
Multiparty Key Exchange, Efficient Traitor Tracing, and More from
Indistinguishability Obfuscation

Dan Boneh Mark Zhandry

Stanford University
{dabo, zhandry}@cs.stanford.edu

Abstract
In this work, we show how to use indistinguishability obfuscation (iO) to build multiparty

key exchange, efficient broadcast encryption, and efficient traitor tracing. Our schemes enjoy
several interesting properties that have not been achievable before:
• Our multiparty non-interactive key exchange protocol does not require a trusted setup.

Moreover, the size of the published value from each user is independent of the total number
of users.

• Our broadcast encryption schemes support distributed setup, where users choose their own
secret keys rather than be given secret keys by a trusted entity. The broadcast ciphertext
size is independent of the number of users.

• Our traitor tracing system is fully collusion resistant with short ciphertexts, secret keys,
and public key. Ciphertext size is logarithmic in the number of users and secret key size is
independent of the number of users. Our public key size is polylogarithmic in the number
of users. The recent functional encryption system of Garg, Gentry, Halevi, Raykova, Sahai,
and Waters also leads to a traitor tracing scheme with similar ciphertext and secret key
size, but the construction in this paper is simpler and more direct. These constructions
resolve an open problem relating to differential privacy.

• Generalizing our traitor tracing system gives a private broadcast encryption scheme (where
broadcast ciphertexts reveal minimal information about the recipient set) with optimal
size ciphertext.

Several of our proofs of security introduce new tools for proving security using indistinguishability
obfuscation.

1 Introduction
An obfuscator is a machine that takes as input a program, and produces a second program with
identical functionality that in some sense hides how the original program works. An important notion
of obfuscation called indistinguishability obfuscation (iO) was proposed by Barak et al. [BGI+01]
and further studied by Goldwasser and Rothblum [GR07]. Indistinguishability obfuscation asks that
obfuscations of any two (equal-size) programs that compute the same function are computationally
indistinguishable. The reason iO has become so important is a recent breakthrough result of
Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13b] that put forward the first candidate
construction for an efficient iO obfuscator for general boolean circuits. The construction builds

1

upon the multilinear map candidates of Garg, Gentry, and Halevi [GGH13a] and Coron, Lepoint,
and Tibouchi [CLT13].

In subsequent work, Sahai and Waters [SW13] showed that indistinguishability obfuscation is a
powerful cryptographic primitive: it can be used to build public-key encryption from pseudorandom
functions, selectively-secure short signatures, deniable encryption, and much more. Hohenberger,
Sahai, and Waters [HSW13] showed that iO can be used to securely instantiate the random oracle
in several random-oracle cryptographic systems.

Our results. In this paper, we show further powerful applications for indistinguishability obfus-
cation. While the recent iO constructions make use of multilinear maps, the converse does not seem
to hold: we do not yet know how to build multilinear maps from iO. Nevertheless, we show that iO
can be used to construct many of the powerful applications that follow from multilinear maps. The
resulting iO-based constructions have surprising features that could not be previously achieved, not
even using the current candidate multilinear maps. All of our constructions employ the punctured
PRF technique introduced by Sahai and Waters [SW13].

1.1 Multiparty non-interactive key exchange

Our first construction uses iO to construct a multiparty non-interactive key exchange protocol
(NIKE) from a pseudorandom generator. Recall that in a NIKE protocol, N parties each post a single
message to a public bulletin board. All parties then read the board and agree on a shared key k that
is secret from any eavesdropper who only sees the bulletin board. The classic Diffie-Hellman protocol
solves the two-party case N = 2. The first three-party protocol was proposed by Joux [Jou04]
using bilinear maps. Boneh and Silverberg [BS03] gave a protocol for general N using multilinear
maps. The candidate multilinear map constructions by Garg, Gentry, and Halevi [GGH13a] using
ideal lattices, and by Coron, Lepoint, and Tibouchi [CLT13] over the integers, provide the first
implementations for N parties, but require a trusted setup phase. Prior to this work, these were the
only known constructions for NIKE.

We construct new NIKE protocols from a general indistinguishability obfuscator. Our basic
protocol is easy to describe: each user generates a random seed s for a pseudorandom generator
G whose output is at least twice the size of the seed. The user posts G(s) to the bulletin board.
When N users wish to generate a shared group key, they each collect all the public values from the
bulletin board and run a certain public obfuscated program PKE (shown in Figure 1) on the public
values along with their secret seed. The program outputs the group key.

We show that this protocol is secure in a semi-static model [FHKP13]: an adversary that
is allowed to (non-adaptively) corrupt participants of its choice cannot learn the shared group

Inputs: public values x1, . . . xN ∈ XN , an index i ∈ [N], and a secret seed s ∈ S
Embedded constant: pseudorandom function PRF with an embedded random key

1. If xi 6= G(s), output ⊥

2. Otherwise, output PRF(x1, x2, . . . , xN)

Figure 1: The program PKE .

2

key of a group of uncorrupt users of its choice. The proof uses the punctured PRF technique of
Sahai and Waters, but interestingly requires the full power of the constrained PRFs of Boneh and
Waters [BW13] for arbitrary circuit constraints. In addition, we show that the point-wise punctured
PRFs used by Sahai and Waters are sufficient to prove security, but only in a weaker static security
model where the adversary cannot corrupt users. We leave the construction of a fully adaptively
secure NIKE (in the sense of [FHKP13]) from iO as a fascinating open problem.

In Section 8, we observe that our iO-based NIKE can be easily extended to an identity-based
multiparty key exchange. Existing ID-NIKE protocols are based on multilinear maps [FHPS13].

Comparison to existing constructions. While NIKE can be built directly from multilinear
maps, our iO-based protocol has a number of advantages:

• No trusted setup. Existing constructions [GGH13a, CLT13] require a trusted setup to publish
public parameters: whoever generates the parameters can expose the secret keys for all groups
just from the public values posted by members of the group. A variant of our iO-based
construction requires no trusted setup, and in fact, requires no setup at all. We simply
have user number 1 generate the obfuscated program PKE and publish it along with her
public values. The resulting scheme is the first statically secure NIKE protocol with no setup
requirements. In Section 4 we enhance the construction and present a NIKE protocol with no
setup that is secure in the stronger semi-static model. This requires changing the scheme to
defend against a potentially malicious program PKE published by a corrupt user. To do so we
replace the secret seed s by a digital signature generated by each user. Proving security from
iO requires the signature scheme to have a special property we call constrained public-keys,
which may be of independent interest. We construct such signatures from iO.

• Short public values. In current multilinear-based NIKE protocols, the size of the values
published to the bulletin board is at least linear in the number of users N . In our basic
iO-based construction with trusted setup, the size of published values is independent of N .

• Since the published values are independent of any public parameters, the same published
values can be used in multiple NIKE environments setup by different organizations.

It is also worth noting that since our NIKE is built from a generic iO mechanism, it may eventually
depend on a weaker complexity assumption than those needed for secure multilinear maps.

1.2 Broadcast encryption

Broadcast encryption [FN94] lets an encryptor broadcast a message to a subset of recipients. The
system is said to be collusion resistant if no set of non-recipients can learn information about the
plaintext. The efficiency of a broadcast system is measured in the ciphertext overhead: the number
of bits in the ciphertext beyond what is needed to describe the recipient set and encrypt the payload
message using a symmetric cipher. The shorter the overhead, the better (an overhead of zero is
optimal). We survey some existing constructions in related work below.

Using a generic conversion from NIKE to broadcast encryption described in Section 5.1, we
obtain two collusion-resistant broadcast systems. The first is a secret-key broadcast system with
optimal broadcast size. The second is a public-key broadcast system with constant overhead, namely
independent of the number of recipients. In both systems, decryption keys are constant size (i.e.

3

independent of the number of users). The encryption key, however, is linear in the number of users
as in several other broadcast systems [BGW05, GW09, DPP07, BW13].

By starting from our semi-static secure NIKE, we obtain a semi-static secure broadcast encryption
(as defined in Section 5). Then applying a generic conversion due to Gentry and Waters [GW09],
we obtain a fully adaptively secure public-key broadcast encryption system with the shortest known
ciphertext overhead.

Our public-key broadcast encryption has a remarkable property that has so far not been possible,
not even using the candidate multilinear maps. The system is the first public-key distributed
broadcast system: users generate secret keys on their own and simply append their corresponding
public values to the broadcast public key. In contrast, in existing low-overhead public-key broadcast
systems surveyed below, users are assigned their secret key by a trusted authority who has the
power to decrypt all broadcasts. In our iO-based public-key system, there is no trusted authority.

Another interesting aspect of the construction is that the PRG used in the scheme (as in the
program PKE) can be replaced by the RSA public key encryption system where the RSA secret
key plays the role of the PRG seed and the corresponding RSA public key plays the role of the
PRG output. Then, our broadcast system shows that iO makes it possible to use existing certified
RSA keys in a short-ciphertext broadcast encryption system and in a NIKE protocol. To prove
security using iO we need the following property of RSA: there is a distribution of invalid RSA
public-keys (e.g. products of three random large primes) that is computationally indistinguishable
from a distribution of real RSA public keys (i.e. products of two random large primes). This
property also holds for other public-key systems such as Regev’s lattice encryption scheme, but does
not hold for systems like basic ElGamal encryption.

1.3 Recipient-private broadcast encryption

A broadcast encryption system is said to be recipient-private if broadcast ciphertexts reveal nothing
about the intended set of recipients [BBW06, LPQ12, FP12]. Valid recipients will learn that they
are members of the recipient set (by successfully decrypting the ciphertext), but should learn nothing
else about the set. Until very recently, the best recipient-private broadcast systems had a broadcast
size of O(λ ·N), proportional to the product of the security parameter λ and the number of users N .

Using iO, we construct a recipient-private broadcast system with a broadcast size of N +O(λ),
proportional to the sum of the security parameter and the number of users. Since the recipient set
must be semantically secure, this is the best possible broadcast size. If one is allowed to leak the
size k of the recipient set (and nothing else) then we construct a system where the broadcast size is
proportional to O(λ+ k logN), which is again the best possible. Building such systems has been
open for some time [BBW06] and is now resolved using iO.

Our approach to building a recipient-private broadcast system is to embed an encryption of the
intended recipient set in the broadcast header. We publish an obfuscated program in the public key
that begins by decrypting the encrypted recipient set in the broadcast header. It then decrypts
the message body only if the recipient can provide a proof that it is one of the intended recipients.
Interestingly, encrypting the recipient set in a way that lets us prove security using iO is non-trivial.
The problem is that using a generic CPA-secure scheme is insecure due to potential malleability
attacks on the encrypted recipient set that can break recipient privacy. Using an authenticated
encryption scheme to prevent the malleability attack is problematic because forged valid ciphertexts
exist (even though they may be difficult to construct), and this prevents us from proving security
using iO. The difficulty stems from the fact that iO can only be applied to two programs that agree

4

on all inputs, including hard-to-compute ones.
Instead of using authenticated encryption, we encrypt the recipient set using a certain malleable

encryption scheme that lets us translate an encryption of a recipient set S to an encryption of some
other recipient set S′. We use indistinguishability of obfuscations to argue that an attacker cannot
detect this change, thereby proving recipient privacy.

The recent succinct functional encryption scheme of Garg et al. [GGH+13b] can also be used to
build recipient-private broadcast encryption from iO. However, our construction is quite different
and is simpler and more direct. For example, it does not use non-interactive zero-knowledge proofs.
Moreover, our scheme has shorter secret keys: O(1) as a function of N compared to NO(1). The
main drawback of our scheme is the larger public key: NO(1) compared to O(1).

