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Abstract. The security of many cryptographic schemes has been based
on special instances of the Learning with Errors (LWE) problem, e.g.,
Ring-LWE, LWE with binary secret, or LWE with ternary error. How-
ever, recent results show that some subclasses are weaker than expected.
In this work we show that LWE with binary error, introduced by Mic-
ciancio and Peikert, is one such subclass. We achieve this by applying
the Howgrave-Graham attack on NTRU, which is a combination of lat-
tice techniques and a Meet-in-the-Middle approach, to this setting. We
show that the attack outperforms all other currently existing algorithms
for several natural parameter sets. For instance, for the parameter set
n = 256, m = 512, q = 256, this attack on LWE with binary error only
requires 2103 operations, while the previously best attack requires 2117

operations. We additionally present a complete and improved analysis
of the attack, using analytic techniques. Finally, based on the attack,
we give concrete hardness estimations that can be used to select secure
parameters for schemes based on LWE with binary error.

Keywords: Learning with Errors, Lattice-based Cryptography, Cryptanalysis,
NTRU, Hybrid Attack

1 Introduction

The Learning with Errors problem (LWE) is one of the most important problems
in lattice-based cryptography. A huge variety of schemes, ranging from basic
primitives like signature [18] and encryption schemes [32] to highly advanced
schemes like group signatures [30] and fully homomorphic encryption [12], base
their security on the LWE assumption. Understanding the concrete hardness of
LWE is therefore important for selecting parameters.

Many cryptographic schemes are based on the hardness of special LWE in-
stances like Ring-LWE [34], or LWE with ternary error [22]. Understanding the
hardness of subclasses of the LWE problem and identifying those that are easy to



solve is therefore an important task. In fact, several recent results [19,20,14,29]
show that some subclasses are easier than expected.

We show that the subclass LWE with binary error, which has been consid-
ered before in several papers [35,1], fits into this category. To show that LWE
with binary error is considerably easier than expected, we modify the hybrid
lattice-reduction and meet-in-the-middle attack by Howgrave-Graham [25] (ref-
ered to as hybrid attack in the following), apply it to this setting, and analyze its
complexity. In order to compare our approach to existing ones, we apply known
attacks on LWE to the binary error setting and analyze their complexities in
this case. Our comparison shows that the hybrid attack outperforms existing
methods such as the enumeration attack [32,33], or the embedding approach [4]
for several natural parameter sets. Figure 1 illustrates our improvement, by com-
paring the runtime of the best previously known attack with the hybrid attack,
where m = 2n samples from an LWE distribution with binary error are given
and n is the dimension of the secret vector. For example, in the case of n = 256
and q = 256, the hardness of the problem drops from 117 to 103 bits, which
is quite a noticeable improvement. A detailed comparison between the hybrid
attack and previous approaches is given in Table 1 in Section 4.
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Fig. 1. Hardness of LWE instances with number of samples m = 2n and modulus
q = 256 before and after this work

The hybrid attack can also be seen as an improvement of an idea sketched by
Bai and Galbraith [9]. However, Bai and Galbraith did not provide an analysis
of their suggestion, and the analysis of Howgrave-Graham is partly based on
experiments. A theoretical analysis of the hybrid attack that is not based on
experimental results has been presented by Hirschhorn et al. in [24]. However,
their analysis requires an additional assumption.

In this work we present a complete and improved analysis based on the same
assumptions used in [25] without the additional assumption of [24], that does not
require experimental support. For this reason, we introduce new analytic tech-



niques. Our new analysis can also be applied to the Howgrave-Graham attack,
as well as to the attack mentioned by Bai and Galbraith (see [9]). In addition,
we show how to use our techniques to analyze the decoding attack on LWE with
binary error.

Related work. A number of recent works have highlighted the importance of
considering the hardness of variants of LWE. For example, certain choices of
rings lead to weak instances of the Ring-LWE problem [19,20,14]. Additionally,
Laine and Lauter [29] provide a polynomial time attack for LWE instances with
an exponentially large modulus q and a sufficiently narrow Gaussian error. The
existence of such weak instances shows the necessity of studying the hardness of
special instances of the LWE problem separately.

The hardness of LWE with binary error has been considered in some de-
tail. So far, there are known attacks that require access to superlinearly many
samples (i.e., m > O (n)), and hardness results when the crypanalyst is given a
sublinear number of additional samples (i.e., m = n + O (n/ log(n))), where n
is the dimension of the secret vector. More precisely, the problem can be solved
in polynomial time using the algorithm of Arora and Ge [6], when the number
of samples is m = O

(
n2) (see, e.g., [1]). Furthermore, Albrecht et al. [1] showed

that LWE with binary error can be solved in subexponential time using an im-
proved version of the Arora-Ge attack, if the attacker has access to a quasi-linear
number of samples, e.g., m = O (n log logn). On the other hand, Micciancio and
Peikert [35] proved that LWE with binary error reduces to worst-case lattice
problems when the number of samples is restricted to n + O (n/ log(n)). We
close the margin between these hardness results on the one side and the weak-
ness results on the other side by presenting an attack that runs with only n
additional samples.

The idea of Bai and Galbraith which we build upon is to guess the first r
components of the secret vector and apply a lattice attack on the remaining
problem [9]. As noted in [5], this strategy enables the transformation of any
algorithm for solving LWE into another one whose complexity is bounded by the
cost of exhaustive search. Howgrave-Graham’s algorithm [25], which we apply
here, involves a Meet-in-the-Middle component to speed up this guessing: this
was not considered in either of [9,5]. The existence of a Meet-in-the-Middle
approach for solving LWE (without combining with any another algorithm) was
mentioned in [9] and such an algorithm was presented in [5]. In Section 4 we
show that it is much more efficient to combine a Meet-in-the-Middle approach
with a decoding attack than to solve LWE with binary error entirely by a Meet-
in-the-Middle approach.

Structure. In Section 2 we give some notation and required preliminaries. In
Section 3 we describe how to apply the hybrid attack to LWE with binary error
and analyze its complexity. In Section 4 we apply other possible attacks on LWE
to the binary error case, analyze their complexities, and compare the results to
the hybrid attack.



2 Notation and preliminaries

Notation. In this work vectors are denoted in bold lowercase letters, e.g., a,
and matrices in bold uppercase letters, e.g., A. For a vector v ∈ Rn we write
v mod q for its unique representative modulo q in [−b q2c,

q
2 )n. Logarithms are

base two unless stated otherwise, and ln(x) denotes the natural logarithm of x.

