
Boosting Linearly-Homomorphic Encryption
to Evaluate Degree-2 Functions on Encrypted Data

Dario Catalano1 and Dario Fiore2

1 Dipartimento di Matematica e Informatica, Università di Catania, Italy.
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Abstract. We show a technique to transform a linearly-homomorphic encryption into a homomorphic
encryption scheme capable of evaluating degree-2 computations on ciphertexts. Our transformation is
surprisingly simple and requires only one very mild property on the underlying linearly-homomorphic
scheme: the message space must be a public ring in which it is possible to sample elements uniformly at
random. This essentially allows us to instantiate our transformation with virtually all existing number-
theoretic linearly-homomorphic schemes, such as Goldwasser-Micali, Paillier, or ElGamal. Our resulting
schemes achieve circuit privacy and are compact when considering a subclass of degree-2 polynomials
in which the number of additions of degree-2 terms is bounded by a constant.
As an additional contribution we extend our technique to build a protocol for outsourcing computation
on encrypted data using two (non-communicating) servers. Somewhat interestingly, in this case we
can boost a linearly-homomorphic scheme to support the evaluation of any degree-2 polynomial while
achieving full compactness.

1 Introduction

The problem of enabling computation over encrypted data is one of the most intriguing questions
in cryptography and has been attracting significant attention lately. In a nutshell, this problem
involves two parties, a client holding an input x and a server holding some function f . The goal
of the client is to learn f(x) without disclosing unnecessary information about x (aka semantic
security). The goal of the server is to perform the computation without revealing to the client any
information (beyond f(x)) about f (aka circuit privacy). Moreover, to minimize the communication
between client and server as well as the client’s work, it would be desirable that the server’s response
be shorter than the size of f (aka compactness). Computing on encrypted data is a problem that
arises in a variety of settings, including, for instance, secure cloud computing, encrypted database
search, and many more.

A natural way to solve the problem is to rely on so-called homomorphic encryption (HE)
schemes. Informally, these are encryption mechanisms that allow one to perform computations
on the encrypted plaintexts by performing similar operations on the ciphertexts. In other words,
homomorphic encryption allows to perform meaningful operations on plaintexts (e.g., additions and
multiplications) without, at any stage, needing to decrypt the corresponding ciphertexts.

The idea of homomorphic encryption was first suggested in 1978 by Rivest, Adleman and Der-
touzous [30], though its first fully-fledged realization was proposed only in 2009 in a breakthrough
result by Gentry [17]. Earlier than that, many other authors suggested encryption schemes that,
albeit not supporting arbitrary functionalities, still allow for meaningful operations. This is the
case, for instance, of the Goldwasser-Micali cryptosystem [20], Paillier’s cryptosystem [29] and
many other schemes [9,27,28,12,6,22]. All these schemes are linearly-homomorphic (i.e., they sup-
port linear functions only), and they can be seen as based on the same blueprint. Namely, they
are all (probabilistic) public-key encryption schemes based on a discrete log trapdoor modulo a



large integer which is hard to factor.3 In such schemes, the message space is a ring M of modular
residues and ciphertexts are in the group G (denoted multiplicatively) of invertible elements of
some particular ring of integers modulo a number hard to factor. The encryption of a message m is
a group element of the form Enc(m; r) = gmre ∈ G, where e is some public integer, g a fixed public
element, and r is chosen at random in some particular (multiplicative) subgroup R of G. Since R is
a subgroup, such schemes have an additive homomorphic property: an encryption of m1 +m2 can
be obtained from any encryption of m1 and m2, as E(m1; r1) · E(m2; r2) ≡ E(m1 + m2; r1r2). In
other words, (homomorphic) additions of plaintexts are obtained by multiplying the corresponding
ciphertexts.

Generalizing these schemes to support more complex functionalities – say, multiplications –
seems like a lost cause at first as, being the ciphertext space only a group, in general there might
be no way to operate on two ciphertexts in order to obtain a multiplication of the corresponding
plaintexts. A nice exception to this barrier was suggested by Boneh, Goh and Nissim [3] who revis-
ited the above blueprint in the context of composite-order bilinear groups, and in this setting show
how to use the bilinear map to gain one single multiplication on encrypted plaintexts. However, this
construction is very specific to bilinear groups, and it remains an intriguing open problem whether
it is possible to extend any linearly-homomorphic scheme (e.g., Paillier or Goldwasser-Micali) in
a natural way in order to support multiplications.4 Beyond its theoretical interest, answering this
question in the positive, might allow to build homomorphic cryptosystems that could adopt (di-
rectly and for free!) many of the satellite protocols and tools (e.g., ZK-PoK, threshold variants and
so on) developed for the underlying linear schemes over the last thirty+ years.

1.1 Our Contribution

Homomorphic Encryption for Quadratic Functions. Our main result is a way to generalize
the blueprint described above5 in order to gain the possibility of performing one multiplication
on encrypted plaintexts. Slightly more in detail, we show a simple transformation which takes
a linearly-homomorphic encryption scheme and uses it to build an HE scheme which supports
arithmetic computations of degree 2 on ciphertexts.6

Our transformation is quite generic and requires only one very mild property from the underlying
linearly-homomorphic scheme: the message space must be a public ring in which it is possible to
sample elements uniformly at random. We call HE schemes satisfying this property public-space
and we show that virtually all existing schemes are so (or can be easily modified in order to become
so). This means that we can instantiate our transformation with a variety of existing schemes (e.g.,
[19,9,27,29,12,6,22]) thus obtaining several HE schemes capable of evaluating one multiplication
and whose security relies on a variety of assumptions, such as quadratic/composite residuosity,
DDH, or decision linear, to name a few. Furthermore, when applied to the BGN encryption scheme
[3], our solution yields an HE scheme that supports computations of degree up to 4.

Our technique is surprisingly simple, and at an intuitive level it works as follows. Starting from a
linearly homomorphic encryption schemeHE = (KeyGen,Enc,Dec) based on the blueprint described

3 An exception is the scheme by Bresson et al. [6] in which the ciphertext is composed by two group elements, as
well as schemes such as ElGamal “in the exponent” [10] where the modulus N is allowed to be prime.

4 At this point, it is worth noting that Ishai and Paskin [21] builds homomorphic encryption from a linearly-
homomorphic scheme, albeit in a “less natural way”. We discuss this work in more detail in Section 1.2.

5 Actually, we do not need to assume the group structure – we do it here only for ease of exposition.
6 Precisely, our solution achieves compactness for a subclass of degree-2 polynomials that we specify slightly below.
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above, we encrypt a message m as C = (m− b,Enc(b)) where b is random in M and “−” denotes
subtraction (i.e., addition of the additive inverse) in the ringM. With such ciphertexts, the scheme
is clearly linearly-homomorphic. To perform the multiplication one proceeds as follows. Given C1 =
(m1 − b1,Enc(b1)) and C2 = (m2 − b2,Enc(b2)) one first computes the product (m1 − b1)(m2 − b2),
moves it up to the ciphertext space (i.e., encrypts it), and then (homomorphically) removes the
terms m1b2 and m2b1 from the product by exploiting the linearly-homomorphic properties of HE .
Slightly more in detail, one computes C = (α, β1, β2) where:

α = Enc(m1m2 − b1b2) = Enc ((m1 − b1) · (m2 − b2)) · [Enc(b1)(m2−b2)] · [Enc(b2)(m1−b1)]

β1 = Enc(b1), β2 = Enc(b2)

Decryption of any ciphertext (α, β1, β2) works by first retrieving b1 and b2 (from β1 and β2) and
then by subtracting (b1b2) from the decryption of α. At this point, once obtained level-2 ciphertexts
via the above manipulations, these can be kept additively-homomorphic. This however comes at
the cost of loosing compactness. In fact, addition at level 2 consists into homomorphically adding
the α components of the ciphertexts and concatenating the β components. So the ciphertext will
start growing (linearly) with additions after performing the multiplication. Importantly, however,
we show a technique to re-randomize ciphertexts so as to achieve circuit privacy. To be precise, our
scheme compactly supports all degree-2 multivariate polynomials in which the number of additions
of degree-2 terms is bounded by a constant L, i.e., polynomials of the form P (x)+

∑L
i=1Qi(x)·Ri(x)

where P,Qi, Ri are linear. Despite limited, this class of computations is still meaningful in some
contexts. For instance, we observe that the celebrated SPDZ protocol [13] requires a somewhat
homomorphic encryption scheme capable of evaluating exactly this class of computations (for L =
1). Finally, as we illustrate in a couple of paragraphs below, we show how to completely remove
this compactness issue in a novel protocol for outsourcing computation on encrypted data using
two servers. In this case we can boost linearly-homomorphic encryption to evaluate any degree-2
multivariate polynomial on encrypted data, with compact ciphertexts.

On the importance of being simple and black box. Beyond its simplicity, a very attractive
feature of our transformation is that it applies in a black box way to essentially all known linearly-
homomorphic encryption schemes. This allows us to directly “inherit” virtually all the protocols
and tools previously developed for the underlying schemes.7 For instance, if one starts from a
cryptosystem HE admitting a threshold variant HET , by applying our trasformation to HET one
immediately gets a threshold homomorphic cryptosystem supporting one multiplication. Similarly,
if the underlying scheme admits a zero knowledge proof of plaintext knowledge protocol, the same
protocol (see Section 4) can be used to prove the same statement for the scheme resulting when
applying our transformation.

Providing alternatives to existing schemes. Our construction provides the first realizations
of practical homomorphic encryption schemes (beyond linear) in groups like Z∗N . Compared to the
recent lattice-based homomorphic encryption schemes, ours are clearly much less expressive. Yet
we believe that our results remain relevant for at least two reasons.

First, they provide alternatives to lattice-based cryptography. Given our current understanding
of complexity theory it is possible to imagine a world where the lattice problems used to build
homomorphic encryption are easy to solve while (some) number theoretic problems remain hard.
Notice that we are not saying that this scenario is plausible or even likely, just that it is possible.

7 An exception to this rule is the bit security analysis of [8] that does not survive our transformation.
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Second, our schemes can immediately take advantage of the thirty+ years efforts done on
number-theoretic (linearly) homomorphic encryption schemes. Indeed, adopting our schemes in-
duces only a very small overhead (i.e., one ring element more in the ciphertext, which is one bit in
the case of Goldwasser-Micali), and this holds also from an implementation perspective (no need
to develop complex new libraries or to deal with new delicate parameters choices).