1.4 Traitor tracing with short ciphertexts, secret keys, and public keys

Private broadcast-encryption is further motivated by its application to traitor tracing systems [CFN94].
Recall that traitor tracing systems, introduced by Chor, Fiat, and Naor, help content distributors
identify the origin of pirate decryption boxes, such as pirate cable-TV set top decoders. Boneh,
Sahai, and Waters [BSW06] showed that a private broadcast encryption system that can broadcast
privately to any of the N + 1 sets ∅, {1}, {1, 2}, . . . , {1, . . . , N} is sufficient for building an N -user
traitor tracing system. The ciphertext used in the traitor tracing system under normal operation
is simply a broadcast to the full set {1, . . . , N}, allowing all decoders to decrypt. Therefore, the
goal is, as before, to build a private broadcast system for this specific set system where ciphertext
overhead is minimized. Such systems are called private linear broadcast encryption (PLBE).

Adapting our iO-based private broadcast system to the linear set system above, we obtain a
collusion resistant traitor tracing system where ciphertext size is O(λ+logN) where λ is the security
parameter and N is the total number of users in the system. Moreover, secret keys are short: their
length is λ, independent of N . However, this scheme has large public keys, polynomial in N and λ.
The main reason public keys are large is that the malleable encryption scheme we need requires
polynomial size circuits for encryption and decryption.

Fortunately we can reduce the public-key size to only poly(logN,λ) without affecting secret-key
or ciphertext size. We do so by adapting the authenticated encryption approach discussed in the
previous section: when embedding the encrypted recipient set in the broadcast ciphertext we also
embed a MAC of the encrypted set. The decryption program will reject a broadcast ciphertext
with an invalid MAC. To prove security we need to puncture the MAC algorithm at all possible
recipient sets. Naively, since in a PLBE there are N + 1 recipient sets, the resulting program size
would be linear in N thereby resulting in large secret keys. Instead, we step through a sequence of
hybrids where at each hybrid we puncture the MAC at exactly one point. This sequence of hybrids
ensures that the obfuscated decryption program remains small. Once this sequential puncturing
process completes, security follows from security of an embedded PRF. We emphasize that this proof
technique works for proving security of a PLBE because of the small number of possible recipient
sets.

The functional encryption scheme of Garg et al. [GGH+13b] can also be used to obtain collusion
resistant traitor tracing, however as for private broadcast encryption, our construction is conceptually
simpler and has shorter secret keys.

5

Connection to Differential Privacy Dwork et al. [DNR+09] show that efficient traitor tracing
schemes imply the impossibility of any differentially private data release mechanism. A data release
mechanism is a procedure that outputs a data structure that supports approximations to queries
of the form “what fraction of records have property P?” Informally, a data release mechanism is
differentially private if it does not reveal whether any individual record is in the database.

Applying the counter-example of [DNR+09] to our traitor tracing scheme, we obtain a database
of N records of size λ and N2O(λ) queries. Moreover, the records are just independent uniform bit
strings. Even with these small and simple records and relatively few queries, no polynomial time
(in λ and N) differentially private data release mechanism is possible, so long as our construction
is secure. The first scheme this counter example was applied to is the traitor tracing scheme of
Boneh, Sahai, and Waters [BSW06], giving records of size O(λ), but with a query set of size 2Õ(

√
N),

exponential in N .
Ullman [Ull13] shows that, assuming one-way functions exist, there is no algorithm that takes

a database of N records of size λ and an arbitrary set of approximately O(N2) queries, and
approximately answers each query in time poly(N,λ) while preserving differential privacy. This
result also uses the connection between traitor tracing and differential privacy, but is qualitatively
different from ours. Their result applies to algorithms answering any arbitrary set of O(N2) queries
while maintaining differential privacy, whereas we demonstrate a fixed set of O(N2λ) queries that
are impossible to answer efficiently.

Constrained PRFs. Recall that constrained PRFs, needed in iO proofs of security, are PRFs for
which there are constrained keys than enable the evaluation of the PRF at a subset of the PRF
domain and nowhere else [BW13, KPTZ13, BGI13]. The next section gives a precise definition.
Our last construction shows that iO, together with a one-way function, are sufficient to build a
constrained PRF for arbitrary circuit constraints. Consequently, all our constructions that utilize
circuit constrained PRFs can be directly built from iO and a one-way function without additional
assumptions. In fact, Moran and Rosen [MR13] show, under the assumption that NP is not solvable
in probabilistic polynomial time in the worst case, that indistinguishability obfuscation implies
one-way functions. Previously, constrained PRFs for arbitrary circuit constraints were built using
multilinear maps [BW13].

1.5 Related work

While some works have shown how to obfuscate simple functionalities such as point functions [Can97,
CMR98, LPS04, Wee05], inner products [CRV10], and d-CNFs [BR13a], it is only recently that
obfuscation for poly-size circuits became possible [GGH+13b, BR13b, BGK+13] and was applied to
building higher level cryptographic primitives [SW13, HSW13].

Broadcast encryption. Fully collusion resistant broadcast encryption has been widely studied.
Revocation systems [NNL01, HS02, GST04, DF02, LSW10] can encrypt to N − r users with
ciphertext size of O(r). Further combinatorial solutions [NP00, DF03] achieve similar parameters.
Algebraic constructions [BGW05, GW09, DPP07] using bilinear maps achieve constant (but non-
zero) ciphertext overhead and some are even identity-based [GW09, Del07, SF07]. Multilinear
maps give secret-key broadcast systems with optimal ciphertext size and short private keys [BS03,
FHPS13, BW13]. They also give public-key broadcast systems with short ciphertexts and short

6

public keys (using an O(logN)-linear map) [BWZ14], but using the existing multilinear candidates,
those systems are not distributed: users must be given their private keys by a central authority.
The difficulty with using existing N -linear maps for distributed public-key broadcast encryption is
that the encoding of a single element requires Ω(N) bits, and therefore a short ciphertext cannot
include even a single element.

Recipient-private broadcast encryption. The first constructions for private broadcast encryp-
tion [BBW06, LPQ12] required a ciphertext header whose size is proportional to the product of the
security parameter and the number of recipients. More recently, Fazio and Perera [FP12] presented
a system with a weaker privacy guarantee called outsider anonymity, but where the header size is
proportional to the number of revoked users. Kiayias and Samari [KS13] even provide lower bounds
showing that certain types of natural constructions cannot improve on these bounds.

The functional encryption scheme of Garg et al. [GGH+13b] can also be used to build recipient-
private broadcast encryption from iO. Our scheme is conceptually simpler, and avoids the need for
non-interactive zero-knowledge proofs. Moreover, our scheme has shorter secret keys: O(1) in N
compared to NO(1) — though for private linear broadcast, their secret keys are polylog(N). The
main drawback of our scheme is the large public key size: NO(1) compared to O(logN).

Traitor tracing. The literature on traitor tracing is vast and here we only discuss results on
fully collusion resistant systems. Since the trivial fully-collusion resistant system has ciphertext
size that is linear in the number of users, we are only interested in fully collusion resistant systems
that achieve sub-linear size ciphertext. The first such system [BSW06, BW06], using bilinear maps,
achieved

√
n size ciphertexts with constant size keys. Other schemes based on different assumptions

achieve similar parameters [GKSW10, Fre10]. Combinatorial constructions can achieve constant size
ciphertexts [BN08, Sir07], but require secret keys whose size is quadratic (or worse) in the number of
users. In most traitor tracing systems, the tracing key must be kept secret. Some systems, including
ours, allow anyone to run the tracing algorithm [Pfi96, PW97, WHI01, KY02, CPP05, BW06].

Recently, Koppula, Ramchen, and Waters [KRW13] provide counter-examples to the conjecture
that all bit encryption schemes are circularly secure. Concurrently and independent of our work,
they use a valid/invalid key strategy that is similar to our strategy of replacing correctly generated
public parameters with incorrect parameters, but in a very different context.

2 Preliminaries: Definitions and Notation
Here we give the necessary background, including notation and the definitions cryptographic
primitives we will be using.

Notation We let [N] = {1, · · · , N} denote the positive integers from 1 to N . Given a set S, we
let 2S denote the power set of S: the set of all subsets of S. Given two sets S and T , we denote by
S∆T the symmetric difference between the sets: the set of all points in exactly one of S and T .
Given a permutation σ : X → X , and given a subset S ⊆ X , denote by σ(S) the set where each
element i ∈ S is replaced by σ(i). That is, σ(S) = {σ(i) : i ∈ S}. For a set S we denote by x← S
the uniform random variable on S. For a randomized algorithm A, we denote by x ← A(y) the
random variable defined by the output of A on input y.

7

2.1 Indistinguishability Obfuscation

The following formulation of indistinguishability obfuscation is due to Garg et al. [GGH+13b]:

Definition 2.1. (Indistinguishability Obfuscation) An indistinguiability obfuscator iO for a circuit
class {Cλ} is a PPT uniform algorithm satisfying the following conditions:

• iO(λ,C) preserves the functionality of C. That is, for any C ∈ Cλ, if we compute C ′ = iO(λ,C),
then C ′(x) = C(x) for all inputs x.

• For any λ and any two circuits C0, C1 ∈ Cλ with the same functionality, the circuits iO(λ,C)
and iO(λ,C ′) are indistinguishable. More precisely, for all pairs of PPT adversaries (Samp, D)
there exists a negligible function α such that, if

Pr[∀x,C0(x) = C1(x) : (C0, C1, σ)← Samp(λ)] > 1− α(λ)

then ∣∣Pr[D(σ, iO(λ,C0)) = 1]− Pr[D(σ, iO(λ,C1)) = 1]
∣∣ < α(λ)

The circuit classes we are interested in are polynomial-size circuits — that is, when Cλ is the
collection of all circuits of size at most λ. We call an obfuscator for this class an indistinguishability
obfuscator for P/poly. The first candidate construction of such obfuscators is due to Garg et
al. [GGH+13b].

When clear from context, we will often drop λ as an input to iO and as a subscript for C.

2.2 Constrained Pseudorandom Functions

A pseudorandom function (PRF) is a function PRF : K×X → Y where PRF(k, ·) is indistinguishable
from a random function for a randomly chosen key k [GGM86]. We will generally omit reference to
the key k, and just write PRF(·) to refer to an instance of the function PRF(k, ·) for a random key k.

Following Boneh and Waters [BW13], we define constrained pseudorandom functions for a
collection S ⊆ 2X of subsets as a PRF with the following added functionality: PRF.Constrain(S) for
S ∈ S outputs an efficient program for the function

PRFS(x) =
{

PRF(x) if x ∈ S
⊥ if x /∈ S

.

That is, the program PRFS(x) enables the evaluation of PRF at x ∈ S and nowhere else. Similar
notions to constraint PRFs were presented by Kiayias et al. [KPTZ13], where they were called
delegatable PRFs, and Boyle et al. [BGI13], where they were called functional PRFs.

Security We adopt a weaker notion of security for constrained PRFs than [BW13] that is sufficient
for our purposes: the adversary is allowed to request a single constraint key and should be unable
to distinguish PRF from random at any point outside S. We use the following experiment, denoted
EXP(b), parameterized by a bit b ∈ {0, 1} on an adversary A = (A1,A2):

k ← K, PRF(·) := PRF(k, ·)
(S, state)← A1(λ) // A generates a single constraint S

8

PRFS ← PRF.Constrain(S)
b′ ← APRF(·),RoR(b,·)

2 (λ,PRFS , state)
where

PRF(x) is just the oracle for PRF(x) = PRF(k, x)
RoR(b, x) is a real-or-random oracle: it takes as input b ∈ {0, 1} and x ∈ X ,

computes y0 ← PRF(x) and y1
R← Y and returns yb

We require that each x given to RoR are distinct, lie outside of S, and are distinct from all of the
x given to the PRF oracle. For b = 0, 1, let Wb be the event that b′ = 1 in EXP(b), and define
PRF(adv)(λ) = |Pr[W0]− Pr[W1]|

Definition 2.2. We say that a constrained PRF is secure if for all probabilistic polynomial time
adversaries A, the function PRF(adv)(λ) is negligible.

