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Abstract

In order to decide on advertisement fees for web servers, Naor and Pinkas introduced
metering schemes secure against coalition of corrupt servers and clients. In their schemes
any server is able to construct a proof to be sent to an audit agency if and only if it has
been visited by at least a certain number of clients. Several researchers have generalized
the idea of Naor and Pinkas: first metering scheme with pricing and dynamic multi-
threshold metering schemes have been proposed; later the solution has been extended to
allow for general access structures and an approach on linear algebra has been introduced.

In this paper we are interested in the efficiency of applying general access structures
and linear algebra techniques to metering schemes. We propose a new model considering
general access structures for clients, corrupted clients and servers. Then we bind the access
structures for clients and corrupted clients into one. We propose a new metering scheme,
which is more efficient w.r.t. communication complexity and memory requirements than
the scheme of Blundo et al.

1 Introduction

A metering scheme is a protocol to measure the interaction between clients and servers in a
network. The time is divided into time frames and the audit agency is interested in counting
the number of visits received by each server in any time frame. Metering schemes are useful
in order to decide the amount of money to be paid to web servers hosting adds, as well as
in applications such as network accounting and electronic coupon management [14]. Franklin
and Malkhi [9] were the first to consider a rigorous approach to the metering problem. Their
solutions only offer “lightweight security”, which cannot be applied if there are strong com-
mercial interests to falsify the metering result. Naor and Pinkas [14], subsequently introduced
metering schemes secure against fraud attempts by servers and clients. In their scheme any
server which has been visited by any set of r or more clients in a time frame, where r is a
fixed threshold, is able to compute a proof, whereas any server receiving visits from less than
r clients has no information about the proof. In this threshold case scenario for both clients

1



and servers, the threshold refers to the maximum number of colluding players (server, clients).
In order to have a more flexible payment system Masucci and Stinson [1, 12] introduced me-
tering scheme with pricing. To be able to measure the number of visits in any granularity
Blundo et al. in [2] introduced dynamic multi-threshold metering schemes which are metering
schemes with associated threshold for any server and for any time frame. In [13], Masucci
and Stinson consider the general access structures for the clients and a threshold scheme for
servers, where the access structure is the family of all subsets of clients enabling a server
to compute its proof. They proved also a lower bound on the communication complexity of
metering schemes realizing such access structures. A linear algebra approach (i.e., applicable
for any general monotone access structure) to metering schemes is presented in [3] by Blundo
et al. More specifically, given any access structure for the clients, they propose a method
to construct a metering scheme realizing it from any linear secret sharing scheme with the
same access structure. Besides, they proved some properties about the relationship between
metering schemes and secret sharing schemes. They also present some new bounds on the
information distributed to clients and servers in a metering scheme. The main difference
between the scheme in [3] and the scheme in [13] is that the second one is not optimal with
respect to the communication complexity.

We will consider only metering schemes that provide information theoretic security. Com-
putationally secure metering scheme based on the Decisional Diffe-Hellman Assumption have
been presented in [14]. Since we want to protect against general adversary structures, we
need to start from general Linear Secret Sharing Schemes (rather than from Shamir’s poly-
nomial scheme, [16]). It is well known that LSSSs are in natural 1 − 1 correspondence with
Monotone Span Program MSP, introduced by Karchmer and Wigderson [11]. MSPs can be
viewed as a linear algebra model for computing a monotone (access) function. Moreover, such
an MSP always exists because MSPs can compute any monotone function. Threshold-based
secret sharing and metering make sense only in environment where one assumes that trust
is “uniformly distributed” over the players (clients and servers): any subset of players of a
certain cardinality is equally likely (or unlikely) to cheat. In many natural scenarios this
assumption is not very realistic; and moreover, in more realistic model no threshold solution
will work. Why do we need to introduce a general access structure on the set of servers? In
the model proposed by Naor and Pinkas the audit agency deals with servers, but in fact the
servers are owned by companies, where each company posses a different number of servers. In
this scenario the uniformly distributed trust on the set of servers is not very realistic either.

In this paper we first distinguish between three types of general access structures: for
clients, corrupted clients and servers. The access structure for clients consists of qualified
and forbidden sets of clients, i.e., sets which allow or disallow the server visited by them in
a given time frame to compute its proof. The corrupted clients access structure gives us a
possible distribution for the corrupted clients. These two access structures are bound into
one access structure in Lemma 3.3. A general access structure is considered for the set of
servers. In the previous papers all authors considered only the threshold case for them. We
propose simpler metering scheme more efficient w.r.t. communication complexity and memory
requirements than the scheme proposed by Blundo et al. [3]. The difference appears in the
public broadcast information to clients and servers, which is in our scheme smaller. As Naor
and Pinkas [14] pointed out it would be nice to detect illegal behavior of clients, i.e., verifying
the shares received from clients. This issue is not considered in the paper, note however that
it is ignored in [1, 2, 3, 12, 13] as well.