Overcoming the Compactness Issue: Two-Server Delegation of Computation on En-
crypted Data. As a second contribution, we show how to extend our techniques to build a protocol
for outsourcing computation on encrypted data by using two servers. In brief, two-server delegation
of computation enables a client to outsource the computation of a function f on some input m by
using two distinct servers in such a way that: it is possible to recover the result f(m) from the
servers’ response, and the two servers do not need to interact. For security, the protocol preserves
the confidentiality of the client’s inputs as long as the two servers do not collude. Somewhat inter-
estingly, for this protocol we show a construction which completely removes the compactness issue
arising in our previous transformation. Namely, we use a linearly-homomorphic scheme in order to
outsource the evaluation of any multivariate polynomial of degree 2 while keeping the ciphertexts
(i.e., the servers’ responses) of constant-size. This for instance offers a solution for outsourcing the
computation on encrypted data of various statistical functions (e.g., mean, variance, covariance) or
distance measures (e.g., euclidean distance) over vectors of integers. And interestingly, all this can
be performed rather efficiently by using cryptosystems such as Paillier’s [29] or Joye-Libert [22].

Actually, our solution offers two more interesting properties that we call unbalanced efficiency
and unbalanced security. The former says that one of the two servers can perform the computation
essentially “for free”, i.e., as if it computes over the original inputs in M. This is possible because
only one of the servers need to do public-key operations. Unbalanced security instead guarantees
that w.r.t. such efficient server the semantic security of the protocol holds information-theoretically.

Finally, we show (cf. Section 5.4) that two-server delegation of computation can be used to build
protocols for server-aided secure function evaluation [23]. By using our construction, we obtain
an SFE semi-honest protocol that uses two servers for outsourcing the computation of degree-2
polynomials (or degree-3 by using BGN), and these servers do not need to communicate at all. We
stress that such absence of communication further justifies the plausibility of assuming absence of
collusions between the servers.

Our construction of two-server delegation of computation on encrypted data builds on the same
idea illustrated before, with the difference that now a ciphertext consists of two components: one
for the first server and one for the second server. More in detail, the first server receives C(1) =
(m−b,Enc(b)) – i.e., a ciphertext of our HE scheme – while the second server receives just C(2) = b.
As one can notice, as long as the two servers do not collude, the confidentiality of the message m is
preserved. In order to perform computations on these ciphertexts, the second server simply operates
over the bi’s, i.e., it computes b = f(b1, . . . , bt), while the first server works as in our HE scheme
with the key difference that, after performing a multiplication, it can throw away the β components
of the ciphertexts and keep doing additions on the α components without any ciphertext growth.
This way, the first server is eventually able to compute α = Enc(f(m1, . . . ,mt)− f(b1, . . . , bt)). So,
when the client receives such values α and b = f(b1, . . . , bt) from the first and the second server
respectively, then it can recover the computation’s result as Dec(α) + b. It is interesting to note
that the two servers do not need to interact during the computation, and actually they do not even
need to know about their mutual existence!
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As an extension, we further generalize our technique to outsource the computation of all degree-
3 polynomials by using a level-2 homomorphic encryption. Such transformation yields for instance
a protocol for degree-3 polynomials based on the BGN cryptosystem.

1.2 Other Related Work

As already mentioned above, fully homomorphic encryption (FHE) allows to perform arbitrary
computation over encrypted data (e.g., [17,32,33,5,4]). A key feature of FHE is that ciphertexts
are both compact and guarantee circuit privacy. Beyond FHE-based solutions, many other works
considered the problem of computing over encrypted data. Cachin et al. [7] observed that (any)
two-message protocol for secure function evaluation (SFE) can be used to perform computation
over encrypted data with circuit privacy. In particular, this idea can be extended to construct an
homomorphic public key cryptosystem from any two-message SFE. This construction uses Yao’s
garbled circuits [34] as underlying building block, achieves semantic security and circuit privacy
but unfortunately is not compact (roughly, because the ciphertext includes a garbled circuit).
Gentry et al. [18] generalized this construction to support computations on previously evaluated
ciphertexts via bootstrapping (they called i-hop an homomorphic cryptosystem allowing up to i such
computations). Other works proposed HE schemes whose complexity of decryption (and ciphertext
size) depends in various ways on the evaluated function f . Here we discuss some of them.

Sander et al. [31] proposed a solution to evaluate constant fan-in (boolean) circuits in NC1.
More precisely, their scheme allows to evaluate circuits (in NC1) composed of OR and NOT gates.
Unfortunately however, it also requires communication complexity exponential in the depth of the
circuit, as ciphertexts grow exponentially with the number of OR gates.

Building on earlier work of Kushilevitz and Ostrovsky [24], Ishai and Paskin [21] proposed
a scheme to evaluate branching programs on encrypted data. Their protocol uses strong oblivious
transfer, a notion that can be implemented using any linearly homomorphic encryption. This makes
this work somewhat related to ours. In comparison, their scheme clearly supports a wider class
of functionalities. On the other hand, if we consider the question of building upon a linearly-
homomorphic encryption to obtain more expressive functionalities, their construction is less direct
than ours: for instance, they have to change the computation model to branching programs, and it is
unclear whether tools originally designed for the underlying HE are “recyclable” in the transformed
scheme. Moreover, while when focusing on all degree-2 polynomials we achieve the same level of
compactness, instead for the specific subset of polynomials considered in this paper8 the scheme in
[21] induces much larger ciphertexts (quadratic in the number of computation’s inputs).

Another work related to ours is the one of Aguilar Melchor et al. [26] who proposed a con-
struction of homomorphic encryption (called chained) supporting up to d multiplications, for some
constant d. In this scheme the ciphertext grows exponentially with each multiplication (but is not
affected by additions). The basic idea is somewhat similar to ours. There they show how to achieve
chained encryption out of a linearly-homomorphic scheme with certain properties. These properties,
however, are more stringent than those required in this paper. In particular, none of the currently
available number-theoretic cryptosystems is known to meet such requirements.

8 We stress that, although our solution is not fully compact when considering all degree-2 polynomials, it achieves
compactness for the specific subset of degree-2 polynomials discussed above.
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2 Preliminaries

In this section, we review the notation and some basic definitions that we will use in our work.

We will denote with λ ∈ N the security parameter, and by poly(λ) any function which is bounded
by a polynomial in λ. Informally, we say that a function ε(λ) is negligible if it vanishes faster than
the inverse of any polynomial in λ, and we compactly denote it as ε(λ) = negl(λ). An algorithm A
is said to be PPT if it is modeled as a probabilistic Turing machine that runs in time polynomial

in λ. If S is a set, x
$← S denotes the process of selecting x uniformly at random in S (which in

particular assumes that S can be sampled efficiently. If A is a probabilistic algorithm, x
$← A(·)

denotes the process of running A on some appropriate input and assigning its output to x. For a
positive integer n, we denote by [n] the set of integers {1, . . . , n}.

Definition 1 (Statistical Distance). Let X,Y be two random variables over a finite set U . The
statistical distance between X and Y is defined as

SD[X,Y ] =
1

2

∑
u∈U

∣∣Pr[X = u]− Pr[Y = u]
∣∣

2.1 Homomorphic Encryption

Here we recall the definition of homomorphic encryption. In this work we make the (somewhat
canonical) assumption that the messages live in some ring (M,+, ·) while the computations are
expressed as arithmetic circuits (i.e., additions, multiplications and multiplications by constants)
over such ring. A homomorphic encryption scheme HE consists of a tuple of four PPT algorithms
(KeyGen,Enc,Eval,Dec) working as follows:

KeyGen(1λ): the key generation algorithm takes as input the security parameter λ and produces a
secret key sk and a public key pk. The public key pk implicitly defines a message space M.

Enc(pk,m): the encryption algorithm takes as input pk and a message m ∈ M, and it outputs a
ciphertext C.

Eval(pk, f, C1, . . . , Ct): the evaluation algorithm takes as input pk, an arithmetic circuit f :Mt →
M in a class F of “permitted” circuits, and t ciphertexts C1, . . . , Ct. It returns a ciphertext C.

Dec(sk, C): given sk and a ciphertext C, the decryption algorithm outputs a message m.

A homomorphic encryption scheme should satisfy four main properties: correctness, compact-
ness, security and circuit privacy. The first two properties regard the functionality of the scheme
while the remaining two properties model security.

The basic requirement is correctness:

Definition 2 (Correctness). A homomorphic encryption scheme HE = (KeyGen,Enc,Eval,Dec)

is said to correctly evaluate a family of circuits F if for all honestly generated keys (pk, sk)
$←

KeyGen(1λ), for all f ∈ F and for all messages m1, . . . ,mt ∈ M we have that if Ci ← Enc(pk,mi)
∀i ∈ [t], then

Pr[Dec(sk,Eval(pk, f, (C1, . . . , Ct))) = f(m1, . . . ,mt)] = 1− negl(λ)

where the probability is taken over all the algorithms’ random choices.
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In addition to correctness, any “interesting” homomorphic encryption scheme must be compact.
Roughly speaking, this means that the ciphertexts output by Eval have some fixed size, which does
not depend on the size of the evaluated circuit. This is formally defined as follows:

Definition 3 (Compactness). A homomorphic encryption scheme HE = (KeyGen,Enc,Eval,
Dec) is said to compactly evaluate a family of circuits F if the running time of the decryption
algorithm Dec is bounded by a fixed polynomial in λ.

The security of a homomorphic encryption scheme is defined using the notion of semantic
security put forward by Goldwasser and Micali [19].

Definition 4 (Semantic Security). Let HE = (KeyGen,Enc,Eval,Dec) be a (homomorphic) en-
cryption scheme, and A be a PPT adversary. Consider the following experiment:

Experiment ExpSS
HE,A(λ)

b
$← {0, 1}; (pk, sk)

$← KeyGen(1λ)
(m0,m1)←A(pk)

c
$← Enc(pk,mb)

b′←A(c)
If b′ = b return 1. Else return 0.

and define A’s advantage as AdvSS
HE,A(λ) = Pr[ExpSS

HE,A(λ) = 1] − 1
2 . Then we say that HE is

semantically-secure if for any PPT algorithm A it holds AdvSS
HE,A(λ) = negl(λ).

