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Abstract

In this paper, a new special-purpose factorization algorithm is presented, which
finds a prime factor p of an integer n in polynomial time, if 4p− 1 has the form db2

where d ∈ {3, 11, 19, 43, 67, 163} and b is an integer. Hence such primes should be
avoided when we select the RSA secret keys. Some generalizations of the algorithm
are discussed in the paper as well.

1 Introduction

Integer factorization is a classical problem in computer science and number theory. It
has been studied for centuries and been intensively investigated in the last four decades.
Although remarkable progresses have been achieved, especially in the last thirty years,
this problem is still considered difficult. Several cryptographic systems based on the hard-
ness of factorization or analogical problems have been proposed. Among them, the RSA
system is the most famous and widely used. So far, the fastest general-purpose factor-
ization algorithm is the number field sieve (NFS), which has a heuristic time complexity

O(ec(logn)1/3(log logn)2/3
) to factor an integer n, where c ≈ 1.923. We refer to [3] for a survey

on the current knowledge about factoring general integers.
Other than the general-purpose factorization algorithms, some algorithms are very ef-

ficient at finding a prime factor of special form, even though, the performance of those
algorithms is sometimes worse than that of the exhaustive search if we try to apply them
on general integers. Those algorithms include:

1. Pollard’s p− 1 method [12] finds a prime factor p efficiently if p− 1 is smooth. More
precisely, if the largest prime factor of p − 1 is r, then it takes time (r log n)O(1) for
the algorithm to find p.
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2. Hugh Williams’s p+ 1 method [15] works well when p+ 1 is smooth.

3. The Bach-Shallit cyclotomic polynomial method [1] extends the ideas in the p ± 1
algorithms. It finds a prime factor p of n efficiently if φk(p) is smooth, where φk is the
k-th cyclotomic polynomial. This algorithm provides a unified presentation of a class
of factorization algorithms, including the p±1 methods. But its practical application
is limited because when k > 2, φk(p) is much bigger than p, hence unlikely to be
smooth.

4. Other than integers with special form prime factors, integers with certain prime
power can also be efficiently factored. For example, Boneh and etc. [2] proposed an
algorithm, which factors n = prq in polynomial time if p and q are primes and r is
close to log p.

To implement RSA cryptosystem, two large primes need to be selected and kept secret.
The product of these two primes is made public. The security of this cryptosystem is
destroyed if the adversary can factor the product. In order to avoid the p− 1 factorization,
we should make sure that p − 1 contains at least one large prime factor, or better yet,
p− 1 = 2q with q a prime. A prime p is called safe, if p−1

2
is also a prime.

We call n a RSA integer, if it is the product of two different primes. Given a prime p,
if any of the p − 1, p + 1 or φk(p) (k is small) is smooth, then a RSA integer with p as
its prime factor can be factored efficiently. These primes are unsafe and should be avoided
when we select RSA secret primes. In this paper, we report a new factorization algorithm
and a new class of unsafe primes. Our main result is

Theorem 1 Let integer n = pm with p a prime and m an integer. There exists a random
algorithm finding p from n in time (log n)O(1) if p has forms (3b2+1)/4, (11b2+1)/4, (19b2+
1)/4, (43b2 + 1)/4, (67b2 + 1)/4 or (163b2 + 1)/4 with b an integer.

Our algorithm can be viewed as a variant of the elliptic curve factorization algorithm
invented by Lenstra [9]. Let R = Z/nZ. In his algorithm, a random elliptic curve E/R with
a point P on that curve is chosen. A large smooth number k is computed. Since the smooth
bound B is usually set to be subexponential, computing k alone takes subexponential time.
The order of E(Fp) for some p|n is B-smooth with subexponential probability. In this case,
computing kP usually reveals p. The idea in the algorithm originates from the p−1 method.
As in the p − 1 method, smoothness plays an important role in Lenstra’s algorithm. But
the latter is a general-purpose factorization algorithm as oppose to the p− 1 method.