Learning with Errors. The Learning with Errors (LWE) problem, introduced by
Regev [41], is a computational problem, whose presumed hardness is the basis
for several cryptographic constructions, e.g., [41,39,40]. In this work, we consider
the variant LWE with binary error.

Problem Statement 1 (LWE with binary error) Let n, q be positive inte-
gers, U be the uniform distribution on {0, 1} and s $← Un be a secret vec-
tor in {0, 1}n. We denote by Ls,U the probability distribution on Znq × Zq ob-
tained by choosing a ∈ Znq uniformly at random, choosing e $← U and returning
(a, 〈a, s〉+ e) ∈ Znq × Zq.
LWE with binary error is the problem of recovering s fromm samples (ai, 〈ai, si〉+
ei) ∈ Znq × Zq sampled according to Ls,U , with i ∈ {1, . . . ,m}.

Note that Regev defined LWE with a secret vector s chosen uniformly at random
from the whole of Znq . However, it is well-known that LWE with arbitrarily
distributed secret can be transformed to LWE with secret distributed according
to the error distribution. Consequently, most cryptographic constructions are
based on LWE where secret and error are identically distributed, and we focus
on this case in this work.

Lattices and bases. A lattice is a discrete additive subgroup of Rm. A set of
linearly independent vectors B = {b1, ...,bn} ⊂ Rm is called a basis of a lattice
Λ, if Λ = Λ(B), where

Λ(B) = {x ∈ Rm | x =
m∑
i=1

αibi for αi ∈ Z}.

The dimension of a lattice Λ is defined as the cardinality of some (equivalently
any) basis of Λ. For the rest of this work we restrict our studies to lattices in Rm
whose dimension is maximal, e.g., m, which are called full-ranked lattices. The
fundamental parallelepiped of a lattice basis B = {b1, ...,bm} ⊂ Rm is given by

P(B) = {x ∈ Rm | x =
n∑
i=1

αibi for − 1/2 ≤ αi < 1/2}.

The determinant of a lattice Λ(B) for a basis B is defined as the m dimen-
sional volume of its fundamental parallelepiped. Note that the determinant of
the lattice is independent of the choice of the basis.



Every lattice of dimension m ≥ 2 has infinitely many different bases. A
measure for the quality of a basis is provided by the Hermite delta. A lattice
basis B = {b1, ...,bm} has Hermite delta δ if ‖b1‖ = δm det(Λ)1/m.

Differing estimates exist in the literature for the number of operations of a
basis reduction necessary to achieve a certain Hermite delta δ (see for example
[32,15,33,5,37]). Throughout this work, whenever an estimate for the runtime of
a basis reduction algorithm to achieve a given Hermite delta δ is required, we
will use the estimate given by Lindner and Peikert [32]. This is that the number
of operations needed to achieve a certain Hermite delta δ is around

opsBKZ(δ) = 21.8/ log2(δ)−110 · 2.3 · 109. (1)

A lattice Λ satisfying q · Zm ⊂ Λ ⊂ Rm is a q-ary lattice. For a matrix
A ∈ Zm×nq , we define the q-ary lattice

Λq(A) := {v ∈ Zm | ∃w ∈ Zn : Aw = v mod q}.

With high probability, we have det(Λq(A)) = qm−n.
The closest vector problem is the problem of recovering the lattice vector clos-

est to a given target vector, given also a basis of the lattice. One can consider
a relaxation, namely a close vector problem, where the inputs are the same (a
basis and a target vector), and the task is to recover a lattice vector which is suf-
ficiently close to the target. We refer to close vector problem as CVP throughout
this work.

Babai’s nearest plane. The hybrid attack uses Babai’s nearest plane algorithm [7]
(denoted by NP in the following) as subroutine. It gets a lattice basis B ⊂ Zm
and a target vector t ∈ Rm as input and outputs a vector e ∈ Rm such that
t − e ∈ Λ(B), which we denote by NPB(t) = e. If the used lattice basis is
clear from the context, we omit it in the notation and simply write NP(t). A
detailed explanation of nearest plane can be found in Babai’s original work [7]
and Lindner and Peikert’s follow up work [32]. The output of nearest plane plays
an important role in the analysis of the hybrid attack and can be understood
without knowing details about the algorithm itself. It depends on the Gram-
Schmidt basis of the input basis B, which is defined as B = {b1, . . . ,bn} with

bi = bi −
i−1∑
j=1

〈bj ,bi〉
〈bj ,bj〉

bj ,

where b1 = b1. We will use the following result from [8].
Lemma 1. For a lattice basis B with Gram-Schmidt basis B and a target vector
t as input, the nearest plane algorithm returns the unique vector e ∈ P(B) that
satisfies t− e ∈ Λ(B).

Lemma 1 shows that analyzing the output of the nearest plane algorithm
requires to estimate the lengths of the basis vectors of the corresponding Gram-
Schmidt basis. The established way to do this is via the the following heuristic
(see Lindner and Peikert [32] for more details).



Heuristic 1 (Geometric Series Assumption) Let {b1 . . .bm} ⊂ Zm be a
reduced basis with Hermite delta δ of an m-dimensional lattice with determinant
D. Also let bi denote the basis vectors of the corresponding Gram-Schmidt basis.
Then the length of bi is approximated by∥∥bi

∥∥ ≈ δ−2(i−1)+mD
1
m .

3 The attack

In this section we present and analyze the hybrid attack on LWE with binary
error. The attack is described in Algorithm 1 of Section 3.1. In Theorem 1 of
Section 3.2 we analyze the expected runtime of the hybrid attack. Section 3.3
shows how to optimize the attack parameters and perform a trade-off between
precomputation and the actual attack in order to minimize the runtime of the
attack.

3.1 The hybrid attack

In the following we describe the hybrid attack on LWE with binary error. The
attack is presented in Algorithm 1.

