curve cryptosystems. We present an algorithm that, using p pro-

cessors, can compute nP in time O(log n+H(n)=p+ log p), where H(n)

is the Hamming weight of n. Furthermore, if this algorithm is applied to

Koblitz curves, the running time can be reduced to O(H(n)=p+ log p).

1 Introduction

Elliptic curve cryptosytems were �rst proposed by Koblitz [10] and Miller [15].

Their main attractive is their strongest security by key length. It is possible to

construct elliptic curve cryptosystems over a smaller de�nition �eld than similar

public-key cryptosystems based on the discrete logarithm problem, such as RSA

[17] cryptosystems. Elliptic curve cryptosystems with a 160-bit key are believed

to have the same security as, for example, the RSA with a 1024-bit key length.

Several fast implementation of elliptic curve cryptosystems has been reported

[8, 7, 18, 4, 5]. The security of elliptic curve cryptosystems is based on the diÆ-

culty of the elliptic curve discrete logarithm problem, and then the main opera-

tion of those cryptosystems is the exponentiation, also known as scalar multipli-

cation. For a general survey on exponentiation methods see [6]. In order to obtain

fast elliptic curve exponentiation three factors has been considered: the �eld of

de�nition [4][18], addition chains [4, 12, 16, 18] and optimal coordinate systems

[3, 5]. Special elliptic curves with eÆcient arithmetics has also been considered

[11] [20][21]. In this paper we propose the application of parallel processing to

speed up the exponentiation on elliptic curves.

There already exists parallel algorithms for exponentiation of integers modulo

a m-bit integer [2, 1, 13] and also for exponentiation on the �elds GF (2m) [22]

and GF (qm) [23]. We present in this paper a parallel algorithm to compute scalar

multiplication on elliptic curves. This algorithm would be specially eÆcient for



anomalous binary curves, also known as Koblitz curves. The application of our

algorithm could lead to eÆcient implementations of elliptic curve cryptosystems

on multiprocessor computers.

2 Binary Method

We have an elliptic curve E and a point P 2 E. We want to compute nP , for

some non negative integer n. Let n = (bN�1bN�2bN�3 � � � b2b1b0)2 be the binary
representation of n, where

N = blognc+ 1: (1)

Then

n = bN�12
N�1 + bN�22

N�2 + � � �+ b22
2 + b12 + b0: (2)

Using the Horner expansion, the last expression becomes

n = (� � � ((bN�12 + bN�2)2 + � � �+ b1)2 + b0): (3)

From (3) we have

nP = 2(� � � 2(2(2(bN�1P ) + bN�2P ) + � � �+ b1P ) + b0P: (4)

The last expression suggests a way to get nP . We can de�ne the sucession of

points P1; � � � ; PN as follows. Let

P1 = P

(5)

Pi =

�
2Pi�1 if bN�i = 0

2Pi�1 + P if bN�i = 1

for i = 2; � � � ; N . We can easily observe that PN = nP .

The method above outlined, to obtain nP by the computation of the terms

P1; � � � ; PN , is known as the binary algorithm [9]. From (5) we can deduce that

to obtain the term Pi we need one doubling and, if the corresponding bit of the

binary representation of n is one, one adding. This computation is made N � 1

times, where N = blognc+ 1. If H(n) is the binary Hamming weight of n, that

is, the number of bits set to one in the binary representation of n, then we need

H(n) � 1 point addings besides the N � 1 doublings. Then we can state the

following theorem.

Theorem 1. If P is a point on an elliptic curve E and n is a positive integer,

to obtain nP by the binary method are required blognc doublings and H(n) � 1

point addings.

If we assume that the time taken to add two elliptic curve points is almost the

same that the time taken to do a doubling, and we denote as t such time, we

can conclude from theorem 1 the following:



Corollary 1. The execution time of the binary algorithm is

(blognc+H(n)� 1) � t;

where t is the time taken by a single elliptic curve operation.

Some improvement to the binary method can be obtained by the use of

redundant number systems. Morain and Olivos [16] observed that on elliptic

curves the inverse of a point can be obtained without a cost. For curves y2 =

x
3 + Ax + B over GF (p) with p > 3, the inverse of (x; y) is (x;�y) and, for
y
2 + xy = x

3 + Ax
2 + B over GF (2m), the inverse is (x; x + y). Then, we can

consider representations

n =

N�1X
i=0

ci2
i (6)

with ci 2 f�1; 0; 1g for i = 0; : : : ; N � 1. A nonadjacent form (NAF) is a repre-

sentation with cici+1 = 0 for 0 � i < N � 1. Since the NAF in general has fewer

nonzeros that the binary representation, then the advantage of using it is few

number of additions. Morain and Olivos [16] showed that the expected number

of nonzeros in a NAF is N=3.

