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Abstract. Quartz is a signature scheme based on an HFEv- trapdoor
function published at Eurocrypt 1996. In this paper we study ”inversion”
attacks for Quartz, i.e. attacks that solve the system of multivariate
equations used in Quartz. We do not cover some special attacks that
forge signatures without inversion.
We are interested in methods to invert the HFEv- trapdoor function or at
least to distinguish it from a random system of the same size. There are
4 types of attacks known on HFE: Shamir-Kipnis [27], Shamir-Kipnis-
Courtois [8], Courtois [8], and attacks related to Gröbner bases such as
the F5/2 attack by Jean Charles Faugère [15, 16].
No attack has been published so far on HFEv- and it was believed to be
more secure than HFE. In this paper we show that even modified HFE
systems can be successfully attacked. It seems that the complexity of
the attack increases by at least a factor of qtot with tot being the total
number of perturbations in HFE. From this and all the other known
attacks we will estimate what is the complexity of the best ”inversion”
attack for Quartz.
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1 Introduction

The HFE family of trapdoor functions, that have been proposed at Eurocrypt
96 [22] generalizes the previous Matsumoto-Imai cryptosystem from Eurocrypt
88 [20] broken by Patarin3 in [21]. The HFE family consists of a so called basic
HFE (also called the basic algebraic version of HFE) and modified versions, also
called ”combinatorial versions of HFE”. These modified versions are built on
a basic HFE adding the so called ”perturbations” that are expected to make
attacks harder, but still conserve the existence of the trapdoor.
3 As was now made public also H. Dobbertin has independently found this attack in

’93/94 being employed by BSI-Institute [private communication].



For example the Quartz signature scheme that has been submitted to the
European Nessie call for cryptographic primitives uses (as a component) such
a combinatorial version of HFE, called HFEv-. In this paper we will study the
security of HFEv- and Quartz. We will cover all the ”inversion” attacks on
Quartz, that forge signatures by solving the system of equations that constitutes
the public key. We are interested in inverting the HFEv- trapdoor function, not
in recovering the secret key of Quartz4. In particular we study the ”specific”
attacks for Quartz (the contrary of ”generic” attacks), i.e. attacks that do use
the specific algebraic structure of Quartz due to the existence of a trapdoor.
This amounts to see whether the public key of Quartz can be distinguished from
a random system of multivariate quadratic equations (MQ). We will study the
complexity of the best algorithms known to solve the system of equations of HFE
and/or for general MQ systems of the same size. Our goal is also to estimate
the security of Quartz given all the known attacks, including properties/attacks
that have been conjectured.
There are other ”generic” attacks for Quartz (working even if the public key
were a random MQ system), that are not based on inversion, see [11]. These are
not covered in this paper.

The paper is organized as follows: In the first part we attempt to cover all
what is known about the security of HFE and HFEv-, including experimental
and conjectured properties. Then we introduce solving polynomial systems with
Gröbner bases algorithms, which seems to be the best way to attack HFE or
HFEv- so far. We will make numerous simulations with Gröbner basis algo-
rithms to see how the perturbations affect the security of HFE. We will show
that perturbated systems can indeed be attacked. Finally we will use our best
knowledge to evaluate the security of the trapdoor one-way function used in
Quartz against all known ”inversion” attacks.

2 Known Attacks on HFE and its Variants

Attacks on ”basic HFE”

At Crypto’99, Shamir and Kipnis presented a structural attack on HFE [27],
that reduces the problem of recovering the secret key of HFE to a problem later
called MinRank, see [8]. At the same time Courtois evaluated the complexity of
the Shamir-Kipnis attack and presented two more efficient attacks, see [8].

All these attacks concern only the ”basic HFE”. They are subexponential.
The original Shamir-Kipnis attack is in at least nO(log2

q d), see [8]. The same
attack improved by Courtois, with a better method of solving the involved Min-
Rank problem, gives n3 logq d+O(1), see [8]. Both attacks will recover the secret
key. The direct attack by Courtois, that only inverts the trapdoor function with-
out recovering the secret key, is much faster in practice. It requires only about
n

3
2 logq d+O(1) computations. Moreover, in [8, 10], a so called ”distillation” attack

4 The complexity to recover the secret key is obviously at least as much, and therefore
we do not need to care about it.



is presented that asymptotically seems to give even about n
3
4 logq d+O(1). How-

ever for values used in practice it did not give better results (except that it uses
much less memory).

There are also attacks that apply general methods for solving polynomial
systems (by computing Gröbner bases) and seem to be closely related to the
direct attack described by Courtois [8, 10]. Recently Faugère has demonstrated
a new, and very efficient attack on the basic HFE. With his new improved
algorithm F5/2, he was able to break the so called ”HFE Challenge 1” in 96
hours on a 833 MHz Alpha workstation with 4 Giga-bytes of memory, see [16,
15], instead of 262 for the direct attack by Courtois from [8].

In [13] and on page 28 of [12] it is shown experimentally that the complexity
of the Buchberger algorithm applied to HFE systems depends very strongly on
the degree d of the hidden polynomial or rather on the value

⌈
logq(d)

⌉
, exactly as

expected from the Courtois attacks [8, 10]. This observation was also confirmed
by Faugère with F5/2 (private communication).

