
On Constructing Locally Computable Extractors and

Cryptosystems in the Bounded Storage Model

Salil P. Vadhan∗

Division of Engineering & Applied Sciences
Harvard University

Cambridge, MA 02138
salil@eecs.harvard.edu

http://eecs.harvard.edu/˜salil/

November 1, 2002

Abstract

We consider the problem of constructing randomness extractors which are locally computable,
i.e. only read a small number of bits from their input. As recently shown by Lu (CRYPTO
‘02), locally computable extractors directly yield secure private-key cryptosystems in Maurer’s
bounded storage model (J. Cryptology, 1992).

In this note, we observe that a fundamental lemma of Nisan and Zuckerman (J. Computer
and System Sciences, 1996) yields a general technique for constructing locally computable ex-
tractors. Specifically, we obtain a locally computable extractor by combining any extractor with
any randomness-efficient (averaging) sampler. Plugging in known extractor and sampler con-
structions, we obtain locally computable extractors, and hence cryptosystems in the bounded
storage model, whose parameters improve upon previous constructions and come quite close to
the lower bounds.

Along the way, we also present a refinement of the Nisan–Zuckerman lemma, showing that
random sampling bits from a weak random source preserves the min-entropy rate up to an
arbitrarily small additive loss (whereas the original lemma loses a logarithmic factor).

Keywords: extractors, bounded storage model, everlasting security, space-bounded adver-
saries, unconditional security, averaging samplers, expander graphs

∗Supported by NSF grants CCR-0205423 and CCR-0133096.

1 Introduction

Maurer’s bounded storage model for private-key cryptography [Mau92] has been the subject of much
recent activity. In this model, one assumes that there is public, high-rate source of randomness and
that all parties have limited storage so that they cannot record all the randomness from the source.
Remarkably, this quite plausible model makes it possible to construct private-key cryptosystems
which are information-theoretically secure and require no unproven complexity assumptions (in
contrast to most of modern cryptography). Intuitively, a shared secret key can be used by legiti-
mate parties to randomly select bits from the random source about which the adversary has little
information (due to the bound on its storage). With some further processing, the legitimate parties
can convert these unpredictable bits into ones which the adversary cannot distinguish from truly
random (in an information-theoretic sense), and hence they can safely be used for cryptographic
purposes, e.g. as a one-time pad for encryption.

A sequence of works [Mau92, CM97, AR99, ADR02, DR02, DM02, Lu02] has given increas-
ingly secure and efficient protocols in this model. In particular, the works of Aumann, Ding, and
Rabin [ADR02, DR02] showed that protocols in this model have the novel property of “everlasting
security” — the security is preserved even if the key is reused an exponential number of times and
is subsequently revealed to the adversary.

Recently, Lu [Lu02] showed that work in this model can be cast nicely in the framework of
randomness extractors. Extractors, introduced by Nisan and Zuckerman [NZ96], are procedures
for extracting almost-uniform bits from sources of biased and correlated bits. These powerful tools
have been the subject of intense study, and have found many applications to a wide variety of topics
in the theory of computation. (See the surveys [NT99, Sha02].) One of the first applications, in
the original paper of Nisan and Zuckerman, was to construct pseudorandom generators for space-
bounded computation. Thus, they seem a natural tool to use in the bounded storage model, and
indeed Lu [Lu02] showed that any extractor yields secure private-key cryptosystems in the bounded-
storage model. However, the efficiency considerations of the bounded-storage model require a
nonstandard property from extractors — namely that they are locally computable,1 i.e. they can be
computed by reading only a few bits from the random source. Lu constructed locally computable
extractors by first constructing locally computable error-correcting codes, and then plugging them
into the specific extractor construction of Trevisan [Tre01].

In this note, we observe that a fundamental lemma of Nisan and Zuckerman [NZ96] yields a
general technique for constructing locally computable extractors. Roughly speaking, the lemma
states that a random of sample of bits from a string of high min-entropy2 also has high min-
entropy. This allows us to obtain a locally computable extractor by combining any extractor with
any randomness-efficient “sampler” (a procedure for sampling a subset of a universe so that the
average value of any [0, 1]-valued function is approximately preserved with high probability). By
plugging in known extractor and sampler constructions, we obtain locally computable extractors,
and hence cryptosystems in the bounded storage model, whose parameters are better than the
previous constructions and come quite close to the lower bounds. Along the way, we also present
a refinement of the Nisan–Zuckerman lemma, showing that random sampling preserves the min-

1This terminology was suggested by Yan Zong Ding, and we prefer it to the terminology “on-line extractors,” which
was used with different meanings in [BRST02, Lu02]. The issue of “local computation” versus “on-line computation”
is discussed in more detail in Section 2.

2Like Shannon entropy, the min-entropy of a probability distribution X is a measure of the number of bits of
“randomness” in X. A formal definition is given in Section 2.

1

entropy rate up to an arbitrarily small additive loss (whereas the original lemma loses a logarithmic
factor).

In retrospect, several previous cryptosystems in the bounded-storage model, such as [CM97] and
[ADR02], can be viewed as special cases of our approach, with particular choices for the extractor
and sampler. By abstracting the properties needed from the underlying tools, we are able to use
state-of-the-art extractors and samplers, and thereby obtain our improvements.

2 The Bounded-Storage Model

The Random Source. The original model of Maurer [Mau92] envisioned the random source as
a high-rate stream of perfectly random bits being broadcast from some natural or artificial source
of randomness. However, since it may difficult to obtain perfectly random bits from a physical
source, particularly at a high rate, we feel it is important to investigate the minimal conditions
on the random source under which this type of cryptography can be performed. As noted in
[Lu02, DM02], the existing constructions still work even if we only assume that the source has
sufficient “entropy”. Below we formalize this observation, taking particular note of the kind of
independence that is needed when the cryptosystem is used many times.

We model the random source as a sequence of random variables X1, X2, . . ., each distributed
over {0, 1}n, where Xt is the state of the source at time period t. To model a random source
which is a high-rate “stream” of bits, the Xt’s can be thought of as a partition of the stream into
contiguous substrings of length n. However, one may also consider random sources that are not a
stream, but rather a (natural or artificial) “oracle” of length n, which changes over time and can
be probed at positions of one’s choice. In both cases, n should be thought of as very large, greater
than the storage capacity of the adversary (and the legitimate parties).

To obtain the original model of a perfectly random stream, each the Xt’s can be taken to be
uniform on {0, 1}t and independent of each other. Here we wish to allow biases and correlations
in the source, only assuming that each Xt has sufficient randomness, as measured by the following
variant of entropy (advocated in [Zuc96]). The min-entropy of a random variable X is defined to
be H∞(X) def= minx log(1/Pr[X = x]). (All logarithms in this paper are base 2.) Intuitively, min-
entropy measures randomness in the “worst case,” whereas standard (Shannon) entropy measures
the randomness in X “on average.” Adopting a worst-case measure is important here since we
want security to hold with high probability and not just “on average”. (The results will also apply
for random sources that are statistically close to having high min-entropy, such as those of high
Renyi entropy.) X is called a k-source if H∞(X) ≥ k, i.e. for all x, Pr [X = x] ≤ 2−k.

For our cryptosystems, we will need to require that the random source has high min-entropy
conditioned on the future. For a random variable A and an event E we write A|E for the distribution
of A conditioned on E. With this notation, our model of a random source is:

Definition 1 A sequence of random variables X1, X2, . . ., each distributed over {0, 1}n is a reverse
block source of entropy rate α if for every t ∈ N and every xt+1, xt+2, . . ., the random variable
Xt|Xt+1=xt+1,Xt+2=xt+2,... is an αn-source.

As the terminology suggests, this is the same as the Chor-Goldreich [CG88] notion of a block source,
but “backwards” in time. Intuitively, it means that Xt possesses αn bits of randomness that will
be “forgotten” at the next time step. This is somewhat less natural than the standard notion
of a (forward) block source, but it still may be a reasonable model for some physical sources of

2

randomness which are not perfectly random.3 Below we will see why some condition of this form
(high entropy conditioned on the future) is necessary for the cryptography. In any case, in the
special case α = 1, Definition 1 is equivalent to requiring that Xt’s are uniform and independent,
so the issue of reversal is moot.