Example 2.3 (Prefix Constrained PRFs). The PRF construction of Goldreich, Goldwasser, and
Micali [GGM86] is a constrained PRF for sets of the form {x ∈ {0, 1}n : xi = yi ∀i ∈ [k]} for some
fixed y1 . . . yk ∈ {0, 1}k. In other words, the GGM PRF can be constrained to sets of a common
prefix, as shown in [BW13, KPTZ13, BGI13]. This PRF can be built from any one-way function.

Example 2.4 (Punctured PRFs). As defined by Sahai and Waters [SW13], a punctured PRF is a
constrained PRF that can be constrained on the complement of any polynomial sized set S ⊆ X .
These can easily be realized using the prefix constrained PRFs above. We will write PRFS for the
PRF punctured on the set S.

Example 2.5 (Constrained PRFs for Circuit Predicates). Boneh and Waters [BW13] construct
PRFs that support constraining to sets S accepted by a polynomial size circuit C. We will write
PRFC for the PRF constrained to the set accepted by C. In Section 9, we show how to realize such
PRFs from indistinguishability obfuscators and one-way functions. Boneh-Waters give a realization
from certain multi-linear maps.

3 Key Exchange from Indistinguishability Obfuscation
In this section, we show how to realize multiparty non-interactive key exchange (NIKE) from
general indistinguishability obfuscation. Intuitively, a NIKE protocol allows a group of users to
simultaneously publish a single message, and all will derive the same shared group key. The first
such protocols [BS03, GGH13a, CLT13] are based on multilinear maps. Our construction, based on
a generic iO obfuscator, has the following properties:

• Using a punctured pseudorandom function, our protocol achieves a static notion of security,
similar to existing protocols.

• Using a constrained pseudorandom function for circuit predicates, our protocol achieves a
stronger notion of security called semi-static security. We show in Section 9 who to use
iO to construct constrained pseudorandom functions for circuit predicates from any secure
puncturable PRF.

• While our base protocol requires a trusted setup phase, our setup phase can be run inde-
pendently of the messages sent by users. In Section 4 we use this property to remove the

9

setup phase altogether, arriving at the first NIKE protocol without trusted setup. We provide
protocols for both static and semi-static security.

We begin by first defining NIKE protocols and their security. A NIKE protocol has the following
three algorithms:

Setup(λ,G,N): The setup algorithm takes a security parameter λ and two integers G and N . G is
the maximum number of users that can derive a shared secret key, and N is an upper bound
on the number of users in the system. It outputs public parameters params.

Publish(params, i): Each party executes the publishing algorithm, which takes as input the public
parameters and the index of the party, and generates two values: a user secret key ski and a
user public value pvi. User i keeps ski as his secret, and publishes pvi to the other users.

KeyGen(params, i, ski, S, {pvj}j∈S): Finally, to derive the shared key kS for a subset S ⊆ [N] of size
at most G, each party in S runs KeyGen with params, their secret ski, and the other parties’
public values {pvj}j∈S .

For correctness, we require that each user derives the same secret key. That is, for all S ⊆
[N], |S| ≤ G, i, i′ ∈ S,

KeyGen(params, i, ski, S, {pvj}j∈S) = KeyGen(params, i′, ski′ , S, {pvj}j∈S)

We consider several security notions for multiparty key exchange, starting with adaptive security,
a generalization of the m-CKS-heavy security notion of Freire et al. [FHKP13]. In this notion of
security, there are many users, and various subsets of them are engaging in the key exchange protocol.
We let the adversary adaptively corrupt users and reveal the shared secret for arbitrary subsets
of users of its choice. More formally, for b = 0, 1 we denote by EXP(b) the following experiment,
parameterized by the total number of parties N , the maximal group size G (where potentially G is
the same as N), and an adversary A:

params R← Setup(λ,G,N)

b′ ← AReg(·),RegCor(·,·),Ext(·),Rev(···),Test(···)(λ,G,N, params)
where

Reg(i ∈ [N]) registers an honest user. It takes an index i, and runs
(ski, pvi)← Publish(params, i). The challenger records the tuple (i, ski, pvi, honest), and
sends pki to A.

RegCor(i ∈ [N], pki) registers a corrupt user. It takes an index i and a public value pvi.
The challenger records (i,⊥, pvi, corrupt). The adversary may make multiple queries
for a particular identity, in which case the challenger only uses the most recent record.

Ext(i) extracts the secret key for an honest registered user. The challenger looks up
the tuple (i, ski, pvi, honest), and returns ski to the challenger.

Rev(S, i) reveals the shared secret for a group S ⊆ [N], |S| ≤ G of users, as calculated by
the ith user, where i ∈ S. We require that at user i was registered as honest. The
challenger uses the secret key for user i to derive the shared secret key kS , which it
returns to the adversary.

Test(S) takes a set S ⊆ [N], |S| ≤ G of users, all of which were registered as honest.
If b = 0, the challenger runs KeyGen to determine the shared secret key (arbitrarily

10

choosing which user to calculate the key), which it returns to the adversary.
Otherwise if b = 1, the challenger generates a random key k to return to the adversary.

We require that all reveal and test queries are for distinct sets, and no extract query is allowed on
any user in a reveal query. We require that all register queries and register-corrupt queries are for
distinct i, and that pvi 6= pvj for any i 6= j. For b = 0, 1 let Wb be the event that b′ = 1 in EXP(b)
and we define AdvKE(λ) = |Pr[W0]− Pr[W1]|.

Definition 3.1. A multiparty key exchange protocol (Setup,Publish,KeyGen) is adaptively secure
if, for any polynomials G and N , and any PPT adversary A, the function AdvKE(λ) is negligible.

We also define two weaker notions of security called semi-static and static security. The first
notion, semi-static security, requires the adversary to commit to a set Ŝ of users at the beginning of
the experiment. The adversary must only make test queries on subsets S∗ ⊆ Ŝ, and can only make
register corrupt and extract queries on users i /∈ Ŝ:

Definition 3.2. A multiparty key exchange protocol (Setup,Publish,KeyGen) is semi-statically
secure if, for any polynomials G and N , and any PPT adversary A satisfying the following
properties, AdvKE(λ) is negligible:

• A commits to a set Ŝ of users before seeing the public parameters.

• Each query to RegCor and Ext must be on a user i outside the set Ŝ.

• Each query to Rev must have S * Ŝ.

• Each query to Test must be on a subset S∗ of Ŝ.

This notion is akin to the semi-static notion of security for broadcast encryption, defined by
Gentry and Waters [GW09]. We also weaken the definition further, arriving at a security notion
called static security. Here we only allow a single test query on a set S∗, and the adversary must
commit to S∗ before seeing the public parameters.

Definition 3.3. A multiparty key exchange protocol (Setup,Publish,KeyGen) is statically secure if,
for any polynomials G and N , and any PPT adversary A satisfying the following conditions, the
function AdvKE(λ) is negligible:

• A commits to a set S∗ before seeing the public parameters.

• A makes only a single query to Test, and this query is on the set S∗.

3.1 Our Construction

We now build a multiparty non-interactive key exchange (NIKE) from indistinguishability obfuscation
and pseudorandom generators. The idea is the following: each party generates a seed si as their
secret key, and publishes xi = PRG(si) as their public value, where PRG is a pseudorandom generator.
In the setup-phase, a key k is chosen for a punctured pseudorandom function PRF. The shared
secret key will be the function PRF evaluated at the concatenation of the samples xi. To allow the
parties to compute the key, the setup will publish an obfuscated program for PRF which requires
knowledge of a seed to operate. In this way, each of the parties can compute the key, but anyone
else will not know any of the seeds, and will therefore be unable to compute the key.

The construction is as follows:

11

Construction 3.4. Let PRF be a constrained pseudorandom function, and let PRG : {0, 1}λ →
{0, 1}2λ be a pseudorandom generator. Let iO be a program indistinguishability obfuscator.

Setup(λ,G,N) Choose a random key to obtain an instance of a pseudorandom function PRF. Build
the program PKE in Figure 2, padded to the appropriate length1. Also choose a random
x0 ∈ {0, 1}2λ. Output PiO = iO(PKE) and x0 as the public parameters.

Publish(λ) Party i chooses a random seed si ∈ {0, 1}λ as a secret key, and publish xi = PRG(si)

KeyGen(PiO, x0, i, si, S, {xi}i∈S) Let S(j) denote the jth index in S, and S−1(k) for k ∈ S be the
inverse. Let

x̂j =
{
xS(j) if j ≤ |S|
x0 if j > |S|

Run PiO on (x̂1, ..., x̂G, S
−1(i), si) to obtain the key k = PRF(x̂1, ..., x̂G) or ⊥.

Inputs: x̂1, . . . x̂G ∈ XG, i ∈ [G], s ∈ S
Constants: PRF

1. If x̂i 6= PRG(s), output ⊥

2. Otherwise, output PRF(x̂1, x̂2, . . . , x̂G)

Figure 2: The program PKE . (same as Figure 1).

Correctness is trivial by inspection. For security, we consider two cases. If PRF is a punctured
PRF, then we get static security. If PRF is a constrained PRF for circuit predicates, then our
construction actually achieves the semi-static notion of security (as in Definition 3.2). Security is
summarized by the following theorem:

Theorem 3.5. If PRG is a secure pseudorandom generator, PRF a secure punctured PRF, and
iO a secure indistinguishability obfuscator, then Construction 3.4 is a statically secure NIKE. If,
in addition, PRF is a secure constrained PRF for circuit predicates, then Construction 3.4 is
semi-statically secure.

Before proving Theorem 3.5, notice that if the adversary is able to learn the random coins used
by Setup, he will be able to break the scheme. All prior key exchange protocols [GGH13a, CLT13]
also suffer from this weakness. However, note that, unlike previous protocols, Publish does not
depend on params. In Section 4, we show how to use this property to remove the setup phase all
together, arriving at the first NIKE protocol permitting an untrusted setup.

Proof. We prove the case where PRF is a constrained PRF for circuit predicates, the other case
being simpler. Assume towards contradiction that an adversary A has non-negligible advantage ε in
breaking the security of Construction 3.4 as in Definition 3.2. We prove security through a sequence
of games.

1To prove security, we will replace PKE with the obfuscation of another program P ′KE , which may be larger than
PKE . In order for the obfuscations to be indistinguishable, both programs must have the same size.

12

Game 0 This is the attack game from Definition 3.2, where A commits to a set Ŝ ⊆ [N]. In
response A gets the obfuscation of PKE and then makes the following queries:

• Register honest user queries: A submits an i ∈ [N]. The challenger chooses a random si, and
sends xi = PRG(si) to A.

• Register corrupt user queries: A submits an i ∈ [N] \ Ŝ and a string xi. We require that i was
not and will not be registered as honest.

• Extract queries: A submits an i ∈ [N] \ Ŝ that was previously registered as honest. The
challenger responds with si.

• Reveal queries: the adversary submits a subset S, |S| ≤ G of users, of which at least one is
honest. The challenger uses PRF to compute the group key.

• Test queries: the adversary submits a set S∗ ⊂ Ŝ, |S∗| ≤ G, and receives either the correct
group key (if b = 0) or a random key (if b = 1).

After these queries, the adversary must make a guess b′ for b.

Game 1 For each i ∈ Ŝ, choose random xi ∈ {0, 1}2λ. When answering register honest user
queries for i ∈ Ŝ, we will use these xi values instead of generating them from PRG. The security of
PRG shows that this game is indistinguishable from Game 0, so A still wins with advantage at
least ε− negl.

Game 2 Notice that with overwhelming probability, none of the xi, i ∈ Ŝ in Game 1 have a
pre-image under PRG. The same applies to x0. Therefore, with overwhelming probability, there
is no input to PKE that will cause PRF to be evaluated on points of the form (xi1 , . . . , xiG) for
ik ∈ Ŝ

⋃
{0}. We can now constrain the PRF so that it can only be evaluated at points (x̂1, . . . , x̂G)

where the set {x̂1, . . . , x̂G} is not contained in the set X∗ = {xi}i∈S
⋃
{x0}. Formally, we construct

a circuit C that takes as input (x̂1, · · · , x̂G) and accepts if and only if there is some x̂j that is not
contained in X∗. We then construct the constrained function PRFC .