State of the Art on the Modified Versions of HFE

Until now no attacks have been published on HFE- or other modified versions
of HFE, except two attacks on C∗−−5 published in [24] and [17]. Though none
of the above described attacks on HFE has been specifically designed to work
on HFEv−, it is important to see that the direct attack by Courtois and all the
Gröbner bases attacks can be applied to any system of equations, without adap-
tation. For the other attacks, it is not known if they can be extended or adapted.
At first sight, from some simulations made by Courtois in [8, 10], it seems that
his attack does not work at all, even if we apply one single perturbation ”minus”
on an HFE-system. From this, if all the known attacks on HFE have indeed a
common ground, one might think that the modified ”combinatorial” versions of
HFE are much more secure than the original HFE, and even Faugère’s attack
(the fastest known today) will fail, i.e. the complexity will be largely increased.
But the questions is, how much will it be increased?

Extrapolating from the complexity of two existing attacks on C∗−−[24, 17],
and having in mind some unpublished attacks on HFE- [10], Courtois conjectured
that if tot is the total number of perturbations used, then the security of a
multivariate scheme such as HFE will be increased by at least a factor of qtot.
In this formulation ”at least” suggests that it is probably much more secure in
many interesting cases.

In this paper we show that this optimistic view is not true. We will see
that the Gröbner bases algorithms can solve systems modified with the ”minus”
perturbation, the ”vinegar” perturbation and with the combination of both6.
The perturbations are not an absolute weapon against these attacks. However
we will see that the perturbations increase security, by some amount, and this

5 C∗ can be seen as a degenerated version of HFE.
6 Precisely, an HFEv- that combines 4 ”vinegar” perturbations and 3 ”minus” pertur-

bations is used in Quartz



amount seems to be indeed at least qtot, but not much more. Thus the true
question to be answered for Quartz, will be: Is the number of perturbations
sufficient or not, to achieve the desired security level?7

3 General Methods for Solving Systems of Multivariate
Polynomial Equations

The HFE family of cryptosystems is based on the hardness of the problem of
finding a solution to a system of multivariate quadratic equations (the so called
MQ problem). It turns out that the best attacks known up to date for this MQ
problem, such as the XL algorithm from Eurocrypt 2000 [7], the aforementioned
experimental attacks on HFE by Courtois, and the more advanced attack by
Faugère on HFE, are all clearly related. They all can be seen as a way of ma-
nipulating the initial equations multiplied by some monomials, that are linearly
combined. The language and the tools to deal with such situations are provided
by the theory of Gröbner bases, a part of the computational algebraic geometry.

3.1 Solving Systems with Gröbner Bases Algorithms

In this section we describe very briefly some features of solving systems with
Gröbner bases. A comprehensive treatment of this theory can be found in [4].

Given a system of m polynomial equations

pi(x1, . . . , xn) = yi, i = 1, . . . , m

with some pi ∈ GF (q) [x1, . . . , xn] , yi ∈ GF (q), the classical way of solving such
a system is to consider the ideal I := (p̃1, . . . , p̃m) generated by the polynomials
p̃i := pi−yi and to compute the set of all common zeros of these polynomials over
the algebraic closure, the so called variety of this ideal. This is done by computing
a special ideal basis8, a so called Gröbner basis9. A typical example for a Gröbner
basis is gcd(p̃1, . . . , p̃m), if the generators are univariate polynomials. Another
well known example consists of the triangular system of linear polynomials which
can be computed by Gaussian elimination provided that the generators are linear
polynomials.

In general one usually computes a so called lexicographical10 Gröbner basis
of the ideal, which has a triangular structure, similar to that known from systems

7 Unfortunately this question is critical in Quartz. Due to the very short signatures
in Quartz, the total number of perturbations used is only 7 and qr = 27. It is very
different in Sflash that has qtot = (27)

11
= 277.

8 An ideal basis is a set of generators for the GF (q) [x1, . . . , xn]-module I.
9 A Gröbner basis is defined with respect to a term ordering. A term ordering gen-

eralizes the monomial ordering of univariate polynomials and thus a polynomial
division can be defined. A Gröbner basis has some special properties with respect to
this division.

10 The lexicographical term ordering is the best suited for computing zeros.



of linear equations after applying Gaussian elimination. More precisely for each
i = 1, . . . , n there is at least one polynomial in the Gröbner basis with the
property that it includes only monomials with variables x1, . . . , xi. Therefore
one can compute the common zeros by factoring one univariate polynomial,
then substituting this partial solution into the polynomial(s) with two variables,
and thus getting further univariate polynomials to factor and so on.

