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Abstract. A way for preventing SPA-like attacks on elliptic curve sys-
tems is to use the same formula for the doubling and the general addition
of points on the curve. Various proposals have been made in this direc-
tion with different results. This paper re-investigates the Jacobi form
suggested by Liardet and Smart (CHES 2001). Rather than considering
the Jacobi form as the intersection of two quadrics, the addition law
is directly derived from the underlying quartic. As a result, this leads
to substantial memory savings and produces the fastest unified addition
formula for curves of order a multiple of 2.
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1 Introduction

In 1996, Kocher introduced the so-called side-channel attacks. By monitoring
some side-channel information (e.g., timing [7] or power consumption [8]), an
attacker tries to retrieve secret data involved in a cryptographic computation. For
elliptic curve cryptosystems, a näıve implementation of the point multiplication
is particularly susceptible to such attacks as the classical formulæ for doubling
a point and for adding two (distinct) points are different. Hence, according to
the implemented crypto-algorithm, a simple power analysis (SPA)† can yield the
value of multiplier d used in the computation of Q = dP on an elliptic curve.

A promising way for preventing SPA-like attacks consists in re-writing the
addition formula so that the doubling and the general addition become indistin-
guishable from some side-channel information. In particular, an addition formula
valid for both the doubling and the addition would be helpful.
† There is another class of side-channel attacks, the differential attacks, but we do not

consider them as efficient protections are known (e.g., see [4]).
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1.1 Related work

The use of a unified formula for the addition of points on an elliptic curve as a
means for preventing SPA-like attacks has been independently suggested in [6]
and [10]. In [6], the authors suggest the Hessian form while in [10], the inter-
section of two quadrics is considered. Unified addition formulæ for the general
Weierstraß parameterization are given in [1].

1.2 Our results

Building on [10], we consider the Jacobi form not as the intersection of two
quadrics but as a quartic. This allows points to be represented with triplets in-
stead of quadruplets. Furthermore, this considerably reduces the number of re-
quired (field) multiplications. As a result, we obtain the most efficient (memory-
wise and computation-wise) unified formula for adding points on an elliptic curve
whose order is a multiple of 2. In particular, compared to [10], we get a 23%
speed-up improvement with fewer memory requirements.

1.3 Organization of the paper

The rest of this paper is organized as follows. In the next section, we respectively
review the Jacobi form of an elliptic curve as the intersection of two quadrics
and as a quartic. Then, in Section 3, we show how the quartic model helps to
prevent SPA-like attacks. Finally, we conclude in Section 4.

2 Jacobi Models

Throughout this paper, we assume that K represents a field of characteristic
CharK 6= 2. Furthermore, since our ultimate goal is the study over large prime
fields, we also assume that CharK 6= 3.

2.1 Intersection of two quadrics

It is well known that any elliptic curve over K can be embedded as the intersec-
tion of two quadrics in P3 [2, Chapter 7]. Indeed, a point (x, y) on a Weierstraß
elliptic curve

y2 = x3 + ax + b

corresponds to the point (X,Y, Z, T ) on the intersection
{

X2 − TZ = 0
Y 2 − aXZ − bZ2 − TX = 0 (1)

via the map (x, y) 7−→ (X, Y, Z, T ) = (x, y, 1, x2).



The Jacobi Model of an Elliptic Curve and Side-Channel Analysis 3

As for the Weierstraß parameterization, the group law on the intersection of
two quadrics has a nice geometrical interpretation [11]. Let P1 = (X1, Y1, Z1, T1)
and P2 = (X2, Y2, Z2, T2) be two points on the intersection given by Eq. (1).
Then, the sum P3 = P1 + P2 = (X3, Y3, Z3, T3) is given by

X3 = F(P1,P2) H(P1, P2) , Z3 = H(P1, P2)2 ,
Y3 = Y1 G(P2, P1) + Y2 G(P1,P2) , T3 = F(P1, P2)2 ,

where

F(P1,P2) = T1T2 − 2aX1X2 − 4b(X1Z2 + Z1X2) + a2Z1Z2 ,
G(P1,P2) = T 2

1 T2 + 2aX1T1X2 + 4bX1T1Z2 + 3aZ1T1T2

+ 12bZ1T1X2 − 3a2Z1T1Z2 + 4bZ1X1T2 − 2a2X1Z1X2

− 4abX1Z1Z2 − a3Z2
1Z2 − 8b2Z2

1Z2 ,
H(P1, P2) = 2Y1Y2 + X1T2 + T1X2 + a(X1Z2 + Z1X2) + 2bZ1Z2 .

The above formulæ present the particularity of being valid for both the dou-
bling and the general addition. This was therefore considered in [10] as a means
for preventing side-channel attacks. However, as already noticed there, these ad-
dition formulæ are overly involved to be of any use in real-life implementations.