3 The p
th-Order Binary Method

First, we divide the binary representation of n in dN=pe blocks of p bits each

one and then we split n into s0; s1; : : : ; sp such that the binary representation of

each si is formed by dN=pe blocks of p bits set to 0, except for the i-th bit, which

has the same value that the i-th bit of the corresponding block of the binary

representation of n. Thus, we can de�ne si, for i = 0; : : : ; p� 1, as follows:

s0 = b0 + bp2
p + b2p2

2p + � � �+ b(dN
p
e�1)p2

(dN
p
e�1)p (7)

s1 = b12 + bp+12
p+1 + b2p+12

2p+1 + � � �+ b(dN
p
e�1)p+12

(dN
p
e�1)p+1

...

sp�1 = bp�12
p�1 + b2p�12

2p�1 + b3p�12
3p�1 + � � �+ b

pd
N
p
e�12

pd
N
p
e�1

:

That is

si =

d
N
p
e�1X

j=0

bjp+i2
jp+i (8)

for i = 0; 1; : : : ; p � 1, where we are considering some padding bits bk = 0 for

N�1 < k � pdN=pe�1. The integer set fs0; s1; � � � ; sp�1g can be easily obtained
from n by XOR-ing it with the appropiate mask. It is clear from (2) and (7) that

n = s0 + s1 + � � �+ sp�1 (9)

and then, we can compute nP as the sum of s0P; s1P; : : : ; sp�1P .

Now, we can outline our pth-order binary method in two phases as follows:



1. Bits scattering: Compute the set fs0; s1; : : : ; sp�1g as is de�ned in (7). Using

p processors, compute in parallel the scalar multiplications

s0P; s1P; : : : ; sp�1P

running the binary method on each processor.

2. Associative fan-in: Using dp=2e processors compute in parallel

nP = s0P + s1P + : : :+ sp�1P:

To do this, �rst we separate the total sum as

p�1X
i=0

si =

dp=2e�1X
i=0

si +

p�1X
i=dp=2e

si;

and then both halves can be computed in parallel. We proceed on each half

the same way recursivelly until we only need to compute a single addition

of two elliptic curve points. Clearly in the deepest level of the recursion we

have to do dp=2e additions in parallel, and to obtain the total sum we have

to make dlog pe recursive steps.

We can observe that if p = 1 then our algorithm reduces to the ordinary

binary algorithm. In what follows, we analyze the running time of the pth-order

binary method.

Theorem 2. The running time of the p
th
-order binary algorithm, on the best

case, is

blognc+ dH(n)=pe+ dlog pe � 1

and, on the worst case,

blognc+H(n)� 1:

Proof. First, we must observe that the integer set fs0; s1; � � � ; sp�1g can be ob-

tained from n in a negligible time. In the phase one of the algorithm, each

processor executes the binary algorithm to compute siP , where i is the pro-

cessor's index. From corollary 1, it requires blog sic+H(si)� 1 steps to do this

computation. Now, since aN�1 = 1, one of the processors have to compute N�1

doublings and if we suppose that in order to start the phase two all the proces-

sors must �nish its computation, then the running time of the phase one will

be

T1 = N +H
� � 2; (10)

where

H
� = max

0�i�p�1
H(si): (11)

Since we have that

H(n) =

p�1X
i=0

H(si) (12)



then

dH(n)=pe � H
� � H(n): (13)

In the best case, all the bits set to one in the binary representation of n are

equally scattered among the integers fsig, so the load is perfectly balanced on

all the processors, and then we have

H
� =

�
H(n)

p

�
: (14)

And from (14), (10) and (1) we have that, on the best case, the time of the phase

one is given by

T1 = blognc+ dH(n)=pe � 1: (15)

In the phase two of our algorithm, the sum s0P + � � �+ sp�1P is computed using

the associative fan-in algorithm in

T2 = dlog pe (16)

steps, and then the total running time for the best case will be

T = T1 + T2 = blognc+ dH(n)=pe+ dlog pe � 1: (17)

In the worst case H� = H(n), which implies by the de�nition of H� (11) that

exists some index k, 0 � k � p � 1, such that H(sk) = H(n) and, from (12),

H(si) = 0 for i 6= k and then si = 0 for i 6= k. From (9) we have that n = sk

and then skP = nP . Then we have that nP is computed on the phase one by

the processor k. Therefore the running time will be the same as that stated on

the corollary 1.