The paper is organized as follows: In Sect. 2 we present one notation to describe the
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metering schemes. In Sect. 3 we study the relationship between metering schemes and general
access structures for clients, corrupt clients and servers. In Sect. 4 we first present a linear
secret sharing scheme and a linear algebra approach to generalized access structures. Then
this approach is used to design a metering scheme. Finally, we examine our scheme for
efficiency and correctness.

2 Preliminaries

A secret sharing scheme (SSS) allows to share a secret among several participants, such that
only qualified subset of them can recover the secret pooling together their information. In
perfect SSSs subsets of participants that are not enabled to recover the secret have absolutely
no information about it. Secret sharing has been proposed independently by Shamir [16] and
Blakley [4]. The first secret sharing schemes considered were (r, k)-threshold schemes, consider
a scheme with k participants, in which only groups of more than r participants (r ≤ k) can
reconstruct the secret. Such a scheme is called an (r, k) threshold scheme. Brickell points
out in [5] how the linear algebraic view leads naturally to a wider class of secret sharing
schemes that are not necessarily of threshold type. This have later been generalized to all
possible so-called monotone access structures by Karchmer and Wigderson [11] based on a
linear algebraic computational device called Monotone Span Program.

As usual we call the groups which are allowed to reconstruct the secret qualified, and the
groups who should not be able to obtain any information about the secret forbidden. The
collection of all qualified groups is denoted by Γ, and the collection of all forbidden groups is
denoted by ∆. In fact, Γ is monotone increasing and ∆ is monotone decreasing. The tuple
(Γ,∆) is called an access structure if Γ ∩ ∆ = ∅. If Γ ∪ ∆ = 2P , where P is the set of
participants, then we say that (Γ,∆) is complete and we denote it by Γ. Let F be a finite
field. We will consider a general monotone access structure (Γ,∆), which describes subsets of
participants that are qualified to recover the secret s ∈ F in the set of possible secret values.

For an arbitrary matrix M over F, with m rows labelled by 1, . . . ,m and for an arbitrary
non-empty subset A of {1, . . . ,m}, let MA denote the matrix obtained by keeping only those
rows i with i ∈ A. Consider the set of row-vectors vi1 , . . . , vik and let A = {i1, . . . , ik} be
the set of indices, then we denote by vA the matrix consisting of rows vi1 , . . . , vik . Instead of
〈ε, vi〉 for i ∈ A we will write 〈ε, vA〉.

3 Metering schemes for General Access Structures

Consider the following scenario: there are n clients, k servers and an audit agency A which
is interested in counting the client visits to the servers in τ different time frames. For any
i = 1, . . . , n and j = 1, . . . , k, we denote by Ci the i−th client and by Sj the j−th server.

We consider an access structure (Γ,∆) of qualified and forbidden groups for the set of
clients {C1, . . . , Cn}.

In a metering scheme realizing the client access structure (Γ,∆) any server which has been
visited by at least a qualified subset of clients in Γ in a fixed time frame is able to provide
the audit agency with a proof for the visits it has received.

A second (complete) access structure ΓS can be considered for the set of servers {S1, . . . , Sk}.
We call the set of subsets of servers corrupt if they are not in ΓS . We also denote he set of
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possible subsets of corrupt clients by ∆C , note that ∆C is monotone decreasing. It is obvious
that Γ ∩∆C = ∅.

A corrupt server can be assisted by corrupt clients and other corrupt servers in computing
its proof without receiving visits from qualified subsets. A corrupt client can donate to a
corrupt server all the private information received by the audit agency during the initialization
phase. A corrupt server can donate to another corrupt server the private information received
from clients in previous time frames and in the actual time frame.