Next, replace PRF with PRFC in the program PKE , arriving at the program P ′KE given in
Figure 3. During Setup, give the adversary PiO = iO(P ′KE) as the public parameters.

Since, with overwhelming probability, PKE and P ′KE have the same functionality, security of iO
implies that A still has advantage ε− negl when it is given the obfuscation of P ′KE instead of the
obfuscation of PKE . Therefore A has non-negligible advantage in this Game 2.

Inputs: x̂1, . . . x̂G ∈ XG, i ∈ [G], s ∈ S

Constants: PRFC (replaces PRF in program PKE)

1. If xi 6= PRG(s), output ⊥

2. Otherwise, output PRFC(x1, x2, . . . , xN)

Figure 3: The program P ′KE .

13

An adversary A that has non-negligible advantage in Game 2 can be used to build a PRF
adversary B that breaks the security of PRF as a constrained PRF (as in Definition 2.2). B runs A,
obtaining a set Ŝ. B chooses |Ŝ| + 1 random values xi ∈ {0, 1}2λ, i ∈ Ŝ

⋃
{0}, and asks the PRF

challenger for the constrained function PRFC for C as defined above. B then builds the obfuscation
of P ′KE in Figure 3, giving iO(P ′KE) and x0 to A. Whenever A makes a register honest user query
for i ∈ Ŝ, B responds with xi, and for all other register honest queries, A responds with xi = G(si)
for a random seed si. For a register corrupt user query, B just records the public value xi, and
for an extract query, B just responds with the seed si. For a reveal query, B asks its PRF oracle
for the correct key and thus always reveals the correct key. Finally, for a test query, B makes a
real-or-random challenge query for PRF. B thus perfectly simulates the view of A in Game 2 and
therefore B breaks the security of PRF with advantage ε− negl. It follows that ε must be negligible,
proving the security of Construction 3.4.

4 Multi-party Key Exchange with No Setup
We now show how to remove the trusted setup from the NIKE protocol in the previous section. Our
starting point is the observation that Publish from Construction 3.4 does not depend on params.
This means that in every group of users S, we can designate one party (say, the one with the lowest
i) as the master party, who will run Setup for himself, and publish params along with its public
value pvi. Because the rest of the users can compute their public values without knowing params,
all parties can publish simultaneously (i.e. independently of one another). This gives the first
multi-party NIKE protocol with no setup.
We define two desired properties of a NIKE protocol. The first is untrusted setup:

Definition 4.1. A NIKE protocol has untrusted setup if the random coins used by Setup are part
of the public parameters params. That is, Setup(λ,G,N ; r) = (params, r).

An even stronger notion is that of no setup:

Definition 4.2. A NIKE protocol has no setup if Setup does nothing. That is, Setup(λ,G,N) =
(λ,G,N).

The seminal key exchange protocols of Garg, Gentry, and Halevi [GGH13a] and Coron, Lepoint,
and Tibouchi [CLT13] both require a trusted setup since secrets are involved in generating the
parameters for the multilinear map. The entity who runs setup can generate all group keys given
only the public values from the group members.

Following the observation at the beginning of this section, we can state the following theorem:

Theorem 4.3. Let (Setup,Publish,KeyGen) be a statically secure NIKE protocol where Publish does
not depend on params outputted by Setup, but instead just takes as input λ,G,N, i. Then there is a
statically secure NIKE protocol (Setup′,Publish′,KeyGen′) with no setup.

Proof. As described above, Publish′ runs the publish algorithm (pvi, ski) ← Publish(λ,G,N, i),
as well as the setup algorithm paramsi ← Setup(λ,G,N). The published value for user i is
pv′i = (pvi, paramsi) and the secret value is ski. Then user i runs KeyGen′ for a set S of users,
which lets i∗ be the lowest i in S, and runs k ← KeyGen(paramsi∗ , i, ski, S, {pvi}i∈S). Static security
immediately follows.

14

Applying the conversion of Theorem4.3 to the scheme from Section 3.1, we immediately obtain a
statically secure NIKE protocol with no setup. Unfortunately, Theorem 4.3 cannot be strengthened
to provide semi-static or active security with no setup. The problem lies in the fact that all users,
even corrupt users, will need to generate their own set of public parameters so they can play the
role of master party if needed. The adversary can ask a reveal query on a mix of corrupt and honest
users, and if the public parameters used are corrupt, non-trivial information about the honest users’
secrets may leak.

Concretely, if we apply the conversion to the scheme from Section 3.1, we require all parties to
publish an obfuscated program PiO,i. A corrupt user may publish a malicious program P̂iO,i that
instead of outputting the shared group key simply outputs the input seed. Then, the adversary may
ask a reveal query on a mix of honest and corrupt users, so that a corrupt P̂iO,ic is used, but an
honest user ih is asked to produce the key. The resulting key is just the user’s secret seed sih , which
the adversary now learns. With this seed, the adversary can learn the shared key for any group
containing user ih, even groups of all honest users, thus breaking the security of the scheme. This
attack applies even if the original NIKE is semi-statically or actively secure.

We now describe how to overcome the above difficulties and achieve semi-static security with
no setup. Instead of using the secret itself as input to the obfuscated program PiO,i, we give the
program a signature derived from the secret. Then, even if the adversary learns this signature it
will not learn the user’s secret, and will not learn the group keys for other groups. Proving security
from iO requires a special type of signatures we call constrained signatures.

Construction 4.4. Let PRF be a pseudorandom function, and let (G, Sign,Ver) be a signature
scheme. Let iO be a program indistinguishability obfuscator.

Setup(λ,G,N) Simply output params = (λ,G,N).

Publish(params, i) Party i runs (ski, pki) ← G(λ). Party i also chooses a pseudorandom function
PRF, and computes the obfuscation PiO,i of the program PKE in Figure 4. The public value is
pvi = (pki, PiO,i) and the secret value is ski.

KeyGen(i, ski, S, {pvj}j∈S) Let i∗ be the smallest element in S. Compute the signature σ =
Sign(ski, S), interpreting S as an N -bit string. Then run PiO,i∗ on the inputs S, {pkj}j∈S , i, σ
to obtain the key kS.

Inputs: S ⊂ [N], |S| ≤ G, {pkj}j∈S , i, σ
Constants: PRF

1. Interpret S as an N -bit string.

2. If Ver(pki, S, σ) fails, abort and output ⊥.

3. Otherwise, output PRF(S, {pkj}j∈S).

Figure 4: The program PKE .

Correctness is straightforward by inspection. For security, we will need a new type of signatures,
which we call constrained signatures.

15

4.1 Constrained Signatures

We put forth a new type of signature scheme, which we call a constrained signature. Informally, a
constrained signature scheme allows the computation, given a circuit C, of a constrained public key
pkC . This public key has the property that for any x where C(x) = 0, there are no valid signatures
on x relative to pkC . For security, we require that pkC is indistinguishable from a valid public key
by any adversary that gets to make signature queries on x such that C(x) = 1. More formally, a
constrained signature scheme is tuple of PPT algorithms (G,Sign,Ver,ConstrainGen) where:

G(λ, t) Takes as input the security parameter λ and a upper bound t on the size of circuits C
handled by the scheme. It outputs a valid secret/public key pair (sk, pk). We will often omit
the input t when the upper bound on C is obvious from the use case.

Sign(sk,m) and Ver(sk,m, σ) These are the usual signing and verification algorithms for a signature
scheme.

ConstrainGen(λ, t, C) Takes as λ and t, and a circuit C such that |C| ≤ t. It outputs an invalid
secret and pubic key pair (skC , pkC). We require that Sign(skC , x) produce a valid signature
relative to pkC for all x such that C(x) = 1. Meanwhile, for any x where C(x) = 0, we require
that there are no valid signatures — that is, Ver(pkC , x, σ) rejects for all σ.

For security, we allow an adversary to make signing queries on all x where C(x) = 1, and
ask for the adversary to distinguish a valid public key pk generated by G from an invalid public
key pkC generated by ConstrainGen. More formally, let EXP(b) denote the following experiment,
parameterized by security parameter λ, size bound t, and adversary A:

C
R← A(λ, t)
where |C| ≤ t

(pk0, sk0) R← G(λ, t)
(pk1, sk1) R← ConstrainGen(λ, t, C)
b′ ← ASignb(·)(pkb, λ, t, C)
where

Signb(x) takes as input an x such that C(x) = 1 and outputs Sign(skb, x)

For b = 0, 1 letWb be the event that b′ = 1 in EXP(b) and define CSig(adv)(λ) = |Pr[W0]−Pr[W1]|.

Definition 4.5. A constrained signature scheme (G, Sign,Ver,ConstrainGen) is secure if, for all
polynomials λ, t and any PPT adversary A, the function CSig(adv)(λ) is negligible.

We note that this definition of security implies a targeted form of unforgeability where an
adversary commits to a circuit C, and can then make signing queries on inputs x where C(x) = 1.
The adversary must then forge a signature on a message x∗ where C(x∗) = 0. If such an adversary
exists, then the forgery on x∗ can be used to distinguish a valid public key from a public key pkC
generated from ConstrainGen(λ,C). This targeted form of unforgeability is the basis for the security
of our key exchange protocol, though we need the full power of constrained signatures in order to
prove security.

Though not critical to the security of our key exchange protocol, we note that constrained
signatures actually imply existential unforgeability. The intuition is as follows: Suppose an adversary

16

makes q chosen message queries and is able to produce an existential forgery. Let C(x) be a 1-bit
PRF that outputs 1 with probability 1− ε and 0 with probability ε. By setting ε ≈ 1/q, with non
negligible probability, all of the adversary’s signing queries will be on inputs x where C(x) = 1 but
the forgery will be on x with C(x) = 0. This forgery can then be used to distinguish the valid public
key from the invalid public key.

For now, we assume the existence of such a constrained signature scheme. In Section 9, we show
how to build such a signature scheme from indistinguishability obfuscation.

4.2 Security of our No-Setup Key Exchange Protocol

The following theorem proves the security of Construction 4.4:

Theorem 4.6. Let PRF be a constrained pseudorandom function for polynomial size circuit predicates
and (G,Sign,Ver,ConstrainGen) is a constrained signature scheme for circuit predicates. Let iO be
an indistinguishability obfuscator. Then Construction 4.4 is a semi-statically secure NIKE with no
setup.

Proof. We start with an adversary A breaking the semi-static security game as in Definition 3.2.
We prove security through a sequence of games:

Game 0. This is the standard semi-static attack game. Assume A has advantage ε.

Game 1.i. For i ∈ [N] we define Game 1.i. These games are identical to Game 0, except for the
following modification. When the adversary commits to a set Ŝ, we compute the circuit C1 which
takes an N -bit string, interprets the string as a set S ⊆ [N], and outputs 1 if and only if S * Ŝ.
Note that t (the implicit input to G), is set to some upper bound on |C1|, which is polynomial in N
and G. Then, for every user j ∈ Ŝ, j ≤ i, we run ConstrainGen on C1 to obtain a constrained public
key pkj . When answering a register honest user query on j ∈ Ŝ, j ≤ i, we will use this pkj value.
All other queries are answered as in Game 0. Observe that Game 1.0 is the same as Game 0.
Define Game 1 as Game 1.N . In this Game 1 all public keys are replaced by constrained public
keys, constrained by C1.