Cryptosystems. Here, as in previous works, we focus on the task of using a shared key to extract
pseudorandom bits from the source. These pseudorandom bits can then be used to perform private-
key encryption or message authentication. A pseudorandom extraction scheme in the bounded
storage model is a function Ext : {0, 1}n × {0, 1}d → {0, 1}m. Such a scheme is to be used as
follows. Two parties share a key K ∈ {0, 1}d. At time t, they apply Ext(·,K) to the random source
Xt to obtain m pseudorandom bits, given by Yt = Ext(Xt,K). At time t + 1 (or later), Yt will be
pseudorandom to the adversary (if the scheme is secure), and hence can be used by the legitimate
parties as a shared random string for any purpose (e.g. as a one-time pad for encryption). The
pseudorandomness of Yt will rely on the fact that, at time t + 1, Xt is no longer accessible to the
adversary. More generally, we need Xt to be unpredictable from future states of the random source,
as captured by our notion of a reverse block source. Note that even if Yt will only be used exactly
at time t + 1, we still need Xt to have high min-entropy given the entire future, as the adversary
can store Yt.

We now formally define security for a pseudorandom extraction scheme. Let βn be the bound
on the storage of the adversary A, and we’ll denote by St ∈ {0, 1}βn the state of the adversary at
time t. Following the usual paradigm for pseudorandomness, we consider the adversary’s ability
to distinguish two experiments — the “real” one, in which the extraction scheme is used, and an
“ideal” one, in which truly random bits are used.

Real Experiment: Let X1, X2, . . . be the random source, and let K
R← {0, 1}d. For all t, let

Yt = Ext(Xt,K) be the extracted bits. Let S0 = 0d, and for t = 1, . . . , T , let St =
A(St−1, Xt, Y1, . . . , Yt−1). Output A(ST−1, XT , Y1, . . . , YT−1,K) ∈ {0, 1}.

Ideal Experiment: Let X1, X2, . . . be the random source, and let K
R← {0, 1}d. For all t, let

Yt
R← {0, 1}m. Let S0 = 0d, and for t = 1, . . . , T , let St = A(St−1, Xt, Y1, . . . , Yt−1). Output

A(ST−1, XT , Y1, . . . , YT−1,K) ∈ {0, 1}.

Definition 2 We call Ext : {0, 1}n×{0, 1}d → {0, 1}m ε-secure for storage rate β and entropy rate
α if for every reverse block source (Xt) of entropy rate α, every adversary A with storage bound βn,
and every T > 0, A distinguishes between the real and ideal experiments with advantage at most
T · ε.

Remarks:

• In the real experiment, we give the extracted strings Yt explicitly to the adversary, as is
typical in definitions of pseudorandomness. However, when they are used in a cryptographic
application (e.g. as one-time pads), they of course will not be given explicitly to the adversary.

• The string Yt extracted at time t is not given to the adversary (i.e. is not “used”) until time
t + 1. As mentioned above, this is crucial for security.

3The consideration of such sources raise interesting philosophical questions: does the universe keep a perfect record
of the past? If not, then reverse block sources seem plausible.

3

• The definition would be interesting even if Y1, . . . , Yt−2 were not given to the adversary at time
t, (i.e. St = A(St−1, Xt, Yt−1)), and K were not given to the adversary at the end. Giving
all the previous Yi’s implies that it is “safe” to use Yi at any time period after i (rather than
exactly at time i + 1). Giving the adversary the key at time T means that even if the secret
key is compromised, earlier transactions remain secure. This is the remarkable property of
“everlasting security” noticed by [ADR02].

• We require that the security degrade only linearly with the number of times the same key is
reused.

• No constraint is put on the computational power of the adversary except for the stor-
age bound of βn (as captured by St ∈ {0, 1}βn). This means that the distributions of
(ST−1, XT , Y1, . . . , YT−1,K) in the real and ideal experiments are actually close in a statistical
sense (namely, with respect to statistical difference, as defined in the next section).

• The definition is impossible to meet unless α > β: If α ≤ β, we can take each Xt to have
its first αn bits uniform and the rest fixed to zero. Then an adversary with βn storage can
entirely record Xt, and thus can distinguish Yt = Ext(Xt,K) from uniform at time t + 1
(unless |K| ≥ |Yt|, in which case each Yt reveals information about the key and security is
also lost).

As usual, the above definition implies that to design a cryptosystem (e.g. private-key encryption
or message authentication) one need only prove its security in the ideal experiment, where the
two parties effectively share an infinite sequence of random strings Y1, Y2, Security in the
bounded storage model immediately follows if the Yi’s are then replaced with a secure pseudorandom
extraction scheme.

Efficiency Considerations. In addition to security, it is important for the extraction scheme to
be efficient. In the usual spirit of cryptography, we of course would like the computation of Ext to
require much less space than the adversary’s storage bound of βn. However, note that the honest
parties will have to store the entire extracted key Yt ∈ {0, 1}m during time t (when it is not yet
safe to use), so reducing the space to m is the best one can hope for (but we envision m ¿ n so
this is still useful). However, since n is typically envisioned to be huge, it is preferable not just to
reduce the space for Ext to much less than n, but also the time spent.4 Thus, we adopt as our
efficiency measure the number of bits read from the source. Of course, once these bits are read, it is
important that the actual computation of Ext is efficient with respect to both time and space. In
our constructions (and all previous constructions), Ext can be computed in polynomial time and
polylogarithmic work space (indeed even in NC). Thus the total storage required by the legitimate
parties equals the number of bits read from the source up to a constant factor.

The following shows that the number of bits read from the source must be linear in m, and
grow as the difference between the entropy rate and storage rate goes to zero.

Proposition 3 If Ext : {0, 1}n×{0, 1}d → {0, 1}m is an ε-secure pseudorandom extraction scheme
for storage rate β and entropy rate α, then Ext(·,K) depends on at least (1− ε) · (1/(α−β)) ·m−1
bits of its input (on average, taken over K).

4If having Ext computable in small space with one pass through the random source is considered sufficiently
efficient, then the work of Bar-Yossef et al. [BRST02] is also applicable here. See Section 3.

4

Proof Sketch: For this proof sketch, we ignore the parameter ε (i.e. pretend it is zero). For a
subset TX ⊂ [n] of size |TX | = αn, consider a source (Xt) where the Xt’s are independent and each
Xt is uniform on the bits in TX and 0 elsewhere. For a subset TA ⊂ TX of size |TA| = βn, consider
an adversary which records the bits of Xt in TA. For any TA and TX , the this source has entropy
rate α and the adversary has storage rate β. Now, if Ext(·,K) reads only a set TK of bits from the
source, it only gets |TK ∩ (TX \ TA)| bits of entropy beyond what the adversary sees, so intuitively
m must be at most EK [|TK ∩ (TX \ TA)|]).

Now consider randomly chosen subsets TA ⊂ TX ⊂ [n]. Then TX \ TA is a random subset of
density (α−β), so for a fixed K the expected intersection size |TK∩(TX\TA)| is at most (α−β)·|TK |.
By averaging, there exists TA and TX such that EK [|TK ∩ (TX \ TA)|] ≤ (α − β) · EK [|TK |]. We
conclude that m is at most (α− β) · EK [|TK |]. This proof can be formalized via standard entropy
arguments. ¤

Another common complexity measure in cryptography is the key length, which should be min-
imized. Figure 1 describes the performance of previous schemes and our new constructions with
respect to these two complexity measures.5

reference key length # bits read restrictions

[CM97] O(log n) O(m/ε2) interactive

[AR99] O(log n · log(1/ε)) O(m · log(1/ε)) α = 1,β < 1/m

[ADR02] O(m · log n · log(1/ε)) O(m · log(1/ε))

[DR02] O(log n · log(1/ε)) O(m · log(1/ε)) α = 1, β < 1/ log m

[DM02] O(log n · log(1/ε)) O(m · log(1/ε))

[Lu02] O(m · (log n + log(1/ε))) O(m · log(1/ε))

[Lu02] O((log2(n/ε)/ log n)) O(m · log(1/ε)) m ≤ n1−Ω(1)

here O(log n + log(1/ε)) O(m + log(1/ε)) ε > exp(−n/2O(log∗ n))

Figure 1: Comparison of pseudorandom extraction schemes in the bounded-storage model. Param-
eters are for ε-secure schemes Ext : {0, 1}n × {0, 1}d → {0, 1}m, for constant storage rate β and
entropy rate α, where α > β. We only list the parameters for the case that the number of bits read
from the source is o(n), as n is assumed to be huge and infeasible.