In our algorithm, we fix the set of elliptic curves and use n itself instead of a large
smooth integer k as the multiplier. Our algorithm outputs a prime factor p of n, if E(Fp)
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has order exactly p. Since given an arbitrary elliptic curve, it is usually difficult to find
a point on the curve modulo a composite number, it is important that we find a way to
avoid working with points explicitly. Instead of computing a product of n and a point, we
evaluate the n-th division polynomial on a randomly chosen integer x, which we hope is
an x-coordinate of an Fp-point on the E. A random integer becomes such an integer with
probability about 1/2, which is an easy consequence of Hasse’s Lemma. Computing the
g.c.d. of n and the value of the division polynomial modulo n gives us the factorization of
n.

We first consider the case when the set of elliptic curves is the rational elliptic curves with
complex multiplications. For any curve E in this set, the primes p such that |E(Fp)| = p
can be described. They include every prime p such that 4p − 1 is a product of d and a
square, where d ∈ {3, 11, 19, 43, 67, 163}. A RSA integer with prime factor of one of these
forms can be factored in polynomial time by our algorithm. We call the algorithm 4p− 1
method.

We can consider using the elliptic curves with small j-invariants and the hyperelliptic
curves with small genus g as well. A hyperelliptic curve with Jacobian group of order pg

over Fp can be used to factor any integer with prime factor p. Several interesting questions
in number theory are raised: (1) Given a prime p, what are the (hyper)elliptic curves with
Jacobian group of order p(pg) over Fp? The question can help us pick safe primes free of
4p−1 attack. (2) Given a curve C/Q with genus g, how many primes p are there such that
the reduction of C at p has Jacobian group of order pg over Fp? In the elliptic curve case,
the problem has been studied. We will review some results in Section 5. However, we are
not aware of any results on the similar question about hyperelliptic curves.

The novelties of our algorithm includes (1) We use n as the multiplier. Using integers
closely related to n is another possibility. (2) We avoid finding a point on the curve. This
is very important since we need to work with a curve and its quadratic twist. Finding
points on both curves is usually a very difficult problem. If one is satisfied with random
polynomial time, then it is not necessary to know the y-coordinate of a point in order to
factor an integer. We can evaluate the n-th division polynomial on a random integer. (3)
Although our algorithm is derived from the elliptic curve factorization algorithm, it factors
numbers with special form prime factors in polynomial time, without assuming any number
theory conjecture. The time complexity of the algorithm doesn’t rely on the abundance of
smooth numbers, which is quite different from the classical factorization algorithm.

The drawback of our algorithm is that it seems hard to make it into a general purpose
factorization algorithm.
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2 Elliptic curves

An elliptic curve is a smooth cubic curve. Let k be a field. If the characteristic of k is
neither 2 nor 3, we may assume that the elliptic curve is given by an equation of the form

y2 = x3 + ax+ b, a, b ∈ k.

The discriminant of this curve is defined as ∆ = −16(4a3 + 27b2), which is non-zero as
the curve is smooth. For detailed information about elliptic curves, we refer to Silverman’s
book [14].

The j-invariant of the curve y2 = x3 +ax+b is defined as j = 1728 4a3

4a3+27b2
. Two elliptic

curves with a same j-invariant are isomorphic over the algebraic closed field. For elliptic
curves defined over a prime finite field Fp with p > 3, two curves with a same j-invariant
may not be isomorphic. If j 6= 0 or 1728, there are exactly two isomorphic classes which
have the same j-invariant, one can be represented by E1 : y2 = x3 + kx + k and the other
by Ec : y2 = x3 + c2kx + c3k, where k = 27j

4(1728−j) and c is a quadratic nonresidue modulo
p. The latter curve Ec is called the quadratic twist of the former one. It is not hard to see
that |E1(Fp)|+ |Ec(Fp)| = 2p+ 2. There are at most 6 isomorphic classes with j = 0, and
at most 4 isomorphic classes with j = 1728.