Suppose A can distinguish Game 1.(i− 1) from Game 1.i. Then we construct an adversary B1,i
that breaks the constrained signature security. B1,i asks its challenge for the constrained verification
key pk corresponding to the circuit C1. For an honest register query on j ∈ Ŝ, j ≤ i − 1, B1,i
generates (skj , pkj) = ConstrainGen(C1) and responds with pkj . For an honest register query on i
(if i ∈ Ŝ), B1,i responds with pk. For all other honest register queries, B responds as in Game 0.
Now B1,i can answer all of A’s queries on its own, except for reveal queries where user i is asked
to compute the shared key. For these queries, B1,i queries the constrained signature challenger for
the appropriate signature, and then computes the shared key. Note that since reveal queries on a
set S require S * Ŝ, we have that C1(X) = 1. Therefore, the query B1,i makes to the constrained
signature challenger will always be a legal query. If pk is the constrained key pkC1 , then B1,i correctly
simulates Game 1.i, whereas if pk is a correctly generated key, then B simulates Game 1.(i− 1).
Thus B1,i has advantage equal to the probability A distinguishes Game 1.(i− 1) from Game 1.i.

We can combine all of the non-uniform adversaries B1,i into a single uniform adversary B1 that
operates by first choosing a random i in [N] and then runs B1,i. B1 will have advantage equal to the
average of the advantages of B1,i, which is equal to the probability A distinguishes Game 0 from

17

Game 1, divided by N . The security of the signature scheme shows that this probability must be
negligible, and hence A has advantage ε− negl in breaking Game 1

Game 2.i For i ∈ [N] these games are identical to Game 1, except for the following modification.
When the adversary commits to a set Ŝ, generate the public keys pkj for j ∈ Ŝ as in Game 1,
and then we compute the circuit C2 which takes an N -bit string interprets as a set S, and a list
of public keys of size at most G. If S ⊆ Ŝ, and the list of public keys is exactly {pki}i∈S , then C2
outputs 0. Otherwise, C2 outputs 1. Then, for j ∈ Ŝ, j ≤ i, the challenger will generate PiO,j as the
obfuscation of the program P ′KE in Figure 5. All other users will have the correct public values.
Notice that Game 2.0 is the same as Game 1. We define Game 2 to be Game 2.N. Because pkj
for j ∈ Ŝ have no valid signatures relative to sets S ⊆ Ŝ, the programs P ′KE and PKE have identical
behaviors. Thus, their obfuscations are indistinguishable, and it is therefore straightforward to show
that Game 2.(i− 1) is indistinguishable from Game 2.i for all i. Therefore, we can conclude that
in Game 2=Game 2.N , A has advantage ε− negl.

Inputs: S ⊂ [N], |S| ≤ G, {pkj}j∈S , i, σ

Constants: PRFC2 (replaces PRF in program PKE)

1. Interpret S as an N -bit string.

2. If Ver(pki, S, σ) fails, abort and output ⊥.

3. Otherwise, output PRFC2(S, {pkj}j∈S).

Figure 5: The program P ′KE .

Game 3.i For i ∈ [N] these games are identical to Game 2, except for the following modification.
During a test query on a set S, if the lowest user in S is j (which means PiO,j is used to generate
the key) and j ≤ i, then respond with a random key instead of the properly generated key. For all
other test queries, respond with the correctly generated key. Notice that Game 3.0 is the same as
Game 2 in the case where the challenger chooses the correct key, and Game 3.N is Game 2 but
where the challenger responds with a random key. If A can distinguish between Game 3.(i− 1)
and Game 3-i, then it is straightforward to build a constrained pseudorandom function adversary
for PRF. Thus, we can conclude that A has negligible advantage at distinguishing Game 3.0 from
Game 3.N , meaning A also has negligible advantage in Game 2. Finally, this means A had
negligible advantage in Game 0, completing the proof.

5 Adaptively Secure Public-key Broadcast Encryption
With Optimal Ciphertext Size

In this section, we build broadcast encryption based on our key exchange mechanism. We begin by
defining a broadcast encryption scheme and what it means to be secure. A (public-key) broadcast
encryption system [FN94] is made up of three randomized algorithms:

18

Setup(λ,N) Given the security parameter λ and the number of receivers N , output N private keys
sk1, . . . , skN and public parameters params. For i = 1, . . . , N , recipient number i is given the
private key ski.

Enc(params, S) Takes as input a subset S ⊆ {1, . . . , N}, and the public parameters params. It
outputs a pair (Hdr, k) where Hdr is called the header and k ∈ K is a message encryption key
chosen from a key space K. We will often refer to Hdr as the broadcast ciphertext.
Let m be a message to be broadcast that should be decipherable precisely by the receivers in
S. Let cm be the encryption of m under the symmetric key k. The broadcast data consists
of (S,Hdr, cm). The pair (S,Hdr) is often called the full header and cm is often called the
broadcast body.

Dec(params, i, ski, S,Hdr) Takes as input a subset S ⊆ {1, . . . , N}, a user id i ∈ {1, . . . , N} and the
private key ski for user i, and a header Hdr. If i ∈ S the algorithm outputs a key k ∈ K.
Intuitively, user i can then use k to decrypt the broadcast body cm and obtain the message m.

The above definition describes a public-key broadcast encryption scheme. In a secret-key broadcast
system, the encryption algorithm Enc requires as an additional input a private broadcast key bk
that is only known to the broadcaster.

The length efficiency of a broadcast encryption system is measured in the length of the header
Hdr. The shorter the header, the more efficient the system. Some systems such as [BGW05, Del07,
DPP07, BS03, SF07] achieve a fixed size header that depends only on the security parameter and is
independent of the size of the recipient set S.

As usual, we require that the system be correct, namely that for all subsets S ⊆ {1, . . . , n}
and all i ∈ S if (params, (sk1, . . . , skN)) R← Setup(λ,N) and (Hdr, k) R← Enc(params, S) then
Dec(params, i, ski, S,Hdr) = k.

Distributed broadcast encryption. Existing public-key broadcast encryption systems with
short ciphertexts [BGW05, DPP07, Del07, GW09, BS03, SF07] require that key generation is done
by a central setup algorithm. Participants are given their secret keys by a central authority and
this central authority can decrypt all broadcasts.

The broadcast encryption systems we present are the first short-ciphertext systems to support
distributed key generation, where each user generates a secret key for itself and there is no central
authority. In such systems, the Setup algorithm is divided into two randomized algorithms:

• Setup′(λ,N): given the maximum number of users N outputs system parameters params, and

• Join(params, i): outputs a pair (ski, pvi).

Algorithm Setup(λ) initializes the system. Then every recipient i = 1, . . . , N generates a pub-
lic/private key pair for itself by running Join(params, i). The overall system’s public key consists of
params and all the public values generated by Join.

Security. We consider several notions of security for broadcast encryption systems. The strongest
is adaptive security, where an adversary A that adaptively obtains recipient keys ski of its choice
cannot break the semantic security of a broadcast ciphertext intended for a recipient set S∗ for
which A has no secret keys. More precisely, security is defined using the following experiment,
denoted EXP(b), parameterized by the total number of recipients N and by a bit b ∈ {0, 1}:

19

(params, (sk1, . . . , skN)) R← Setup(λ,N)

b′ ← ARK(·),SK(·),RoR(b,·)(λ,N)
where

RK(i) is a recipient key oracle that takes as input i ∈ [N] and returns ski,
SK(S) is an oracle that takes as input S ⊆ [N] and returns Enc(params, S), and
RoR(b, S∗) is a real-or-random oracle: it takes as input b ∈ {0, 1} and

S∗ ⊆ [n], computes (Hdr, k0) R← Enc(params, S∗) and k1
R← K,

and returns (Hdr, kb).

We require that all sets S∗ given as input to oracle RoR are distinct from all sets S given as input
to SK and that S∗ does not contain any index i given as input to RK. For b = 0, 1 let Wb be the
event that b′ = 1 in EXP(b) and as usual define BE(adv)(λ) = |Pr[W0]− Pr[W1]|.

Definition 5.1. We say that a broadcast encryption system is adaptively secure if for all probabilistic
polynomial time adversaries A the function BE(adv)(λ) is negligible.

Next, we consider two weaker versions of security. The first is semi-static security, where A is
required to commit to a set Ŝ of users before seeing the public parameters. All recipient key queries
are required to be outside of Ŝ, and all real-or-random queries must be for recipient sets S∗ that are
a subset of Ŝ.

Definition 5.2. A broadcast encryption system is semi-statically secure if, for all probabilistic
polynomial times adversaries Ameeting the following conditions, the function BE(adv)(λ) is negligible:

• A commits to a set Ŝ of users before seeing the public parameters.

• Each query to RK must be on a user i outside the set Ŝ.

• Each query to RoR must be on a set S∗ that is a subset of Ŝ.

Gentry and Waters [GW09] give a simple conversion from any semi-static broadcast encryption
scheme on 2N users to an adaptively secure broadcast encryption scheme on N users. This gives
the following theorem:

Theorem 5.3 ([GW09]). Given any broadcast encryption scheme that is semi-statically secure for
2N users, it is possible to construct an adaptively secure broadcast encryption scheme for N users.
If h is the header size of the original encryption scheme, then a broadcast to a set S in the new
scheme will have a header will have size |S|+ 2h+O(λ).

The final security notion we consider is selective security, where A must commit to the set S∗
itself before seeing the public parameters:

Definition 5.4. A broadcast encryption system is selectively secure if, for all probabilistic polyno-
mial times adversaries A meeting the following conditions, the function BE(adv)(λ) is negligible:

• A commits to a set S∗ before seeing the public parameters.

• A makes only a single query to RoR, and this query is on the set S∗.

20

5.1 Broadcast Encryption From Key Exchange

Any multiparty non-interactive key exchange (NIKE) protocol gives a broadcast encryption scheme.
Moreover, if the Publish step is independent of the public parameters, the resulting scheme is
distributed. We give two variants: a distributed secret-key scheme and a distributed public-key
scheme. We start with the secret-key scheme:

Setup(λ,N) Set G = N , and run the key exchange setup algorithm to obtain public parameters
params′.

Join(λ,N, i) Run (ski, pvi) ← Publish(λ,G = N,N, i). User i publishes pvi and keeps ski as its
secret key. The overall public key is params = (params′, {pvi}i∈[N]). The broadcast key is
{ski}i∈[N].

Enc(params, bk, S) Let i∗ be some user in S. Let
k ← KeyGen(params′, i∗, ski∗ , S, {pvi}i∈[S]). Output (Hdr = ∅, k).

Dec(params, i, ski, S) If i /∈ S, abort. Otherwise, let k ← KeyGen(params′, i, ski, S{pvj}j∈[S]).

This construction is reminiscent of the construction of Boneh and Silverberg [BS03] — indeed,
building key exchange from multilinear maps and then applying this conversion gives a variant of
their scheme. We obtain the following theorem:

Theorem 5.5. Given a statically, semi-statically, or adaptively secure non-interactive key exchange
protocol for N users, it is possible to construct a selectively, semi-statically, or adaptively secure
distributed secret-key broadcast encryption for N users, respectively. The header size will be 0.

We can also easily produce a public key scheme by having the sender pretend to be one of the
parties in the key exchange:

Setup(λ,N) Set G = N + 1 and run the key exchange setup for algorithm for N + 1 users to obtain
public parameters params′.

Join(λ,N, i) Run (ski, pvi)← Publish(λ,G = N + 1, N + 1, i). User i publishes pvi and keys ski as
its secret key. The overall public key is params = (params′, {pvi}i∈[N]).

Enc(params, S) Run (skN+1, pvN+1) ← Publish(λ,G = N + 1, N + 1, N + 1). Compute k ←
KeyGen(params′, N + 1, skN+1, S

⋃
{N + 1}, {pvi}i∈S⋃{N+1}). Output (Hdr = pvN+1, k).

Dec(pk, i, ski, S,Hdr = pvN+1) If i /∈ S, abort. Otherwise, let
k ← KeyGen(params′, i, ski, S

⋃
{N + 1}, {pvi}i∈S⋃{N+1}).

We obtain the following theorem:

Theorem 5.6. Given a statically, semi-statically, or adaptively secure non-interactive key exchange
protocol for N + 1 users it is possible to construct a selectively, semi-statically, or adaptively secure
distributed public-key broadcast encryption for N users. The header size will be the length of a single
user’s public value.