We now touch upon a couple of additional efficiency considerations. First, if the random source
is indeed a high-rate stream (as opposed to an “oracle source”), it is important that the positions
to be read from the source can be computed offline (from just the key) and sorted so that they can
be quickly read in order as the stream goes by. This is the case for our scheme and previous ones.

Second, one can hope to reduce the space of the legitimate parties to exactly m + d (i.e., the
length of the extracted string plus the key). That is, even though the schemes read more than m
bits from the source, the actual computation of the m-bit extracting string can be done “in place”
as the bits from the source are read. This property holds for most of the previous constructions, as
each bit of the the extracted string is a parity of O(log(1/ε)) bits of the source. Our construction

5Most of the previous schemes were explicitly analyzed only for the case of a perfectly random source, i.e. α = 1, but
the proofs actually also work for weak random sources provided α > β (except where otherwise noted) [Lu02, Mau02].

5

does not seem to have this property in general (though specific instantiations may); each bit of the
output can be a function of the entire O(m + log(1/ε)) bits read from the source. Still the space
used by our scheme is O(m + log(1/ε)), only a constant factor larger than optimal.

The fact that each bit of the extracted string depends on only O(log(1/ε)) bits of the source
in previous constructions has one other potential benefit: it may be useful for incorporating error-
correction in case the random source cannot be accessed perfectly [Rab01]. Assume the extracted
strings are used as one-time pads for encryption. Then, in the previous schemes, a bit-error prob-
ability of O(1/ log(1/ε)) in accessing the source can be viewed as a constant bit-error probability
in the plaintext, which can be handled by using a standard, asymptotically good error-correcting
code.

3 Locally Computable Extractors

In this section, we define extractors and locally computable extractors, and recall Lu’s result [Lu02]
about their applicability to the bounded storage model. Then we discuss averaging samplers and
describe how using them to sample bits from a random source preserves the min-entropy rate, via
a lemma of Nisan and Zuckerman [NZ96] which we refine. Finally, we give our general construction
which combines any extractor and any averaging sampler to yield a locally computable extractor.

The statistical difference (or variation distance) between two random variables X, Y taking
values in a universe U is defined to be

∆(X, Y) def= max
S⊂U

∣∣∣Pr [X ∈ S]− Pr [Y ∈ S]
∣∣∣ =

1
2

∑

x∈U

∣∣∣Pr [X = x]− Pr [Y = x]
∣∣∣ .

We say X and Y are ε-close if ∆(X, Y) ≤ ε.
An extractor is a procedure for extracting almost-uniform bits from any random source of

sufficient min-entropy. This is not possible to do deterministically, but it is possible using a short
seed of truly random bits, as captured in the following definition of Nisan and Zuckerman.

Definition 4 ([NZ96]) Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong6 (k, ε)-extractor if for every
k-source X, Ud ◦ Ext(X, Ud) is ε-close to Ud × Um.

The goal in constructing extractors is to minimize the seed length d and maximize the output
length m. We will be precise about the parameters in later sections, but, for reference, an “optimal”
extractor has a seed length of d = O(log n+log(1/ε)) and an output length of m = k−O(log(1/ε)),
i.e. almost all of the min-entropy is extracted using a seed of logarithmic length.

Recently, Lu proved that any extractor yields secure cryptosystems in the bounded storage
model:

Theorem 5 ([Lu02]) If Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong (δn− log(1/ε), ε)-extractor,
then for any β > 0, Ext is an 2ε-secure pseudorandom extraction scheme for storage rate β and
entropy rate β + δ.

However, as noted by Lu, for a satisfactory solution to cryptography in the bounded-storage
model, the extractor should only read only a few bits from the source.

6A standard (i.e. non-strong) extractor requires only that Ext(X, Ud) is ε-close to uniform.

6

Definition 6 Ext : {0, 1}n × {0, 1}d → {0, 1}m is t-locally computable (or t-local) if for every
r ∈ {0, 1}d, Ext(x, r) depends on only t bits of x.

Thus, in addition to the usual goals of minimizing d and maximizing m, we also wish to
minimize t. Bar-Yossef, Reingold, Shaltiel, and Trevisan [BRST02] studied a related notion of
on-line extractors, which are required to be computable in small space in one pass. They show
that space ≈ m is necessary and sufficient to evaluate extractors with output length m. Since the
small-space requirement is weaker than being locally computable, their lower bound also applies
here.7 But a stronger lower bound for locally computable extractors can be obtained by combining
Proposition 3 and Theorem 5, or by mimicking the proof of Proposition 3 directly for t-local
extractors:

Proposition 7 If Ext : {0, 1}n × {0, 1}d → {0, 1}m is a t-local strong (δn, ε)-extractor, then t ≥
(1− ε) · (1/δ) ·m− 1.

Lu [Lu02] observed that the encryption schemes of Aumann, Ding, and Rabin [AR99, ADR02,
DR02] can be viewed as locally computable extractors, albeit with long seeds. He constructed locally
computable extractors with shorter seeds based on Trevisan’s extractor [Tre01]. The construction
of Dziembowski and Maurer [DM02] can also be viewed as a locally computable extractor [Mau02].
The parameters of these constructions can be deduced from Figure 1.

Our construction of locally computable extractors is based on a fundamental lemma of Nisan
and Zuckerman [NZ96], which says that if one samples a random subset of bits from a weak random
source, the min-entropy rate of the source is (nearly) preserved. More precisely, if X ∈ {0, 1}n is
a δn-source, and XS ∈ {0, 1}t is the projection of X onto a random set S ⊂ [n] of t positions,
then w.h.p. XS is ε-close to a δ′t-source, for some δ′ depending on δ. Thus, to obtain a locally
computable extractor, we can simply apply a (standard) extractor to XS , and thereby output δ′t
almost-uniform bits. That is, part of the seed of the locally computable extractor will be used to
select S, and the remainder as the seed for applying the extractor to XS .

However, choosing a completely random set S of positions is expensive in the seed length,
requiring ≈ |S| · log n random bits. (This gives a result analogous to [ADR02], because |S| ≥
m.) To save on randomness, Nisan and Zuckerman [NZ96] showed that S can be sampled k-
wise independently. More generally, their proof only requires that S has large intersection with
any subset of [n] of a certain density with high probability [RSW00]. We will impose a slightly
stronger requirement on the sampling method: for any [0, 1]-valued function, its average on S
should approximate its average on [n] with high probability. Such sampling procedures are known as
averaging (or oblivious) samplers, and have been studied extensively [BR94, CEG95, Zuc97, Gol97].
Our definition differs slightly from the standard definition, to allow us to obtain some savings in
parameters (discussed later).

Definition 8 A function Samp : {0, 1}r → [n]t is a (µ, θ, γ) averaging sampler if for every function
f : [n] → [0, 1] with average value 1

n

∑
i f(i) ≥ µ,

Pr
(i1,...,it)

R←Samp(Ur)

1

t

t∑

j=1

f(ij) < µ− θ

 ≤ γ.

7This is because their space lower bounds apply also to a nonuniform branching program model of computation,
where the space is always at most the number of bits read from the input.

7

Samp has distinct samples if for every x ∈ {0, 1}r, the samples produced by Samp(x) are all
distinct.

That is, for any function f whose average value is at least µ, with high probability the sampler
selects a sample of positions on which the the average value of f is not much smaller than µ. The
goal in constructing averaging samplers is usually to simultaneously minimize the randomness r and
sample complexity t. We will be precise about the parameters in later sections, but, for reference,
an “optimal” averaging sampler uses only t = O(log(1/γ)) samples and r = O(log n + log(1/γ))
random bits (for constant µ, θ).