Following [3], attention was therefore restricted to the particular case given
by

{
X2 + Y 2 − T 2 = 0

(1− λ)X2 + Z2 − T 2 = 0 . (2)

As shown in [10], this corresponds to the Weiertraß equation

y2 = x(x + 1)(x + λ) (∪{O}) (3)

via the inverse maps

(x, y) 7−→ (−2y, x2 − λ, x2 + 2xλ + λ, x2 + 2x + λ), O 7−→ (0, 1, 1, 1)

and

(X, Y, Z, T ) 7−→
{

O if X = 0 and Y = Z = T ,(
λ(Z−T )

(1−λ)Y−Z+λT , λ(1−λ)X
(1−λ)Y−Z+λT

)
otherwise .

From the Weierstraß form (Eq. (3)), it clearly appears that this elliptic curve
has three points of order 2. This implies that this elliptic curve contains a copy
of Z2 × Z2 and so its group order is a multiple of 4.

The addition law, P3 = P1 + P2, on the specialized intersection given by
Eq. (2) becomes

X3 = T1Y2 ·X1Z2 + Z1X2 · Y1T2, Z3 = T1Z1T2Z2 − k2X1Y1X2Y2,
Y3 = T1Y2 · Y1T2 − Z1X2 ·X1Z2, T3 = (T1Y2)2 + (Z1X2)2,

(4)

so that 16 (field) multiplications (plus 1 multiplication by constant k2) are re-
quired. The inverse of a point P1 = (X1, Y1, Z1, T1) is −P1 = (−X1, Y1, Z1, T1).
Again, we see that (excluding the neutral element (0, 1, 1, 1)) there are three
points of order 2, namely, (0,−1, 1, 1), (0, 1,−1, 1) and (0, 1, 1,−1).
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2.2 Jacobi quartic

Jacobi also studied quartics of the form

y2 = (1− x2)(1− k2 x2) (5)

with k 6= 0,±1. This type of elliptic curve can be parameterized with Ja-
cobi’s elliptic functions, namely the “sinus amplitudinus” and its derivative.
So, a point P = (x, y) on the Jacobi quartic given by Eq. (5) is represented as
(sn(u), cn(u) dn(u)). From the rich body of addition formulæ for elliptic func-
tions (see [13] for instance), we directly derive the addition law on the quartic.
We have

sn(u1 + u2) =
sn(u1) cn(u2) dn(u2) + sn(u2) cn(u1) dn(u1)

1− k2 sn(u1)2 sn(u2)2
,

cn(u1 + u2) =
cn(u1) cn(u2)− sn(u1) sn(u2) dn(u1) dn(u2)

1− k2 sn(u1)2 sn(u2)2
,

dn(u1 + u2) =
dn(u1) dn(u2)− k2 sn(u1) sn(u2) cn(u1) cn(u2)

1− k2 sn(u1)2 sn(u2)2
.

(6)

Hence, if (xi, yi) = (sn(ui), cn(ui) dn(ui)) for i = 1, 2 are two generic points
on the Jacobi quartic, the sum (x3, y3) = (x1, y1) + (x2, y2) is given by

(x3, y3) = (sn(u1 + u2), cn(u1 + u2) dn(u1 + u2)) .

Here again, the formulæ present the tremendous advantage of remaining valid
for the doubling (i.e., when u1 = u2).

3 Preventing SPA-like Attacks

We consider slightly more general quartics than those originally considered by
Jacobi. Namely, we investigate quartics given by

y2 = ε x4 − 2δ x2 + 1 . (7)

(Jacobi quartics correspond to the case ε = k2 and δ = (1 + k2)/2.)

Remarkably, all elliptic curves with a point of order 2 can be expressed by a
quartic equation of the form of Eq. (7). Let E denote an elliptic curve (over K)‡

given by a Weierstraß equation

y2 = x3 + ax + b

with its point ‘at infinity’ O. Suppose that E has a point of order 2, say, (θ, 0) ∈
E(K). Then, the above Weierstraß elliptic curve is birationnally equivalent to
the (extended) Jacobi quartic

Y 2 = εX4 − 2δ X2Z2 + Z4 (8)

‡ Remember that we assume CharK 6= 2, 3.
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with ε = −(3θ2 + 4a)/16 and δ = 3θ/4, under the transformations




(θ, 0) 7−→ (0 : −1 : 1) ,
(x, y) 7−→ (

2(x− θ) : (2x + θ)(x− θ)2 − y2 : y
)

,
O 7−→ (0 : 1 : 1) ,

(9)

and




(0 : 1 : 1) 7−→ O ,
(0 : −1 : 1) 7−→ (θ, 0) ,

(X : Y : Z) 7−→
(

2
(Y + Z2)

X2
− θ

2
, Z

4(Y + Z2)− 3θ X2

X3

)
.