Several phases can be defined in the Metering scheme. We will follow the model of [3]:

a) There is an initialization phase in which the audit agency A chooses the access struc-
tures, computes the corresponding matrices, makes them public and distributes some
information to each client Ci through a private channel. For any i = 1, . . . , n we de-
note by v(t)

ϕ(i) the shares that the audit agency A gives to the client Ci for time frames
t = 1, . . . , τ .

b) A regular operation consists of a client visit to a server during a time frame. During
such a visit the client gives to the visited server a piece of information which depends
on the private information, on the identity of the server and on the time frame during
which the client visits the server. For any i = 1, . . . , n; j = 1, . . . , k and t = 1, . . . , τ ,
we denote by c

(t)
ϕ(i),ϕ̃(j) the information that the client Ci sends to the server Sj when

visiting him in time frame t.

c) During the proof computation phase any server Sj which has been visited by at least
a subset of qualified clients in time frame t is able to compute its proof. For any
j = 1, . . . , k and t = 1, . . . , τ we denote by p(t)

ϕ̃(j) the proof computed by the server Sj at
time t when it has been visited by qualified set of clients.

d) During the proof verification phase the audit agency A verifies the proofs received by
servers and decides on the amount of money to be paid to servers. If the proof received
from a server at the end of a time frame is correct, then A pays the server for its services.

Definition 3.1 [3] An (n, k, τ) metering scheme realizing the access structures (Γ,∆), ΓS and
corrupt set of clients ∆C is a protocol to measure the interaction between n clients C1, . . . , Cn

with access structure (Γ,∆) and k servers S1, . . . , Sk with access structure ΓS during τ time
frames in such a way that the following properties are satisfied:

1. For any time frame t any client is able to compute the information needed to visit any
server.

2. For any time frame t any server Sj which has been visited by a qualified subset of clients
G ∈ Γ in time frame t can compute its proof for t.

3. Let B2 be a coalition of corrupt servers, i.e., B2 /∈ ΓS and let B1 be a coalition of
corrupt clients, i.e., B1 ∈ ∆C . Assume that in some time frame t each server in the coalition
has been visited by a subset of forbidden clients B3, i.e., B3 ∈ ∆. Then the servers in the
coalition B2 have no information about their proofs for time frame t, even if they are helped
by the corrupt clients in B1.

In [15] we introduced an operation for the access structure, which generalize the notion of a
Q2(Q3) adversary structure introduced by Hirt and Maurer [10]. We will now expand this
definition.
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Definition 3.2 For the access structure (Γ,∆) and a monotone decreasing set ∆C we define
the operation ∗ as follows: ∆ ∗∆C = {A = A1 ∪A2;A1 ∈ ∆, A2 ∈ ∆C}.

The same operation for monotone structures is defined by Fehr and Maurer in [8], which they
call element-wise union.

In order to build an (n, k, τ) metering scheme realizing the access structures (Γ,∆), ΓS

and corrupt set of clients ∆C , we consider the tuple (Γ,∆ ∗∆C). It is obvious that ∆ ∗∆C

is monotone decreasing.

Lemma 3.3 An (n, k, τ) metering scheme realizing the access structures (Γ,∆), ΓS and
corrupt set of clients ∆C exists if and only if (Γ,∆ ∗ ∆C) is an access structure (i.e.,
Γ ∩∆ ∗∆C = ∅).

In the next section we will present a metering scheme satisfying the conditions of Lemma 3.3.
We will call such schemes (n, k, τ) metering schemes realizing the access structures (Γ,∆∗∆C)
and ΓS .

4 Linear SSS and Metering Schemes

4.1 LSSS and MSP

As mentioned earlier, MSPs are essentially equivalent to LSSSs.

Definition 4.1 [11, 6] The quadruple M = (F,M, ε, ψ) is called a monotone span program,
where F is a finite field, M is a matrix (with m rows and d ≤ m columns) over F, ψ :
{1, . . . ,m} → {1, . . . , n} is a surjective function and ε is a fixed vector, called target vector,
e.g. the column vector (1, 0, ..., 0) ∈ Fd. The size of M is the number m of rows.

Here ψ labels each row with a number from [1, . . . ,m] corresponding to a fixed player, so we
can think of each player as being the “owner” of one or more rows. And for each player we
consider a function ϕ which gives the set of rows owned by the player. In some sense ϕ is
inverse of ψ. It is well known that the number d of columns can be chosen to be smaller than
the number m of rows, without changing the access structure that is computed by an MSP.
An MSP is said to compute an access structure Γ when ε ∈ Im(MT

ϕ(G)) if and only if G is a
member of Γ. It is well known that the vector ε /∈ Im(MT

A ) if and only if there exists z ∈ Fd

such that MAz = 0 and z1 = 1. Now we will consider any access structure, as long as it
admits a linear secret sharing scheme.