Let m,n, q ∈ N and let

(A,b = As̃ + e mod q) (2)

with A ∈ Zm×nq ,b ∈ Zmq , s̃ ∈ {0, 1}n and e ∈ {0, 1}m be an LWE instance with
binary error e and binary secret s̃. In order to obtain a smaller error vector we
can subtract the vector (1/2) · 1 consisting of all 1/2 entries from Equation (2).
This yields a new LWE instance (A,b′ = As̃+e′ mod q), where b′ = b−(1/2)·1
and e′ = e− (1/2) · 1. The new error vector e′ now has norm

√
m/4 instead of

the expected norm
√
m/2 of the original error vector e. For r ∈ {1, . . . , n− 1},

we can split the secret s̃ =
(

v
s

)
and the matrix A = (A1|A2) into two parts

and rewrite this LWE instance as

b′ = (A1|A2)
(

v
s

)
+ e′ = A1v + A2s + e′ mod q, (3)

where v ∈ {0, 1}r, s ∈ {0, 1}n−r,A1 ∈ Zm×rq ,A2 ∈ Zm×(n−r)
q ,b′ = b−(1/2)·1 ∈

Qm, and e′ = e− (1/2) · 1 ∈ {−1/2, 1/2}m.
The main idea of the attack is to guess v and solve the remaining LWE

instance (A2, b̃ = b′ −A1v = A2s + e′ mod q), which has binary secret s and
error e′ ∈ {−1/2, 1/2}m. The new LWE instance obtained in this way turns out
to be considerably easier to solve, since the determinant det(Λq(A2)) = qm−n+r

of the new lattice is significantly bigger than the determinant det(Λq(A)) =
qm−n of the original lattice (see Section 6.1 of [9]). The newly obtained LWE
instance is solved by solving a close vector problem in the lattice Λq(A2). In



Algorithm 1: The Hybrid Attack
Input : q, r ∈ Z

A = (A1|A2), where A1 ∈ Zm×r
q ,A2 ∈ Zm×(n−r)

q

b ∈ Zm
q

B, a lattice basis of Λq(A2)
1 calculate c = br/4e;
2 calculate b′ = b− (1/2) · 1;
3 while true do
4 guess a binary vector v1 ∈ {0, 1}r with c ones ;
5 calculate x1 = −NPB(−A1v1) ∈ Rm ;
6 calculate x2 = NPB(b′ −A1v1) ∈ Rm ;
7 store v1 in all the boxes addressed by A(r)

x1 ∪ A
(r)
x2 ;

8 for all v2 6= v1 in all the boxes addressed by A(r)
x1 ∪ A

(r)
x2 do

9 Set v = v1 + v2 and calculate x = (1/2) · 1 + NPB(b′ −A1v) ∈ Rm;
10 if x ∈ {0, 1}m and ∃s̃ ∈ {0, 1}n : b = As̃ + x mod q then
11 return x;

more detail, b̃ = A2s + qw + e′ for some vector w ∈ Zm is close to the lattice
vector A2s + qw ∈ Λq(A2) since e′ is small. Hence one can hope to find e′
by running the nearest plane algorithm in combination with a sufficient basis
reduction as a precomputation (see [32]).

The guessing of v is sped up by a Meet-in-the-Middle approach, i.e., guessing
binary vectors v1 ∈ {0, 1}r and v2 ∈ {0, 1}r such that v = v1 + v2. In order
to recognize matching guesses v1 and v2 that sum up to v, one searches for
collisions in (hash) boxes. The addresses of these boxes are determined in the
following way.

Definition 1. Let m ∈ N. For a vector x ∈ Rm the set A(m)
x ⊂ {0, 1}m is

defined as

A(m)
x =

{
z ∈ {0, 1}m

∣∣∣∣ (z)i = 1 for all i ∈ {1, . . . ,m} with (x)i > −1/2, and
(z)i = 0 for all i ∈ {1, . . . ,m} with (x)i < −1/2

}
.

Intuitively, for x2 obtained during Algorithm 1, the set A(m)
x2 captures all

the possible sign vectors of x2 added up with a vector in {−1/2, 1/2}m (where
1 represents a non-negative and 0 a negative sign). For x1 obtained during Al-
gorithm 1, the set A(m)

x1 consists only of the sign vector of x1. This is due to
the fact that x2 ∈ Zm + {1/2}m, whereas x1 ∈ Zm. This leads to the desired
collisions, as can be seen in the upcoming Lemma 3.

3.2 Runtime analysis

In this section we analyze the runtime and success probability of the attack
presented in Algorithm 1. We start by presenting our main result.



Theorem 1. Let n,m, q, c ∈ N, and 1 ≤ δ ∈ R be fixed. Consider the following
input distribution of (q, r,A,b,B) for Algorithm 1. The modulus q and the attack
parameter r = 4c are fixed, A = (A1|A2), where A1

$← Zm×rq , A2
$← Zm×(n−r)

q ,

b = A
(

v
s

)
+ e mod q, where v $← {0, 1}r, s $← {0, 1}n−r, e $← {0, 1}m, and

B is some lattice basis of Λq(A2) with Hermite delta δ. Let all notations be as in
the above description of the input distribution. Assume that the approximations
given in Heuristic 2, Heuristic 3 and Heuristic 5 are in fact equations.Then,
if Algorithm 1 terminates, it finds a valid binary error vector of the LWE with
binary error instance (A,b). The probability that Algorithm 1 terminates is

p0 = 2−r
(
r
2c

) m∏
i=1

(
1− 2

B(m−1
2 , 1

2 )

∫ max(−ri,−1)

−1
(1− t2)

m−3
2 dt

)
,

where B(·, ·) denotes the Euler beta function (see [38]) and

ri = δ−2(i−1)+mq
m−n+r

m

2
√
m/4

.

In case that Algorithm 1 terminates, the expected number of operations is

216
(
r
c

)(
p

(
2c
c

))−1/2
,

where

p =
m∏
i=1

(
1− 1

riB(m−1
2 , 1

2 )
J(ri,m)

)
,

and

J(ri,m) =


∫ ri−1
−ri−1

∫ z+ri

−1 (1− y2) m−3
2 dydz

+
∫ −ri

ri−1
∫ z+ri

z−ri
(1− y2) m−3

2 dydz for ri < 1
2∫ −ri

−ri−1
∫ z+ri

−1 (1− y2) m−3
2 dydz for ri ≥ 1

2 ,

Remark 1 Algorithm 1 gets some basis B as input. This basis has a certain
quality, given by the Hermite delta δ. In practice, we can improve the attack
by providing a basis with better, i.e., smaller, Hermite delta. We achieve this
by running a basis reduction (e.g., BKZ) on B in a precomputation step. More
details about the time necessary to achieve a certain Hermite delta and the trade-
off between the runtime of the precomputation and the hybrid attack is given in
Section 3.3.

We postpone the proof of Theorem 1 to the end of this subsection, since
we first need to develop some necessary tools. We start by giving the following
definition, which is crucial to our analysis as the notion will be used frequently
throughout this section.



Definition 2. Let m ∈ N. A vector x ∈ Zm is called y-admissible for some
vector y ∈ Zm if NP(x) = NP(x− y) + y.

Intuitively, x being y-admissible means that running the nearest plane algo-
rithm on x and running it on x−y yields the same lattice vector, since then we
have x−NP(x) = (x− y)−NP(x− y).

We provide the following useful result about Definition 2.