When considering homomorphic encryption, the notion of semantic security may not be suf-
ficient to guarantee the confidentiality of the encrypted messages, and in particular of the com-
putation’s inputs. Roughly speaking, in a homomorphic encryption scheme we would like that the
ciphertexts output by Eval do not reveal any information about the messages encrypted in the input
ciphertexts. This property is formalized via the following notion of circuit privacy:

Definition 5 (Circuit Privacy). We say that a homomorphic encryption scheme HE is circuit
private for a family of circuits F if there exists a PPT simulator Sim and a negligible function

ε(λ) such that the following holds. For any λ ∈ N, any pair of keys (pk, sk)
$← KeyGen(1λ), any

circuit f ∈ F , any tuple of messages m1, . . . ,mt ∈M and ciphertexts C1, . . . , Ct such that ∀i ∈ [t]:

Ci
$← Enc(pk,mi), then it holds

SD[Eval(pk, f, C1, . . . , Ct), Sim(1λ, pk, f(m1, . . . ,mt))] ≤ ε(λ)

Leveled Homomorphic Encryption. In this work we consider the notion of leveled homomorphic
encryption in which the parameters of the scheme depend on the depth of the circuits that the
scheme can evaluate. In particular, in our work we refer to the level as the degree of the arithmetic
circuits. So, for example, a linearly-homomorphic encryption is a level-1 HE.

Definition 6 (Level-d Homomorphic Encryption). For a positive integer d ∈ Z+, HE(d) is a
level-d homomorphic encryption scheme if HE(d) compactly evaluates circuits of degree at most d
and the running time of HE(d)’s algorithms is polynomial in the security parameter λ, the degree
d, and (only in the case of Eval(d)) the circuit size.
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Now, for leveled homomorphic encryption schemes it is possible to consider a weaker version of
circuit privacy which, roughly speaking, says that ciphertexts “at the same level” look indistinguish-
able. In other words, this means that circuit privacy holds with respect to a different distribution
for each level. More formally:

Definition 7 (Leveled Circuit Privacy). We say that a leveled homomorphic encryption HE(d)
satisfies leveled circuit privacy for a family of circuits F if there exists a PPT simulator Sim
and a negligible function ε(λ) such that the following holds. For any λ ∈ N, any pair of keys

(pk, sk)
$← KeyGen(1λ), any circuit f ∈ F of degree d′ ≤ d, any tuple of messages m1, . . . ,mt ∈ M

and ciphertexts C1, . . . , Ct such that ∀i ∈ [t]: Ci
$← Enc(pk,mi), then it holds

SD[Eval(pk, f, C1, . . . , Ct), Sim(1λ, pk, d′, f(m1, . . . ,mt))] ≤ ε(λ)

3 Public-Space Homomorphic Encryption

In this section we define the property that a homomorphic encryption scheme needs to satisfy in
order to be used in our transformation presented in Section 4. We call such a scheme a public-space
homomorphic encryption, and we formalize this notion below.

Definition 8 (public-space homomorphic encryption). A homomorphic encryption scheme
ĤE = ( ˆKeyGen, ˆEnc, ˆEval, D̂ec) with message space M is said to be public-space if: (1) M is a
(publicly known) finite and commutative ring with a unity, and (2) it is possible to efficiently
sample uniformly distributed elements m ∈M.

We stress that the above is a very mild requirement, and we point out that virtually all known
number-theoretic homomorphic encryption schemes (e.g., [19,9,27,29,12,6,22]) are public-space, or
can be easily adapted to be so (as we show in Appendix A for the case of [10,28,2,3]). In essence,
given the current state of the art we have public-space linearly-homomorphic encryption schemes
based on a variety of number-theoretic assumptions, such as p-subgroup [28], Quadratic Residuosity
and its extensions [19,27,22], Composite Residuosity [29,12], DDH [10], DLin [2,16], subgroup deci-
sion [3]. Finally, we note that also the more recent lattice-based homomorphic encryption schemes
(e.g., [5,4]) satisfy our notion of public-space.

4 Our Transformation

In this section we present our main construction, that is a methodology to convert a public-space
linearly-homomorphic encryption scheme into a homomorphic encryption scheme supporting one
multiplication. Precisely, the resulting scheme can compactly evaluate arithmetic circuits in which
the number of additions of degree-2 terms is bounded by some constant (yet the number of additions
of degree 1 is unbounded). At the same time, the scheme satisfies leveled circuit-privacy.

Let ĤE = ( ˆKeyGen, ˆEnc, ˆEval, D̂ec) be a public-space linearly-homomorphic encryption scheme
as per Definition 3. To ease the presentation, in our description we denote by Ĉ the ciphertext space
of ĤE , we use greek letters to denote elements of Ĉ and roman letters for elements ofM. Without loss
of generality we assume ˆEval consists of two subroutines: one to perform (homomorphic) addition
and one for performing (homomorphic) multiplication by known constants. We compactly denote
these operations with � and ·, respectively.9 Namely, given two cihertexts β1, β2 ∈ Ĉ, β = β1 � β2

9 Here we slightly abuse notation as the symbol · is also used to denote multiplication in the ring M.
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denotes their homomorphic addition, and β = c · β1 denotes a multiplication by a constant c ∈M.
Addition and multiplication over M are denoted by + and ·, respectively.

In what follows, we propose a homomorphic encryption scheme HE = (KeyGen,Enc,Eval,Dec)
capable of evaluating arithmetic circuits of degree 2 over M, in which the number of additions of
degree-2 terms is bounded by some constant L. Precisely, let Fd be the class of (multi-variate) poly-
nomials of total degree d over the ringM. Then our schemeHE can compactly evaluate polynomials
in the class F?2 = {f(m)} ⊂ F2, where f(m) is a polynomial of form P (m) +

∑L
i=1Qi(m) ·Ri(m)

where P (m), {Qi(m), Ri(m)} are all polynomials in F1.

KeyGen(1λ): On input 1λ, where λ ∈ N is a security parameter, it runs ˆKeyGen(1λ) to get (pk, sk),
and outputs (pk, sk). We assume that pk implicitly contains a description of ĤE ’s message space
M and ciphertext space Ĉ. The message space of the scheme HE will be the sameM, while the
ciphertext space is discussed below.

Enc(pk,m): Given a message m ∈M, the randomized encryption algorithm chooses a random value

b
$←M, and it sets a← (m− b) ∈M and β ← ˆEnc(pk, b). The output is C = (a, β) ∈M× Ĉ.

Eval(pk, f, C1, . . . , Ct): We describe this algorithm in terms of five different procedures: (Add1,Mult,
Add2, cMult1, cMult2) that implement the basic homomorphic operations: additions, multiplica-
tions and multiplications by known constants. Informally, Add1 and Mult operate over pairs of
level-1 ciphertexts (i.e., ciphertexts that encode either ”fresh” messages or messages obtained
as linear combinations of fresh messages) whereas Add2 operates over pairs of level-2 cipher-
texts (i.e., ones containing “multiplied” messages). cMult1 and cMult2 instead operate over a
single ciphertext of level 1 and 2 respectively. Therefore, homomorphically evaluating a circuit
f consists of evaluating the corresponding homomorphic operations. Furthermore, in order to
achieve circuit privacy, the ciphertext output by Eval must be re-randomized by using one of
the procedures described later.

Add1 : On input two level-1 ciphertexts C1, C2 ∈ M× Ĉ where, for i = 1, 2, Ci = (ai, βi), this
algorithm produces a (level-1) ciphertext C = (a, β) ∈M× Ĉ computed as follows:

a = a1 + a2, β = β1 � β2

For correctness, it is easy to see that if ai = (mi− bi) and βi ∈ ˆEnc(pk, bi) for some bi ∈M,
then a = (m1 +m2)− (b1 + b2) and β ∈ ˆEnc(pk, b1 + b2).

Mult : On input two level-1 ciphertexts C1, C2 ∈ M× Ĉ where, for i = 1, 2, Ci = (ai, βi), this
algorithm computes a level-2 ciphertext C = (α, β) ∈ Ĉ × Ĉ2 as follows:

α = ˆEnc(pk, a1 · a2) � a1 · β2 � a2 · β1
β = (β1, β2)

>

For correctness, one can see that if ai = (mi − bi) and βi ∈ ˆEnc(pk, bi) for some bi ∈
M, then α ∈ ˆEnc (pk, (m1m2 − b1m2 − b2m1 + b1b2) + (b2m1 − b1b2) + (b1m2 − b1b2)) =
ˆEnc(pk,m1m2 − b1b2) and β ∈ ( ˆEnc(pk, b1), ˆEnc(pk, b2))

>.
Add2 : On input two level-2 ciphertexts C1, C2, where ∀i = 1, 2, Ci = (ai, βi) ∈ Ĉ × Ĉ2×`i

such that βi = [(β
(i)
1,1, β

(i)
2,1)
>, . . . , (β

(i)
1,`i
, β

(i)
2,`i

)>], this algorithm returns a level-2 ciphertext

C = (α, β) ∈ Ĉ × Ĉ2×(`1+`2) computed as follows:

α = α1 � α2, β = [β1, β2]
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For correctness, if αi ∈ ˆEnc(pk,mi − bi) and βi is a matrix of (β
(i)
j,k ∈ ˆEnc(pk, b

(i)
j,k))j,k such

that
∑`i

k=1 b
(i)
1,k · b

(i)
2,k = bi, then it is not hard to see that α ∈ ˆEnc(pk, (m1 +m2)− (b1 + b2))

and β is a matrix of βj,k ∈ ˆEnc(pk, bj,k) such that
∑`1+`2

k=1 b1,k · b2,k = b1 + b2.

cMult1 : On input a constant c ∈M and a level-1 ciphertext C = (a, β) ∈M×Ĉ, this algorithm
returns a level-1 ciphertext C ′ = (c · a, c · β) ∈ M× Ĉ. The correctness of this operation is
straightforward.

cMult2 : On input a constant c ∈ M and a level-2 ciphertext C = (α, β) ∈ Ĉ × Ĉ2×` such
that β = [(β1,1, β2,1)

>, . . . , (β1,`i , β2,`)
>], this algorithm returns a level-2 ciphertext C ′ =

(α′, β′) ∈ Ĉ × Ĉ2×` computed as follows:

α′ = c · α,
β′ = [(c · β1,1, β2,1)>, . . . , (c · β1,`i , β2,`)

>]

To see the correctness of ciphertexts obtained through cMult2, if α ∈ ˆEnc(pk,m− b) and β
is a matrix of (βj,k ∈ ˆEnc(pk, bj,k))j,k such that

∑`
k=1 b1,k · b2,k = b, then it is not hard to

see that α′ ∈ ˆEnc(pk, cm− cb) and β′ is a matrix of β′j,k such that β′1,k ∈ ˆEnc(pk, cb1,k) and

β′2,k = β2,k ∈ ˆEnc(pk, b2,k). Hence,
∑`

k=1 c · b1,k · b2,k = c · b.
Dec(sk, C): We distinguish two different decryption procedures according to whether the ciphertext

C is of level-1 or level-2.
Level-1 Decryption: On input a level-1 ciphertext C = (a, β) and the secret key sk, the

algorithm outputs m← a+ D̂ec(sk, β).
Level-2 Decryption On input a level-2 ciphertext C = (α, β) × Ĉ × Ĉ2×` and the secret key

sk, the algorithm outputs

m← D̂ec(α) +

(∑̀
i=1

D̂ec(sk, β1,i) · D̂ec(sk, β2,i)

)

Before concluding the description of the scheme, we describe how to perform ciphertext re-
randomization. Namely, we give a procedure ReRand that takes as input a (level-1 or level-2)
ciphertext encrypting some message m, using random pad b, and outputs a new encryption of m
padded with a fresh random b′. We stress that such re-randomization is crucial to achieve circuit
privacy which would not be possible by using only the re-randomization of the underlying linearly-
homomorphic scheme. As above, we describe this procedure in terms of two different subroutines
ReRand1 and ReRand2 which operate over level-1 and level-2 ciphertexts respectively.