4.2 Metering Scheme for General Access Structure

Let M be the matrix obtained from an MSP (Definition 4.1) computing the access structure
(Γ,∆ ∗∆C).

Conjecture: For any generalized complete access structure Γ there exists a “special”
matrix N with the following property:
(i) G /∈ Γ if and only if the rows in Nϕ(G) are linearly independent.
Note that if Γ is a (r, k) threshold access structure with a (k, r)-Vandermonde matrix the
requirement (i) is satisfied. In some cases the matrix N can be derived from the matrix M
by removing the first column in M , but this cannot be used as a general rule.
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For the access structure ΓS we consider such a kind of “special” matrix N as in the
conjecture above. Analogously to the MSP we will denote by ψ̃ the surjective function which
labels each row of N with a corresponding player, and ϕ̃ is the “inverse” of ψ̃.

4.2.1 Initialization:

The audit agency A chooses access structures (Γ,∆∗∆C) and ΓS . Using an MSP these access
structures are connected with matrices M and N . Let M have m rows and d columns and N
have m̃ rows and d̃ columns. These matrices are made public.
Next A chooses τ random d × d̃ matrices R(t). We can consider them as one “big” dτ × d̃
matrix R, which is kept secret.
Hence A gives to each client Ci row vectors v(t)

ϕ(i) = Mϕ(i)R
(t) for t = 1, . . . , τ . These are the

shares of client Ci in time frame t.

4.2.2 Regular Operation:

When a client Ci visits a server Sj during a time frame t, Ci computes the values c(t)ϕ(i),ϕ̃(j) =

Nϕ̃(j)(v
(t)
ϕ(i))

T and sends them to the server Sj .

4.2.3 Proof Computation:

Assume that the server Sj has been visited by a qualified set G ∈ Γ of clients during a time
frame t. Thus, it computes λ s.t. MT

ϕ(G)λ = ε. With λ it computes p(t)
ϕ̃(j) = 〈c(t)ϕ(G),ϕ̃(j), λ

T 〉
which are the desired proofs and sends them to A.

4.2.4 Proof Verification:

When the audit agency A receives these values p(t)
ϕ̃(j) it can easily verify if this is the correct

proof for the server Sj for time t. A calculates the value p̃(t)
ϕ̃(j) = 〈Nϕ(j), (R(t))1〉, (by (R(t))1

we denote the first row of matrix R(t)) and it compares whether p(t)
ϕ̃(j) = p̃

(t)
ϕ̃(j). We will prove

that if the server Sj has been visited by a qualified set G ∈ Γ of clients during a time frame
t the equality holds.

p
(t)
ϕ̃(j) = 〈c(t)ϕ(G),ϕ̃(j), λ

T 〉 = 〈Nϕ̃(j)(v
(t)
ϕ(G))

T , λT 〉

= 〈Nϕ̃(j)(Mϕ(G)R
(t))T , λT 〉 = 〈Nϕ̃(j)(R

(t))TMT
ϕ(G), λ

T 〉

= 〈Nϕ̃(j)(R
(t))T , λTMϕ(G)〉 = 〈Nϕ̃(j)(R

(t))T , εT 〉

= 〈Nϕ̃(j), ε
TR(t)〉 = 〈Nϕ̃(j), (R

(t))1〉

= p̃
(t)
ϕ̃(j) .

4.3 Analysis of the Scheme

It is obvious that Property 1 and Property 2 of Definition 3.1 are satisfied. Now we prove
that Property 3 is satisfied. We consider the worst possible case, in which a subset of clients
D ∈ ∆ ∗∆C helps a coalition of corrupt servers B2 /∈ ΓS in computing their proofs for time
frame τ . The total information known to the coalition of corrupt servers is constituted by
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the maximum information collected in time frames 1, . . . , τ −1. That is, we assume that each
server in the coalition has been visited by all clients C1, . . . , Cn in these time frames plus the
information received in time frame τ .

Since the audit agency A chooses the matrices R(t) randomly and keep them secret the
clients have different shares for different time frames, so the information they give visiting the
server Sj is different. Hence all information collected during previous visits is not consistent
with the current information and the coalition of corrupt servers cannot use it.

Let us consider the value p(t)
ϕ̃(j) = 〈c(t)ϕ(G),ϕ̃(j), λ

T 〉. Assume that the group of clients D ∈
∆ ∗∆C helps Sj to compute his proof. It is easy to prove (see [6, 7] or [15, Theorem 2]) that
from the point of view of the clients in D, the information c

(t)
ϕ(D),ϕ̃(j) can be consistent with

any secret matrix R̃(t). So, the clients in D have no information about the secret matrix R(t)

and hence about the value c(t)ϕ(G),ϕ̃(j) for some G ∈ Γ.