The classical algorithm to compute a Gröbner basis is the Buchberger al-
gorithm, see for example [4]. In general this algorithm has double exponential
worst case complexity. However in the setting of multivariate cryptography we
are only interested in solutions over the base field GF (q) and not in the algebraic
closure. In this case the complexity can be cut down to single exponential worst
case complexity just by adapting the inputted system:
Since the set of solutions of the equation xq = x is equal to GF (q), the variety
of the enlarged ideal (p̃1, . . . , p̃m, xq

1 − x1, . . . , x
q
n − xn) consists just of those so-

lutions of the original system which are lying in the base field. It can be shown
that applying Buchberger algorithm to ideals of this form has single exponential
worst case complexity (for this see [13] or [1]).

Due to Faugère there are some comparatively very efficient alternatives to
the Buchberger algorithm for computing Gröbner Bases (the algorithms F4, see
[14], F5 and recently F5/2, see [15, 16]).

3.2 The Special Case of Signing

The common drawback of the algorithms described above is that they compute
the complete variety (i.e. the set of all the solutions) and are unable to profit
from the fact that we only need one of the solutions. Indeed, in order to forge a
signature for a given message in a HFEv- based signature scheme, it is enough
to be able to compute at least one solution to a given system of equations11.

In the case of HFEv- systems, with r perturbations of type ”minus” and v
of type ”vinegar” we obtain a system with n = h + v variables, and m = h− r
equations12 . Such a system has an expected number of about qr+v solutions,
and an algorithm that computes a Gröbner basis does too much work. There is
however an obvious way to reduce the number of computed solutions. We will
substitute n−m = r + v of the variables with some arbitrary fixed values, and
get a system with m = h− r unknowns and as many equations, which will have
about 1 solution on average. Such systems prove to be substantially easier to
solve than the original system with many solutions. In Section 4 below we will
apply this idea. It seems that fixing exactly n−m variables is the optimal way
11 Some signature schemes based on HFEv- compute signatures using several inverses,

i.e. they need to compute F−1(y) several times in a row for different y, with F being
the public key. This allows shorter signatures, see [22, 10] or [11] for explanation. For
example in Quartz there are 4 inverses [25, 26].

12 We use exactly the same notations n, m, h, r, v as in the description of Quartz [25, 26].
h is the size of the extension field on which the internal HFE univariate polynomial
is defined, v is the number of added so called ”vinegar” variables, r is the number
of removed equations.



to solve a system of equations with Gröbner bases, at least when n > m, see the
Appendix A for further discussion.

4 Applying Gröbner Bases to HFE

To study the effect of the perturbations ”minus” and ”vinegar” we did many
simulations on HFEv- systems with different sets of parameters. We were es-
pecially interested in the question how much randomness is added by these
perturbations. This is meant to indicate how much perturbations will be needed
to produce an HFEv- system, that is indistinguishable from a random system of
the same size (with no trapdoor).

The simulations were done using the stdfglm13 function of Singular for com-
puting Gröbner bases (see [18]). They were run on a 1.5 GHz Pentium-4 PC,
working under Windows 2000. We did simulations on HFE systems of degree
d ∈ {5, 9, 17} and on randomly generated systems, both with h ∈ {15, 19, 21},
0 ≤ r ≤ 3 and 0 ≤ v ≤ 5. We only measured times for systems that have a so-
lution, and systematically casted away systems that have no solution. Following
the idea of fixing variables described in Section 3.2 and discussed in Appendix
A, our simulations apply the following steps:

• Given an HFEv- system with n = h + v unknowns, m = h − r equations,
choose n−m = v + r variables to fix.

• Fix the n −m = v + r variables with a set of values not chosen before and
solve the resulting system with m = h − r unknowns and equations using
Buchberger algorithm (i.e. use the stdfglm function of SINGULAR).

• Repeat the fixing and solving until you find a solution to the initial system
(one is enough).

5 Our Methodology

Cryptosystems of the HFE family have two independent security parameters:
The extension degree h and the degree of the hidden polynomial d. Quite often
they also have additional security parameters, for example v and r for HFEv-
and Quartz. This makes the study of their security much more complex than
for cryptosystems that basically have one security parameter such as RSA. It
also makes the multivariate cryptographic schemes much more flexible than the
usual schemes. For example one parameter (in our case h) can usually be small
to achieve a cryptosystem that operates on small blocks (and e.g. allows short
signatures), and the other parameters can be independently adjusted to achieve
the desired security level.

13 A fast and general implementation of the Buchberger algorithm



5.1 Critical Parameters for Quartz

From the design of Quartz [25, 26], we see that the parameters h, v, r are more
or less constrained by the requirement to have very short signatures. Thus the
security of Quartz depends mainly on the degree d of the hidden HFE polyno-
mial. As we have already explained in section 2, the complexity of the Gröbner
bases algorithms applied to the basic HFE (and also of all other known attacks
and for other versions of HFE) does depend very strongly on d. More precisely
it depends on the value

⌈
logq(d)

⌉
. This is motivated (but not fully explained)

by the Shamir-Kipnis attack from [27], and can be seen very distinctively in the
Courtois attack [8]. For Gröbner bases algorithms this has been shown experi-
mentally by Daum and Felke, in [12] (also in [13]) and independently confirmed
by Faugère for his latest F5/2 algorithm (private communication).