Some improvement can be obtained if we use the NAF as input to our al-

gorithm instead of the binary representation of n. Since the NAF has a fewer

number of nonzeros, then we can obtain the same running times with fewer pro-

cessors. But before this we can see that a bottleneck in our algorithm is caused

by the number of doublings needed on the �rst phase, represented by the linear

term on N in (10), which is independent from the number p of processors.

In the deduction of the running time of our algorithm, was supossed that

the time needed to do a doubling or a point addition is almost the same, but in

general it depends of the coordinate system in which an elliptic curve is repre-

sented. The most well known coordinate systems are the aÆne and projective

coordinates [19]. Another two coordinate systems, the Jacobian coordinates and

Chudnovsky Jacobian coordinates have been proposed in [3]. The eÆciency of

Jacobian coordinates for elliptic curve exponentiation was discussed in [4]. In

[5] has been proposed a modi�ed Jacobian coordinate system, which gives faster

doublings than aÆne, projective, Jacobian and Chudnovsky Jacobian coordi-

nates. Then we can use this modi�ed Jacobian coordinate system to partially

overcome the bottleneck of doublings in our algorithm.

A more fruitful approach could be the use of special elliptic curves in which

doublings are unnecessary at all. This will be discussed at the next section.



4 The p
th-order � -ary method

The binary anomalous curves, proposed by Koblitz [11], have been used to ob-

tain eÆcient implementations of elliptic curve cryptosystems [14][20] [21]. These

curves are

E1 : y
2 + xy = x

3 + x
2 + 1 (18)

and

E2 : y
2 + xy = x

3 + 1 (19)

over GF (2m). For these it can be easily veri�ed the property that if the point

(x; y) is in the curve, also is the point (x2; y2). Then we can de�ne their Frobenius

automorphisms as '(x; y) = (x2; y2), which corresponds to multiplication by

� = (1+
p
�7)=2 on E1 and by ��� = (�1+

p
�7)=2 on E2. Using normal basis

on GF (2m), the multiplication by � requires only two cyclic shifts and then it

can be done in a negligible time.

Since � is an element of norm 2 in the Euclidean domain Z[� ] any integer n

has a representation as

n =

1X
i=0

ci�
i (20)

for ci 2 f0; 1g. For any n 2 Z[� ] a representation (20) is called a NAF if ci 2
f0;�1g and cici+1 = 0 for all i � 0. Solinas [20] showed the existence of a NAF

of minimal weigth by giving an algorithm that computes the NAF directly. If

� jn, then c0 = 0. Otherwise, �2 divides either n+ 1 or n� 1 and the NAF ends

in (0;�1) or (0; 1), respectively. This process is repeated on n=� , (n+ 1)=�2 or

(n� 1)=�2.

Because 'm(x; y) = (x2
m

; y
2m) = (x; y), any two representations which agree

modulo �
m � 1 will yield the same endomorphism on the curve. Based on this

property, Meier and Sta�elbach [14] showed the following:

Theorem 3. Every n 2 Z[� ] has a representation

n �
m�1X
i=0

ci�
i (mod �

m � 1); (21)

with ci 2 f0;�1g.
The binary method can be extended in a natural way to a � -ary method

based on the representation of n given by (21). Now we can de�ne a parallel

p
th-order � -ary method.

Using (21) we can de�ne the set fs0; � � � ; sp�1g � Z[� ], where

si =

d
m
p
e�1X

j=0

cjp+i�
jp+i (22)

for i = 0; 1; : : : ; p� 1.

The pth-order �-ary method consists in the following two stages:



1. Bits scattering: Using p processors compute in parallel

s0P; s1P; � � � ; sp�1P

running the � -ary algorithm on each processor.

2. Associative fan-in: Using dp=2e processors compute

p�1X
k=0

skP

with the associative fan-in algorithm, in dlog pe steps.

If we de�ne H(n) as the number of nonzeros in the representation given by

(21), we can state the following theorem:

Theorem 4. The running time of the p
th
-order �-ary method, on the best case,

is

dH(n)=pe+ dlog pe � 1

and

H(n)� 1

on the worst case.

Proof. The proof of this theorem is the same as that of theorem 2 except that

the time for the phase one will be

T1 = H
� � 1 (23)

where H� is de�ned as in (11).

Meier and Sta�elbach [14] conjecture, based on experimental evidence, that

on average half of the ci will be nonzero. So we can expect that when p � m=2

the running time will be closer to logH(n). Further improvements can be made

to the � -ary representation to reduce the number of nonzeros [21], so a small

number of processors can bring similar speed-up in the pth-order � -ary method.