Lemma 2. Let t1 ∈ Rm, t2 ∈ Rm be two arbitrary target vectors. Then the
following are equivalent.

1. NP(t1) + NP(t2) = NP(t1 + t2).
2. t1 is NP(t1 + t2)-admissible.
3. t2 is NP(t1 + t2)-admissible.

Proof: Let t = t1 + t2 and y = NP(t). By symmetry it suffices to show

NP(t1) + NP(t2) = y ⇔ NP(t1) = NP(t1 − y) + y.

By definition, t − y is a lattice vector and therefore NP(x − (t − y)) = NP(x)
for all x ∈ Rm. This leads to

NP(t1 − y) = NP(t1 − y− (t− y)) = NP(t1 − t) = NP(−t2) = −NP(t2).

Using this, one direction of the equivalence follows from

NP(t1) + NP(t2) = NP(t1 − y) + y + NP(t2) = −NP(t2) + y + NP(t2) = y,

and the other from

NP(t1) = y−NP(t2) = y + NP(t1 − y).

�
As we will see in our analysis, the expected runtime heavily depends on the

following probability. Let all notations be as in Theorem 1 and e′ = e− (1/2) ·1.
For

W = {w ∈ {0, 1}r : exactly c entries of w are 1} (4)
we define

p :=
{

Pr
v1←W

[−A1v1is e′-admissible|v− v1 ∈W ] if Pr
v1←W

[v− v1 ∈W ] > 0

0 else.
(5)

Note that the analysis of the attack on the NTRU encryption proposed by
Howgrave-Graham [25] also requires to calculate the probability p. In the original
work, this is done experimentally. Replacing this probability estimation with
the analytic methodology presented in the following removes the dependency on
experimental support in the analysis of the hybrid attack. A first mathematical
calculation of the probability p has already been presented by Hirschhorn et al.
in [24]. However, their analysis requires an additional assumption that we no
longer need.



Success probability

In this subsection we determine the probability that Algorithm 1 terminates.
We start by giving a sufficient condition for this event.

Lemma 3. Let all notations be as in Theorem 1 and let b′ = b − (1/2) · 1
and e′ = e − (1/2) · 1. Assume that v1 and v2 are guessed in separate loops of
Algorithm 1 and satisfy v1 + v2 = v. Also let t1 = −A1v1 and t2 = b′ −A1v2
and assume NP(t1) + NP(t2) = NP(t1 + t2) = e′ holds. Then v1 and v2 collide
in at least one box chosen during Algorithm 1 and the algorithm outputs the error
vector e of the given LWE instance.

Proof: According to the notation used in Algorithm 1, let x1 = −NP(t1) cor-
respond to v1 and x2 = NP(t2) correspond to v2. By assumption we have x1 =
x2−e′. Using the definition it is easy to verify that x1 and x2 share at least one
common address, since e′ ∈ {−1/2, 1/2}m. Therefore v1 and v2 collide in at least
one box. Again by assumption, we obtain x = NP(b′−A1v) = NP(t1 +t2) = e′.
Hence the algorithm outputs the error vector e. �

In the following lemma we give a lower bound on the probability that Algo-
rithm 1 terminates in case NP(b′−A1v) = e′. This condition is necessary for the
algorithm to terminate. We then determine the probability that this condition
is fulfilled and combine both probabilities to the overall success probability.

Lemma 4. Let all notations be as in Theorem 1 and let b′ = b− (1/2) · 1 and
e′ = e − (1/2) · 1. Assume that if v has exactly 2c one-entries, then p > 0,
where p is as defined in Equation (5). If NP(b′ −A1v) = e′, then Algorithm 1
terminates with probability at least

p̃0 = 2−r
(
r
2c

)
.

Proof: We show that Algorithm 1 terminates if v consists of exactly 2c one-
entries. The probability of this happening is exactly p̃0, since there are 2r binary

vectors of length r, and
(
r
2c

)
of them have exactly 2c one-entries. Assume that v

consists of exactly 2c one-entries. The claim follows directly from Lemma 2 and
Lemma 3. Since p > 0 there exist binary vectors v1,v2 ∈ {0, 1}r, each containing
exactly c one-entries, such that v1 + v2 = v and −A1v1 is e′-admissible. These
vectors will eventually be guessed during Algorithm 1 if it does not terminate
before. By Lemma 2 they satisfy

NP(−A1v1) + NP(b′ −A1v2) = NP(b′ −A1v) = e′.

Lemmas 3 now guarantees that Algorithm 1 then outputs the error vector e. �
It remains to calculate the probability that in fact it holds that NP(b′ −

A1v) = e′, which is equivalent to e′ ∈ P(B). The probability that this is the case
is calculated later, see Equation 7. Using Equation 7 and assuming independence
we obtain the following estimate.



Heuristic 2 Let all notations be as in Theorem 1. The probability that Algo-
rithm 1 terminates is approximately

p0 ≈ 2−r
(
r
2c

) m∏
i=1

(
1− 2

B(m−1
2 , 1

2 )

∫ max(−ri,−1)

−1
(1− t2)

m−3
2 dt

)
.

Estimating the number of loops
The next step is to estimate the number of loops until the attack terminates.
Heuristic 3 Let all notations be as in Theorem 1 and let b′ = b− (1/2) ·1 and
e′ = e−(1/2) ·1. Assume that NP(b′−A1v) = e′, and that v consists of exactly
2c one-entries. Then the expected number of loops of Algorithm 1 is

L ≈
(
r
c

)(
p

(
2c
c

))−1/2
,

and the probability p, as given in Equation (5), is

p ≈
m∏
i=1

(
1− 1

riB(m−1
2 , 1

2 )
J(ri,m)

)
,

with B(·, ·), J(·, ·), and ri defined as in Theorem 1.
In the following, we justify the heuristic. Assume that v consists of exactly

2c one-entries. In addition to W (see Equation (4)), define the set

V = {v1 ∈W : v− v1 ∈W and −A1v1 is e′-admissible}.

Note thatW is the set from which Algorithm 1 samples the vectors v1. Lemma 3
shows that the attack succeeds if two vectors v1,v2 ∈ V satisfying v1 + v2 = v
are sampled in different loops of Algorithm 1. Since otherwise the probability
of success is close to zero, for simplicity we assume that the attack is only
successful in this case. Therefore we need to estimate the necessary number of
loops in Algorithm 1 until some v1,v2 ∈ V with v1 + v2 = v are found. Note
that by Lemma 2 if v1 ∈ V , then also v2 = v− v1 ∈ V .