Finally, consider the value p̃
(t)
ϕ̃(j) = 〈Nϕ̃(j), (R(t))1〉. The coalition B2 /∈ Γs can try to

guess (R(t))1 or, if there is a linear dependence between the row-vectors Nϕ̃(j) for j ∈ B2, to

compute p̃(t)
ϕ̃(j) provided that they already know all values p̃(t)

ϕ̃(j1) for j1 ∈ B2 \ {j}. Consider
the second possibility for a server Sj which is visited only by clients D ∈ ∆ ∗ ∆C . We can
prove a stronger requirement in addition to the requirements of Definition 3.1.

Definition 4.2 An (n, k, τ) metering scheme realizing the access structures (Γ,∆), ΓS and
corrupt set of clients ∆C is a protocol to measure the interaction between n clients C1, . . . , Cn

with access structure (Γ,∆) and k servers S1, . . . , Sk with access structure ΓS during τ time
frames in such a way that the following properties are satisfied:

1. - 3. As in Definition 3.1
4. Let B2 be a coalition of corrupt servers, i.e., B2 /∈ ΓS and let B1 be a coalition of

corrupt clients, i.e., B1 ∈ ∆C . Assume that in some time frame t the fixed server in the
coalition (e.g. Sj and j ∈ B2) has been visited by a subset of forbidden clients B3, i.e.,
B3 ∈ ∆. Assume that in the same time frame t each other server in the coalition B2 has
been visited by a subset of qualified clients B4, i.e., B4 ∈ Γ. Then the servers in the coalition
B2 \ {j} are able to compute their proofs for time frame t, but they are unable to “help” the
server Sj with the computation of its proofs, even if they are helped by the corrupt clients in
B1.

Even if all the servers in the corrupted coalition B2, except Sj , have been visited by a qualified
subset of clients B4 during that time frame (i.e., they are able to compute their proofs), Sj

cannot compute its proofs by finding a linear combination of their proofs p(t)
ϕ̃(j1) for j1 ∈

B2 \ {j}. This is true since B2 is not in ΓS and by requirement (i) of the Conjecture there
is no linear combination between the row vectors Nϕ̃(j1) for j1 ∈ B2 \ {j} and Nϕ̃(j). Hence
Property 4 of Definition 4.2 also holds.

4.4 Efficiency of the Scheme

Let |F| = q and denote by dimEi the dimension of the vector space generated by the vectors
Mϕ(i) of client Ci over F, i.e., dimEi = |ϕ(i)|. We denote by E0 the set of secrets and
by dimE0 the dimension of E0. It is well known that the information rate of a LSSS is
ρ = dimE0/(max1≤i≤ndimEi) and this rate is optimal (e.g. ρ = 1) in the threshold case.
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Assume that the matrix M (built by means of an MSP) has a maximum possible information
rate for the given access structure Γ. In order to be able to compare our result with the result
of Blundo et al. in [3] we need to consider ΓS to be a threshold (r, k) access structure. In
this case the matrix N is a (k, r)-Vandermonde matrix (i.e., m̃ = k, d̃ = r and ψ̃, ϕ̃ are
bijections).

In [3] the audit agency broadcasts two types of public information: one is the linear
mapping Mχ that enables the clients in χ ∈ Γ to compute the secret. The second is the linear
mapping Πt

j , i.e., the numbers λt
j,i for j = 1, . . . , k; i = 1, . . . , rτ ; and t = 1, . . . , τ.

The amount of information that a client Ci receives from the audit agency during the
initialization phase (i.e., the shares of the client) is equal to r τ log(q) dimEi, which is the
same as in [3].

The amount of information that a client sends to a server during a visit is equal to
log(q) dimEi, which is again the same as in [3].

In our scheme the public information broadcast by audit agency A given by the matrices
M and N is equal to d log(q)

∑n
i=1 dimEi = m d log(q) and k r log(q), respectively. Note

also that in order to perform their duties the clients need to know only the matrix N , and
the servers need to know only the matrix M .

On the other hand the amount of broadcast information in [3] is the linear mapping Mχ,
which corresponds to our matrix M , and the numbers λt

j,i from the second linear map Πt
j .