5 Conclusions

We have discussed in this paper a extension of the binary algorithm, which by the

use of parallel processing can speed up the computation of scalar multiplications

on elliptic curves. We have also discussed some ways to improve this algorithm.

We have showed how it can be specially eÆcient for Koblitz curves.

The application of this algorithm could lead to eÆcient implementations of

elliptic curves cryptosystems on multiprocessor architectures.



References

1. M. Adleman and K. Kompella, Using smoothness to achieve parallelism, Proceed-

ings of the 20th ACM Symposium on the Theory of Computing, pp. 528-538, 1988.

2. P.W. Beame, S.A. Cook and H.J. Hoover, Log depth circuits for division and

related problems, SIAM Journal on Computing, vol. 15, pp. 994-1003, 1986.

3. D.V. Chudnovsky and G.V. Chudnovsky, Sequences of numbers generated by ad-

dition in formal groups and new primality and factorization tests, Advances in

Applied Mathematics, vol. 7, pp. 385-434, 1986.

4. H. Cohen, A. Miyaji and T. Ono, EÆcient elliptic curve exponentiation, Advances

in Cryptology - Proceedings of ICICS'97, LNCS 1334, pp. 282-290, 1997.

5. H. Cohen, A. Miyaji and T. Ono, EÆcient elliptic curve exponentiation using

mixed coordinates, Advances in Cryptology - ASIACRYPT'98, LNCS 1514, pp.

51-65, 1998.

6. D.M. Gordon, A survey of fast exponentiation methods, Journal of Algorithms,

vol. 27, pp. 129-146, 1998.

7. J. Guajardo and C. Paar, EÆcient algorithms for elliptic curve cryptosystems,

Advances in Cryptology - CRYPTO'97, LNCS 1294, pp. 342-356, 1997.

8. G. Harper, A. Menezes and S. Vanstone, Public-key cryptosystems with very small

key lengths, Advances in Cryptology - EUROCRYPT'92, LNCS 658, pp. 163-173,

1993.

9. D.E. Knuth. The Art in Computer Programming. Vol 2: Seminumerical Algo-

rithms. Addison-Wesley, 2nd. Ed., 1981.

10. N. Koblitz, Elliptic curve cryptosystems,Mathematics of Computation, vol. 48, pp.

203-209, 1987.

11. N. Koblitz, CM-curves with good cryptographic properties, Advances in Cryptology

- CRYPTO'91, LNCS 576, pp. 279-287, 1992.

12. K. Koyama and T. Tsuruoka, Speeding up elliptic cryptosystems by using a signed

binary window method, Advances in Cryptology - CRYPTO'92, LNCS 740, pp.

345-357, 1993.

13. C.H. Lim and P.J. Lee, More exible exponentiation with precomputation, Ad-

vances in Cryptology - CRYPTO'94, LNCS 389, pp. 95-107, 1994.

14. W. Meier and O. Sta�elbach, EÆcient multiplication on certain nonsupersingular

elliptic curves, Advances in Cryptology - CRYPTO'92, vol. 740, pp. 333-344, 1993.

15. V. Miller, Uses of elliptic curves in cryptography, Advances in Cryptology -

CRYPTO'85,LNCS 218, pp.417-426, 1986.

16. F. Morain and J. Olivos. Speeding up the computations on an elliptic curve using

addition-substraction chains. Inform. Theor. Appl., 24, 531-543, 1990.

17. R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures

and public key cryptosystems, Communications of the ACM, vol. 21, no. 2, pp.

120-126, 1978.

18. R. Schroeppel, H. Orman, S. O'Malley and O. Spatscheck, Fast key exchange with

elliptic curve systems, Advances in Cryptology - CRYPTO'95, LNCS 963, pp. 43-

56, 1995.

19. J.H. Silverman, The Arithmetic of Elliptic Curves, GTM 106, Springer Verlag,

1986.

20. J. Solinas, An improved algorithm for arithmetic on a family of elliptic curves,

Advances of Cryptology - CRYPTO'97, LNCS 1294, pp. 357-371, 1997.

21. J. Solinas, EÆcient arithmetic on Koblitz curves, Design, Codes and Cryptography,

vol. 19, pp. 195-249, 2000.



22. D.R. Stinson, Some observations on parallel algorithms for fast exponentiation in

GF (2n), SIAM Journal on Computing, vol. 19, pp. 711-717, 1990.

23. J. von zur Gathen, EÆcient and optimal exponentiation in �nite �elds, Computa-

tional Complexity, pp. 360-394, 1991.