ReRand1(pk, C): On input a level-1 ciphertext C = (a, β), it chooses a random b′
$←M and outputs

C ′ = (a′, β′) computed as follows

a′ = a− b′, β′ = ˆEnc(pk, b′) � β

ReRand2(pk, C). On input a level-2 ciphertext C = (α, β) ∈ Ĉ×Ĉ2×` the algorithm chooses random

b̃
$←M2×` and outputs C ′ = (α′, β′) computed as follows

1. For i = 1 to `, compute

γi = ˆEnc
(
pk,−(b̃1,i · b̃2,i)

)
� (−b̃2,i) · β1,i � (−b̃1,i) · β2,i
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2. Set α′ ← α+
∑`

i=1 γi ∈ Ĉ
3. For i = 1 to ` and j = 1, 2, set β′j,i ← βj,i � ˆEnc(pk, b̃j,i).

To see correctness, first assume that α ∈ ˆEnc(pk,m − b) with b =
∑`

i=1 b1,i · b2,i and βj,i ∈
ˆEnc(pk, bj,i). Then we have γi ∈ ˆEnc

(
pk,−(b̃1,i · b̃2,i + b̃1,i · b2,i + b1,i · b̃2,i)

)
, β′j,i ∈ ˆEnc(pk, b′j,i)

with b′j,i = bj,i + b̃j,i. Thus we can write α′ ∈ ˆEnc(pk,m− b′) where

b′ = b+
∑̀
i=1

b̃1,i · b̃2,i + b̃1,i · b2,i + b1,i · b̃2,i

=
∑̀
i=1

b1,i · b2,i + b̃1,i · b̃2,i + b̃1,i · b2,i + b1,i · b̃2,i

=
∑̀
i=1

(b1,i + b̃1,i) · (b2,i + b̃2,i) =
∑̀
i=1

b′1,i · b′2,i

Therefore, α is a valid encryption of m under a completely fresh pad (b′j,i) ∈M2×`.

The correctness of the scheme HE follows from the correctness of ĤE , the fact that its message
space M is a finite ring, and by following the observations made along our description. Second,
it is easy to see that the only “extra” property we require to the underlying ĤE is the ability to
sample random elements in M.

Proof of Security. First, we prove that the scheme HE is semantically-secure.

Theorem 1. If ĤE is semantically-secure, then HE is semantically secure.

The proof is straightforward:

(m0 − b, ˆEnc(pk, b)) ≈ (m0 − b, ˆEnc(pk, 0)) ≡ (m1 − b, ˆEnc(pk, 0)) ≈ (m1 − b, ˆEnc(pk, b))

where ≈ denotes computational indistinguishability by the semantic security of ĤE and ≡ means
that the distributions are identical.

Second, we show that HE satisfies the notion of leveled circuit-privacy given in Definition 7.

Theorem 2. If ĤE is circuit private, then HE is a leveled circuit-private homomorphic encryption.

Proof. The simulator Sim(1λ, pk, d, f(m1, . . . ,mt)) is very simple: intuitively, it needs to create a
fresh encryption of the message m = f(m1, . . . ,mt) at level d = 1 or 2. More precisely, let ˆSim be

the simulator for the circuit privacy of ĤE . Then, if d = 1, Sim picks a random b
$←M and outputs

C = (m − b, ˆSim(1λ, pk, b)). If d = 2, Sim picks random B
$← M2×`, set b =

∑`
i=1B1,i · B2,i and

outputs C = (α, β) where α = ˆSim(1λ, pk,m − b) and β = [βj,i = ˆSim(1λ, pk, Bj,i)]j,i for j = 1, 2
and i ∈ [`]. Now, if we compare the distribution of the ciphertexts created by Sim and the one of
those generated by Eval (where re-randomization is run at the end), then one can immediately see
that these distributions will be indistinguishable under the assumption that ĤE is circuit private.

We remark that in the above proof we assumed that Sim gets to know the number ` of additions
of degree-2 terms that are performed by the circuit f . While this information is not considered as a
Sim’s input in Definition 7, one can either think of ` as some trivial information that one does not
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want to hide or, otherwise, it is possible to easily change our scheme to avoid this issue. Namely,
assume that L is the constant which bounds such number of additions, then one can “pad” any level-
2 ciphertext with more encryptions in the β component up to having L pairs of ciphertexts. Namely,
one first adds to β the columns [(β1,`+1, β2,`+1)

>, . . . , (β1,L, β2,L)>] where, for i = `+ 1, . . . , L and

j = 1, 2, each βj,i = ˆEnc(pk, bj,i) for random bj,i
$←M. Second, one adds the new random pad to α

homomorphically, i.e., computes γ =
∑L

i=`+1 b1,i · b2,i and α′ ← α� ˆEnc(pk,−γ).

On the ciphertext growth. As we mentioned earlier, our scheme cannot compactly evaluate
all degree-2 polynomials. Yet we achieve compactness as long as the polynomials are in F?2 , i.e.,
are of the form P (m) +

∑L
i=1Qi(m) ·Ri(m), with P (m), {Qi(m), Ri(m)} all of degree 1. Such a

class of polynomials is still meaningful. For example, the SPDZ protocol [13], in its offline phase,
requires a somewhat homomorphic encryption capable of evaluating polynomials exactly of the
form P (m) +Q(m) ·R(m), which is a subset (for L = 1) of our supported class F?2 .

Furthermore, as a second contribution of this work, we show in Section 5 how to completely
remove this issue in a specific application (thus achieving fully compact ciphertexts while supporting
all degree-2 polynomials).

Inheriting Properties. Interestingly, our transformation naturally preserves useful properties of
the underlying linearly-homomorphic scheme. Here we highlight three properties: proof of knowl-
edge, threshold decryption and multikey homomorphic encryption.

First, we show that if the underlying linearly-homomorphic scheme admits a proof of plaintext
knowledge, then so does the transformed scheme.

Theorem 3. If ĤE admits a zero knowledge proof of plaintext knowledge protocol Σ, then so does
HE (for level-1 ciphertexts).

Proof. Assume that that a prover P wants to prove knowledge of a plaintext m corresponding to
a level-1 ciphertext (a, β). To do this the prover simply uses Σ to prove knowledge of the random
pad b encrypted in β. Notice that a prover knowing m also knows such a value b. Completeness
and Honest Verifier Zero Knowledge immediately follow from the (corresponding) properties of
Σ. Moreover, since Σ is a proof of knowledge, there exists an efficient extractor E that, given two
different accepting conversations sharing a common initial message, provides the plaintext. Thus we
can build an extractor E′ out of E by simply running E on the two different accepting transcripts
as above. Once E outputs b, E′ outputs m← a+ b. 10

As a second property, we consider multikey homomorphic encryption. This is a scheme which is
capable of performing homomorphic operations on inputs encrypted under multiple unrelated keys,
and that allows decryption only if, roughly speaking, all the corresponding secret keys involved in
the computation are used. This notion has been formally proposed in the context of multiparty
computation by López-Alt et al. [25] who also proposed a fully-homomorphic realization. We note
that a multikey linearly-homomorphic encryption scheme was earlier given by Bresson et al. [6]
(albeit not explicitly formalized). The following theorem shows that the schemes obtained via our
transformation inherit the multikey property. Therefore, by plugging for instance the scheme of
Bresson et al. [6] we obtain a multikey HE scheme supporting one multiplication.

10 Notice that E might work in expected polynomial time but this only means that a similar constraint applies to E′

as well.
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Theorem 4. If ĤE is a multikey linearly-homomorphic encryption, then so is HE.

Proof (Sketch). Informally, this holds because a level-1 HE ciphertext consists of a ĤE ciphertext
together with a ring element which is unrelated to any key. Similarly, level-2 ciphertexts consist
solely of ĤE ciphertexts.

As a third property inherited by our transformed schemes, we consider threshold decryption.

Theorem 5. If ĤE has a threshold decryption protocol associated with it, then HE has threshold
decryption as well.

The theorem follows by observing that the threshold variant of HE is basically the same threshold
variant of ĤE .

Extensions. In Appendix B we show how to generalize our construction to boost a level-d homo-
morphic encryption scheme to compute multiplications up to degree 2d. As an interesting result,
such a generalization for instance shows how to use the BGN cryptosystem [3] to evaluate polyno-
mials of degree up to 4 on ciphertexts.

Instantiations. By instantiating our transformation with a variety of existing schemes (e.g.,
[19,9,10,28,27,29,12,6,2,22]) we obtain several HE schemes capable of evaluating one multiplication
whose security relies on a variety of assumptions, such as standard DDH, quadratic/composite
residuosity, or Decision Linear. Furthermore, when considering our extension applied to BGN, we
obtain a homomorphic encryption scheme that supports computations of degree up to 4, and whose
security relies on a number-theoretic assumption.

5 Two-Server Delegation of Computation on Encrypted Data

In this section we introduce a new primitive that we call two-server delegation of computation on
encrypted data (2S-DCED, for short) and we show how to realize it building on our technique of
Section 4. Using a 2S-DCED protocol, a client can outsource the computation of a function f on
some input m to two distinct servers in such a way that: it is possible to recover the output f(m)
from the servers’ outputs, and (2) the two servers do not need to interact (nor to know of their
mutual existence). For security, the protocol preserves the confidentiality of the client’s inputs as
long as the two servers do not collude.