21

Instantiating Theorem 5.6 with the NIKE from Section 3.1 gives a header size that is constant
with respect to the number of users. The resulting semi-static broadcast system can be converted to
an adaptively-secure scheme using the generic conversion of Gentry and Waters [GW09]. Therefore,
using indistinguishability obfuscation and constrained PRFs, it is possible to build a public-key
adaptively secure distributed broadcast with constant size ciphertext.

We note that applying Theorem 5.6 to the existing N -user NIKE protocols from an (N − 1)
linear map [GGH13a, CLT13] results in a non-interesting broadcast system because the resulting
broadcast system will have Ω(N) size headers. This makes it worse than the trivial broadcast
encryption scheme. The reason for the large header size is that existing N -linear maps require Ω(N)
bits to encode a single element.

To conclude this section, we prove Theorem 5.6, which is very similar to the proof of Theorem 5.5:

Proof. We prove security for the adaptive case, the other proofs being nearly identical. Suppose we
have an adversary A that breaks the broadcast encryption scheme. A receives the public parameters,
and makes the following queries:

• Secret key queries: A submits a user i, and receives the secret key ski for that user.

• Challenge query: A submits a set S of users for which he does not have any secret keys. If
b = 0, the challenger responds with the correct header. Otherwise if b = 1, the challenger
responds with a random key.

Using a simple hybrid argument, we can assume the adversary makes only a single challenge query.
We create a simple adversary B that breaks the adaptive security of the underlying key exchange

protocol. B receives public parameters params′ from the key exchange challenger. B also makes N
register honest user queries for identities i ∈ [N], receiving public values pvi in return. B sends to A
the public parameters params = (params′, {pvi}i∈[N]). Now B simulates A. When A makes a secret
key query for user i, B makes an extract query for the identity i. When A makes the challenge query
on set S, B registers a new honest user i = N + 1 (obtaining public value pvN+1), and then makes a
test query on the identities S

⋃
{N + 1}. B returns pvN+1 as the header, and the response from the

test query as the key. At the end of the game, when A outputs a bit b′, B outputs the same bit. B
correctly simulates A in both the b = 0 and b = 1 case, so B has the same success probability as A.
Therefore, since the key exchange protocol is secure, so is the broadcast encryption scheme.

6 Traitor Tracing With Small Parameters
In this section, we present a private linear broadcast encryption (PLBE) scheme, which has short
ciphertexts, secret keys, and public keys. Boneh, Sahai, and Waters [BSW06] show that this implies
a fully collusion resistant traitor tracing system with the same parameters.

Our approach gives a more general primitive called a recipient-private broadcast encryption
system: a broadcast system where ciphertexts reveal no information about the intended recipient
set (beyond what is explicitly allowed) [BBW06]. The system is made up of three algorithms
(Setup,Enc,Dec) as in the public recipient set settings, except that the input to Dec does not include
the intended recipient set S. That is, Dec takes as input (params, i, ski,Hdr) and outputs a key
k ∈ K or ⊥.

22

Security. Recipient-private broadcast systems often need only broadcast to a specific collection of
user sets S ⊂ 2[N] and security is defined with respect to this collection S. The attacker should be
unable to distinguish a broadcast to one set S0 ∈ S from a broadcast to another set S1 ∈ S (subject
to some natural constraints on the choice of S0 and S1 explained below). The set systems of interest
to us are:

• 2[N], the set of all subsets. Since the ciphertext should reveal nothing about which S ∈ S is
the target set, a system capable of broadcasting to any subset of [N] must reveal nothing
about the recipient set, not even its size.

•
([N]
r

)
, the collection of subsets of size exactly r. A system capable of broadcasting to any set

in
([N]
r

)
may reveal the size r of the recipient set, but should reveal nothing else about the set.

• LinN = {∅ = [0], [1], . . . , [N]}. Privacy with respect to this set system gives private linear
broadcast encryption.

Recipient privacy with respect to a given set system S states that an attacker who specifies
two recipient sets S0, S1 ∈ S should be unable to distinguish a broadcast encryption to S0 from a
broadcast to S1, even if the attacker is given private keys for all users in S0 ∩ S1 and [N] \ (S0 ∪ S1).
This is the maximum number of keys we can give the attacker since any other key trivially lets the
attacker distinguish a broadcast to S0 from a broadcast to S1. More precisely, security is defined
using the following experiment EXP(b) on an adversary A = (A0,A1) parameterized by the total
number of recipients N and by a bit b ∈ {0, 1}:

(params, bk, (sk1, . . . , skN)) R← Setup(λ,N)

b′ ← ARK(·),SK(·),Ch(b,·,·)(λ, n)
where

RK(i) is the recipient key oracle that takes as input at index i ∈ [N], and
returns the secret key ski for user i.

SK(S) is an oracle that takes as input S ∈ S and returns Enc(bk, S), and
Ch(b, S0, S1) takes as input a bit b ∈ {0, 1} and two sets S0, S1 ∈ S and returns

a challenge ciphertext Enc(bk, Sb).
We require that for each challenge on (S0, S1) and each recipient key query for i ∈ [N], that i is not
in the symmetric difference of S0 and S1, namely i /∈ S0∆S1. In other words, the adversary’s secret
keys cannot trivially allow it to break the scheme. For b = 0, 1 let Wb be the event that b′ = 1 in
EXP(b). Define PBE(adv)(λ) = |Pr[W0]− Pr[W1]|.

Definition 6.1. We say that a broadcast encryption system is S-recipient-private selectively (resp.
semi-statically, adaptively) semantically secure if it is a selectively (resp. semi-statically, adaptively)
semantically secure broadcast system and for all probabilistic polynomial time adversaries A the
function PBE(adv)(λ) is negligible.

Definition 6.1 captures recipient privacy for a secret-key broadcast system: the encryption key bk
is kept secret and not given to the adversary in the security experiment EXP(b). Security for a
public-key recipient-private system is defined analogously with bk removed from the definition of
EXP(b).

Remark 6.2. We note that for private linear broadcast, there are only a polynomial number of
recipient sets, meaning selective and adaptive security are equivalent.

23

6.1 Private broadcast encryption: first construction

Construction overview. Since a broadcast ciphertext should reveal as little as possible about
the recipient set S our plan is to embed an encryption of the set S in the broadcast ciphertext. The
public-key will contain an obfuscated program that decrypts the encrypted recipient set S and then
outputs a message decryption key only if the recipient can prove it is a member of S. However,
encrypting the set S so that we can prove security using iO is non-trivial, and requires a certain
type of encryption system.

In more detail, each user’s private key will be a random seed si, and we let xi = PRG(si)
as in the previous section. We need to allow user i to learn the message decryption key for all
sets S containing i. To that end, we include in the public key an obfuscated program that takes
three inputs: an encrypted recipient set, an index i, and a seed si. The program decrypts the
encrypted set, checks that the index i is in the set, and that the seed si is correct for that index (i.e.
xi = PRG(si)). If all the checks pass, the program evaluates some pseudorandom function on the
ciphertext to obtain the message decryption key and outputs that key.

We immediately see a problem with the description above: the obfuscated program must, at a
minimum, have each of the xi embedded in it, making the program and hence the public key linear
in size. To keep the public key short, we instead generate the seeds si using a pseudorandom function
PRFsk: si = PRFsk(i). We then have the program compute the xi on the fly as xi = PRG(PRFsk(i)).

Another problem with the above description is that encrypting the recipient set S using a
generic CPA-secure encryption scheme is insufficient for providing recipient privacy. The problem is
that ciphertexts may be malleable: an attacker may be able to transform an encryption of a set S
containing user i into an encryption of a set S′ containing user j instead (that is, j is in S′ if and
only if i is in S). Now the attacker can use user j’s secret key to decrypt the broadcast ciphertext.
If decryption succeeds the attacker learns that user i is in the original ciphertext’s recipient set,
despite not having user i’s secret key. This violates recipient privacy.

To solve this problem, we authenticate the encrypted recipient set using a message authentication
code (MAC). However, proving security is a bit challenging because the decryption program must
include the secret MAC key, and we need to ensure that this key does not leak to the attacker. We
do so by implementing the MAC using a constrained PRF that supports interval constraints. We
then prove that this is sufficient to thwart the aforementioned malleability attacks and allows us to
prove security of the scheme.

We will need a slightly stronger notion of constrained PRF, which we will call an interval
constrained PRF:

Definition 6.3. PRF : [L]→ Y is a interval constrained PRF if it has the following properties:

• PRF is a constrained PRF for the class of intervals [A,B] for A ≤ B and A,B ∈ [L]

• The constrained programs PRF[A,B] each have size at most O(logL).

The GGM construction for pseudorandom functions (or any constrained PRF for prefixes)
satisfies this notion. For our construction, we will only need to support intervals of the form [1, `]
and [`′, L].

We next present our private linear broadcast construction (i.e. the case where S = LinN). We
first present a private-key variant, where a secret broadcast key is required to encrypt. We then
show how to make the scheme public-key. We discuss extending this construction to other set
systems at the end of the section.

24

Construction 6.4. Our traitor tracing scheme consists of three algorithms (Setup,Enc,Dec) defined
as follows:

Setup(λ,N) Let PRFenc : {0, 1}2λ → [N] and PRFkey : {0, 1}2λ×{0, . . . , N} → {0, 1}λ be punctured
PRFs and PRFmac : {0, 1}2λ × {0, . . . , N} → {0, 1}λ and PRFsk : [N] → {0, 1}λ be interval
constrained PRFs. Let si ← PRFsk(i) for each i ∈ [N]. Let PTT−Dec be the program in
Figure 6, padded to the appropriate length. User i’s secret key is si, and the public parameters
are params = PDec = iO(PTT−Dec).

Enc((PRFenc,PRFmac,PRFkey), [j]) Pick a random r ∈ {0, 1}2λ, and let
c1 ← PRFenc(r) + j mod (N + 1). Let c2 ← PRFmac(r, c1). Finally, let k ← PRFkey(r, c1).
Output (Hdr = (r, c1, c2), k).

Dec(params, si, i, r, c) Run k ← PDec(r, c, si, i).

Inputs: r, c1, c2, s, i
Constants: PRFenc,PRFmac,PRFkey,PRFsk

1. Let j ← c1 − PRF1(r) mod (N + 1)

2. Let x← PRG(PRFsk(i))

3. Let y ← PRG(PRFmac(r, c1))

4. Check that PRG(s) = x, PRG(c2) = y, and i ≤ j. If check fails, output ⊥ and stop

5. Otherwise, output PRFkey(r, c1)

Figure 6: The program PTT−Dec.

A public-key system. As described, our scheme requires a secret broadcast key in order to
encrypt. However, it is straightforward to allow anyone to encrypt. The idea is to include an
obfuscated program for encryption. This does not quite work, as it would give everyone the ability
to query PRFenc directly. Instead, we use the trick of Sahai and Waters [SW13] and obfuscate
the program that takes the randomness, applies a pseudorandom generator, and then proceeds
to encrypt using the output of the pseudorandom generator as randomness. In particular, we let
PEnc be the obfuscation of the program PTT−Enc in Figure 7 (as usual, padded to the appropriate
size), and include it in the public key. The idea is that the r∗ created by the challenger is (with
overwhelming probability) not a PRG sample, so giving out the program PTT−Enc does not help the
adversary learn anything about PRFenc, PRFmac, or PRFkey at the point r∗. We get the following
encryption algorithm:

Enc(params, [j]) Let t ← {0, 1}λ. Run (r, c, k) ← PEnc(j, t). Output (r, c) as the header and k as
the message encryption key.

25

Inputs: j, t
Constants: PRFenc,PRFmac,PRFkey

1. r ← PRG(t)

2. c1 ← PRFenc(r) + j mod (N + 1)

3. c2 ← PRFmac(r, c1)

4. k ← PRFkey(r, c1)

5. Output (Hdr = (r, c1, c2), k)

Figure 7: The program PTT−Enc.