6 The Simulations on HFEv-

Let Ttot be the total time (on average) needed by the above described algorithm
to find at least one solution of a given system with n variables and m equations;
for HFEv- we have n = h + v and m = h− r.
Let Nguess be the number of guesses (and thus the number of invocations of
the Buchberger algorithm) the algorithm had to make till the resulting system
(after fixing variables) was solvable. It turns out that the time to solve any of
the Nguess − 1 systems that have no solution and for the last system that has a

solution are about the same. Therefore T
def
= Ttot

Nguess
describes the average time

spent by the Buchberger algorithm trying to solve one of the resulting systems
(i.e. the initial system after fixing variables).

The Semantics of T : The value T measures the cryptographic quality of
each single system with n−m variables fixed. By construction it is independent
of n−m (for fixed m), and gives more precise results than just to measure the
time of solving the last system. The time to find one solution to the whole system
is usually between T and 1.6 · T , see Appendix A.

We define Trnd as the value of T obtained for a random system of quadratic
equations of (respectively) the same size. This is our reference time.

6.1 Randomness ∼ Security

The notions of security and randomness are very closely related in cryptography,
and even more so for multivariate cryptosystems: The public key of an HFEv-
system is a system of multivariate quadratic equations, and the general problem
to solve such equations is called MQ. At present the hardest instances of the
MQ problem we know are just random systems of quadratic equations. It is
known that MQ is NP-complete, see [10], which guarantees worst case hardness,
and moreover it seems that the problem is difficult on average and even most of
the time. Moreover all the known algorithms for this problem are exponential,
see for example [13] or [1] for the results on the complexity of the Buchberger



algorithm. In [7] authors raise some hopes for a subexponential algorithm, that
would be however very inefficient in practice.

Thus we expect that the complexity to break the HFEv- schemes is always
less than to solve a random MQ system of the same size. Moreover, if we increase
the parameter d of HFE systems to nearly qn, the system does converge to a
random MQ system. The same is also true for v →∞ in HFEv-.

We simply measure the time per guess relatively to a random system of the
same size, i.e. we define

R =
T

Trnd
.

Now we are ready to study how much randomness/security is added by var-
ious ”perturbations” in HFE.

6.2 The Impact of the Perturbations ”Vinegar” and ”Minus”

Table 1 shows the times per guess (in seconds) needed for solving HFE systems
with h = 15 and d = 5 perturbated with r times ”minus” and v times ”vinegar”
operations. We also compute our randomness measure R as defined above.

Table 1. Absolute and relative times per guess for HFEv- systems with h = 15, d = 5

Times per Guess T = Ttot/Nguess:

v
0 1 2 3 4 5

r

0 0,50 1,93 5,45 11,52 11,89 11,95
1 0,75 2,36 4,16 5,20 5,23 5,28
2 0,77 1,30 1,35 1,35 1,38 1,38
3 0,48 0,48 0,50 0,50 0,51 0,51

Ratios R = T/Trnd:

v
0 1 2 3 4 5

r

0 0,05 0,18 0,46 0,97 1,01 1,00
1 0,16 0,50 0,81 1,00 1,00 1,00
2 0,60 1,00 1,00 1,00 1,00 1,00
3 1,00 1,01 1,01 1,00 0,99 0,99

(see Appendix C for similar results for different values of d and h)

These values of R (and also the corresponding values in the tables given
in Appendix C) clearly show that using perturbations strongly increases the
randomness of HFE systems, especially for low degrees d. Moreover we see that
the amount of randomness added depends mainly on the total number v + r of
used perturbations, and is rather independent of whether one uses ”minus” or
”vinegar” or a mixture of both.

However if we consider the absolute times needed to solve (find one solution
to) the perturbated systems there is an explicit difference between the effects of
”minus” and ”vinegar”:

These times show that applying ”minus” in many cases does not increase
the absolute time needed to find one solution and may even decrease this time,
whereas ”vinegar” does increase the attack time. The same behaviour was ob-
served when applying ”minus” and ”vinegar” to completely random systems.
There we observed that Trnd is nearly independent of v but depends strongly



on r. The explanation of this difference is very easy: ”minus” in contrast to
”vinegar” changes the size of the systems to solve for each guess, from h to
h− r.

Eventually there are four main conclusions from these simulations:

1. The operations ”minus” and ”vinegar” are similar in terms of the amount of
relative security or randomness added to pure HFE systems of low degree d.

2. For the absolute security they are different, and considering the total time
of an attack, ”minus” may even decrease the time needed to solve a system,
as it decreases the size m of the system to solve after fixing n−m variables.
However the ”minus” still does increase the security against some other, very
efficient attacks, for example Patarin’s attack on Matsumoto-Imai (C∗) [21].

3. It is unclear, if this is still significant when m À r + v as in Quartz.
4. It seems that for the total number of perturbations that can be used, it

is more interesting to use as many as possible ”vinegar” perturbations and
as little as possible ”minus” perturbations. However it is not advocated to
use only ”vinegar” perturbations, the mixture of both might be more secure
against some other attacks.