This new notion is somehow related to the one of server-aided secure function evaluation [23].
Indeed, in Section 5.4 we show how to use two-server delegation of computation on encrypted data
to build double-server-aided secure function evaluation in the semi-honest model.

5.1 2S-DCED Definition

A protocol for two-server delegation of computation on encrypted data consists of a tuple of algo-
rithms 2S.DCED = (2S.KeyGen, 2S.Enc, 2S.Dec, 2S.Eval1, 2S.Eval2) working as follows.

2S.KeyGen(1λ): the key generation algorithm takes as input the security parameter λ and produces
a secret key sk and a public key pk.

2S.Enc(pk,m): the encryption algorithm takes as input pk and a message m ∈ M and outputs a
ciphertext C consisting of two components (C(1), C(2)).
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2S.Dec(sk, C(1), C(2)): the decryption algorithm takes as input sk and a ciphertext (C(1), C(2)) and
returns a message m.

In addition, there exist two evaluation algorithms 2S.Eval1, 2S.Eval2 (basically, one for each server):

2S.Evali(pk, f, C
(i)
1 , . . . , C

(i)
t ): the i-th evaluation algorithm takes as input pk, an arithmetic circuit

f : Mt → M in a class F of “permitted” circuits, and t ciphertexts C
(i)
1 , . . . , C

(i)
t , all of the

same component i = 1, 2. The algorithm outputs a ciphertext C(i) (of the same component).

As a basic property, a 2S-DCED protocol must be correct and compact.

Definition 9 (Correctness and Compactness of 2S-DCED). A 2S-DCED protocol 2S.DCED =
(2S.KeyGen, 2S.Enc, 2S.Eval1, 2S.Eval2, 2S.Dec) correctly evaluates a family of circuits F if for all

honestly generated keys (pk, sk)
$← 2S.KeyGen(1λ), for all f ∈ F and for all messages m1, . . . ,mt ∈

M we have that if (C
(1)
i , C

(2)
i )← 2S.Enc(pk,mi) ∀i ∈ [t], then

Pr[2S.Dec(sk, 2S.Eval1(pk, f, C
(1)
1 , . . . , C

(1)
t ), 2S.Eval2(pk, f, C

(2)
1 , . . . , C

(2)
t )) = f(m1, . . . ,mt)] = 1−negl(λ)

where the probability is taken over all the algorithms’ random choices.
Furthermore, 2S.DCED compactly evaluates F if above the running time of the decryption

algorithm 2S.Dec is bounded by a fixed polynomial in λ, independent of f .

Security. Informally, a 2S-DCED protocol should guarantee that any adversary who has access
to only one component of a ciphertext (C(1), C(2)) should not learn any information about the
underlying plaintext. We formalize this property using the approach of semantic security. Intuitively,
our notion says that as long as the two servers do not collude, each of them does not learn anything
about the encrypted messages.

Definition 10 (2S-DCED Semantic Security). Let 2S.DCED be a 2S-DCED protocol as defined
above, and A be a PPT adversary. Consider the following experiment:

Experiment Exp2S.SS
2S.DCED,A(λ)

b
$← {0, 1}; (pk, sk)

$← 2S.KeyGen(1λ)
(m0,m1, i)←A(pk)

(C(1), C(2))
$← Enc(pk,mb)

b′←A(C(i))
If b′ = b return 1. Else return 0.

and define A’s advantage as Adv2S.SS
2S.DCED,A(λ) = Pr[Exp2S.SS

2S.DCED,A(λ) = 1] − 1
2 . We say that

2S.DCED is semantically-secure if for any PPT A it holds Adv2S.SS
2S.DCED,A(λ) = negl(λ).

We remark that the notion extends in a straightforward way to the case in which the adversary
submits multiple triples {(m0,j ,m1,j , ij)} and receives the corresponding ciphertext components

{C(ij)
j } (all generated using the same bit b).

In addition to semantic security we consider another security notion that we call context hiding.
The motivation is that in the outsourcing setting the party who decrypts may be different from the
one who provides the inputs of the computation. Hence, the decryptor who receives a ciphertext
(C(1), C(2)) encrypting the result of a computation f must learn nothing about all the inputs of f
(that it did not provide), beyond what the result trivially reveals, i.e., f(m1, . . . ,mt).
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Definition 11 (Context Hiding). We say that a protocol 2S.DCED for two-server delegation of
computation on encrypted data satisfies context-hiding for a family of circuits F if there exists a
PPT simulator Sim and a negligible function ε(λ) such that the following holds. For any λ ∈ N,

any pair of keys (pk, sk)
$← 2S.KeyGen(1λ), any circuit f ∈ F with t inputs, any two tuples of

messages m1 ∈ Mt1 ,m2 ∈ Mt2 such that t = t1 + t2 and corresponding ciphertexts C1,C2 such

that Ck = (C(1)
k,C

(2)
k)

$← 2S.Enc(pk,mk) for k = 1, 2, and a ciphertext (C(1), C(2)) where
C(1) = 2S.Eval1(pk, f,C

(1)
1,C

(1)
2) and C(2) = 2S.Eval2(pk, f,C

(2)
1,C

(2)
2) it holds

SD[(C(1), C(2)), Sim(1λ,C1, f, pk, f(m1,m2))] ≤ ε(λ)

5.2 A 2S-DCED Protocol for Degree-2 Polynomials from Public-Space
Linearly-Homomorphic Encryption

In this section, we propose the construction of a protocol for two-server delegation of computation
on encrypted data that supports the evaluation of all degree-2 multivariate polynomials. Our con-
struction builds upon a public-space linearly-homomorphic encryption scheme (cf. Definition 8),
and its interesting feature is to “boost” the linear-only homomorphism in order to compute func-
tions up to degree 2. We stress that in contrast to the result of Section 4, here the ciphertext remains
always compact and thus the scheme can support the evaluation of all degree-2 polynomials.

Furthermore, our protocol achieves two interesting properties that we call unbalanced efficiency
and unbalanced security. The former says that one of the two servers can perform the computation
essentially “for free”, i.e., as if it computes over the original inputs inM. The unbalanced security
property instead says that with respect to such efficient server the semantic security of the protocol
holds information-theoretically.

The precise description of our scheme follows:

2S.KeyGen(1λ): On input 1λ, where λ is a security parameter, it runs ˆKeyGen(1λ) to get (pk, sk),
and outputs (pk, sk). We assume that pk implicitly contains a description of the message space
M and the ciphertext space Ĉ.

2S.Enc(pk,m): The randomized encryption algorithm chooses a random value b
$← M and sets

a← (m− b) ∈M and β ← ˆEnc(pk, b). The output is C(1) = (a, β) ∈M× Ĉ and C(2) = b ∈M.
The ciphertexts of the first component C(1) are “leveled”, i.e., the ones of the form (a, β) ∈M×Ĉ
are of level 1, whereas C(1) = α ∈ Ĉ are of level 2.

2S.Eval1(pk, f, C
(1)
1 , . . . , C

(1)
t ): the evaluation algorithm for the ciphertexts of the first compo-

nent essentially consists of the basic procedures for performing the homomorphic operations:
Add1,Mult,Add2. Informally, Add1 and Mult operate over pairs of level-1 ciphertexts whereas
Add2 operates over pairs of level-2 ciphertexts.

Add1 : On input two level-1 ciphertexts C
(1)
1 , C

(1)
2 ∈ M× Ĉ where, for i = 1, 2, C

(1)
i = (ai, βi)

this algorithm produces a (level-1) ciphertext C = (a, β) ∈M× Ĉ computed as:

a = a1 + a2, β = β1 � β2

Mult : On input two level-1 ciphertexts C
(1)
1 , C

(1)
2 ∈ M × Ĉ this algorithm outputs a level-2

ciphertext C(1) = α ∈ Ĉ computed as:

α = ˆEnc(pk, a1 · a2) � a1 · β2 � a2 · β1
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Add2 : On input two level-2 ciphertexts C
(1)
1 = α1, C

(1)
2 = α2 ∈ Ĉ this algorithm returns a

level-2 ciphertext C(1) = α ∈ Ĉ computed as

α = α1 � α2

Finally, note that given a ciphertext C(1), a multiplication by a known constants c ∈ M is
achieved straightforwardly: if C = (a, β), simply return (c · a, c · β); if C = α return c · α.

2S.Eval2(pk, f, C
(2)
1 , . . . , C

(2)
t ): let C

(2)
i = bi ∈ M for all i ∈ [t]. The algorithm simply executes f

over the bi’s. Namely, output C(2) = b = f(b1, . . . , bt) ∈M.

2S.Dec(sk, C(1), C(2)): the decryption proceeds slightly differently according to whether the cipher-
text component C(1) is of level-1 or level-2.

Given C(1) = (a, β) and C(2) ∈M, output m← a+ C(2).

Given C(1) = α ∈ Ĉ and C(2) ∈M, output m← D̂ec(sk, α) + C(2).

We notice that the β component of C(1) is not necessary for decryption. That is, in order to
save bandwidth one may require the first server not to transmit β.

Proof of Security. First, we prove that our protocol is semantically-secure according to our
Definition 10.

Theorem 6. If ĤE is semantically-secure, then 2S.DCED is a semantically-secure protocol for
two-server delegation of computation on encrypted data.

The proof is rather straightforward. We only provide a sketch. First, in the case of adversaries A
who submit a triple (m0,m1, 2) it is clear that C(2) is uniformly distributed in M and perfectly
hides the bit b. Second, for an adversary who submits a triple (m0,m1, 1), the security follows from
the semantic security of the linearly-homomorphic scheme ĤE in the same way as in Theorem 1.

To continue, we show that the protocol 2S.DCED satisfies context-hiding as per Definition 11.

Theorem 7. If ĤE is circuit-private, then 2S.DCED is context-hiding.

Proof. Let ˆSim be the simulator for the circuit privacy of ĤE . For an arithmetic circuit f of degree

1 the simulator Sim(1λ,C1, f, pk,m = f(m1,m2)) can simply output Ĉ(1) = (m− b, ˆSim(1λ, pk, b))

and Ĉ(2) = b where b = f(b1, b2) for a randomly sampled b2 ∈ Mt2 and for b1 = C(2)
1. If f is of

degree 2, the simulator does the same except that Ĉ(1) = ˆSim(1λ, pk,m − b). It is straightforward

to see that by the circuit privacy of ĤE (Ĉ(1), Ĉ(2)) is indistinguishable from the pair (C(1), C(2))
produced by the algorithms 2S.Eval1 and 2S.Eval2 respectively.