In contrast to most applications of samplers, we will not necessarily be interested in minimizing
the sample complexity. Ideally, we prefer samplers where the number of distinct samples can be
chosen anywhere in the interval [t0, n], where t0 is the minimum possible sample complexity. (Note
that without the requirement of distinct samples, the number of samples can be trivially increased
by repeating each sample several times.) Another atypical aspect of our definition is that we make
the parameter µ explicit. Averaging samplers are usually required to give an approximation within
additive error θ regardless of the average value of f , but being explicit about µ will allow us to
obtain some savings in the parameters.

Using averaging samplers (rather than just samplers which intersect large sets) allows us to
obtain a slight improvement to the Nisan–Zuckerman lemma. Specifically, Nisan and Zuckerman
show that sampling bits from a source of min-entropy rate δ yields a source of min-entropy rate
Ω(δ/ log(1/δ)); our method can yield min-entropy rate δ − τ for any desired τ .

For a string x ∈ {0, 1}n and a sequence s = (i1, . . . , it) ∈ [n]t, define xs ∈ {0, 1}t to be the string
xi1xi2 · · ·xit . Recall that for a pair of jointly distributed random variables (A,B), we write B|A=a

for B conditioned on the event A = a.

Lemma 9 (refining [NZ96]) Suppose that Samp : {0, 1}r → [n]t is an (µ, θ, γ) averaging sampler
with distinct samples for µ = (δ − 2τ)/ log(1/τ) and θ = τ/ log(1/τ). Then for every δn-source X
on {0, 1}n, the random variable (Ur, XSamp(Ur)) is (γ +2−Ω(τn))-close to (A,B) where A is uniform
on {0, 1}r and for every a ∈ {0, 1}r,8 the random variable B|A=a is (δ − 3τ)t-source.

The above lemma is where we use the fact that the sampler has distinct samples. Clearly,
sampling the same bits of X many times cannot increase the min-entropy of the output, whereas
the above lemma guarantees that the min-entropy grows linearly with t, the number of samples.

An alternative method to extract a shorter string from a weak random source while preserv-
ing the min-entropy rate up to a constant factor was given by Reingold, Shaltiel, and Wigder-
son [RSW00], as a subroutine in their improved extractor construction. However, the string pro-
duced by their method consists of bits of an encoding of the source in an error-correcting code
rather than bits of the source itself, and hence is not good for constructing locally computable
extractors (which were not their goal). As pointed out to us by Chi-Jen Lu and Omer Reingold,
Lemma 9 eliminates the need for error-correcting codes in [RSW00].

The proof of Lemma 9 is deferred to Section 4. Given the lemma, it follows that combining an
averaging sampler and an extractor yields a locally computable extractor.

8Intuitively, the reason we can guarantee that B has high min-entropy conditioned on every value of A, is that
the “bad” values of A are absorbed in the γ + 2−Ω(τn) statistical difference.

8

Theorem 10 Suppose that Samp : {0, 1}r → [n]t is an (µ, θ, γ) averaging sampler with distinct
samples for µ = (δ − 2τ)/ log(1/τ) and θ = τ/ log(1/τ). and Ext : {0, 1}t × {0, 1}d → {0, 1}m is a
strong ((δ − 3τ)t, ε) extractor. Define Ext′ : {0, 1}n × {0, 1}r+d → {0, 1}m by

Ext′(x, (y1, y2)) = Ext(xSamp(y1), y2).

Then Ext′ is a t-local strong (δn, ε + γ + 2−Ω(τn)) extractor.

Proof: For every (y1, y2), Ext′(x, (y1, y2)) only reads the t bits of x selected by Samp(y1),
so Ext′ is indeed t-local. We now argue that it is a (δn, ε + γ + 2−Ω(τn)) extractor. Let X be
any δn-source. We need to prove that the random variable Z = (Ur, Ud, Ext′(X, (Ur, Ud))) =
(Ur, Ud, Ext(XSamp(Ur), Ud)) is close to uniform. By Lemma 9, (Ur, XSamp(Ur)) is (γ +2−Ω(τn))-close
to (A, B) where A is uniform on {0, 1}r and B|A=a is a (δ − 3τ)t-source for every a. This implies
that Z is (γ + 2−Ω(τn))-close to (A,Ud,Ext(B, Ud)). Since Ext is a strong ((δ − 3τ)t, ε) extractor,
(Ud, Ext(B|A=a, Ud)) is ε-close to Ud×Um for all a. This implies that (A,Ud, Ext(B,Ud)) is ε-close
to A × Ud × Um = Ur × Ud × Um. By the triangle inequality, Z is (ε + γ + 2−Ω(τn))-close to
Ur × Ud × Um.

For intuition about the parameters, consider the case when δ > 0 is an arbitrary constant,
τ = δ/6, and γ = ε. Then using “optimal” averaging samplers and extractors will give a locally
computable extractor with seed length r + d = O(log n + log(1/ε)) and output length m = Ω(δt)−
O(log(1/ε)). This matches, up to constant factors, the seed length of an optimal extractor (local
or not) and the optimal relationship between the output length and the number of bits read from
the source.

4 Proof of Lemma 9

In this section, we prove Lemma 9. For readers willing to assume the lemma, this section can be
skipped. Our proof has the same general structure as the Nisan–Zuckerman proof; the main point
of departure will be pointed out below.

We use the convention that capital letters denote random variables, and lower-case letters denote
specific values for them.

Let X be a δn-source X and let S = Samp(Ud). For every x ∈ Supp(X), define pi(x) =
Pr [Xi = xi|X1 = x1, . . . , Xi−1 = xi−1]. Let hi(x) = log(1/pi(x)). Intuitively, hi(x) is the min-
entropy contributed by the i’th bit of x. Note that for any x ∈ Supp(X), Pr[X = x] =

∏
pi(x) =

2−
P

i hi(x). Since X is a δn-source, 2−
P

i hi(x) ≤ 2−δn, i.e. the average of hi(x) is at least δ for every
x ∈ Supp(X). The intuition for the lemma is that, with high probability, the sampler will select
a sequence of positions i on which this average is preserved, and hence the entropy rate will be
preserved on the sample. One problem is that the sampler is guaranteed to work for [0, 1]-valued
functions, but hi(x) may be greater than 1. Thus, we truncate large values and argue that we do
not lose much by doing this. Specifically, let h′i(x) = min{hi(x), log(1/τ)}.

Here we see the main difference between our proof and the Nisan–Zuckerman proof. In their
proof, they consider the set of positions i where pi(x) ≤ 1/2, and argue that there are usually many
such positions so the sampler will hit this set many times. This can be seen as counting either 1
or 0 bits of min-entropy per position (define h′i(x) to be 1 if hi(x) ≥ 1 and 0 otherwise). Here, the

9

bits of min-entropy we count per position can be fractional or greater than 1 (up to log(1/τ)). This
allows us to lose less min-entropy, but forces us to use samplers for functions (rather than sets).

We argue now that truncating the hi’s does not cost us too much min-entropy. Call x well-spread
if

∑
i h
′
i(x) ≥ (δ − 2τ)n (i.e. truncating cost us at most 2τ in the entropy rate).

Claim 11 Pr [X is not well-spread] ≤ 2−Ω(τn).

Proof of claim: Consider the random variables ∆1, . . . ,∆n defined by ∆i = hi(X)−
h′i(X). We need to show that Pr [

∑
i ∆i > 2τn] ≤ 2−Ω(τn). We first bound the tails of

the individual ∆i’s, conditioned on any prefix. For any q > 0, we have

Pr [∆i = q|X1 = x1, . . . , Xi−1 = xi−1]

= Pr [hi(X) = q + log(1/τ)|X1 = x1, . . . , Xi−1 = xi−1]

= Pr
[
pi(X) = 2−q+log(1/τ)|X1 = x1, . . . , Xi−1 = xi−1

]

=
{

2−q+log(1/τ) if ∃xi ∈ {0, 1} s.t. Pr [Xi = xi|X1 = x1 · · ·Xi−1 = xi−1] = 2−q+log(1/τ)

0 otherwise

In particular, the above conditional probability is nonzero for at most one value of q,
and thus, for any q > 0,

Pr [∆i ≥ q|X1 = x1, . . . , Xi−1 = xi−1] ≤ τ · 2−q. (1)

Now we apply the following Chernoff-type bound for random variables with expo-
nentially vanishing tails (proven in Appendix A).