(10)

In Equations (9) and (10), the notation (X : Y : Z) stands for equivalence
classes. Two triplets (X1 : Y1 : Z1) and (X2 : Y2 : Z2) represent the same point if
and only if there exists t ∈ K\{0} such that X1 = tX2, Y1 = t2Y2 and Z1 = tZ2.

We now give the group law on the elliptic curve given by Eq. (8). From [9]
(see also [5]), the sum of two points (X1 : Y1 : Z1) and (X2 : Y2 : Z2) is given by
(X3 : Y3 : Z3) where

X3 = X1Z1Y2 + Y1X2Z2 ,

Y3 =
[
(Z1Z2)2 + ε(X1X2)2

]
[Y1Y2 − 2δX1X2Z1Z2]

+ 2εX1X2Z1Z2(X2
1Z2

2 + Z2
1X2

2 ) ,

Z3 = (Z1Z2)2 − ε(X1X2)2 .

(11)

The negation of a point (X : Y : Z) on the (extended) Jacobi quartic (Eq. (8))
is given by (−X : Y : Z).

To sum up, our unified method for adding points on an elliptic curve with a
point of order 2 goes as follows. We first represent the given Weierstraß curve as
a quartic given by Eq. (8) and transform points P1 and P2 according to Eq. (9).
Next, given the two points on the corresponding quartic, (X1 : Y1 : Z1) and
(X2 : Y2 : Z2), we apply the addition formula given by Eq. (11) and obtain
(X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2). Finally, we recover the sum as
a point on the initial Weierstraß curve, P3 = P1 + P2, by the transformation
given by Eq. (10).

Figure 1 details the procedure for adding points (X1 : Y1 : Z1) and (X2 : Y2 :
Z2). It appears that only 13 (field) multiplications (plus 3 multiplications by
constants) are required. We insist that the same procedure equally applies for
doubling a point. We further note that the neutral element is (0 : 1 : 1) and that
the procedure remains valid for it too.

When constant δ (resp. ε) is small, the cost of a multiplication by δ (resp. ε)
can be neglected. A good choice consists in imposing a small value for ε since
this removes two multiplications by constants —as shown in Fig. 1, there are
2 multiplications by ε and 1 multiplication by δ. In particular, most elliptic
curves over the prime field K = Fp, with three points of order 2, can be rescaled
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T1 ← X1; T2 ← Y1; T3 ← Z1; T4 ← X2; T5 ← Y2; T6 ← Z2

T7 ← T1 · T3 (= X1Z1)
T7 ← T2 + T7 (= X1Z1 + Y1)
T8 ← T4 · T6 (= X2Z2)
T8 ← T5 + T8 (= X2Z2 + Y2)
T2 ← T2 · T5 (= Y1Y2)
T7 ← T7 · T8 (= X3 + Y1Y2 + X1X2Z1Z2)
T7 ← T7 − T2 (= X3 + X1X2Z1Z2)
T5 ← T1 · T4 (= X1X2)
T1 ← T1 + T3 (= X1 + Z1)
T8 ← T3 · T6 (= Z1Z2)
T4 ← T4 + T6 (= X2 + Z2)
T6 ← T5 · T8 (= X1X2Z1Z2)
T7 ← T7 − T6 (= X3)
T1 ← T1 · T4 (= X1Z2 + X2Z1 + X1X2 + Z1Z2)
T1 ← T1 − T5 (= X1Z2 + X2Z1 + Z1Z2)
T1 ← T1 − T8 (= X1Z2 + X2Z1)
T3 ← T1 · T1 (= X2

1Z2
2 + X2

2Z2
1 + 2X1X2Z1Z2)

T6 ← T6 + T6 (= 2X1X2Z1Z2)
T3 ← T3 − T6 (= X2

1Z2
2 + X2

2Z2
1 )

T4 ← ε · T6 (= 2ε X1X2Z1Z2)
T3 ← T3 · T4 (= 2ε X1X2Z1Z2(X

2
1Z2

2 + X2
2Z2

1 ))
T4 ← δ · T6 (= 2δ X1X2Z1Z2)
T2 ← T2 − T4 (= Y1Y2 − 2δ X1X2Z1Z2)
T4 ← T8 · T8 (= Z2

1Z2
2 )

T8 ← T5 · T5 (= X2
1X2

2 )
T8 ← ε · T8 (= ε X2

1X2
2 )

T5 ← T4 + T8 (= Z2
1Z2

2 + ε X2
1X2

2 )
T2 ← T2 · T5 (= (Z2

1Z2
2 + ε X2

1X2
2 )(Y1Y2 − 2δ X1X2Z1Z2))