Unbalanced Efficiency and Unbalanced Security. Our 2S-DCED protocol described above
achieves two interesting properties. The first one, that we call unbalanced efficiency, says, very
roughly, that one of the two servers needs to invest much fewer computational resources. More in
detail, the second server – the one executing 2S.Eval2 – can run much faster than the first server
since it does not have to do any public key operation. Essentially, it can perform as if it computes
over the messages in the plain. Moreover, the storage overhead at such second server, i.e., the ratio
|C(2)|/|m|, is basically null. This property is particularly relevant in cloud scenarios in which clients
have to pay for the servers’ storage space and CPU cycles. In our solution the cost to pay to the
second server is indeed significantly smaller.
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The second property achieved by our construction is called unbalanced security, and it says that
the semantic security of the protocol holds information-theoretically with respect to the second
server11, the same one who can run faster.

Comparison with other possible solutions. We note that by using a linear secret sharing
scheme it is possible to construct a 2S-DCED protocol which uses only two servers, though sup-
porting only degree-1 computations. To support degree-2 computations using secret sharing, one
would need at least three distinct non-colluding servers (see e.g., [11]). On the other hand, a solution
(with succinct communication) based on only one server can be achieved using a somewhat homo-
morphic encryption scheme supporting one multiplication. In contrast, our solution can achieve the
same result with only two servers and by using only a linearly-homomorphic encryption scheme.

5.3 A 2S-DCED Protocol for Degree-3 Polynomials

In this section, we show a construction of a 2S-DCED protocol that uses a public-space level-2
homomorphic encryption as underlying building block, in order to support the evaluation of all
multivariate polynomials of degree 3.

In what follows, ĤE = ( ˆKeyGen, ˆEnc, ˆEval, D̂ec) denotes a public-space level-2 HE scheme. For
compact notation, we indicate with �,� and · the procedures used by ˆEval to perform, respectively,
(homomorphic) additions, multiplications and multiplications by constants. Note that a possible
instantiation of ĤE is the BGN encryption scheme (with the small adaptation that we show in
Appendix A.1).

2S.KeyGendeg3(1λ): On input 1λ, where λ is a security parameter, it runs ˆKeyGen(1λ) to get (pk, sk),
and outputs (pk, sk). We assume that pk implicitly contains a description of the message space
M and the ciphertext space Ĉ.

2S.Encdeg3(pk,m): The randomized encryption algorithm chooses a random value b
$←M and sets

a← (m− b) ∈M and β ← ˆEnc(pk, b). The output is C(1) = (a, β) ∈M× Ĉ and C(2) = b ∈M.

2S.Evaldeg31(pk, f, C
(1)
1 , . . . , C

(1)
t ): the evaluation algorithm for the ciphertext of the first com-

ponent essentially consists of the basic procedures for performing the homomorphic opera-
tions: Add1,Mult1,Add2,Mult2,Add3. Informally, Add1 and Mult1 operate over level-1 cipher-
texts whereas Add2 operates over level-2 ciphertexts (i.e., ones containing “multiplied” mes-
sages). Mult2 allows to multiply a level-1 ciphertext with a level-2 one to produce a ciphertext
of level 3. Finally, Add3 allows to make additions over level-3 ciphetexts (i.e., ones produced
either by Mult2 or by Add3 itself).

Add1 : On input two level-1 ciphertexts C
(1)
1 , C

(1)
2 ∈ M× Ĉ where, for i = 1, 2, C

(1)
i = (ai, βi)

this algorithm produces a (level-1) ciphertext C = (a, β) ∈M× Ĉ computed as follows:

a = a1 + a2, β = β1 � β2

Mult1 : On input two level-1 ciphertexts C
(1)
1 , C

(1)
2 ∈ M× Ĉ this algorithm computes a level-2

ciphertext C(1) = (α, Γ ) ∈ Ĉ × Ĉ as follows:

α = ˆEnc(pk, a1 · a2) � (a1 · β2) � (a2 · β1)
Γ = β1 � β2

11 With respect to the first server the security still holds in a computational sense.
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Add2 : On input a pair of level-2 ciphertexts C
(1)
1 = (α1, Γ1), C

(1)
2 = (α2, Γ2) ∈ Ĉ × Ĉ this

algorithm returns a level-2 ciphertext C(1) = (α, Γ ) ∈ Ĉ × Ĉ computed as

α = α1 � α2, Γ = Γ1 � Γ2

Notice that adding level-2 ciphertexts with level-1 ciphertexts can be easily achieved by first
“moving” the latter up to level 2, which in turn can be done by performing a multiplication
by a level-1 encryption of the unity 1 ∈M.

Mult2 : On input a level-1 ciphertext C
(1)
1 = (a1, β1) ∈ M× Ĉ and a level-2 ciphertext C

(1)
2 =

(α2, Γ2) ∈ Ĉ × Ĉ, this algorithm returns a level-3 ciphertext C(1) = ∆ ∈ Ĉ computed as

∆ = (a1 · α2) � (a1 · Γ2) � (α2 � β1)

Add3 : On input a pair of level-3 ciphertexts C
(1)
1 = ∆1 ∈ Ĉ and C

(1)
2 = ∆2 ∈ Ĉ it outputs a

level-3 ciphertext C(1) = ∆, computed as

∆ = ∆1 �∆2

2S.Evaldeg32(pk, f, C
(2)
1 , . . . , C

(2)
t ): simply output C(2) = f(C

(2)
1 , . . . , C

(2)
t ) ∈M.

2S.Decdeg3(sk, C(1), C(2)) We distinguish three different decryption procedures according to whether
the ciphertext component C(1) is of level 1, 2 or 3.

Level-1 Decryption: On input a level-1 ciphertext C(1) = (a, β) and C(2) ∈M, simply output
m← a+ C(2).

Level-2 Decryption: On input a level-2 ciphertext (C(1) = (α, Γ ) ∈ Ĉ × Ĉ, C(2) ∈ M) and
the secret key sk, the algorithm outputs

m← D̂ec(α) + C(2).

Level-3 Decryption: On input two level-3 ciphertexts C(1) = ∆ ∈ Ĉ, C(2) ∈ M and the
secret key sk, the algorithm outputs

m← D̂ec(∆) + C(2).

Remark 1. Similarly as in the scheme of Section 5.2, in level-1 and level-2 decryption, the second
component of C(1) is not used and thus, to save bandwidth, one might require the server not to
send it.

Proof of Security. Here we show that our protocol is semantically-secure and context-hiding.

Theorem 8. If ĤE is semantically-secure, then 2S.Deg3.HE is a semantically-secure protocol for
two-server delegation of computation on encrypted data.

The proof is the same as that of Theorem 1.

Theorem 9. If ĤE is circuit-private, then 2S.Deg3.HE is context-hiding.

The proof is essentially the same as that of Theorem 7. The only difference is that here the simulator
also needs to consider the case of level-3 ciphertexts which, however, is analogous.
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5.4 Application to Double-Server-Aided Two-Party Secure Function Evaluation.

While our definition of 2S-DCED considers a single client who outsources the computation and
learns the result, it is possible to extend this to the case of multiple clients who provide the inputs.
We can indeed use our new notion to build a protocol for double-server-aided two-party secure
function evaluation (2-SFE).

In standard 2-SFE there are two parties12, Alice holding an input x and Bob holding an input
y, who want to learn (i.e., jointly compute) f(x, y) without disclosing their respective inputs. In
the server-aided setting, the goal is to enable 2-SFE with the help of a set of servers who do not
provide any input to the computation but are willing to do most of the work. In other words,
Alice and Bob delegate the computation to the servers so that their work in the protocol does not
depend on the size of the circuit f . The server-aided setting for SFE and multiparty computation
was considered earlier in [15,11,1], while it has been formally studied more recently by [23] who,
in particular, revisited the notion of collusion in such a scenario. Slightly more in detail, instead
of the classical monolithical adversary who can corrupt several parties and share information (i.e.,
it models several different adversaries that collude), they considered a setting in which adversaries
corrupt single parties and do not necessarily collude.

Here we consider this model of corruption. In particular, our basic 2-SFE protocol is proven
secure against semi-honest adversaries who do not collude.

It is also worth noting that in general in server-aided SFE the servers are just a subset of the
parties who do not provide inputs, and thus the servers can interact. In contrast, when building
double-server-aided SFE using our notion of 2S-DCED we obtain a solution in which the two servers
do not need to communicate at all.

Model and Definition. Here we recall the security model for securely realizing an ideal func-
tionality in the presence of non-colluding semi-honest adversaries. For simplicity, we do it for the
specific scenario of our functionality which involve two parties, Alice and Bob, and two servers S1
and S2. We refer the reader to [23] for the general case definitions.

Let P = (Alice,Bob, S1, S2) be the set of all protocol parties. We consider four adversaries
(AAlice,ABob,AS1 ,AS2) that corrupt respectively Alice,Bob, S1 and S2. In the real world, Alice
and Bob run on input x and y respectively (plus additional auxiliary input zA and zB), while S1
and S2 receive auxiliary inputs z1, z2. Let H ⊆ P be the set of honest parties. Then, for every
P ∈ H, let outP be the output of party P , whereas if P is corrupted, i.e., P ∈ P \ H then outP
denotes the view of P during the protocol Π.

For every P ∗ ∈ P, the partial view of P ∗ in a real-world execution of protocol Π in the presence
of adversaries A = (AAlice,ABob,AS1 ,AS2) is defined as

REALP
∗

Π,A,H,z(λ, x, y) ≡ {outP : P ∈ H} ∪ outP ∗

In the ideal world, there is an ideal functionality f for a function f and the parties interact only
with f. Here Alice and Bob sends x and y respectively to f. If any of x or y is ⊥ then f returns ⊥.
Otherwise, f asks both S1 and S2 which party (Alice and or Bob) should receive the output and
which not. Finally, f returns f(x, y) to Alice and Bob according to the decision of S1, S2 (which
must be unanimous). As before, let H ⊆ P be the set of honest parties. Then, for every P ∈ H,
let outP be the output returned by f to party P , whereas if P is corrupted, outP is the same value
returned by P .