Let p be a prime greater than 3. A non-supersingular elliptic curve E/Fp has a complex
multiplication by an order of a quadratic field K = Q(

√
−D). Once we know D, it is very

easy to count the points in E(Fp). First factor p over OK as p = ππ′. Then

|E(Fp)| = p+ 1± tr(π),

where tr is the trace function. Deciding which one is the right answer can be accomplished
by randomly picking a point on the curve and multiplying the point by one of the integers.

We are interested in the curves which have exactly p Fp-points. Similar problem has
been studied in [10]. If |E(Fp)| = p, then its quadratic twist has p + 2 Fp-points. See
Table 1 for the list of integers D, the corresponding j-invariants of the curves whose complex
multiplications are the maximal order in Q(

√
−D), and the forms of the primes p such that

at least one of the isomorphic classes of the curves has exactly p Fp-points.
If p has one of the special forms in Table 1, we can easily construct an elliptic curve

E/Fp with exactly p Fp-points. See [10] for the algorithm to decide the right isomorphic
classes. When it comes to the factorization, p is unknown. It is impossible to check whether
an integer is a quadratic residue modulo p or not. Fortunately the j-invariants of the curves
do not depend on p, and one half of the integers are quadratic residues modulo p, the other
half are quadratic non-residues modulo p. Hence we can still construct the right curves
with probability about 1/2.
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D jD The form of p
3 0 4p− 1 = 3b2

11 (−25)3 4p− 1 = 11b2

19 (−25 ∗ 3)3 4p− 1 = 19b2

43 (−25 ∗ 3 ∗ 5)3 4p− 1 = 43b2

67 (−25 ∗ 3 ∗ 5 ∗ 11)3 4p− 1 = 67b2

163 (−26 ∗ 3 ∗ 5 ∗ 23 ∗ 29)3 4p− 1 = 163b2

Table 1: The primes of special forms

3 Division polynomials

Let E : y2 = x3 +ax+b be an elliptic curve over Z. The n-th division polynomial Pn(x) can
be evaluated using only O(log n) arithmetic operations (additions, subtractions and multi-
plications) from a, b and x, just like that nP can be computed using only O(log n) point
additions. Although the observation is implicitly stated in several places, for completeness
we prove the following Lemma in this paper, as it is crucial to our algorithm.

Proposition 1 For any integer n(> 0), Pn(x) can be computed by O(log n) ring operations
from a, b and x, where Pn is the n-th division polynomial of E : y2 = x3 + ax+ b.

Proof: The recursions for P En is

P1 = 1

P2 = 1

P3 = 3x4 + 6ax2 + 12bx− a2

P4 = 2(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3)

P4n+1 = 16(x3 + ax+ b)P2n+2P
3
2n − P2n−1P

3
2n+1

P4n+2 = P2n+1(P2n+3P
2
2n − P2n−1P

2
2n+2)

P4n+3 = P2n+3P
3
2n+1 − 16(x3 + ax+ b)P2nP

3
2n+2

P4n+4 = P2n+2(P2n+4P
2
2n+1 − P2nP

2
2n+3)

We deploy the dynamical programming technique in the computation. If we want to
evaluate Pn(x), we need to evaluate up to 5 division polynomials with indices around
n/2, according to the recursion. For the same reason, in order to compute these 5 or
less division polynomials, we need to compute up to 9 division polynomials with indices
about n/4. However, this does not mean that the number of division polynomials we
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need to evaluate grows unlimitedly as the recursion level increases. In fact, in order to
evaluate the list of division polynomials Pi(x), Pi+1(x), · · · , Pi+j(x), we need to evaluate
Pdi/2e−2, Pdi/2e−1, · · · , Pb(i+j)/2c+1, Pb(i+j)/2c+2. If j ≥ 10, the latter list is shorter than the
former one. On the other hand, if j < 10, then the latter list is at most 10 polynomials
long. Hence if we want to evaluate Pn(x), we only go through log n recursion levels and
we evaluate at most 10 log n number of Pi(x)’s. Evaluating any Pi(x) needs at most 9
more ring operations from the previously evaluated division polynomials. The overhead
to compute P1, P2, P3, P4 and 16(x3 + Ax + B) is less than 60 steps. The total number of
arithmetic operations is thus less than 90 log n+ 60. 2