Chernoff-type Bound: Suppose Z1, . . . , Zn are independent, nonnegative random
variables with probability distribution function given by Pr [Zi ≥ q] = τ · 2−q for all
q > 0. Then Pr [

∑
i Zi > 2τn] < 2−Ω(τn).

Actually, we cannot apply this immediately because the ∆i’s are not independent.
However, because Bound (1) on the tail of ∆i holds even conditioned on ∆1, . . . ,∆i−1,
they are dominated by independent Z1, . . . , Zn as in the lemma. That is, we can extend
the probability space to include independent Z1, . . . , Zn s.t. ∆i ≤ Zi always holds.
Thus Pr [

∑
i ∆i > 2τn] ≤ Pr [

∑
i Zi > 2τn] ≤ 2−Ω(τn), as desired. ¤

Let’s call a sequence s = (i1, . . . , it) ∈ [n]t good for x if

1
t

∑

j

h′ij (x) ≥ δ − 3τ,

and otherwise call s bad for x. Let b(s) = Pr [s is bad for X]. First we argue that the sampler
rarely produces bad sequences.

Claim 12 E[b(S)] ≤ γ + 2−Ω(τn).

10

Proof of claim: Consider any well-spread element x ∈ Supp(X). Consider the
function f : [n] → {0, 1} defined by f(i) = h′i(x)/ log(1/τ). Because x is well-spread,
f has average value at least µ = (δ − 2τ)/ log(1/τ). A sequence s is good for x iff the
average of f on s is at least (δ − 3τ)/ log(1/τ) = µ − θ. Thus, since S comes from an
(µ, θ, γ) averaging sampler, we have Pr [S is not good for x] ≤ γ (for any well-spread
x). Now, averaging over x

R←X, we get:

E[b(S)] = Pr [S is not good for X]

≤ Pr [S is not good for X|X well-spread] + Pr [X not well-spread]

≤ γ + 2−Ω(τn).

¤

Next, we show that good sequences yield high min-entropy on the sampled bits.

Claim 13 For every s, the random variable Xs is b(s)-close to a (δ − 3τ)t-source.

Proof of claim: Fix s = (i1, . . . , it). The basic idea is to “fix” the bits of X
in positions outside of s, and then argue that whenever s is good for x, xs has low
probability mass. Then averaging over the fixed bits can only increase the min-entropy.
However, as in the proof of [NZ96], fixing the bits of X is somewhat delicate because of
the correlations between the bits of X.

We can envision X being generated by a process of the following form. The probabil-
ity space consists of independent random variables F1, . . . , Fn, where Fi is distributed
(arbitrarily) over functions from {0, 1}i−1 → {0, 1}, and, given these functions, X is
deterministically generated by setting Xi = Fi(X1X2 · · ·Xi−1).

We will fix Fi for every i /∈ s. Consider any f = (fi)i/∈s, and let Xf denote X
conditioned on Fi = fi for all i /∈ s. Then, for any string z ∈ {0, 1}t in the support of
Xf

s , there is a unique x ∈ {0, 1}n in the support of Xf such that xs = z. We denote
this x by xf (z). Then

Pr
[
Xf

s = z
]

= Pr
[
Xf = xf (z)

]

=
n∏

i=1

Pr
[
Xf

i = xf (z)i|Xf
1 = xf (z)1, . . . , X

f
i−1 = xf (z)i−1

]

The conditional probability in the i’th factor above is 1 when i /∈ s (because then
Xf

i = fi(X
f
1 · · ·Xf

i−1) always) and equals pi(xf (z)) otherwise. Thus, if s is good for
xf (z) (and consists of distinct samples), we have:

Pr
[
Xf

s = z
]

=
∏

i∈s

pi

(
xf (z)

)
≤

∏

i∈s

2−h′i(x
f (z)) ≤ 2−(δ−3τ)t.

Let b(s, f) be the probability that s is bad for Xf . Then, by the above, Xf
s is b(s, f)-close

to some (δ − 3τ)t-source, call it Zf . Now consider the random variable F = (Fi)i/∈s.

11

Then Xs = XF
s and ZF is a convex combination of (δ − 3τ)t-sources and hence is

a (δ − 3τ)t-source itself. The statistical difference between Xs and ZF is at most
E[b(s, F)] = b(s), as desired. ¤

Now we deduce Lemma 9 from Claims 12 and 13. By Claim 13, Xs is b(s)-close to some
(δ − 3τ)t-source Zs. Consider the random variable (Ur, ZSamp(Ur)) (i.e. first sample y

R← Ur, then
sample z

R← ZSamp(y), and output (y, z)). The statistical difference between (Ur, ZSamp(Ur)) and
(Ur, XSamp(Ur)) is exactly the expected statistical difference between Xs and Zs over s

R←S, which is
at most E[b(S)] ≤ γ+2−Ω(τn) by Claim 12. Thus, (A, B) = (Ur, ZSamp(Ur)) satisfies the requirements
of Lemma 9.

5 Non-Explicit Constructions

In this section, we describe the locally computable extractors obtained by using really optimal
extractors and samplers in Theorem 10. This does not give efficient constructions of locally com-
putable extractors, because optimal extractors and samplers are only known by nonconstructive
applications of the Probabilistic Method. However, it shows what Theorem 10 will yield as one
discovers constructions which approach the optimal bounds. In fact, the explicit constructions
known are already quite close, and (as we will see in Section 6) match the optimal bounds within
constant factors for the range of parameters most relevant to the bounded-storage model.

5.1 The Extractor

The Probabilistic Method yields extractors with the following expressions for the seed length d and
output length m, both of which are tight up to additive constants [RT97].

Lemma 14 (nonconstructive extractors (cf., [RT97])) For every n, k ≤ n, ε > 0, there
exists a strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = log(n− k) + 2 log(1/ε) +
O(1), m = k − 2 log(1/ε)−O(1).

5.2 The Sampler

Similarly, the following lemma states the averaging samplers implied by the Probabilistic Method.
There are matching lower bounds for both the randomness complexity and the sample complex-
ity [CEG95] (except for the dependence on µ, which was not considered there). The proof of the
lemma follows the argument implicit in [Zuc97], with the modifications that it makes the depen-
dence on µ explicit and guarantees distinct samples.

Lemma 15 (nonconstructive samplers) For every n ∈ N, 1 > µ > θ > 0, γ > 0, there is a
(µ, θ, γ) averaging sampler Samp : {0, 1}r → [n]t that uses

• t distinct samples for any t ∈
[
O

(
µ
θ2 · log 1

γ

)
, n

]

• r = log(n/t) + log(1/γ) + 2 log(µ/θ) + loglog(1/µ) + O(1) random bits.

12

Proof: Let R = 2r so we can associate [R] = {0, 1}r, and for simplicity assume n = t · n0 for
an integer n0 so we can associate [n] = [t] × [n0] . We will consider a randomly chosen function
Samp0 : [R] → [m]t and set Samp(x)j = (j, Samp0(x)). (This guarantees distinct samples.)

Instead of directly proving that Samp is a sampler, we will first prove that it has the following
property with high probability.

Claim 16 Samp has the following property with probability at least 1/2. For every subset S ⊂ [R]
of size γR, and every boolean f : [n] → {0, 1} with average value µ,

Pr
x

R←S,j
R←[t]

[f(Samp(x)j) = 1] ≥ µ− θ

Proof of claim: Consider a fixed S and boolean f as in the claim. For every x ∈ S
and j ∈ [t], define the random variable Xx,j = f(Samp(x)j) (over the choice of Samp).
These are |S| · t independent random variables. Let X be the average of the Xx,j ’s.
The expectation of X is the average value of f , which equals µ. We wish to show that
X ≥ µ− θ with very high probability.

By a Chernoff Bound (e.g. [ASE92, Thm A.13]),

Pr
Samp

[X < µ− θ] ≤ exp
(−Ω(|S| · t · θ2/µ)

)

Thus, taking a union bound over f and S, the probability that Samp fails to satisfy
the claim is at most

exp
(−Ω(|S| · t · θ2/µ)

) ·
(

R

γR

)
·
(

n

µn

)

≤ exp
(−Ω(|S| · t · θ2/µ)

) ·
(

eR

γR

)γR

·
(

en

µn

)µn

≤ exp
(−Ω(γR · t · θ2/µ)

) · exp(log(1/γ) · γR) · exp(log(1/µ) · µn)

This probability is at most 1/2 if the following two conditions hold for a sufficiently
large constant c:

γ ·R · t · θ2/µ ≥ c · γ · log(1/γ) ·R,

and
γ ·R · t · θ2/µ ≥ c · µ · log(1/µ) · n.