6.3 Some Conclusions for Quartz

It is not directly clear how to quantify the influence of the perturbations in
the case of Quartz due to the much bigger size of Quartz systems. It seems that
log2 d = log2 129 is a very small degree with respect to the large value of h = 103
(as in Quartz). Thus the results of the simulations support the assumption that
applying 4 perturbations of type ”vinegar” and 3 perturbations of type ”minus”
will increase the complexity of the attacks. It would be probably better to use
7 perturbations of type ”vinegar”. However, it is easy to see that this is not
possible with the given signature size and security requirements.

There are many constraints in the design of Quartz, and h = 103 cannot be
easily changed: It is in fact chosen to be a prime, see [25, 26]. Thus with h = 103,
v = 7 and r = 0 we get n = h + v = 110 and m = 103. Since m increases by 3,
the length of the signatures would increase from 128 bits to 131. If we instead
used h = 101 the signature length would be 129 bits, and for h = 97 which gives
m = 97 the scheme would no longer achieve the required security level of 280,
given the well known generic attack in q

4
5 m, see [25, 26, 10, 11].

6.4 Quantitative Effect of ”Vinegar” and ”Minus”

In this section we will try to see if our simulations confirm (or not) the conjecture
from Section 2 to the effect that the security of multivariate schemes with tot
perturbations (for us tot = r + v) would be increased by (at least) a factor
of qtot. We see however that this behaviour can only continue until T achieves
Trnd, after that T will not grow anymore. From all our simulations we have the
following conclusions:



1. The value R increases quite uniformly with r + v, i.e. it is nearly the same
for a constant r + v and the same h.

2. All our simulations show that the value R grows at least twice, each time
tot = r + v increases by 1, except when R is already very close to 1 and
cannot grow anymore.

3. Thus our conjecture that the relative security of multivariate schemes with
tot perturbations would be increased by at least a factor of qtot can be said
to be confirmed for R << 1.

4. Moreover, the smaller R is, the higher is the increase in R when tot = r + v
increases by 1. More precisely we see that:
• For h = 15 and d = 5 Table 1 shows that R increases first 4 times, 3

times, 2 times, and then it achieves 1.
• For h = 15 and d = 9 Table 4 shows that R increases first 3 times, 2

times, and then it achieves 1.
• For h = 15 and d = 17 Table 5 shows that R increases first 2 times, and

then it achieves 1.
• For h = 19 and d = 5 Table 7 shows that R increases first 8 times, 2

times, 2 times, and then it achieves 1.
• For h = 19 and d = 9 Table 8 shows that R increases first 6 times, 3

times, 2 times, and then it achieves 1.
• For h = 19 and d = 17 Table 9 shows that R increases first 2 times, 2

times, and then it achieves 1.
• For h = 21 and d = 5 Table 11 shows that R increases first 10 times, 12

times, 3 times, 2 times and then it achieves 1.
• For h = 21 and d = 17 Table 12 shows that R increases first 3 times, 2

times, and then it achieves 1.
5. Very clearly, the more R << 1, the more is the increase in the relative

security R when adding one perturbation. Thus we see that the increase in
the relative security R is more significative when d is small, and for a fixed
d, it is more significative for a bigger h.

7 Our Estimation of the Security of Quartz

In this section we will first look at the complexity of the best known attacks on
HFE when applied to the particular instance of HFE that is a sub-component
of the HFEv- that is used in Quartz, i.e. if we ignore the existence of the per-
turbations. Then we will try to extrapolate what (at best) is the complexity to
solve the whole HFEv-.

Attacks on the Internal Sub-component HFE

Let ω be the exponent of the Gaussian reduction. Though the best known algo-
rithm for this problem is asymptotically in T 2.376, see [3], the best practical algo-
rithm we know is Strassen’s algorithm, see [28]. We will put ω = log2(7) = 2.807.

Nobody has ever demonstrated a practical attack on HFE when d = 129 as
in Quartz. For the so called HFE Challenge 1 described in the extended version



of [22], we have d = 96 and two working attacks have been found by Courtois [8]
and later Faugère [16]. Their behaviour is similar and we expect that Courtois’
attacks give much worse results than Faugère’s attack. The complexity of this
latter attack has been estimated for d = 96 to be O(h8) by Faugère [16]. In
Appendix B we estimate the constant to be about 1/4. From this we extrapolated
that for the basic HFE that can be seen inside the HFEv- used in Quartz, with
d = 129 instead of d = 96 above, the complexity of Faugère’s attack should be
about h10/4, see Appendix B for more details.