12 We consider the two party case only for simplicity and leave the multiparty extension for future work.
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For every P ∗ ∈ P, the partial view of P ∗ in an ideal-world execution in the presence of inde-
pendent simulators Sim = (SimAlice, SimBob, SimS1 , SimS2) is defined as

IDEALP
∗

f,Sim,H,z(λ, x, y) ≡ {outP : P ∈ H} ∪ outP ∗

Informally, a protocol Π is considered secure against non-colluding semi-honest adversaries if
it partially emulates, in the real world, an execution of f in the ideal world. More formally,

Definition 12. Let f be a deterministic functionality among parties in P. Let H ⊆ P be the subset
of honest parties in P. We say that Π securely realizes f if there exists a set Sim = (SimAlice,SimBob,
SimS1 ,SimS2) of PPT transformations (where SimAlice = SimAlice(AAlice) and so on) such that for
all semi-honest PPT adversaries A = (AAlice,ABob,AS1 ,AS2), for all inputs x, y and auxiliary
inputs z, and for all parties P ∗ ∈ P it holds

{REALP ∗Π,A,H,z(λ, x, y)}λ∈N ≈c {IDEALP
∗

f,Sim,H,z(λ, x, y)}λ∈N

where ≈c compactly denotes computational indistinguishability.

Our Protocol. Our protocol is described in Fig. 1 and shows how to use 2S-DCED for realizing
double-server-aided 2-SFE. We assume that both Alice and Bob had run 2S.KeyGen to generate
their keys, and that all parties (including the two servers) know the public keys pkA, pkB of Alice
and Bob respectively. Moreover, we assume private and authenticated channels.

By plugging our 2S-DCED construction of Section 5.2 in the following protocol, we obtain a
server-aided 2-SFE protocol for multivariate polynomials of degree-2. Such a protocol enables inter-
esting practical applications. For instance, Alice and Bob can jointly compute statistical functions
(e.g., mean, variance, covariance, etc.) on joint data sets without disclosing their respective data, or
obtain the multiplication of two matrices A and B held by Alice and Bob respectively while keeping
A and B private to each other and to the servers. Also, Alice and Bob can compute distance mea-
sures (e.g., the euclidean distance): for example Bob can have a large matrix X stored on the cloud
(the two servers), and Alice may wish to learn the euclidean distance between a vector y (that she
only knows) and each row of X (let us compactly denote this as z = dist(X, y)). Using our solution,
all the work to compute dist(X, y) can be outsourced to the two servers so that neither of them
learns anything about X and y, and Alice does not learn anything about X beyond z = dist(X, y).

Theorem 10. If 2S.DCED is a secure protocol for 2S-DCED for the class of functions in F , then
the protocol in Fig. 1 securely realizes any f ∈ F in the presence of semi-honest (non-colluding)
adversaries (AAlice,ABob,AS1 ,AS2).

Proof (Sketch). We only provide a proof sketch. Essentially, we have to show four independent
simulators SimAlice, SimBob, SimS1 , SimS2 :

SimAlice receives x and sends x to the ideal functionality f who replies with z = f(x, y). Next,
SimAlice simulates AAlice as follows. First, it generates encryption CA,x = 2S.Enc(pkA, x) of x
(and does analogously to produce CB,x). Then it runs the context-hiding simulator Sim(1λ, CA,x,

f, pkA, z) to obtain a ciphertext (Ĉ(1), Ĉ(2)) which encrypts the result z. Ĉ(1), Ĉ(2) are then given
to AAlice as messages coming from S1 and S2 respectively. Finally, it outputs AAlice’s entire
view.
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Inputs: Alice’s input is x ∈M and Bob’s input is y ∈M. The servers S1 and S2 do not have any input. Extending
the protocol to the case where inputs are multiple messages in M is straightforward.
Outputs: Both Alice and Bob are supposed to output z = f(x, y).

1. Alice on input x computes (C
(1)
A,x, C

(2)
A,x)

$← 2S.Enc(pkA, x) and (C
(1)
B,x, C

(2)
B,x)

$← 2S.Enc(pkB , x), and she sends

C
(1)
A,x, C

(1)
B,x to S1 and C

(2)
A,x, C

(2)
B,x to S2.

Bob does the same with y, i.e., he computes (C
(1)
A,y, C

(2)
A,y)

$← 2S.Enc(pkA, y) and (C
(1)
B,y, C

(2)
B,y)

$← 2S.Enc(pkB , y),

and he sends C
(1)
A,y, C

(1)
B,y to S1 and C

(2)
A,y, C

(2)
B,y to S2.

2. S1 computes C
(1)
A ← 2S.Eval1(pkA, C

(1)
A,x, C

(1)
A,y) and C

(1)
B ← 2S.Eval1(pkB , C

(1)
B,x, C

(1)
B,y), and it sends C

(1)
A to Alice

and C
(1)
B to Bob.

S2 computes C
(2)
A ← 2S.Eval2(pkA, C

(2)
A,x, C

(2)
A,y) and C

(2)
B ← 2S.Eval2(pkB , C

(2)
B,x, C

(2)
B,y), and it sends C

(2)
A to Alice

and C
(2)
B to Bob.

3. Alice runs zA ← 2S.Dec(skA, C
(1)
A , C

(2)
A ). Bob runs zB ← 2S.Dec(skB , C

(1)
B , C

(2)
B ).

Fig. 1. Our protocol for double-server-aided 2-SFE.

Note that AAlice’s view consists of the encryptions of x—CA,x, CB,x—it creates and the en-

crypted result z = f(x, y)—(Ĉ(1), Ĉ(2))—it receives. In the real world such distribution is guar-
anteed by that the servers and Bob are honest and by the correctness of the 2S.DCED protocol.
Therefore, by the context-hiding of 2S.DCED the view of AAlice in the real and ideal executions
is indistinguishable.

SimBob adopts the same strategy of SimAlice.

SimS1 runs AS1 . First, it computes (fake) encryptions of the inputs CA,x, CA,y, CB,x, CB,y by run-
ning 2S.Enc(·, ·) on randomly chosen x̃, ỹ. SimS1 sends the C(1) components of all these cipher-
texts to AS1 . If AS1 replies with ⊥, then SimS1 returns ⊥.

Note that in the real execution AS1 receives encryptions of the correct inputs x and y whereas
in the ideal execution, SimS1 gives to AS1 encryptions of random x̃, ỹ. Moreover, in both the real
and ideal execution the semi-honest AS1 does not abort since he is given valid encryptions (in
the real execution this is guaranteed by that Alice and Bob are honest). Therefore, the semantic
security of 2S.DCED guarantees that the encryptions in the two executions, and thus the entire
AS1 ’s views, are indistinguishable.

SimS2 adopts the same strategy of SimS1 .
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A Adapting Known HE Schemes to be Public-Space

In this section we show that those few encryption schemes which do not fit our notion of public-
space, can be easily modified to do so. This is the case for the additively-homomorphic variants
(aka “in the exponent”) of the ElGamal [14,10] and the BBS Linear Encryption [2] schemes, as well
as for BGN [3]. The case of Okamoto-Uchiyama [28] is slightly different: we show how to tweak the
scheme so that it can still be used in our construction of Section 4.

A.1 Adapting the BGN Cryptosystem to be Public-Space

The basic BGN [3] does not fit our requirement of public-space encryption scheme. This is because,
in order to cope with the decryption procedure the messages are treated as (small) integers rather
than elements in a ring. This difficulty can be easily overcome by forcing the messages to be treated
as elements in some appropriate ring.

Below we give a short description of the adapted scheme that we call BGN(pub).

Let G(1λ) be an algorithm that on input a security parameter λ outputs a tuple (p, q,G,GT , e)
where G and GT are groups of order N = pq and e : G×G→ GT is a bilinear map. Slightly more
in detail, on input λ, G(1λ) works ad follows:

– Generate two random λ-bit primes p, q and set N = pq.

– Generate a bilinear group G of order N (see [3] for details). Let g be a generator of G, and
e : G×G← GT be the bilinear map.

– Output (p, q,G,GT , e).

KeyGen(1λ): On input 1λ where λ is a security parameter, run G(1λ) to obtain (p, q,G,GT , e). Set
N = pq. Pick two random generators g, g′ ∈R G and set h = (g′)q. The public key is set as
pk = (N,G,GT , e, g, h), the private key is sk = p. For the message space, take some small integer
t << q and set M = Zt.

Enc(pk,m): To encrypt m ∈M, the algorithm picks a random r
$← {1, ..., N} and outputs

C = gmhr ∈ G
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Eval(pk, f, C1, . . . , Cn): Given two ciphertexts C1, C2 ∈ G, homomorphic addition is performed by
merely multiplying – over G – (and re-randomizing) the ciphertexts, i.e., one takes a random

s
$← {1, ..., N} and sets C = C1 · C2 · hs = gm1+m2 · hr1+r2+s. If C1, C2 ∈ GT , one does the

same over GT by using e(g, h) in place of h. The (single) homomorphic multiplication can be
performed by using the bilinear map as follows:

C = e(C1, C2)e(g, h)s = e(g, g)m1m2e(g, h)ŝ ∈ GT

Notice that the system remains additively homomorphic in GT .
Dec(sk, C): To decrypt a ciphertext C using the private key p, one first computes Cp = (gmhr)p =

(gp)m. Next, one extracts the discrete log m of Cp in base gp. Finally, return (m mod t).

As in [3], in order for decryption to be efficient one needs t to be small enough so that it is
possible to execute in polynomial time the extraction of discrete logs of at most T bits, where 2T

is an upper bound on the maximum value reachable by applying an admissible computation on
messages of log t bits. For instance, T = log(n · t3) when considering degree-2 polynomials with
n = poly(λ) monomials and coefficients in Zt.

The same proof of security in [3] trivially applies to the scheme described above.

Theorem 11. If the subgroup decision assumption holds for G, then the scheme BGN(pub) described
above is a semantically secure, public-space level-2 homomorphic encryption.

Moreover, note that our adaptation applies also to the variant of BGN based on the Decision Linear
assumption which can be obtained via the transformation in [16].

A.2 Adapting ElGamal and BBS “in the Exponent” to be Public-Space

The idea to adapt the additively-homomorphic variants of the ElGamal [14,10] and Boneh-Boyen-
Shacham [2] encryption schemes to become public-space is essentially the same as the one described
for BGN in Appendix A.1. Namely, we force messages to be treated as integers in a small ring Zt.
In particular, this means that the discrete logarithm m extracted in the last step of the decryption
procedure is then reduced mod t.

We call these two (adapted) schemes ElGamal(pub) and BBS(pub) respectively. For completeness,
in what follows we describe this technique for the case of ElGamal “in the exponent” [10]. The
same idea immediately applies to BBS.

KeyGen(1λ) On input the security parameter λ, generate a group G of order p where p is a suffi-

ciently large prime, and let g ∈ G be a generator. Sample a random z
$← Z∗p and set h = gz.