The first condition is t ≥ c · (µ/θ2) · log(1/γ), which is guaranteed by the hypothesis of
the lemma. The second condition says R ≥ c · (n/t) · (1/γ) · (µ/θ)2 · log(1/µ). Taking
logs, we obtain exactly the condition on r in the hypothesis of the lemma. ¤

We now argue that any Samp satisfying Claim 16 is a (µ, θ, γ) averaging sampler. Suppose not.
Then there is a (not necessarily boolean) function f : [n] → [0, 1] with average value µ such that

Pr
x

R←Ur

1

t

t∑

j=1

f(Samp(x)j) < µ− θ

 > γ

13

That is, there is a set S of γR seeds x ∈ [R] such that 1
t

∑t
j=1 f(Samp(x)j) < µ− θ. In particular,

we have:
Pr

x
R←S,j

R←[t]

[f(Samp(x)j) = 1] < µ− θ (2)

This would contradict Claim 16, except that f is not necessarily boolean. However, every [0, 1]-
valued function with average value µ is a convex combination of boolean functions with average
value µ.9 Thus, the function f in Inequality (2) can be viewed as a distribution over boolean
functions. By averaging, there is a boolean function violating Inequality (2), in contradiction to
Claim 16.

5.3 The Local Extractor

Plugging the above two lemmas into Theorem 10, we obtain the following local extractors.

Theorem 17 (nonconstructive local extractors) For every n ∈ N, δ > 0, ε > 0, and m ≤
δn/2− 2 log(1/ε)−O(1), there is a t-local strong (δn, ε) extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m

with

• d = log n + 3 log(1/ε) + loglog(1/δ) + O(1).

• t = O
(

m+log(1/δ)·log(1/ε)
δ

)
.

Proof: Set τ = δ/6, µ = δ/ log(1/τ), and θ = τ/ log(1/τ). By Lemma 15, there is a (µ, θ, ε/2)
averaging sampler Samp : {0, 1}r → [n]t with distinct samples, using

r = log(n/t)+log(1/γ)+2 log(µ/θ)+loglog(1/µ)+O(1) = log n−log t+log(1/ε)+loglog(1/δ)+O(1)

random bits, provided t ≥ t0 for t0 = O
(
(θ2/µ) · log(1/γ)

)
= O (log(1/δ) · log(1/ε)/δ), which is

satisfied by the above setting for t.
By Lemma 14, there is a strong (δt/2, ε/2) extractor Ext : {0, 1}t × {0, 1}d → {0, 1}m with

d = log t+2 log(1/ε)+O(1), provided m ≤ δt/2−2 log(1/ε)−O(1), which is satisfied by the above
setting for t. Noting that (δ − 3τ)t = δt/2, we combine these via Theorem 10 to obtain a t-local
extractor with seed length r + d = log n + 3 log(1/ε) + loglog(1/δ) + O(1).

6 Explicit Constructions

In the previous section, we showed that very good locally computable extractors exist, but for
applications we need explicit constructions. For an extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m

or a sampler Samp : {0, 1}r → [n]t, explicit means that it is computable in polynomial time and
polylogarithmic work-space with respect to their input+output lengths (i.e., n + d + m for an
extractor and r + t log n for a sampler). For a t-local extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m,
we give it oracle access to its first input and view the input length as log n + t + d (log n to specify
the length of the oracle, and t as the number of bits actually read from it).

9This is equivalent to the fact that every distribution of min-entropy k is a convex combination of flat distributions
of min-entropy k. Alternatively, it can be proven directly by calculating the vertices of the parallelopiped consisting
of all [0, 1]-valued functions with average value µ.

14

There are a many explicit constructions of averaging samplers and extractors in the literature
and thus a variety of local extractors can be obtained by plugging these into Theorem 10. We do not
attempt to describe all possible combinations here, but rather describe a few that seem particularly
relevant to cryptography in the bounded storage model. We recall the following features of this
application:

• The local extractor should work for sources of min-entropy (α−β)n− log(1/ε), which is Ω(n)
for most natural settings of the parameters. (Recall that α is the entropy rate of the random
source and β is the storage rate of the adversary.) That is, we can concentrate on constant
min-entropy rate.

• Optimizing the number of bits read from the source (to within, say, a constant factor) seems
to be at least as important as the seed-length of the extractor.

• The error ε of the extractor will typically be very small, as this corresponds to the “security”
of the scheme.

• We are not concerned with extracting all of the entropy from the source, since we anyhow
will only be reading a small fraction of the source.

6.1 The Extractor

With the above criteria in mind, the most natural extractor to use (in Theorem 10) is Zuckerman’s
extractor for constant entropy rate [Zuc97]:

Lemma 18 ([Zuc97]) For every constant δ > 0, every n ∈ N, and every ε > exp(−n/2O(log∗ n)),
there is an explicit strong (δn, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n +
log(1/ε)) and m = δn/2.

6.2 The Sampler

For the averaging sampler, the well-known sampler based on random walks on expander graphs
provides good parameters for this application. Indeed, its randomness and sample complexities
are both optimal within a constant factor when µ and θ are constant (and the minimal sample
complexity is used). However, we cannot apply it directly because it does not guarantee distinct
samples, and we do not necessarily want to minimize the number of samples. Thus we introduce
some new techniques to deal with these issues.

The following gives a modification of the expander sampler which guarantees distinct samples.

Lemma 19 (modified expander sampler) For every 0 < θ < µ < 1, γ > 0, and n ∈ N, there
is an explicit (µ, θ, γ) averaging sampler Samp : {0, 1}r → [n]t that uses

• t distinct samples for any t ∈ [
O

(
1
θ2 · log(1/γ)

)
, n

]
, and

• r = log n + O(t · log(1/θ)) random bits.

Proof: Consider an explicit d-regular expander graph G on n vertices.10 Let M be the adjacency
matrix of G divided by d, i.e. the stochastic matrix which describes the random walk on G. M

10Actually, we do not have explicit constructions of expander graphs for every n. Instead, we use an expander with
n′ ∈ [n, (1 + θ)n] vertices, and extend f by setting f(i) = 0 for all i ∈ [n′] \ [n].

15

has an eigenvalue of 1, and we require that all its other eigenvalues have absolute value less than
λ = θ/16. This is possible to achieve with degree d = poly(1/θ) (by taking an appropriate power
of any constant-degree expander with bounded second eigenvalue).

The standard expander sampler outputs a random walk w = (w1, . . . , wt) on G of length t
started at a random vertex w1. For any function f : [n] → [0, 1], Gillman’s Chernoff bound for
random walks on expanders [Gil98] says:

Pr
w

[∣∣∣∣∣
1
t

t∑

i=1

f(wi)− µ

∣∣∣∣∣ > θ/2

]
< exp

(−Ω(θ2t)
)

< γ/4,

for t ≥ O(log(1/γ)/θ2).
This sampler uses r0 = log n+t · log d = log n+O(t · log(1/θ)) random bits, as desired. However,

it does not guarantee distinct samples. We now show that discarding the repeated vertices does
not affect the sampler too much. For a walk (w1, . . . , wt), call wi a repeat if there exists a j < i such
that wj = wi, and new otherwise. We modify our sampler to use the first (1− (θ/2))t new vertices
in the walk, and output fail if there are not this many new vertices. If failure does not occur,
this sampler uses distinct samples and the approximation is only affected by an additive error of
at most θ/2. We will describe what to do in case of failures later.

We now bound the failure probability. For a fixed j < i, the probability over a random walk w
that wi = wj is exactly the trace of M i−j divided by n, which equals the sum of the eigenvalues of
M i−j . We use this to bound the probability that wi is a repeat as follows.