Including the Conjectured Effects of the Perturbations

First of all, because of the effect of minus, see point 2 in Section 6.2, we have
to use (h− r)10/4 instead of h10/4. Secondly, since in Quartz there are tot = 7
perturbations, following Section 2 and our simulation results in Section 6.4, this
complexity should be multiplied by at least 27. Thus we obtain that the working
factor (WF ) needed to inverse a trapdoor one-way function HFEv- should be
about:

WF (HFEv−) ≈ 27 · (h− 3)10/4 = 27 · 10010/4 ≈ 271

7.1 Our Estimation of the Security of Quartz

The above figure needs still to be multiplied by 4, because we need to do 4
iterated inversions of the trapdoor function in order to forge a Quartz signature.
Moreover in the process of solving we fix v + r variables and we need to repeat
the solving process several times, until the system has a solution, 1.6 times on
average14, see Section A. Thus we have an additional factor of 4 ∗ 1.6 and we
get:

WF (Quartz) ≈ 274

We convert this to triple-DES operations as required in Nessie project. In
order to have a fair comparison, one should implement the triple-DES on the
same platform on which Faugère’s attack has been implemented. The best op-
timized 64-bit implementation we are aware of, with improved Biham’s bitslice
technique, will give about 3 ∗ 192 ≈ 29 CPU clocks for triple-DES, see [5]. Thus
we get the following estimate:

WF (Quartz) ≈ 265 TDES computations.
Remark: From Section 6.4, point 4, we see that the factor 2v+r might be in

fact bigger, then our complexity would increase.

8 Is it Necessary to Repair Quartz ?

If in Quartz we had d = 257, we expect that the attack of Faugère should be
in O(h12). Then our complexity will be multiplied by 1002, i.e. we would get
WF (Quartz) ≈ 287 which is approximately ≈ 278 TDES computations.
14 Indeed, Faugère’s attack was applied to a system that had a solution.



8.1 The Speed of Quartz

The best implementation of Quartz we are aware of has been programmed in
C by Mehdi-Laurent Akkar for the Nessie project. For the usual Quartz with
d = 129 (i.e. the revised standard version from [25, 26]), it takes less than 2
seconds to sign a message on a PC working at 2GHz. For d = 257 it takes about
6 seconds on average.

9 Conclusion

Quartz is multivariate signature scheme based on a HFEv- trapdoor function.
The interesting property of such functions is that they have two security param-
eters, and thus one of them can be adjusted independently of the other. Thus it
is possible to build signature schemes in which the security is adjusted indepen-
dently of the signature length. This suggests that in theory, it may be always
possible to build a secure signature scheme with fixed signature length, but will
it be practical ?

There are several subexponential attacks known for HFE, however no attacks
on modified HFE cryptosystems (such as HFEv- used in Quartz) have been
published so far. In this paper we showed that it is possible to successfully
attack the modified systems by Gröbner bases techniques. From this we tried to
evaluate the security of the Quartz signature scheme submitted to Nessie project.
The results suggest that the parameter d probably needs to be increased which
will accentuate the major drawback of Quartz: it’s slowness.

This is currently the price to pay for such a short signature scheme. There
are only two other short signature schemes known that give less than the 160
bits of the Weil-pairing scheme [2]. The first one is the McEliece scheme from
Asiacrypt 2001, which is about as slow as Quartz and has a much bigger public
key of about 1Mbyte instead of 71 Kbytes, see [6]. The second one is the degree
3 Dragon scheme (based on HFE) which seems quite fast, but also has a very
big public key, see [23, 19]. It is possible that applying the same Gröbner bases
computations to this scheme, the parameter d would have to be revised, and it
would end up being quite slow, too.
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A About the Number of Tries

In this section we analyse the opportunity to fix exactly n−m variables before
applying Buchberger algorithm to a system with n variables and m equations,
n > m, as described in our algorithm given in Sections 3.2 and 4.

The choice to fix exactly n −m = v + r variables is based on the following
heuristic: If we fix k variables, we expect to have 2n−m−k = 2v+r−k solutions.
Hence fixing k < v + r variables results in doing too much work (i.e. computing
more than 1 solution) whereas fixing more than v+r variables results in decreas-
ing strongly the probability that the system has a solution after fixing so many
variables. This heuristic rule is supported by the following results of simulations
(Table 2). In these simulations we considered an HFEv- with h = 15, v = 3,
r = 1 and we fixed k = 0, . . . , 4 variables. The simulations are done for d = 5,
d = 9 and for random systems (that correspond to d ≈ qh), and to all of these
we applied the stdfglm function (see Section 4):

Table 2. Needed times (in seconds) to solve an HFEv- with h = 15, v = 3, r = 1

Needed times:
fixed variables

0 1 2 3 4

d = 5 365,01 126,97 39,85 15,77 8,51
d = 9 659,87 192,76 50,69 17,65 7,65
random 1454,91 192,17 51,95 16,32 8,10

Needed guesses:
fixed variables

0 1 2 3 4

d = 5 1,00 1,00 1,03 1,14 1,61
d = 9 1,00 1,00 1,00 1,24 1,46
random 1,00 1,00 1,03 1,14 1,54

These simulations show that it is inefficient to fix less variables than 4 =
n−m = v + r. It is also inefficient to fix more, as we will have to try 2 or more
systems before we find a solution. The best choice is to fix n−m variables. In this



case our simulations on HFEv- show that we need about 1.6 tries on average (see
e.g. Table 2), to find a solution. This can be confirmed theoretically as follows:
If we assume that each of the resulting systems behaves as a random function15

GF (q)h−r → GF (q)h−r, then it can be shown that the expected number of tries
is

∑∞
i=1(1− 1/e)(1/e)i−1 · i ≈ 1.5819.