T2 ← T2 + T3 (= Y3)
T5 ← T4 − T8 (= Z3)
X3 ← T7; Y3 ← T2; Z3 ← T5

Fig. 1. Unified Addition on an (extended) Jacobi quartic.

to the case ε = 1 as follows. Let (θ1, 0), (θ2, 0) and (θ3, 0) denote the three points
of order 2 on the Weierstraß curve, i.e., y2 = x3 + ax + b = (x− θ1)(x− θ2)(x−
θ3). Then, an application of map given by Eq. (9) with θ = θ1 transforms the
Weierstraß curve into the (extended) Jacobi curve

Y 2 = εX4 − 2δ X2Z2 + Z4 (12)

with δ = 3θ1/4 and ε = −(3θ2
1 + 4a)/16 = (θ2 − θ3)2/16. If p ≡ 3 (mod 4) then

−1 is not a square modulo p and consequently either (θ2− θ3) or −(θ2− θ3) is a
square modulo p. Letting ξ a square-root of the corresponding square ±(θ2−θ3),
it follows that ε = ξ4/16 = (ξ/2)4. If p ≡ 1 (mod 4) then there is a 1/8 chance
that we cannot find a pair of indices such that (θi − θj) is a square modulo p. If
such a pair exists, we let ξ denote the corresponding square-root and again, after
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a possible re-arrangement, we get ε = (ξ/2)4. The change of variable X ← 2X/ξ
then transforms the previous quartic into

Y 2 = X4 − 2ρX2Z2 + Z4 (13)

where ρ = 4δ/ξ2.
This latter case corresponds exactly to the curves considered by Liardet and

Smart ([10]). The first advantage of using the quartic representation is that only
13 multiplications (in Fp) plus 1 multiplication by constant ρ are required —the
representation as the intersection of two quadrics requires 16 multiplications (in
Fp) plus 1 multiplication by constant k2 (cf. § 2.1)— resulting in a ( 16

13−1) ' 23%
speed improvement. The second advantage is that fewer memory resources are
required since points are represented with triplets instead of quadruplets.

4 Conclusion

This paper revisited the Jacobi model initially suggested in [10] as a means for
preventing side-channel attacks. Using an (extended) form of the Jacobi quartic,
we derived a unified addition formula for adding or doubling points with only
13 field multiplications. This is the fastest known unified addition law for elliptic
curves whose order is a multiple of 2.
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A Illustration

Here is an example of a cryptographic elliptic curve (i.e., the group order has a
cofactor ≤ 4) over Fp. This example is adapted from [10].

Let p = 2192 − 264 − 1. Over Fp, consider the Weierstraß elliptic curve E
given by

E/Fp
: y2 = x3 − 3x + b (∪{O}) (14)

where b = 5785156510951660859948362664535565676137370865272662811849.
The order of E is four times a prime:

#E = 4 · 1569275433846670190958947355830249374250393459078477724241 .

The three points of order 2 on the Weierstraß curve are (θi, 0) with




θ1 = 393113410321492593759236174468396523987365130802013387956
θ2 = 3722240065524459449962883383651126589463273788373166826730
θ3 = 2161748259540728720113669865088143302633269781215144746593

.

An application of transformation given by Eq. (9) shows that the Weierstraß
curve E is equivalent to the Jacobi curve

Y 2 = εX4 − 2δ X2Z2 + Z4

with ε = 439238437583428445099508669973297609255723032614505577652 and
δ = 294835057741119445319427130851297392990523848101510040967. Further,
since there are three points of order 2, ε can be rescaled to the case ε = 1 via
the additional transformation X ← 2X/ξ with

ξ =
√

θ2 − θ3

= 2362324240509570404961221823945617479743113384215829517748 .
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Consequently, the Weierstraß curve E (Eq. (14)) is also equivalent to the Jacobi
curve

Y 2 = X4 − 2ρX2Z2 + Z4 (15)

with ρ = 4513535057349470453996210490020750613469858160756852710254 via
the map 




(θ1, 0) 7−→ (0 : −1 : 1)
(x, y) 7−→ (

ξ(x− θ1) : (2x + θ1)(x− θ1)2 − y2 : y
)

O 7−→ (0 : 1 : 1)

and conversely, the Jacobi curve (Eq. (15)) is equivalent to the initial Weierstraß
curve (Eq. (14)) via the map





(0 : 1 : 1) 7−→ O
(0 : −1 : 1) 7−→ (θ1, 0)

(X : Y : Z) 7−→
(

ξ2(Y + Z2)
2X2

− θ1

2
, Zξ

ξ2(Y + Z2)− 3θ1 X2

2X3

) .