Pr
w

[∃j < i, wj = wj] ≤
i−1∑

k=1

1
n

Tr(Mk) ≤
i−1∑

k=1

(1 + (n− 1)λk)
n

≤ t

n
+ 2λ ≤ θ/4,

where the last inequality assumes t ≤ θn/8 (otherwise log
(
n
t

)
= O(t·log(n/t)) = O(t·log(1/θ)) < r,

so we have enough randomness to sample a uniformly random subset of [n] of size t). Thus, the
expected fraction of vertices in a random walk that are repeats is at most θ/4. By Markov’s
inequality, the probability that there are more than θ/2 repeats is at most 1/2.

So our modified sampler outputs fail with probability at most 1/2, and conditioned on non-
failure, outputs a sample with error greater than θ with probability at most (γ/4)/(1/2) = γ/2.
Thus our task is reduced to sampling from the non-failing subset of our sample space with high
probability (1 − γ/2). This can be done by using a random walk of length O(log(1/γ)) on an
expander on 2r0 vertices, for a total of r = r0+O(log(1/γ)) random bits. (When this sampler doesn’t
succeed in finding a non-failing expander walk, it outputs an arbitrary t-subset, e.g. (1, . . . , t).)

A drawback of the expander sampler is that the randomness increases with the number of
samples, whereas in the optimal sampler of Lemma 15 the randomness actually decreases with
the number of samples. To fix this, we use the following lemma, which shows that the number of
(distinct) samples can be increased at no cost.

Lemma 20 Suppose there is an explicit (µ, θ, γ) averaging sampler Samp : {0, 1}r → [n]t with
distinct samples. Then for every m ∈ N, there is an explicit (µ, θ, γ) averaging sampler Samp′ :
{0, 1}r → [m · n]m·t.

In fact, there is a gain as the sample complexity increases, because the randomness complexity
depends only on the original value of n, rather than n′ = m · n.

16

Proof: We associate [m · n] and [m · t] with [m] × [n] and [m] × [t], respectively, and define
Samp′(x)(i,j) = (i,Samp(x)j). For any function f ′ : [m] × [n] → [0, 1], define f : [n] → [0, 1] by
setting f(z) to be the average of f ′(i, z) over i ∈ [m]. The average value of f is the same as the
average value of f ′, and for any coin tosses x, if Samp(x) successfully approximates the average of
f , then Samp′(x) also succeeds for f ′.

To apply this lemma to construct a sampler with given values of n, t, µ, θ, and γ, it is best to start
with a sampler Samp0 : {0, 1}r0 → [n0]t0 using the minimal sample complexity t0 = t0(θ, µ, γ) < t
and domain size n0 = n · (t0/t). For example, for constant µ and θ, the sampler of Lemma 19
will give t0 = O(log(1/γ)) and r0 = log n0 + O(log(1/γ)) = log(n/t) + O(log(1/γ)). Then setting
m = t/t0, Lemma 20 gives a sampler for domain size n0 ·m = n, using t0 ·m = t distinct samples,
and r0 random bits. This is how we obtain our final sampler, stated in the next lemma.

Lemma 21 For every n ∈ N, 1 > µ > θ > 0, γ > 0, there is a (µ, θ, γ) averaging sampler
Samp : {0, 1}r → [n]t that uses

• t distinct samples for any t ∈
[
O

(
1
θ2 · log 1

γ

)
, n

]

• r = log(n/t) + log(1/γ) · poly(1/θ) random bits.

Unfortunately, when t/t0 and n · (t0/t) are not integers, some care is needed to deal with the
rounding issues in the argument given above. The tedious details follow.

Proof: Let h = h(θ, γ) = O(log(1/γ)/θ2) be the lower bound on t in Lemma 19. Given n ≥ t ≥ h,
we can find t0 ∈ [h, 2h] and m such that m · t0 ≤ t ≤ m · t0 +min{m, t0}. In particular, this implies
that m · t0 ∈ [t−√t, t] ⊆ [(1− θ)t, t]. Now, we can find n0 such that m · n0 ≥ n ≥ m · n0 −m, so
m·n0 ∈ [n, n+m] ⊆ [n, (1+θ)n]. By Lemma 19, there is a (µ, θ, γ) sampler Samp0 : {0, 1}r → [n0]t0
with

r = log n0 + O(t0 · log(1/θ)) = log n + log(1/γ) · poly(1/θ)− log t

(using the bound n0 ≤ nt0/t + 1).
Applying Lemma 20, we get a sampler Samp : {0, 1}r → [m · n0]m·t0 . Since both m · t0

approximates t and m · n0 approximates n within relative errors of θ, we can view this sampler as
a (µ + θ, 2θ, γ) sampler Samp′ : {0, 1}r → [n]t.

6.3 The Local Extractor

Analogously to Theorem 17, we plug Lemmas 18 and 21 into Theorem 10 to obtain:

Theorem 22 (explicit local extractors) For every constant δ > 0, n ∈ N, ε > exp(−n/2O(log∗ n)),
m ≤ δn/4, there is an explicit t-local strong (δn, ε) extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m with

• d = O(log n + log(1/ε)).

• t = O (m + log(1/ε)).

17

Proof: Set τ = δ/6, µ = δ/ log(1/τ), and θ = τ/ log(1/τ). When δ is constant, so are τ , µ,
and θ. By Lemma 21, there is a (µ, θ, ε/2) averaging sampler Samp : {0, 1}r → [n]t with distinct
samples, using r = log(n/t)+O(log(1/ε)) random bits, provided t ≥ t0 for t0 = O (log(1/ε)), which
is satisfied by the above setting.

By Lemma 14, there is a strong (δt/2, ε/2) extractor Ext : {0, 1}t × {0, 1}d → {0, 1}m with
d = O(log t + log(1/ε)) ≤ O(log n + log(1/ε)), provided m ≤ δt/2 − 2 log(1/ε) − O(1), which is
satisfied by the above setting. Noting that (δ − 3τ)t = δt/2, we combine these via Theorem 10 to
obtain a t-local extractor with seed length r + d = log n + 3 log(1/ε) + loglog(1/δ) + O(1).

The above construction does generalize to the case of subconstant δ. The expression for t be-
comes actually t = O(m/δ+log(1/ε)/δ2), which is not too bad compared with non-explicit construc-
tion of Theorem 17. The seed length d becomes d = O((log n + log(1/ε)) · poly(1/δ)), but here the
multiplicative dependence on poly(1/δ) is much worse than the additive dependence on loglog(1/δ)
in Theorem 17. This is due to both underlying components — the extractor (Lemma 18) and the
averaging sampler (Lemma 21). The dependence on δ in the extractor component can be made
logarithmic by using one of the many known explicit extractors for subconstant min-entropy rate.
For the averaging sampler, too, there are constructions whose randomness complexity is within a
constant factor of optimal [Zuc97].11 However, these constructions have a sample complexity that is
only polynomial in the optimal bound, resulting in a t-local extractor with t = poly(log(1/γ), 1/δ).12

It is an interesting open problem, posed in [Gol97], to construct averaging samplers whose sample
and randomness complexities are both within a constant factor of optimal. (Without the “averag-
ing” constraint, there are samplers which achieve this [BGG93, GW97, Gol97].)

6.4 Previous Constructions.

Some previous constructions of cryptosystems in the bounded storage model can be understood
using our approach, namely Theorem 10 together with Theorem 5 (of [Lu02]). For example, the
cryptosystem of Cachin and Maurer [CM97] amounts to using pairwise independence for both the
averaging sampler and the extractor. (The fact that pairwise independence yields a sampler follows
from Chebychev’s Inequality [CG89], and that it yields an extractor is the Leftover Hash Lemma
of [HILL99].) Actually, in the description in [CM97], the seed for the extractor is chosen at the
time of encryption and sent in an additional interactive step. But it follows from this analysis that
it actually can be incorporated in the secret key, so interaction is not necessary.