B An Estimation of the Complexity of Faugère’s Attack
Applied to the Basic HFE

In this section we look at the complexity of the best known attacks on the basic
HFE. Their application to HFEv-, when HFE is only a sub-component of the
HFEv- is studied in Sections 6.4 and 7. We recall that ω = log2(7) = 2.807
denotes the exponent of the Gaussian reduction (see section 7).

Attacks for d = 96

As explained in section 7 there are working are attacks on HFE when d = 96.
Their complexities are as follows:

1. Until recently, the best known attack on HFE was the ”direct” Courtois
attack from [8]. From [10], we may see that for d = 96, (and for the HFE
Challenge 1), the complexity will be the time needed for a Gaussian elimina-
tion on a system of about 2h4 equations16. Thus with ω = log2(7) = 2.807
we get a complexity of about h11.2.

2. If we look at the improved ”distillation attack” by Courtois [8, 10], at the
first view we get approximatively h

3
4 logq d ≈ h5. The constant in the ex-

ponent is however only computed asymptotically, i.e. when d is big. From
the concrete results obtained on the ”distillation attack” in [8, 10] we expect
that in practice the distillation attack does not work much better than the
above direct version, except that it saves valuable memory. Thus we expect
that there is an added constant in the exponent such that for a given value
of d = 96, we will not get h5 but rather slightly less than h11.

3. Faugère made a series of simulations of HFE that show that for d = 96, the
complexity of his attack is (experimentally) O(h8), see [16].

We see that these attacks give more or less similar results. It is likely that
the first two attacks are in fact a sort of a very simplified version of Faugère’s
attack. At any rate, we do not expect that the real complexity of the ”distillation
attack” for d = 96 would give better results than Faugère’s attack, i.e. O(h8).

15 Which we may do in this situation due to our simulations.
16 These equations are described in [8, 10], and called ”equations of type XY ∪ x2y ∪

xy2 ∪ x3y ∪ x2y2”.



Attacks for d = 129

Now we extrapolate these results for Quartz in which d = 129 instead of d = 96
as above. In terms of the dependence of the attack on

⌈
logq(d)

⌉
on which all the

attacks seem to agree, see Section 2, we pass from 7 to 8.
1. For d = 129, we see from all simulations done in [8, 10], that all equations

of total degree 4 will fail, and it is probably necessary to use degree 5. Then
the complexity of the direct Courtois attack would be at least h5ω, i.e. about
h14.

2. If we look at the improved ”distillation attack” by Courtois [8], it seems to
give as little as h

3
4 logq d ≈ h6. Again this is only an asymptotic result, and

in practice it is probably not less than with Faugère’s attack.
3. We assume that the attack of Faugère should17 be in O(h10).

Concrete Complexity of Faugère’s Attack

We estimate that the constant in Faugère’s attack will be about 1/4. This is
justified as follows: On the one side, Faugère estimated that his attack is in h8.
In the HFE Challenge 1 [9, 16, 8, 22, 10] we have h = 80 and h8 ≈ 250. On the
other side the attack by Faugère took 96 hours on a 866 MHz alpha station, i.e.
about 248 operations.

From all the results given in this section, we conclude that the complexity to
break the basic HFE used in Quartz by Faugère’s attack should be about:

WF (HFE) = h10/4 = 1/4 · 10310 ≈ 265.

Note: Such a low constant as 1/4 is possible because the basic operations are
linear algebra operations over GF(2), i.e. bitwise XOR, and many such operations
can be done in parallel in a single CPU instruction.

C Further Results of the Simulations

In this section we present the remaining results from our simulations which
were not given in Section 6.2. This includes simulations for d ∈ {5, 9, 17} and
h ∈ {15, 19, 21}.

17 It is not very likely that it is in O(h9), because if Faugère’s attack uses equations of
higher degree, which in Courtois’s attack [8] would multiply the size of equations by
approximatively h, it will also probably require more equations for elimination, i.e.
another times the factor h.



Table 3. Absolute times (in seconds) for random systems with h = 15

Times per Guess T = Ttot/Nguess:

v
0 1 2 3 4 5

r

0 10,79 10,82 11,84 11,87 11,83 11,91
1 4,79 4,75 5,14 5,18 5,21 5,26
2 1,29 1,29 1,35 1,36 1,38 1,38
3 0,48 0,48 0,49 0,50 0,51 0,51

Table 4. Absolute and relative times per guess for HFEv- systems with h = 15, d = 9

Times per guess T = Ttot/Nguess:

v
0 1 2 3 4 5

r

0 1,76 4,85 11,54 11,83 11,86 11,92
1 2,30 4,51 5,16 5,18 5,24 5,26
2 1,29 1,30 1,36 1,36 1,38 1,38
3 0,48 0,48 0,49 0,50 0,51 0,51

Ratios T/Trnd = R:

v
0 1 2 3 4 5

r

0 0,16 0,45 0,97 1,00 1,00 1,00
1 0,48 0,95 1,00 1,00 1,01 1,00
2 1,00 1,01 1,01 1,00 1,00 1,00
3 1,00 1,00 1,01 1,00 0,99 1,00