Secret keys have length λ, and ciphertexts have size 3λ+ log(N + 1). The public key consists
of two obfuscated programs. The size of these programs is only dependent polylogarithmically
on the number of users, so the obfuscated programs will have size poly(logN,λ). Therefore, we
simultaneously achieve small ciphertexts, secret keys, and public keys. Security is given by the
following theorem:

Theorem 6.5. If PRFenc and PRFkey are secure puncture PRFs, PRFmac and PRFsk are secure
interval constrained PRFs, and PRG is a secure pseudorandom generator, then (Setup,Enc,Dec) in
Construction 6.4 is an adaptively secure private linear broadcast encryption scheme.

Proof. We first prove semantic security. Since there are only a polynomial number of sets in the
set system, we can assume the adversary commits to a target set [j∗] before seeing any public
parameters or secret keys. The adversary then receives the public parameters, as well as the secret
keys for all i > j∗. The adversary’s challenge will be on the set [j∗]. Therefore, we can also construct
the challenge ciphertext before giving the adversary the public parameters and secret keys. The
challenge header will be (r∗, c∗1, c∗2) where r∗ is a random PRG sample, c∗1 = PRFenc(r∗) + j∗ is an
encryption of j∗, and c∗2 = PRFmac(r∗, c∗) is a MAC.

First, we slightly change the game above by choosing the challenge r∗ as a truly random value
in {0, 1}2λ. This game is indistinguishable from the original game by the security of PRG. Now,
with high probability, r∗ is not in the image of PRG. Since we generate (r∗, c∗1, c∗2) before giving the
adversary the public key, we can puncture PRFkey at the point (r∗, c∗1) in the encryption program
PTT−Enc without changing its functionality. Indistinguishability of obfuscations shows that the
adversary cannot detect this change.

Next, our goal is to puncture PRFkey at the point (r∗, c∗1) in the decryption program PTT−Dec. The
naive way to accomplish this is to puncture PRFsk at all i ≤ j∗, and hard-code xi = PRG(PRFsk(i))
into the decryption program. Then we can replace each of the xi for i ≤ j∗ embedded in the
decryption program with a truly random value in {0, 1}2λ, and with high probability none of these
will be in the image of PRG. This will allow us to add a check that i > j∗ at the beginning of the
obfuscated decryption program and stop the program if the check fails. This check does not change
the functionality of the program. Since in step (4) the program checks that i ≤ j and aborts if not,
we know that on the challenge ciphertext, where j = j∗, one of these checks always fails so that the
program will never reach step (5). Thus, we can puncture PRFkey at the challenge, as desired.

The problem is that we hard-coded j∗ different xi values in the decryption program, making

26

the program size potentially linear in N . Therefore, to apply iO, we would then need the original
PTT−Dec to also be linear in size, making our public keys large.

Our solution is to puncture PRFsk at the relevant points, one point at a time. This will let us
keep the size of the program small. Define hybrid decryption programs P (`)

TT−Dec and P (`+1/2)
TT−Dec as in

Figures 8 and 9. Note that P (`+1/2)
TT−Dec includes a single hard-coded value x` used in step (3).

Inputs: r, c1, c2, s, i

Constants: PRFenc,PRFmac,PRFkey,PRF{`,...,N}sk

1. Let j ← c1 − PRF1(r) mod (N + 1)

2. if i < ` output ⊥ and stop // this added test is the only change from PTT−Dec

3. Let x← PRG(PRFsk(i))

4. Let y ← PRG(PRFmac(r, c1))

5. Check that PRG(s) = x, PRG(c2) = y, and i ≤ j. If check fails, output ⊥ and stop

6. Otherwise, output PRFkey(r, c1)

Figure 8: The program P
(`)
TT−Dec for ` = 1, . . . , j∗ + 1.

Inputs: r, c1, c2, s, i

Constants: PRFenc,PRFmac,PRFkey,PRF{`+1,...,N}
sk , x`

1. Let j ← c1 − PRF1(r) mod (N + 1)

2. if i < ` output ⊥ and stop

3. Let x←
{

PRG(PRFsk(i)) if i > `

x` if i = ` // this special case is only change from P
(`)
TT−Dec

4. Let y ← PRG(PRFmac(r, c1))

5. Check that PRG(s) = x, PRG(c2) = y, and i ≤ j. If check fails, output ⊥ and stop

6. Otherwise, output PRFkey(r, c1)

Figure 9: The program P
(`+1/2)
TT−Dec for ` = 1, . . . , j∗.

Each of these programs is at most poly(logN,λ) is size. Therefore, to apply iO we only need
the original program to be poly(logN,λ) size, keeping the public key short.

Now, observe that PTT−Dec is equivalent to P
(1)
TT−Dec. Moreover, for all ` ∈ [j∗ + 1] when

x` = PRG(PRFkey(`)) the program P
(`)
TT−Dec is functionally equivalent to P (`+1/2)

TT−Dec. Then indistin-
guishability of obfuscations allows us move from ` to `+ 1/2 without the adversary detecting the

27

change. Now, PRFsk can be punctured at the point ` so that s` = PRFsk(`) can be replaced by a
random value s` ∈ {0, 1}λ by the security of PRFsk. Next x` = PRG(s`) can be exchanged for a
completely random x` ∈ {0, 1}2λ by the security of PRG, so long as ` ≤ j∗ (so that the adversary
does not get to see s`). A truly random x` is then, with overwhelming probability, not in the
image of PRG, in which case P (`+1/2)

TT−Dec will always output ⊥ when i = `, so we can modify the
check in step (2) to abort if i < ` + 1, obtaining the program P

(`+1)
TTDec

. Thus, so long as ` ≤ j∗,
indistinguishability of obfuscations lets us to move from the program (` + 1/2) to the program
(`+ 1) without the adversary detecting the change.

In summary, we can define a sequence of hybrids, the first of which is the original game, and
the last of which we give the adversary the decryption program P

(j∗+1)
TT−Dec, and each hybrid is

indistinguishable from the previous hybrid.
Now, the program P

(j∗+1)
TT−Dec outputs ⊥ on encryptions to the set [j∗] since it checks that i ≤ j∗

and i ≥ j∗ + 1. Therefore, since we generate the challenge ciphertext (r∗, c∗1, c∗2) before giving the
adversary the public key, we can puncture PRFkey at (r∗, c∗1) without changing the functionality of
the program. As a result we can simulate the entire view of the adversary with only the punctured
program PRF{(r

∗,c∗1)}
key . But then, by the security of PRFkey, the challenge key k∗ = PRFkey(r∗, c∗1) is

indistinguishable from a truly random key, thus proving the semantic security of the scheme.

Recipient privacy. It remains to prove recipient privacy. The proof is similar to semantic security
and we only sketch the proof. We can again assume the adversary commits to a value j∗, but now
he receives secret keys for every user other than j∗. In the challenge, we encrypt either to [j∗] or
[j∗− 1]. Our goal is to show that the adversary cannot tell the difference. First, we puncture PRFsk
at j∗ and hard-code xj∗ = PRG(sj∗) = PRG(PRFsk(i)) into PTT−Dec. Then we replace sj∗ with a
truly random value, and then replace xj∗ itself with a truly random value. The indistinguishability
of obfuscations, the security of PRFsk, and the security of PRG show that these changes are not
detectable. Now, with overwhelming probability, xj∗ is not in the image of PRG, so we can modify
PTT−Dec to abort when i = j∗ without affecting the program.

Next, we need to make sure our challenge ciphertext (r∗, c∗1, c∗2) is non-malleable so that the
adversary cannot use PTT−Dec to learn the set we encrypted to. To accomplish this, pick a point
(r∗, c′1), puncture PRFmac at (r∗, c′1), and hard-code yc′1 = PRG(PRFmac(r∗, c′1)) into the program.
If c′1 6= c∗1, we can replace yc′1 with a truly random value, so that with high probability there will be
no c2 with PRG(c2) = yc′1 . Thus, without changing the functionality of the program, we can include
the following check: if r = r∗ and c1 = c′1, output ⊥ and stop. We can also remove the value yc′1
from the program. If c′1 = c∗1, then we can instead hard-code y∗ = PRG(c∗2) into the program and
add the check: if r = r∗, c1 = c∗1, and PRG(c2) 6= y∗, output ⊥ and stop.

By doing these changes for each of the log(N + 1) different c′1 values, we move to a setting where
the only (r∗, c1, c2) that PTT−Dec will run on is (r∗, c∗1, c∗2). We need to make sure we can iterate
through the c′1 in a way that keeps the programs short. By iterating through the c′1 in order, we
ensure that we only puncture PRFmac at an interval: (r∗, 0), . . . (r∗, `) for some `. In otherwords, we
constrain PRFmac to two intervals: all elements less that (r∗, 0) or greater than (r∗, `). Moreover, we
can combine the c1 6= c′1 checks together into at most two inequality checks (one for the c′1 less than
c∗1, and one for the c′1 greater than c∗1). Therefore, using the indistinguishability of obfuscations,
the security of PRG, and the security of PRFmac, we move to a game where the adversary sees the

28

Inputs: r, c1, c2, s, i

Constants: PRFenc,PRF{(r∗,c1):c1∈{0,...,N}}
mac ,PRFkey,PRF{j

∗}
sk , y∗

1. Let j ← c1 − PRF1(r) mod (N + 1)

2. Check that i 6= j∗. If r = r∗ check that c1 = c∗1. If check fails, output ⊥.

3. Let x← PRG(PRFsk(i))

4. Let y ←
{

PRG(PRFmac(r, c1)) if r 6= r∗

y∗ if r = r∗ and c1 = c∗1

5. Check that PRG(s) = x, PRG(c2) = y, and i ≤ j. If check fails, output ⊥

6. Otherwise, output PRFkey(r, c1)

Figure 10: The program P ′TT−Dec.

obfuscation of the program in Figure 10.
Now we can puncture PRFenc at r∗ and hard-code z∗ = PRFenc(r∗) into the obfuscated program.

Next, replace z∗ with a truly random value, which is not noticeable by the security of PRFenc.
Notice that we can change from an encryption to [j∗] to an encryption to [j∗ − 1] by simply adding
1 to z∗ (mod N + 1). Since z∗ is a random value mod N + 1, so is z∗+ 1. But moving from z∗ when
encrypting [j∗] to z∗ + 1 when encrypting to [j∗ − 1] does not affect the functionality of P ′TT−Dec,
meaning that the adversary cannot tell an encryption to [j∗] from an encryption to [j∗ − 1]. This
proves the recipient privacy of our scheme.

6.2 Extension to Other Set Systems

We can easily extend Construction 6.4 to the other set systems of interest: S = 2[N] and S =
([N]
r

)
.

The only difference is that we represent sets S ∈ S as integers in {0, . . . , L− 1} where L = |S|, and
let PRFenc output integers in {0, . . . , L − 1}. We obtain recipient private broadcast systems for
these collections of sets where secret keys have size λ, independent of N . Ciphertexts will have size
3λ plus the size of the representation of elements in the collection. For S = 2[N], this is 3λ+N ,
and for S =

([N]
r

)
, this is 3λ + log

(N
r

)
≈ 3λ + r logN . These are essentially optimal. The public

keys will be polynomial in the security parameter and the size of representations.
However, the proof of security is problematic, even for the simpler case of selective security.

In the recipient private proof, we gradually puncture PRFmac at all ciphertexts with the same
randomness r∗ as the challenge ciphertext, and each step requires several hybrids. The number
of hybrids is therefore proportional to the number of sets in our set system. Therefore, for either
S = 2[N] or S =

([N]
r

)
, this is exponential, meaning we take an exponential hit in the security of the

construction.
One solution is to use complexity leveraging, assuming that the underlying primitives have

exponential security. In the next section, we show that we can obtain security without complexity
leveraging using a different technique. The drawback to our next scheme is the public key size,
which is NO(1).