The public key is pk = (p,G, g, h), the private key is sk = z. For the message space, take some
small integer t << p and set M = Zt.

Enc(pk,m): To encrypt m ∈M, choose a random r
$← Z∗p and output C = (U, V ) ∈ G2

U = gmhr, V = gr

Eval(pk, f, C1, . . . , Cn): Given two ciphertexts C1, C2 ∈ G, homomorphic addition is performed by
merely multiplying – over G – (and re-randomizing) the ciphertexts component-wise, i.e., take

a random s
$← Z∗p and set

U = U1 · U2 · hs = gm1+m2 · hr1+r2+s, V = V1 · V2 · gs = gr1+r2+s
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Dec(sk, C) To decrypt a ciphertext C = (U, V ) ∈ G2 using the private key z, compute M = U/V z =
gm. Next, one extracts the discrete log m of M in base g. Finally, return (m mod t).

In order for decryption to be efficient one needs t to be small enough so that it is possible to
execute in polynomial time the extraction of discrete logs of at most T bits, where 2T is an upper
bound on the maximum value reachable by applying an admissible computation on messages of
log t bits. For instance, T = log(n · t2) when considering degree-1 polynomials with n = poly(λ)
monomials and coefficients in Zt.

It is straightforward to see that the scheme is secure under the DDH assumption.

Theorem 12. If the Decisional Diffie-Hellman assumption holds in G, then the scheme ElGamal(pub)

described above is a semantically secure, public-space linearly-homomorphic encryption.

By applying the same adaptation idea to the BBS scheme we obtain a public-space linearly-
homomorphic encryption scheme based on the Decision Linear assumption.

Theorem 13. If the Decisional Linear assumption holds in G, then the scheme BBS(pub) is a
semantically secure, public-space linearly-homomorphic encryption.

A.3 The modified Okamoto-Uchiyama Cryptosystem

The encryption scheme of Okamoto-Uchiyama [28] does not fit our public-space requirement. How-
ever, we show that with a small tweak this scheme too can be used in our basic construction of
Section 4.

Let us first recall the scheme.

KeyGen(1λ): On input 1λ where λ is a security parameter, the algorithm generates large primes p
and q, such that |p| = |q| = λ and set N = p2q. Next, it chooses g ∈ (ZN )∗ such that g is a
generator of Z∗p2 . Finally set h = gNmodN . Let k be such that 2k is (slightly) less than p. The

message space is M = {0, 1}k The public key is (N,h, g) while the secret key is p.
Enc(pk,m): On input a message m ∈M, choose a random r ∈ ZN and output C = gmhr mod N .
Dec(sk, C): On input a ciphertext C and the secret key, one first computes D = Cp−1 mod p2 =

(gm)p−1 mod p2. Note that D has order p in Z∗p2 . Let L(x) = x−1
p , over the integers. The

plaintext is retrieved as

m← L(D)

L (gp−1 mod p2)
mod p

The problem with the above construction is that the scheme is homomorphic modulo p while
p is not public. We overcome this difficulty by working directly modulo the (public!) value N and
by performing reductions modulo p only at decryption time. This leads to the level-2 HE scheme
that we call OU(level−2) sketched below.

KeyGen(1λ): This is exactly as above with M = Z2k .

Enc(pk,m): on input a message m ∈M, choose random b, r
$← ZN and output C = (a, β) where

a = (m− b) mod N, β = gbhr mod N

Eval(pk, f, C1, . . . , Cn): to homomorphically add two level-1 ciphertexts (a1, β1), (a2, β2) compute

a = a1 + a2 mod N, β = β1 · β2 mod N

Multiplications and level-2 additions are done exactly as explained in Section 4.
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Dec(sk, C): to decrypt a level-1 ciphertext (a, β) ∈ ZN×ZN , first “decrypt” β as described above to
obtain b ∈ Zp and then output a+ b mod p. To decrypt a level-2 ciphertext (α, β) ∈ ZN ×Z2×`

N ,
first “decrypt” α as described above to obtain a ∈ Zp, second do the same with all the β’s to
obtain b ∈ Z2×`

p and finally output

m← a+
∑̀
i=1

b1,i · b2,i mod p

It is straightforward to see that by applying the security proof of [28] the above scheme is
semantically secure under the p-subgroup decision assumption.

Theorem 14. If the p-subgroup assumption holds, then the scheme OU(level−2) described above is
a semantically-secure homomorphic encryption that correctly and compactly evaluates polynomials
in F?2 .

B A Generalized Construction: from Level-d to level-2d Homomorphic
Encryption

In this section, we show how to generalize the results from Section 4 in order to transform a
homomorphic encryption supporting up to d multiplications (i.e., a level-d HE) into an HE scheme
capable of (homomorphically) evaluating arithmetic circuits of degree up to 2d. Precisely, let Fd
be the set of (multi-variate) polynomials over a ring M that have total degree at most d. Then
the schemes obtained via our transformation can support the evaluation of polynomials in the class
F?2d = {f(m)} ⊂ F2d where f(m) is a polynomial over M of form P (m) +

∑L
i=1Qi(m) · Ri(m)

where P (m), {Qi(m), Ri(m)} are all polynomials in Fd. Essentially we enable the evaluation of
one multiplication between terms of degree ≤ d, which yields terms of degree ≤ 2d.

Note that an instantiation of this result can be obtained by using the BGN [3] cryptosystem
(with the small adaptation that we show in Appendix A.1). Interestingly, such instantiation yields
a homomorphic encryption that can evaluate computations of degree up to 4 on ciphertexts and is
based on a number-theoretic assumption.

Let HE(d) = (KeyGen(d),Enc(d),Eval(d),Dec(d)) be a public-space level-d HE scheme. Similarly
as before, and without loss of generality, we assume that Eval(d) is composed of subroutines for per-
forming homomorphic addition, multiplication and multiplication by constant, which we compactly
denote by �,� and · respectively.

KeyGen(1λ): On input 1λ, where λ is a security parameter, it runs KeyGen(d) to get (pk, sk). The
algorithm outputs (pk, sk). We assume that pk implicitly contains a description of the message
space M and the ciphertext space Ĉ.

Enc(pk,m): The randomized encryption algorithm chooses a random value b
$← M and sets a ←

(m− b) ∈M and β
$← Enc(d)(pk, b). The output is C = (a, β) ∈M× Ĉ.

Eval(pk, f, C1, . . . , Ct): We describe this algorithm in terms of four different procedures: Add(≤d),
Mult(≤d),Add(>d),Mult(>d). Informally Add(≤d) and Mult(≤d) operate over ciphertexts of level at
most d (i.e., ciphertexts that were obtained either from Enc(d) or from Eval(d)), whereas Add(>d)

and Mult(>d) operate on ciphertexts encoding higher degree terms. Multiplications by known
constants are achieved by straightforwardly adapting the corresponding procedure of HE(d) to
the new setting.
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Add(≤d) : On input two ciphertexts of level ≤ d, C1, C2 ∈M×Ĉ where, for i = 1, 2, Ci = (ai, βi)
with ai = (mi − bi) and βi ∈ Enc(d)(pk, bi) for some bi ∈ M, this algorithm produces a
ciphertext C = (a, β) ∈M× Ĉ at the same level by computing

a = a1 + a2 = (m1 +m2)− (b1 + b2)

β = β1 � β2 ∈ Enc(d)(pk, b1 + b2)

Mult(≤d) : On input a level-d1 ciphertext C1 and a level d2 ciphertext C2 where, for i = 1, 2,
Ci = (ai, βi) with ai = (mi − bi) and βi ∈ Enc(d)(pk, bi) for some bi ∈M, if d1 + d2 ≤ d this
algorithm outputs a level-(d1 + d2) ciphertext C = (a, β) by computing

a = a1 × a2 − r = (m1 ×m2)− (b1 ×m2 + b2 ×m1 − b1 × b2 + r)

β = (β1 � β2) � a1β2 � a2β1 � Enc(d)(pk, r)

∈ Enc(d)(pk, b1 ×m2 + b2 ×m1 − b1 × b2 + r)

where r
$←M is randomly chosen.

Mult(>d) : On input a ciphertext C1 of level d1 ≤ d and a ciphertext C2 of level d2 ≤ d where,
for i = 1, 2, Ci = (ai, βi) with ai = (mi − bi) and βi ∈ Enc(d)(pk, bi) for some bi ∈ M, if
d1 + d2 > d this algorithm outputs a level-(d1 + d2) ciphertext C = (α, β) ∈ Ĉ × Ĉ2 by
computing

α = Enc(d)(pk, a1 · a2) � a1β2 � a2β1

∈ Enc(d) (pk, (m1m2 − b1m2 − b2m1 + b1b2) + (b2m1 − b1b2) + (b1m2 − b1b2))
= Enc(d)(pk,m1m2 − b1b2)

β = [β1, β2]
> ∈ (Enc(d)(pk, b1),Enc

(d)(pk, b2))
>

Add(>d) : On input two ciphertexts C1, C2, both at level D > d,13 where Ci = (αi, βi) ∈ Ĉ×Ĉ2×`i
such that βi = [(β1,1, β2,1)

>, . . . , (β1,`i , β2,`i)
>], this algorithm returns a level-D ciphertext

C = (α, β) ∈ Ĉ × Ĉ2×(`1+`2) computed as follows:

α = α1 � α2, β = [β1, β2]

Dec(sk, C): As before, we distinguish two different decryption procedures depending on whether
the ciphertext C is at level D ≤ d or not:
Up to level d Decryption: On input a ciphertext (a, β) ∈M× Ĉ and the secret key sk, the

algorithm outputs m← a+ Dec(d)(sk, β).
Beyond level d Decryption On input a ciphertext (α, β) ∈ Ĉ × Ĉ2×` and the secret key sk,

the algorithm outputs

m
$← Dec(d)(sk, α) +

(∑̀
i=1

Dec(d)(sk, β1,i) · Dec(d)(sk, β2,i)

)
A ReRand procedure, almost identical to that described in Section 4, can be adapted to work

for the construction presented above.

Proof of Security. Using the same ideas as for the construction of Section 4, we obtain the
following theorems showing the security of the scheme HE .

13 Notice that addition of a level ≤ d ciphertext with a level >d ciphertext can be done by first “turning” the first
ciphertext into one of >d type.
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Theorem 15. If HE(d) is semantically-secure, then HE is semantically secure.

Theorem 16. HE is a leveled circuit-private homomorphic encryption.
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