Table 5. Absolute and relative times per guess for HFEv- systems with h = 15, d = 17

Times per guess T = Ttot/Nguess:

v
0 1 2 3 4 5

r

0 4,85 10,49 11,81 11,83 11,91 11,93
1 4,66 4,79 5,16 5,19 5,24 5,27
2 1,29 1,29 1,35 1,36 1,39 1,38
3 0,48 0,48 0,49 0,50 0,51 0,51

Ratios T/Trnd = R:

v
0 1 2 3 4 5

r

0 0,45 0,97 1,00 1,00 1,01 1,00
1 0,97 1,01 1,00 1,00 1,00 1,00
2 1,00 1,00 1,00 1,00 1,00 1,00
3 1,00 1,01 1,01 1,00 0,99 0,99

Table 6. Absolute times (in seconds) for random systems with h = 19

Times per Guess T = Ttot/Nguess:

v
0 1 2 3 4 5

r

0 604,70 597,06 579,40 582,52 583,94 586,65
1 225,69 226,02 216,27 215,97 217,09 217,44
2 88,90 88,76 83,19 83,39 83,92 83,86
3 33,19 33,57 31,34 31,33 31,41 31,45

Table 7. Absolute and relative times per guess for HFEv- systems with h = 19, d = 5

Times per guess T = Ttot/Nguess:

v
0 1 2 3 4 5

r

0 2,24 19,21 182,00 297,75 402,65 588,45
1 6,28 45,87 91,65 156,23 217,04 215,74
2 16,34 27,99 68,56 83,25 84,73 83,70
3 14,81 24,47 31,49 31,50 31,53 31,53

Ratios T/Trnd = R:

v
0 1 2 3 4 5

r

0 0,00 0,03 0,31 0,51 0,69 1,00
1 0,03 0,20 0,42 0,72 1,00 0,99
2 0,18 0,32 0,82 1,00 1,01 1,00
3 0,45 0,73 1,00 1,01 1,00 1,00



Table 8. Absolute and relative times per guess for HFEv- systems with h = 19, d = 9

Times per guess T = Ttot/Nguess:

v
0 1 2 3 4 5

r

0 20,96 86,59 402,63 428,72 584,87 583,43
1 41,21 117,09 169,48 217,65 216,56 218,69
2 32,13 77,06 83,19 83,14 83,85 84,49
3 22,74 33,73 31,71 31,35 31,59 31,65

Ratios T/Trnd = R:

v
0 1 2 3 4 5

r

0 0,03 0,15 0,69 0,74 1,00 0,99
1 0,18 0,52 0,78 1,01 1,00 1,01
2 0,36 0,87 1,00 1,00 1,00 1,01
3 0,69 1,00 1,01 1,00 1,01 1,01

Table 9. Absolute and relative times per guess for HFEv- systems with h = 19, d = 17

Times per guess T = Ttot/Nguess:

v
0 1 2 3 4 5

r

0 185,25 410,81 525,82 585,52 587,70 580,16
1 124,89 200,29 215,74 215,52 216,38 217,80
2 77,53 88,70 83,15 84,13 84,85 84,26
3 33,54 33,21 31,52 31,46 31,52 31,32

Ratios T/Trnd = R:

v
0 1 2 3 4 5

r

0 0,31 0,69 0,91 1,01 1,01 0,99
1 0,55 0,89 1,00 1,00 1,00 1,00
2 0,87 1,00 1,00 1,01 1,01 1,00
3 1,01 0,99 1,01 1,00 1,00 1,00

Table 10. Absolute times (in seconds) for random systems with h = 21

Times per Guess T = Ttot/Nguess:

v
0 1 2 3

r

0 5877,39 5800,41 5900,17 5963,81
1 1859,70 1856,75 1838,99 1884,25
2 594,27 598,38 600,39 603,18
3 223,33 223,57 222,46 222,20

Table 11. Absolute and relative times per guess for HFEv- systems with h = 21, d = 5

Times per guess T = Ttot/Nguess:

v
0 1 2 3

r

0 5,46 43,29 903,00 2888,03
1 22,04 168,80 638,81 894,21
2 55,47 99,65 347,26 597,30
3 58,31 121,79 222,62 222,29

Ratios T/Trnd = R:

v
0 1 2 3

r

0 0,001 0,007 0,153 0,484
1 0,012 0,091 0,347 0,475
2 0,093 0,167 0,578 0,990
3 0,261 0,545 1,001 1,000

Table 12. Absolute and relative times per guess for HFEv- systems with h = 21, d = 17

Times per guess T = Ttot/Nguess:

v
0 1 2 3

r

0 826,52 2512,62 5018,72 5898,78
1 832,43 1147,99 1895,54 1800,70
2 461,11 592,07 588,93 602,55
3 221,28 221,94 221,32 223,07

Ratios T/Trnd = R:

v
0 1 2 3

r

0 0,141 0,433 0,851 0,989
1 0,448 0,618 1,031 0,956
2 0,776 0,989 0,981 0,999
3 0,991 0,993 0,995 1,004