We start by calculating the probability that a vector sampled during Algo-
rithm 1 lies in V . By definition of p, this probability is given by

Pr
v1

$←W
[v1 ∈ V ] = p1p, where p1 := Pr

v1
$←W

[v− v1 ∈W ].

Therefore we expect to sample a vector v1 ∈ V every 1
p1p

loops in Algorithm 1.
The above equation also implies p1p = |V |

|W | , which gives us

|V | = p1p|W | = p1p

(
r
c

)
.

The probability p1 is given by p1 =
(

2c
c

)
/

(
r
c

)
as can be seen in the following

lemma.



Lemma 5. Let all notations be as in Theorem 1. Let v ∈ {0, 1}r be binary with
exactly 2c one-entries and W be defined as in Equation (4). Then

p1 := Pr
v1

$←W
[v− v1 ∈W ] =

(
2c
c

)
/

(
r
c

)
.

Proof: There are exactly
(
r
c

)
binary vectors of length r containing exactly c

ones. For such a vector v1, the vector v2 = v − v1 is binary and has exactly c
one entries if and only if for all i ∈ {1, . . . , r} satisfying (v1)i = 1, we also have
(v)i = 1. In other terms, the index set of one-entries of v1 has to be a subset of

the index set of one-entries of v, and there are exactly
(

2c
c

)
such subsets. �

Therefore by the birthday paradox, the expected number of loops in Algorithm 1
until some v1,v2 ∈ V with v1 + v2 = v are found can be estimated by

L ≈ 1
p1p

√
|V | =

√(
r
c

)
√
p1p

=
(
r
c

)(
p

(
2c
c

))−1/2
.

It remains to approximate the probability p which we do in the following.
Let v1 ∈ {0, 1}r and B be some basis of Λq(A2). By Lemma 1 there exist
unique u1,u2 ∈ Λq(A2) such that NPB(−A1v1) = −A1v1 − u1 ∈ P(B) and
NPB(−A1v1 − e′) + e′ = −A1v1 − u2 ∈ e′ + P(B). Without loss of generality,
in the following we assume u1 = 0, or equivalently −A1v1 ∈ P(B). Now −A1v1
is e′-admissible if and only if u2 = u1 = 0, which is equivalent to e′ + A1v1 ∈
P(B). Therefore p is equal to the probability that e′ + A1v1 ∈ P(B), which we
determine in the following.

There exists some orthonormal transformation that aligns P(B) along the
standard axes of Rm. By applying this transformation, we may therefore assume
that P(B) is aligned along the standard axes of Rm and that in consequence
e′ is a uniformly random vector of length

√
m/4. Because A1 is uniformly ran-

dom in Zm×rq we may further assume that A1v1 is uniformly random in P(B),
since without loss of generality we assume A1v1 ∈ P(B). This gives rise to the
following heuristic.

Heuristic 4 The probability p as defined in Equation 5 (with respect to a reduced
basis with Hermite delta δ) is

p ≈ Pr
t $←R, e′ $←Sm(

√
m/4)

[t + e′ ∈ R],

where
Sm(

√
m/4) = {x ∈ Rm | ‖x‖ =

√
m/4}

is the surface of a sphere with radius
√
m/4 centered around the origin and

R = {x ∈ Rm | ∀i ∈ {1, . . . ,m} : −Ri/2 ≤ xi < Ri/2}



is the search rectangle with edge lengths

Ri = δ−2(i−1)+mq
m−n+r

m .

In the heuristic, the edge lengths are implied by the Geometric Series Assump-
tion.

We continue calculating the approximation of p given in Heuristic 4. Let R
and Ri be as defined in Heuristic 4. We can rewrite the approximation given in
Heuristic 4 as

p ≈ Pr
ti

$←[−Ri/2,Ri/2],e′ $←Sm(
√
m/4)

[∀i ∈ {1, . . . ,m} : ti + e′i ∈ [−Ri/2, Ri/2]].

Rescaling everything by a factor of 1/
√
m/4 leads to

p ≈ Pr
ti

$←[−ri,ri],e′ $←Sm(1)
[∀i ∈ {1, . . . ,m} : ti + e′i ∈ [−ri, ri]],

where

ri = Ri

2
√
m/4

= δ−2(i−1)+mq
m−n+r

m

2
√
m/4

. (6)

Unfortunately, the distributions of the coordinates of e are not indepen-
dent, which makes calculating p extremely complicated. In practice, however,
the probability that ei ∈ [−Ri/2, Ri/2] is big for all but the last few indices
i. This is due to the fact that by the Geometric Series Assumption typically
only the last values Ri are small. Consequently, we expect the dependence of
the remaining entries not to be strong. This assumption was already established
by Howgrave-Graham [25] and appears to hold for all values of Ri appearing in
practice.

It is therefore reasonable to assume that

p ≈
m∏
i=1

Pr
ti

$←[−ri,ri],e′
i

$←Dm

[ti + e′i ∈ [−ri, ri]],

wereDm denotes the distribution on the interval [−1, 1] obtained by the following
experiment: sample a vector w uniformly at random on the unit sphere and then
output the first (equivalently, any arbitrary but fixed) coordinate of w.

Next we explore the density function of Dm. The probability that e′i ≤ x for
some −1 < x < 0, where e′i

$← Dm, is given by the ratio of the surface area of
a hyperspherical cap of the unit sphere in Rm with height h = 1 + x and the
surface area of the unit sphere. This is illustrated in Figure 2 for m = 2. The
surface area of a hyperspherical cap of the unit sphere in Rm with height h < 1
is given by (see [31])

Am(h) = 1
2AmI2h−h2

(
m− 1

2 ,
1
2

)
,



Fig. 2. Two-dimensional hyperspherical cap

where Am = 2πm/2/Γ (m/2) is the surface area of the unit sphere and

Ix(a, b) =
∫ x

0 ta−1(1− t)b−1dt

B(a, b)

is the regularized incomplete beta function (see [38]) and B(a, b) is the Euler
beta function.

Consequently, for −1 < x < 0, we have

Pr
e′

i

$←Dm

[e′i ≤ x] = Am(1 + x)
Am

= 1
2I2(1+x)−(1+x)2

(
m− 1

2 ,
1
2

)
= 1

2I1−x2

(
m− 1

2 ,
1
2

)
= 1

2B(m−1
2 , 1

2 )

∫ 1−x2

0
t

m−3
2 (1− t)−1/2dt

= 1
2B(m−1

2 , 1
2 )

∫ x

−1
(1− t2)

m−3
2 (1− (1− t2))−1/2(−2t)dt

= − 1
B(m−1

2 , 1
2 )

∫ x

−1
(1− t2)

m−3
2 |t|−1tdt

= 1
B(m−1

2 , 1
2 )

∫ x

−1
(1− t2)

m−3
2 dt. (7)

Together with

Pr
ti

$←[−ri,ri]
[ti ≤ x] =

∫ x

−ri

1
2ri

dy,



we can use a convolution to obtain

Pr
ti

$←[−ri,ri],e′
i

$←Dm

[ti+e′i ≤ x] = 1
2riB(k−1

2 , 1
2 )

∫ x

−ri−1

∫ min(1,z+ri)

max(−1,z−ri)
(1−y2)

m−3
2 dydz.