Hence the amount of information for the second mapping is τ2 k r log(q). Note also that both
the clients and the servers need to know these numbers λt

j,i.
Therefore our scheme is more efficient w.r.t. the communication complexity compared

to the scheme proposed in [3], since it broadcasts less (k r log(q) v.s. τ2 k r log(q)) public
information to the clients and servers. Another consequences is that the memory storage
required in our scheme is smaller than the scheme of Blundo et al. [3] scheme.

5 Conclusions and Open Problem

Earlier works on this topic considered general access structures for clients and threshold
access structure for servers. In this paper we propose a model for metering schemes with fully
general access structure – for clients, corrupted clients and servers. The scheme is simpler,
with a more efficient communication complexity and reduced memory requirements compared
to earlier works. Moreover, we prove that it satisfies stronger security requirements.

There is still an open problem: can we prove the existence of a “special” matrix N for any
access structure? It is well known [7] that any non-zero vector can be used as a target vector
in the MSP. So, the question is whether we can build a matrix with a zero target vector. We
can restate the conjecture as follows:
Conjecture′: A “special” matrix N is said to compute a generalized access structure Γ when
Ker(NT

ϕ(G)) 6= ∅ if and only if G is a member of Γ.
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Appendix

Toy Example

In order to give to the reader a better idea of the protocol, we will consider the following
example: let F = GF (2) and let consider the access structures Γ− = {123, 145, 245, 235, 135},
(∆∗∆c)+ = {124, 125, 134, 234, 345} and Γ−S = {12, 23, 34}, ∆+

S = {14, 13, 24}. Let the public
matrices M and N and the secret random matrix R (i.e., τ = t = 1) be as follows:

M =



0 0 0 1 1
0 0 1 0 1
0 0 0 0 1
1 0 1 1 1
1 1 1 1 1
0 1 0 0 0
1 1 0 1 1
0 0 1 1 0


N =



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 R =


a1 b1 c1
a2 b2 c2
a3 b3 c3
a4 b4 c4
a5 b5 c5



The agency gives to each client the corresponding row vectors:

vϕ(1) =
(
a4 + a5|b4 + b5|c4 + c5

)
, vϕ(2) =

(
a3 + a5

a5

∣∣∣∣ b3 + b5
b5

∣∣∣∣ c3 + c5
c5

)
,

vϕ(3) =
(

a1 + a3 + a4 + a5

a1 + a2 + a3 + a4 + a5

∣∣∣∣ b1 + b3 + b4 + b5
b1 + b2 + b3 + b4 + b5

∣∣∣∣ c1 + c3 + c4 + c5
c1 + c2 + c3 + c4 + c5

)
,

vϕ(4) =
(
a2|b2|c2

)
,

vϕ(5) =
(

a1 + a2 + a4 + a5

a3 + a4

∣∣∣∣ b1 + b2 + b4 + b5
b3 + b4

∣∣∣∣ c1 + c2 + c4 + c5
c3 + c4

)
Let the set of qualified clients C1, C4, C5 visits the server S3 and the set of forbidden clients

C1, C2, C4 visits the servers S1, S2. The server S1 receives the following values from the clients:

cϕ(1),ϕ̃(1) = (a4 + a5), cϕ(2),ϕ̃(1) =
(
a3 + a5

a5

)
, cϕ(4),ϕ̃(1) = (a2).

Respectively, for the server S2 the values are as follows:

cϕ(1),ϕ̃(2) = (a4 + a5|b4 + b5), cϕ(2),ϕ̃(2) =
(

a3 + a5

a5

∣∣∣∣ b3 + b5
b5

)
,

cϕ(4),ϕ̃(2) = (a2|b2).
And for the server S3:

cϕ(1),ϕ̃(3) = (b4 + b5|c4 + c5), cϕ(4),ϕ̃(3) = (b2|c2),

cϕ(5),ϕ̃(3) =
(

b1 + b2 + b4 + b5
b3 + b4

∣∣∣∣ c1 + c2 + c4 + c5
c3 + c4

)
.

Since the server S3 is visited by the set of qualified clients, it computes λ = (1, 1, 1, 0)

such that MT
ϕ(1,4,5)λ = ε and calculates his proof p3 =

(
b1
c1

)
.

Finally, the audit agency verifies that p̃3 =
(
b1
c1

)
= p3. Note that if S1 and S2 are

corrupted servers they cannot (even together) calculate their proofs p̃1 = (a1), p̃2 =
(
a1

b1

)
,

respectively. Even more, if one of the corrupted servers is S3, which is visited by the set of
qualified clients, the other bad server (e.g. S1) is not able to compute its proof (by Property 4
of Definition 4.2).
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