Our approach also yields an alternative proof of security for the ADR cryptosystem [AR99,
ADR02]. Consider the sampler which simply chooses a random t-subset of [n] for t = O(log(1/ε))
and the extractor Ext : {0, 1}t×{0, 1}t → {0, 1} defined by Ext(x, r) = x ·r mod 2. The correctness
of the sampler follows from Chernoff-type bounds, and the correctness of the extractor from the
Leftover Hash Lemma [HILL99]. Combining these via Theorem 10 yields a locally computable
extractor which simply outputs the parity of a random subset of O(log(1/ε)) bits from the source.
This is essentially the same as the ADR cryptosystem, except that the size of the subset is chosen

11The averaging samplers of [Zuc97] can be made to have distinct samples: he shows that taking any (not necessarily
strong) extractor Ext, defining Samp(x)y = Ext(x, y) yields an averaging sampler whose parameters are related to
those of the extractor. Thus, if Ext is a strong extractor, then Samp(x)y = y ◦Ext(x, y) is an averaging sampler with
distinct samples.

12To obtain this bound rather than t = poly(log(1/γ), 1/δ, log n) as claimed in [Zuc97], the averaging samplers of
[RVW00] should be used; these are also obtained by applying Zuckerman’s transformation to appropriate extractors.

18

according to a binomial distribution rather than fixed. However, the security of the original ADR
cryptosystem follows, because subsets of size exactly t/2 are a nonnegligible fraction (Ω(1/

√
t)) of

the binomial distribution. To extract m bits, one can apply this extractor m times with independent
seeds, as done in [ADR02].

Acknowledgments

Noga Alon, Omer Reingold, and Amnon Ta-Shma also thought of similar approaches to this prob-
lem, and I am grateful to them for providing me with several helpful suggestions. I am also grateful
to Yan Zong Ding and Chi-Jen Lu for pointing out errors in an earlier version of this paper. I
thank Oded Goldreich for his encouragement and many helpful comments on the presentation. I
thank Yan Zong Ding, Dick Lipton, and Michael Rabin for a number of illuminating discussions
about the bounded-storage model.

References

[ASE92] Noga Alon, Joel H. Spencer, and Paul Erdös. The Probabilistic Method. Wiley-
Interscience Series in Discrete Mathematics and Optimization. John Wiley and Sons,
Inc., 1992.

[ADR02] Yonatan Aumann, Yan Zong Ding, and Michael O. Rabin. Everlasting security in the
bounded storage model. IEEE Transactions on Information Theory, 48(6):1668–1680,
June 2002.

[AR99] Yonatan Aumann and Michael O. Rabin. Information theoretically secure communi-
cation in the limited storage space model. In Advances in Cryptology—CRYPTO ’99,
Lecture Notes in Computer Science, pages 65–79. Springer-Verlag, 1999, 15–19 August
1999.

[BRST02] Ziv Bar-Yossef, Omer Reingold, Ronen Shaltiel, and Luca Trevisan. Streaming compu-
tation of combinatorial objects. In Proceedings of the Seventeenth Annual IEEE Confer-
ence on Computational Complexity, pages 165–174, Montreal, Canada, 21–24 May 2002.
IEEE Computer Society Press.

[BGG93] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Randomness in interactive proofs.
Computational Complexity, 3(4):319–354, 1993.

[BR94] Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling. In 35th
Annual Symposium on Foundations of Computer Science, pages 276–287, Santa Fe,
New Mexico, 20–22 November 1994. IEEE.

[CM97] Christian Cachin and Ueli Maurer. Unconditional security against memory-bounded
adversaries. In Burton S. Kaliski Jr., editor, Advances in Cryptology — CRYPTO ’97,
volume 1294 of Lecture Notes in Computer Science, pages 292–306. Springer-Verlag,
1997.

[CEG95] Ran Canetti, Guy Even, and Oded Goldreich. Lower bounds for sampling algorithms for
estimating the average. Information Processing Letters, 53(1):17–25, 13 January 1995.

19

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–261,
April 1988.

[CG89] Benny Chor and Oded Goldreich. On the power of two-point based sampling. Journal
of Complexity, 5(1):96–106, 1989.

[DR02] Yan Zong Ding and Michael O. Rabin. Hyper-encryption and everlasting security (ex-
tended abstract). In STACS 2002 — 19th Annual Symposium on Theoretical Aspects
of Computer Science, Lecture Notes in Computer Science, pages 1–26. Springer-Verlag,
14–16 March 2002.

[DM02] Stefan Dziembowski and Ueli Maurer. Tight security proofs for the bounded-storage
model. In Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of
Computing, pages 341–350, Montreal, 19–21 May 2002.

[Gil98] David Gillman. A Chernoff bound for random walks on expander graphs. SIAM Journal
on Computing, 27(4):1203–1220 (electronic), 1998.

[Gol97] Oded Goldreich. A sample of samplers: A computational perspective on sampling.
Technical Report TR97-020, Electronic Colloquium on Computational Complexity, May
1997.

[GW97] Oded Goldreich and Avi Wigderson. Tiny families of functions with random properties:
A quality-size trade-off for hashing. Random Structures & Algorithms, 11(4):315–343,
1997.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM J. Comput., 28(4):1364–1396 (elec-
tronic), 1999.

[Lu02] Chi-Jen Lu. Hyper-encryption against space-bounded adversaries from on-line strong
extractors. In Advances in Cryptology—CRYPTO ’02, Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2002, 18–22 August 2002. To appear.

[Mau92] Ueli Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher.
Journal of Cryptology, 5(1):53–66, 1992.

[Mau02] Ueli Maurer. Personal communication, August 2002.

[NT99] Noam Nisan and Amnon Ta-Shma. Extracting randomness: A survey and new con-
structions. Journal of Computer and System Sciences, 58(1):148–173, 1999.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, 52(1):43–52, February 1996.

[Rab01] Michael O. Rabin. Personal communication, December 2001.

[RT97] Jaikumar Radhakrishnan and Amnon Ta-Shma. Tight bounds for depth-two super-
concentrators. In 38th Annual Symposium on Foundations of Computer Science, pages
585–594, Miami Beach, Florida, 20–22 October 1997. IEEE.

20

[RVW00] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph prod-
uct, and new constant-degree expanders and extractors. In Proceedings of 41st Annual
Symposium on Foundations of Computer Science, pages 3–13, 2000.

[RSW00] Omer Reingold, Ronen Shaltiel, and Avi Wigderson. Extracting randomness via re-
peated condensing. In 41st Annual Symposium on Foundations of Computer Science,
Redondo Beach, California, 12–14 November 2000.

[Sha02] Ronen Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of
the European Association for Theoretical Computer Science, 77:67–95, June 2002.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM,
48(4):860–879, July 2001.

[Zuc96] David Zuckerman. Simulating BPP using a general weak random source. Algorithmica,
16(4/5):367–391, October/November 1996.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Structures & Al-
gorithms, 11(4):345–367, 1997.

A A Chernoff Bound

Here we proof the Chernoff-type bound needed in the proof of Lemma 9.

Lemma 23 Suppose Z1, . . . , Zn are independent, nonnegative random variables with probability
distribution function given by Pr [Zi ≥ q] = τ ·2−q for all q > 0.13 Then Pr [

∑
i Zi > 2τn] < 2−Ω(τn).

Proof: Let f(q) = τ · 2−q be the distribution function of the Zi’s (for q > 0). Note that
Pr [Zi > 0] = limq→0 f(q) = τ . As usual in the proofs of Chernoff bounds, we consider the expec-
tation of the exponential generating function 2tZ =

∏n
i=1 2tZi . For every t ∈ (0, 1), we have:

E
[
2tZi

]
= Pr [Zi = 0] · 20 +

∫ ∞

q=0

(
− d

dq
f(q)

)
· 2tqdq

= (1− τ) +
∫ ∞

q=0
(τ ln 2 · 2−q) · 2tq)dq

= (1− τ) +
[−τ

1− t
· 2−(1−t)q

]∞

q=0

= 1 +
τt

1− t
.

≤ eτt/(1−t)

Thus,

E[2tZ] =
∏

i

E[2tZi] ≤
(
eτt/(1−t)

)n
.

13Note that the distribution function is discontinuous at q = 0 because Pr [Zi ≥ 0] = 1.

21

By Markov’s Inequality,

Pr [Z ≥ 2τn] = Pr
[
2tZ ≥ 22τtn

] ≤ eτtn/(1−t)

22τtn
=

(
et/(1−t)

22t

)τn

,

for every t ∈ (0, 1). For t = 1/4, et/(1−t) < 22t, so this probability is indeed 2−Ω(τn), as desired.

22