Since

Pr
ti

$←[−ri,ri],e′
i

$←Dm

[ti + e′i ∈ [−ri, ri]] = 1− 2

 Pr
ti

$←[−ri,ri],e′
i

$←Dm

[ti + e′i < −ri]

 ,

it suffices to calculate the integral

J(ri,m) =
∫ −ri

−ri−1

∫ z+ri

max(−1,z−ri)
(1− y2)

m−3
2 dydz (8)

in order to calculate p, which we do in the following. For the lower end of the
inner integral, we have to distinguish two cases. If ri < 1/2, we can split it into

J(ri,m) =
∫ ri−1

−ri−1

∫ z+ri

−1
(1− y2)

m−3
2 dydz +

∫ −ri

ri−1

∫ z+ri

z−ri

(1− y2)
m−3

2 dydz,

while in the simpler case ri > 1/2 we have

J(ri,m) =
∫ −ri

−ri−1

∫ z+ri

−1
(1− y2)

m−3
2 dydz.

This concludes our calculation of the probability p. All integrals can be cal-
culated symbolically using sage [42], which allows an efficient calculation of p.

Time spend per loop cycle

With the estimation of the number of loops given, the remaining task is to
estimate the time spend per loop cycle. Each cycle consists of four steps:

1. Guessing a binary vector.
2. Running the nearest plane algorithm (twice).
3. Calculating A(r)

x1 ∪ A
(r)
x′1

.
4. Dealing with collisions in the boxes.

We assume that the runtime of one inner loop of Algorithm 1 is dominated
by the runtime of the nearest plane algorithm, as argued in the following. It is
well known that sampling a binary vector is extremely fast. Furthermore, note
that only very few of the 2n addresses contain a vector, since filling a significant
proportional would take exponential time. Consequently, collisions are extremely
rare, and lines 8-11 of Algorithm 1 do not contribute much to the overall runtime.

An estimation by Howgrave-Graham [25] shows that for typical instances,
the runtime of the nearest plane algorithm exceeds the time spent for storing
the collision. We therefore omit the latter from our considerations.



Lindner and Peikert [32] estimated the time necessary to run the nearest
plane algorithm to be about 2−16 seconds, which amounts to about 215 bit
operations on their machine. This leads to the following heuristic for the runtime
of the attack.

Heuristic 5 The average number of operations per inner loop in Algorithm 1
is N ≈ 216.

Total runtime

We are now able to prove our main theorem.

Proof (Theorem 1): By definition, every output of Algorithm 1 is a valid
binary error vector of the given LWE with binary error instance. The rest follows
directly from Heuristic 2, Heuristic 3, and Heuristic 5. �

3.3 Minimizing the expected runtime

As previously mentioned in Remark 1, we can perform a basis reduction to obtain
a lattice basis with smaller Hermite delta δ before running the actual attack in
order to speed up the attack.

The Hermite delta δ determines the trade-off between the runtime of the
precomputation and the actual attack. More precisely, choosing a smaller value
for δ increases the runtime of the basis reduction, but at the same time decreases
the runtime of the actual attack, since it increases the success probability and
probability that a vector is e′-admissible. From the attacker’s perspective it is
necessary to optimise the choice of δ and r, the Meet-in-the-Middle dimension.

The Meet-in-the-Middle dimension r balances the trade-off between the Meet-
in-the-Middle and the lattice part of the attack. On the one hand, increasing r
increases the complexity of Meet-in-the-Middle part, since more entries of the
secret have to be guessed. On the other hand, it also increases the determinant of
the lattice, making CVP easier and thereby increasing the probability that vec-
tors are e′-admissible. Finding the optimal values for r and δ is therefore, at first
sight, non-trivial. We perform this task in the following way. For each r we find
the optimal δ that minimizes the runtime. We then take the optimal r and the
corresponding δ to determine the overall minimal runtime. Since there are only
finitely many possible values for r, this can be performed numerically. Figure 3
shows the expected runtime for the attack depending on the Meet-in-the-Middle
dimension r.

4 Comparison

In this section we consider other approaches to solve LWE with binary error and
compare these algorithms to Algorithm 1. In particular we give upper bounds
for the runtimes of the algorithms. A comparison of the most practical attacks,
including the hybrid attack, is given in Table 1.
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Fig. 3. Hardness of LWE instances with dimension of secret n = 256, number of
samples m = 512 and modulus q = 256 for different values of r

Much of the analyses below are in a similar spirit to that given in the sur-
vey [5] for methods of solving standard LWE. However we are often able to
specifically adapt the analysis for the binary error case. Note that to solve LWE
with binary error, in addition to algorithms for standard LWE, one may also be
able to apply algorithms for the related Inhomogeneous Short Integer Solution
problem. A discussion of these algorithms is given in [10].

4.1 Number of samples
Some algorithms require a large number of LWE samples to be available in
order to run. However it is well known (see, e.g., [16,35]) that if one has at least
m = O(n2) samples, the algorithm of Arora and Ge [6] solves LWE with binary
error in polynomial time. Recall also that for reducing LWE with binary error
to worst-case problems on lattices, one must restrict the number of samples to
be m = n (1 +Ω(1/ logn)) [35, Theorem 1.2]. On the other hand, with slightly
more than linear samples, such as m = O(n log logn), the algorithm given in
[1] is subexponential. Therefore if a scheme bases its security on the hardness of
LWE with binary error, it is reasonable to expect that one has only access to at
most linearly many samples. In the analysis below, we assume we the available
number of samples is m, where m is linear in n. For concreteness, we fix m = 2n.

4.2 Algorithms for solving LWE
There are several approaches one could use to solve LWE or its variants (see the
survey [5]). One may employ combinatorial algorithms such as the BKW [11,2]
algorithm and its variants [3,17,23,27]. However, all these algorithms require far
more samples than are available in the binary error case, and are therefore ruled
out. In the comparison we also omit a Meet-in-the-Middle attack [5] or attacks
based on the algorithm of Arora and Ge [6,1], as they will be slower than other
methods, but nevertheless discuss them for completeness.