Even when n is very large, we can still carry out the computation of Pn(x) if we do
every operation modulo an integer m. The result can be used to factor m. The prime
factors of Pn(x) forms a subset of all the primes such that the reduction curves at those
primes have order dividing n over the prime finite field. The next proposition follows easily
from the definition of torsion points.

Proposition 2 Let E : y2 = x3 + ax + b be an elliptic curve defined over Z. Assume that
E has a good reduction E at a prime p. If x is an integer and

1. it is the x-coordinate of a point on E(Fp),

2. the point (x,
√
x3 + ax+ b) is not a torsion on E,

then Pl(x) 6= 0 and p|Pl(x), where l is any non-zero multiple of |E(Fp)|.

Let E : y2 = x3 + ax + b be an elliptic curve defined over Z. The torsion points on E
with integral x-coordinates (thus y-coordinates are integers or quadratic algebraic numbers)
have order at most 18, as shown in the celebrated Uniform Boundedness Theorem in the
quadratic number fields [5, 6]. Hence such integers must be the roots of Pn(x) with n ≤ 18,
or of x3 + ax+ b. The maximal possible roots of those equations are bounded by the sum
of the degrees of the equations, which is an absolute constant. Let B denote this constant.
Define

RE(p) = {x|x ∈ Z, 1 ≤ x ≤ p, (x,
√
x3 + ax+ b) is not a torsion on E}.

Thus |RE(p)| ≥ p−B. Hence a random integer x has the properties described in the above
proposition with probability about 1/2.

Are there division polynomials for curves with genus greater than 1? The question was
answered affirmatively by Canter [4].
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4 Algorithm description and example

We now describe the algorithm. There are a little difference between j = 0 and j 6= 0, so we
treat them separately. First we consider the case when j 6= 0. In the following algorithm,
it suffices to set B1 = B2 = 10.

for each j ∈ {(−25)3, (−25 ∗ 3)3, (−25 ∗ 3 ∗ 5 ∗ 11)3, (−26 ∗ 3 ∗ 5 ∗ 23 ∗ 29)3}
compute a = j

1728−j (mod n);

randomly select B1 integers c1, c2, · · · , cB1 ;
randomly select B2 integers x1, x2, · · · , xB2 ;
for each c ∈ {c1, c2, · · · , cB1}

for each x ∈ {x1, x2, · · · , xB2}
compute z = Pn(x) (mod n) where Pn is the n-th division
polynomial of the ellipitic curve y2 = x3 + 3ac2x+ 2ac3;
compute gcd(z, n);
if the gcd is non-trivial, output the result and exit;

endfor
endfor

endfor

This algorithm factors the following 80-digit number in the matter of seconds on a 1GHz
PC.

n = 14443297275101543935537996127476354575421

81563961160832013134005088873165794135221

Let E be the elliptic curve with j = −32768 and c = 1 and Pn be its n-th division
polynomial. Evaluating Pn(7) (mod n) gives us

62334047003106547114945885165768177722754

917109098471755585303571551970193938981

Computing gcd(Pn(7), n) yields one factor of n:

p = 74611921979343086722526424506387128972933
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Indeed, 4p− 1 = 11× 1647167507950797187892. The other factor of n is

q = 19357894679486057806987068960980789709937.

Note that p±1 methods will not factor n in reasonable time, since the prime factorizations
of p± 1 and q ± 1 are

p− 1 = 22 ∗ 3 ∗ 397 ∗ 2557 ∗ 6124995113867554987471742056624259,

p+ 1 = 2 ∗ 37305960989671543361263212253193564486467,

q − 1 = 24 ∗ 3 ∗ 11 ∗ 449 ∗ 81654074203136843688782601745380263,

q + 1 = 2 ∗ 7 ∗ 101 ∗ 13690165968519135648505706478770006867.