Distinguishing attack One can solve LWE via a distinguishing attack as
described in [36,32]. The idea is to find a short vector ‖v‖ in the scaled dual
lattice of A, i.e. the lattice Λ = {w ∈ Zmq | wA ≡ 0 mod q}. Then, if the
problem is to distinguish (A,b) where b is either formed as an LWE instance
b = As + e or is uniformly random, one can use this short vector v as follows.
Consider 〈v,b〉 = 〈v, e〉 if b is from an LWE instance, which as the inner product
of two short vectors, is small mod q. On the other hand, if b is uniform then
〈v,b〉 is uniform on Zq so these cases can be distinguished if v is suitably small.

We determine how small a v which must be found as follows. Recall that our
errors are chosen uniformly at random from {0, 1}. So they follow a Bernoulli
distribution with parameter 1/2, and have expectation 1/2 and variance 1/4.
Consider the distribution of 〈v, e〉. Since the errors ei are chosen independently,
its expectation is 1

2
∑m
i=1 vi and its variance is 1

4
∑m
i=1 v

2
i . Since 〈v, e〉 is the

sum of many independent random variables, asymptotically it follows a normal
distribution with those parameters. Since the distinguishing attack success is
determined by the variance and not the mean, and we can account for the mean,
we assume it is zero. Then we can use the result of [32] to say that we can
distinguish a Gaussian from uniform with advantage close to exp(−π(‖v‖·s/q)2),
where s is the width parameter of the Gaussian. In our case s2 = 2π · 1

4 so we
can distinguish with advantage close to ε = exp(−π2 ‖v‖2

/2q2). Therefore to
distinguish with advantage ε we require a vector v of length ‖v‖ = q ·

√
2 ln (1/ε)
π .

We calculate a basis of the scaled dual lattice Λ and find a short vector
v ∈ Λ by lattice basis reduction. With high probability the lattice Λ has rank
m and volume qn [36,5]. By definition of the Hermite delta we therefore have
‖v‖ = δmqn/m. So the Hermite delta we require to achieve for the attack to
succeed with advantage ε is given by δmqn/m = q ·

√
2 ln (1/ε)
π . Assuming that

the number of samples m is large enough to use the ‘optimal subdimension’
m =

√
n log(q)/ log(δ) [36], we rearrange to obtain

log δ =

(
log (q) + log

(√
2 ln (1/ε)
π

))2

4n log (q) .

To establish the estimates for the runtime of this attack given in Table 1, we
assume one has to run the algorithm about 1/ε times to succeed, and consider δ
as a function of ε. The overall running time is then given by 1/ε multiplied the
estimated time, according to Lindner and Peikert [32], to achieve δ(ε). We pick
the optimal ε such that this overall running time is minimized.

It is possible that we do not have enough samples to use the ‘optimal subdi-
mension’. We firstly calculate δ assuming we have as many samples as we need
for the ‘optimal subdimension’, then check that the m this corresponds to is
indeed less than or equal to 2n. If so, we use the runtime estimate for that δ. If
not, we take m = 2n and derive a Hermite delta using δ2nqn/2n = q ·

√
2 ln (1/ε)
π .

The number of operation necessary to achieve this Hermite delta is estimated
using Equation (1).



Reducing to uSVP One may solve LWE via Kannan’s embedding technique
[26], thus seeing an LWE instance as a unique shortest vector problem instance.
This technique is used in [4,9]. We follow analogously the analysis in [4,5] for
the LWE with binary error case and obtain that we require a Hermite delta of
log(δ) = [log(q)−log(2τ

√
πe)]2

4n log(q) for this attack to succeed. The number of operations
necessary to achieve this Hermite delta is estimated using Equation (1). The full
analysis is presented in the following.

In a nutshell, the idea of the attack is to add the vector b to the lattice

Λq(A) = {v ∈ Zm | ∃x ∈ Zn : Ax = v mod q}.

Since As and b are lattice vectors, e is a very short lattice vector, and one
can apply a solver for unique-SVP to recover e (the typical solver is BKZ2.0).
Albrecht et al. [4] claimed that the attack succeeds with high probability if

λ1(Λq(A))
‖e‖ ≥ τδm,

where λ1(Λq(A)) is the shortest vector in Λq(A), δ is the Hermite delta achieved
by BKZ.0 and τ ≈ 0.4 is a constant depending on the unique-SVP solver used.
Applying this attack on our LWE instances seems reasonable, since we have
a very short error vector e, which leads to a big gap λ1(Λq(A))

‖e‖ . The common
method for predicting λ1(Λ) for an arbitrary lattice is the Gaussian heuristic. It
predicts the length of the shortest lattice vector in an n-dimensional lattice Λ
via

λ1(Λ) ≈ Γ (1 + n/2)1/n
√
π

det(Λ)1/m,

where the determinant det(Λ) is a constant of the lattice. Applying this heuristic
shows that the attack succeeds if

τδm ≤
Γ (1+n/2)1/m

√
π

det(Λ)1/m

‖e‖ .

We examine the right-hand side in more detail and see that

Γ (1+n/2)1/m

√
π

det(Λ)1/m

‖e‖ ≥
Γ (1+m/2)1/m

√
π

q(m−n)/m

√
m

≈

√
m/(2e)√
π
· q1−n/m

√
m

= q1−n/m
√

2eπ
.

The attack is therefore successful if

q1−n/m
√

2eπτδm
≥ 1. (9)

Standard arguments show that the left-hand side of Inequality (9) is maximized
for m =

√
n log(q)/ log(δ) [36]. However, for most instances considered, this

is requires more than the 2n samples provided. In this case, it is optimal to



set m = 2n and use all samples. Consequently, the attack succeeds with high
probability if

δ ≤ m

√
q1−n/m
√

2πeτ
.

If the optimal number of samples is smaller than 2n, the optimal choice
m =

√
n log(q)/ log(δ) leads to δ = exp(n log(q)/m2) = qn/m

2
, which leads to

q1−n/m
√

2eπ · τδm
= q1−n/m
√

2eπ · τ
q−n/m = q1−2n/m

√
2eπ · τ

.

An easy (but somehow exhausting) calculation shows that the smallest delta
that leads to an attack dimension satisfying Inequality (9) is given by

log(δ) = [log(q)− log(2τ
√
πe)]2

4n log(q) .

Decoding The decoding approach for solving LWE was first described in [32]
and is based on Babai’s nearest plane algorithm [7]. The aim is to recover the
error vector (so seeing LWE as a Bounded Distance Decoding instance). Recall
(Lemma 1) that the error vector can be recovered using Babai’s algorithm if it
lies within the fundamental parallelepiped of the Gram-Schmidt basis. The idea
of Lindner and Peikert in [32] is to widen the search parallelepiped to

Pdecoding = {x ∈ Zm | x =
n∑
i=1

αidibi for − 1/2 ≤ αi < 1/2},

where d1, ..., dm are integers chosen by the attacker.
Following the analysis of Lindner and Peikert, we estimate that an attack

on a reduced basis with Hermite delta δ requires about 215 ·
∏m
i=1 di operations.

However, the analysis of the success probability is more complicated. By defini-
tion of search parallelepiped, the attack succeeds if (and only if) the error e lies
in the search rectangle Pdecoding. Under the same assumption as in Section 3.2
(and using the same error transformation), this probability can be estimated via

pdecoding ≈
m∏
i=1

(
Pr

ei
$←Dm

[ei ∈ [−ri, ri]]
)

where

ri = di
δ−2(i−1)+mq

m−n
m

2
√
m/4

.

Together with Equation (7), this leads to

pdecoding ≈
m∏
i=1

(
1− 2

B(m−1
2 , 1

2 )

∫ max(−ri,−1)

−1
(1− t2)

m−3
2 dt

)
.



A standard way to increase the runtime of the attack is to use basis reduction
(like BKZ2.0) as precomputation. Predicting the runtime of BKZ2.0 according
to Equation (1) leads to the runtime estimation

Tdecoding ≈
21.8/ log2(δ)−110 · 2.3 · 109 + 215∏m

i=1 di
pdecoding

.

Using the same numeric optimization techniques as presented above to minimize
the expected runtime leads to the complexity estimates given in Table 1.

Meet-in-the-Middle Attack We adapt the analysis in [5] to determine an
upper bound on the complexity of a Meet-in-the-Middle attack on LWE with
binary error. The proof follows [5] entirely analogously.

Theorem 2. [5, Theorem 2] Let n, q parametrise an LWE instance with binary
error. If there are m samples satisfying m/q < 1/C for some constant C > 1
and (2/q)m · 2n/2 = poly(n), then there is Meet-in-the-Middle algorithm which
solves search LWE with binary error with non-negligible probability which runs
in time O

(
2n/2 (n

2 (5m+ 1) + (m+ 1) logm
))

and requires memory m · 2n/2.

Proof: Given m samples (ak, 〈ak, s〉 + ek) split ak = alk||ark in half and
for each possibility sli of the first half of s compute inner product of the first
half of ak and sli. Let the output of guess sli for each of the m samples be
usl

i
= (
〈
a1, sl1

〉
, . . . ,

〈
am, slm

〉
). Store a table T whose entries map vectors usl

i
to

sli. Generating this table costs m ·2n ·2n/2 operations since there are 2n/2 candi-
date secrets and for each we calculate m inner products. Sort the table into lexi-
cographical ordering component-wise, which costs O

(
m · 2n/2 log

(
m · 2n/2)) op-

erations. Now for each candidate srj for the second half of the secret, and for each
sample, compute ck−

〈
ark, srj

〉
, to form the vector vsr

j
= (c1−

〈
ar1, srj

〉
, . . . , cm−〈

arm, srj
〉
). Sort vsr

j
into T , which costs log |T | = log

(
m · 2n/2) = logm + n/2

operations. Since there are 2n/2 possible second srj the total cost of this step
is 2n/2 (logm+ n/2). When srj is sorted into the list, check which usl

i
it is be-

tween. If vsr
j
and usl

i
have a binary difference, return sli and treat sli||srj as a

candidate secret, and check if it is correct. This procedure would then identify
the correct secret, so long as there is not a wrap around mod q, since if sli′ ||srj′
is the correct secret then vsr

j′
− uvecsl

i′
= (e1, . . . , em) mod q which is a binary

vector. Let bk = 〈ak, s〉 mod q, then a wrap around error will not occur as long
as bk 6= q − 1. The probability that one component has bk = q − 1 is 1/q so by
the union bound the probability that at least one component has bk = q − 1 is
≤ m/q. We want to bound m so that this event happens only with probability
at most 1/C for some constant C, i.e., m/q < 1/C. It remains to consider the
chance of a false positive, that is, an incorrect candidate secret sli being suggested
for some srj . Since ak is uniformly random, for any sli, the vector usl

i
is also ran-

dom with each component taking one of q values. A wrong srj will produce a vsr
j



that matches to usl
i
only if its difference is 0 or 1 on every component. There-

fore the chance of a false positive is (2/q)m. There are 2n/2 − 1 wrong choices
for sli, so we expect to test (2/q)m · 2n/2 candidates per srj . Hence we require
(2/q)m · 2n/2 = poly(n). �

Theorem 2 gives an upper bound on the complexity of a Meet-in-the-Middle
attack, but note that it also takes at least m ·2n ·2n/2 operations just to generate
the table, excluding the costs of the other steps, e.g., sorting. Hence, we do not
include estimates for the runtime of this approach in Table 1, as there is always
a faster choice.

Arora-Ge algorithm The basic idea of the Arora-Ge algorithm [6] is setting up
a system of nonlinear equations of which the secret is a root, and then solving the
system. Solving may be via linearisation (as in [6]) or by Gröbner basis methods
(as in [1]). The authors of [1] consider the complexity of their algorithm for
solving LWE with binary error for various numbers of samples (see [1, Theorem
7]. In particular, if m = 2n their algorithm solves LWE with binary error in time
O(n2 · 20.43ωn) where 2 ≤ ω < 3 is the linear algebra constant. Although this
is an upper bound, it is significantly more than the cost of the other attacks.
Therefore we do not expect that the actual runtime is smaller than for the other
possible approaches, so we omit this algorithm from consideration in Table 1.

4.3 Comparison

Instance n q log2(THybrid attack) log2(TDecoding) log2(TuSVP) log2(TDistinguishing)
I 128 256 41 67 82 37
II 160 256 55 77 122 62
III 192 256 71 88 162 85
IV 224 256 87 102 165 109
V 256 256 103 117 203 132
VI 288 256 120 136 254 154
VII 320 256 136 158 327 176
VIII 352 256 153 185 443 198

Table 1. Comparison of attacks on LWE with binary error using at most m = 2n
samples. log2(Tattack) denotes the bit operations required to perform the algorithm
described in ‘attack’ [36].

Table 1 shows the runtime of the hybrid attack compared with some of the
possible attacks described above on at most m = 2n samples of LWE with
binary error. For algorithms requiring lattice reduction, we choose whichever is
the fewer of m = 2n or the ‘optimal subdimension’ m =

√
n log(q)/ log(δ) [36].
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