None of the general-purpose factorization algorithm can factor n without hours of compu-
tation on a single 1GHz PC.

When j = 0, the curve is y2 = x3 + a. There are at most six isomorphic classes,
depending on the sixth power residue classes that a belongs to. If randomly choose a, then
with probability 1/6, we will have the right curve E with |E(Fp)| = p. The algorithm in
this case is as follows. We can set B1 = 20.

randomly select B1 integers a1, a2, · · · , aB1 ;
for each a ∈ {a1, a2, · · · , aB1}

compute z = Pn(x) (mod n) where Pn is the n-th division
polynomial of elliptic curve y2 = x3 + a;
compute gcd(z, n);
if the gcd is non-trivial, output the result and exit;

endfor

5 Extension to elliptic curves with small j-invariants

We can certainly use the elliptic curves other than the rational elliptic curves with complex
multiplications. There are not many changes for the algorithm.
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for j from −B3 to B3

compute a = j
1728−j (mod n);

randomly select B1 integers c1, c2, · · · , cB1 ;
randomly select B2 integers x1, x2, · · · , xB2 ;
for each c ∈ {c1, c2, · · · , cB1}

for each x ∈ {x1, x2, · · · , xB2}
compute z = Pn(x) (mod n) where Pn is the n-th division
polynomial of the elliptic curve y2 = x3 + 3ac2x+ 2ac3;
compute gcd(z, n);
if the gcd is non-trivial, output the result and exit;

endfor
endfor

endfor

In the algorithm, the bound B3 may be set accordingly. The time complexity is
B3(log n)O(1)

How many primes are vulnerable to 4p−1 attack? For a random elliptic curve E/Q, the
number of Fp-points is a random integer (almost) uniformly distributed between p+1−2

√
q

and p + 1 + 2
√
p. Hence heuristically, given an elliptic curve E/Q, for a random prime p,

|Ep(Fp)| = p happens with probability O(1/
√
p), where Ep is the reduction of E at p. Let

πE(x) denote the number of primes p less than x such that |Ep(Fp)| = p for the elliptic
curve E/Q. The above heuristic gives us

πE(x) = O(
x

log x

1√
x

) = O(

√
x

log x
).

In fact, it was conjectured by Lang and Trotter [7] that πE(x) ≈ c
√
x

log x
. Note that c could be

0, for example when E has non-trivial torsions.
This problem has been studied by Serre [13]. Assuming GRH, the upper bound of

x4/5(log x)−1/5 has been proved by Murty etc. [11]. They also showed that the curve tends
to have the number of points far away from the median p+1 as p varies. Hence the number
of RSA integers which can be efficiently factored by our algorithm is rare. However, some
cautions need to be taken when we design RSA system, especially when we generate special
form RSA moduli [8].
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6 Conclusion and open problems

We propose a new special-purpose factorization algorithm, which splits n in polynomial
time, if it has a prime factor of form (3b2+1)/4, (11b2+1)/4, (19b2+1)/4, (43b2+1)/4, (67b2+
1)/4 or (163b2 +1)/4. As in the elliptic curve factorization algorithm, this method relies on
the fact that the order of an elliptic curve group over Fp is uniformly distributed between
p+ 1− 2

√
p and p+ 1 + 2

√
p, hence could be p. If we use the multiplicative group of finite

field, we can not obtain such an algorithm.
From the past experiences, we know the algorithms of factoring integers and solving

the discrete logarithm over finite fields are usually coupled with each other. For example,
when p − 1 is smooth, the discrete logarithm over Fp admits efficient algorithm too. It is
interesting to see whether the discrete logarithm problem on Fp with p of the special forms
has polynomial algorithm or not. It is well-known that the discrete logarithm problem on
E/Fp where |E(Fp)| = p can be efficiently solved.
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