29

7 Recipient-Private Broadcast Encryption
In this section, we give an alternate construction of recipient-private broadcast encryption with
short ciphertexts. There are two variants of our scheme, depending on the security of the underlying
PRF. Using a punctured PRF, we obtain selective security without complexity leveraging, which
was not possible with our previous scheme. Using a constrained PRF for circuit predicates, we
obtain semi-static security. While the known constructions of such PRFs ([BW13] and Section 9)
all require complexity leveraging, our scheme does not require any additional complexity leveraging.
The generic transformation of Gentry and Waters [GW09] from semi-static to adaptive security
also applies to private broadcast, and we therefore obtain an adaptively-secure recipient-private
broadcast system. The main drawback is that our public keys will not be as compact, as they will
be polynomial in N and λ.

7.1 Our Recipient-Private Broadcast Scheme

Preventing malleability by authenticating caused our security proof to require an exponential number
of hybrids. Our idea in this section is to allow malleability, but prevent the attacker from learning
anything by changing the ciphertext. We call our solution the malleable-key method.

The malleable-key method. To solve the difficulty discussed above, we develop a solution based
on specialized encryption schemes tailored to each of the three set systems S discussed above: 2[N],([N]
r

)
, and LinN . These encryption systems will be malleable with respect to the key, which will

enable us to prove security.
We start by defining an encryption scheme for each of the three set systems of interest. Let

E : K×S → S and D : K×S → S be an “encryption scheme for sets.” That is, the plaintext space
for these schemes are sets S ∈ S. The encryption schemes are defined as follows:

• For S = LinN : the key space K is the set of all (N + 1)! permutations σ on {0, 1, . . . N}.
Encryption and decryption are defined as:

E(σ, [r]) = [σ(r)] = {1, 2, . . . , σ(r)}
D(σ, [r]) = [σ−1(r)] = {1, 2, . . . , σ−1(r)}

For i ∈ [N], this scheme has the following malleability property: for σ ∈ K let σ′ ∈ K be the
same permutation as σ except that it swaps the image of i and i− 1. Then

if D(σ, c) = [i] then D(σ′, c) = [i− 1] .

By changing the key from σ to σ′, we changed the decrypted set from [i] to [i − 1]. In the
construction below, an observer will not be able to detect this change to the key, making it
impossible to tell whether the broadcast ciphertext is encrypted for the set [i] or [i− 1]. We
use this to prove recipient privacy.

• For S = 2[N]: the key space is K = 2[N] and encryption of a set S is defined as E(T, S) = T∆S.
Similarly, D(T, c) = T∆c. (the ∆ operator denotes the symmetric difference of two sets)
For i ∈ [N] this scheme has the following malleability property: let T ∈ K and T ′ ∈ K be the
same set as T , but with element i added or removed: T ′ = T∆{i}. Then

if i ∈ D(T, S) then i /∈ D(T ′, S) .

30

By changing the key from T to T ′, we flip whether or not i is in the decrypted set.

• For S =
([N]
r

)
: the key space is K = SN (the set of all permutations σ on [N]). We define:

E(σ, S) = σ(S) = {σ(i) : i ∈ S}
D(σ, c) = σ−1(c) = {σ−1(i) : i ∈ c}

For i, j ∈ [N] with i 6= j, this scheme has the following malleability property: let σ ∈ K and
let σ′ ∈ K be the permutation σ ◦ 〈i j〉. That is, σ′ is σ composed with the 2-cycle exchanging
i and j. Then

if i ∈ D(σ, S) and j /∈ D(σ, S) then i /∈ D(σ′, S) and j ∈ D(σ′, S) .

By changing σ to σ′, we remove i from the decrypted set and add j.

The construction. Using the encryption schemes above, we can now define our recipient-private
broadcast construction. Similar to Section 6, our public parameters will consist of two obfuscated
programs: one for encryption and one for decryption. If the encryption program is not included,
our scheme becomes a secret key scheme.

Construction 7.1. Let S = 2[N], LinN , or
([N]
r

)
be a collection of subsets. Let E : K× S → S and

D : K × S → S be the encryption scheme for S described above. Let PRG : {0, 1}λ → {0, 1}2λ. The
recipient-private broadcast encryption scheme (Setup,Enc,Dec) works as follows:

Setup(λ,N) Sample si at random from {0, 1}λ for each i ∈ [N], and let xi = PRG(si). Sample
constrained pseudorandom functions PRFenc : {0, 1}2λ → K and PRFkey : {0, 1}2λ × S →
{0, 1}λ. Let PPBE−Enc and PPBE−Dec be the programs given in Figures 11 and 12, padded
to the appropriate size. Player i receives the private key si, and the public key is params =
(PEnc = iO(PPBE−Enc), PDec = iO(PPBE−Dec)).

Enc(params, S) Generate a random seed t and output (Hdr = (r, c), k)← PEnc(S, t)

Dec(params, r, c, si, i) Run kS ← PPBE−Dec(r, c, si, i).

Inputs: S, t
Constants: PRFenc,PRFkey

1. Let r ← PRG(t)

2. Let σ ← PRFenc(r)

3. Let c← E(σ, S)

4. Let k ← PRFkey(r, c)

5. Output (Hdr = (r, c), k)

Figure 11: The program PPBE−Enc.

31

Inputs: r, c, s, i
Constants: x1, . . . xN ,PRFenc,PRFkey

1. Let k ← PRFenc(r)

2. Let S ← D(k, c) // decrypt c to obtain the set S

3. Check that PRG(s) = xi and i ∈ S

4. If check fails, output ⊥

5. Otherwise, output PRFkey(r, c)

Figure 12: The program PPBE−Dec.

Correctness is trivial by inspection, given that D(k,E(k, S)) = S for each of the examples.
Security is summarized by the following theorem:

Theorem 7.2. For S = 2[N], LinN , or
([N]
r

)
, if iO is a secure indistinguishability obfuscator, PRFenc

is a secure punctured PRF, and PRFkey is a secure constrained PRF for circuit predicates (resp.
punctured PRF), then Construction 7.1 is a semi-statically (resp. selectively) secure recipient-private
broadcast encryption scheme.

We prove Theorem 7.2 in a more general form in Section 7.4. For now we sketch its proof for
the linear set system LinN = {∅, [1], . . . , [N]}.

Proof sketch for S = LinN . We prove that the scheme satisfies Definition 6.1. Incurring only a
polynomial loss in security, we can require the adversary A to commit to a challenge index i at
the beginning of the experiment. Then A’s goal is to distinguish encryptions to the set [i] from
encryptions to the set [i− 1], given the secret keys to all j 6= i. Next, we observe that, by security of
PRG, we can replace user i’s public value xi with a uniformly random string. This means the index i
can never be used to decrypt. The next step is to puncture PRFenc at the challenge randomness
r∗, and include the “challenge key” k∗ = PRFenc(r∗) hard-coded in the program PPBE−Dec. The
resulting program P ′PBE−Dec is shown in Figure 14. This does not change the functionality, and
therefore the indistinguishability of iO shows that A cannot tell the difference. Now, the security of
PRFenc implies that we can actually choose k∗ at random, independent of PRFenc. Recall that k∗ is
just a random permutation on {0, . . . , N}. In particular, given k∗, there is another permutation k′
that is identical to k∗, except that it flips the image of i and i− 1. Since i can never be used to
decrypt, exchanging k∗ for k′ does not change the functionality of the decryption algorithm. So
the adversary cannot tell whether k∗ or k′ is encrypting S. However, exchanging k∗ for k′ flips an
encryption of [i] for [i− 1], meaning the adversary cannot tell which set we encrypted to.

Remark 7.3. Similar to the traitor tracing scheme from Section 6, we can avoid having all of the
xi values hard-coded into PPBE−Dec: instead have si be generated by a PRF and the xi computed
on the fly as needed. We did this in Section 6 to shrink our public keys. However, PPBE−Dec in this
section will still be quite large because the encryption scheme for sets (E,D) has polynomial-sized
circuits. Therefore, generating si using a pseudorandom function will have only a minimal impact
on public key size.

32

Inputs: N, r ∈ {0, . . . , N}, i ∈ [
(N
r

)
]

Output: S ⊆ [N] where |S| = r

1. If r = 0, then i = 1. Return ∅.

2. If r = N , then i = 1. Return [N].

3. Otherwise, if i ≤
(N−1
r−1

)
, let S′ ← Int2Set(N − 1, r − 1, i), and output S = S′

⋃
{N}.

4. Otherwise, i >
(N−1
r−1

)
. Let i′ = i−

(N−1
r−1

)
. Then i′ ≤

(N−1
r

)
.

Output S ← Int2Set(N − 1, r, i′)

Figure 13: The algorithm Int2Set.

7.2 Applications

7.3 Private Broadcast Encryption for All Sets

Instantiating our scheme with S = 2[N], we can encrypt to an arbitrary subset of users while
maintaining recipient privacy. Representing subsets S ∈ S by their incidence vectors vS ∈ {0, 1}N ,
the ciphertexts will be of size 2λ+N , which is essentially optimal. This scheme is very similar to the
private broadcast scheme obtained at the end of Section 6, except that there is no authentication.
The main difference is the proof of security, the proof from this section giving better security
guarantees.

7.3.1 Traitor Tracing with Short Ciphertexts and Secret Keys

Instantiating our scheme with S = LinN , we get another construction of a secure private linear
broadcast encryption (PLBE) scheme. We can then appeal to the generic conversion of Boneh,
Sahai, and Waters [BSW06] to get a traitor tracing scheme with the same parameters. This
scheme will have marginally smaller ciphertexts than our previous construction from Section 6, since
authentication is no longer necessary. However, the public keys in this scheme will be quite long:
polynomial in N and λ.

7.3.2 Private Broadcast Encryption with Optimal Ciphertext Length

Instantiating our scheme with S =
([N]
r

)
, we can encrypt to an arbitrary set of size r, only revealing r.

To analyze the ciphertext size, we need to determine a compact representation for an arbitrary set
of size r. Using the algorithm Int2Set in Figure 13, we can map integers in the range {1, . . . ,

(N
r

)
}

into distinct subsets of size r. This map is bijective, and the inverse is efficiently computable. Thus,
we can represent a set of size r using log

(N
r

)
bits, which is optimal. The broadcast header size will

therefore be 2λ+ log
(N
r

)
.

7.4 Proving security for general set systems

We now turn to proving Theorem 7.2. Instead of proving the theorem for each of the three set
systems S of interest, we prove a more general theorem. First we need some terminology to capture

33

the key malleability properties needed for the proof.

Definition 7.4 (E-path). Let S and E be collections of subsets of 2[N]. Let P be a sequence of sets
in S:

S0 → S1 → · · · → Sk

We say that P is an E-path from S0 to Sk if:

• Si∆Si+1 ∈ E for all i

• Si∆S (Si+1∆S for all i

An E-path from S to T is therefore a sequence of sets where the symmetric difference between
two adjacent sets is an element of E and each set in the sequence is “closer” to T than the previous
set.

Definition 7.5 (E-Connected Set). Let S and E be collections of subsets of 2[N]. We say that S is
E-connected if, between any two sets S, T ∈ S, there is an E-path starting at S and ending at T .
We say that S is E-efficiently connected if such a path can be found in polynomial time.

By restricting to efficiently-connected collections, a simple argument allows us to assume that
the adversary’s challenge must consist of two sets that differ by a set e∗ ∈ E . We can also require
the adversary to commit to the set e∗ at the beginning of the game, incurring only a polynomial
loss in security.

For any collection S ⊆ 2[N] that is E-efficiently connected, let Flipe for e ∈ E be the following
permutation on S:

Flipe(S) =
{
S if S∆e /∈ S
S∆e if S∆e ∈ S

Flipe takes the exclusive difference with e if it can, and otherwise leaves its input unaffected. Notice
that Flipe has order 2: Flipe(Flipe(S)) = S.

We can now simplify the game even further: the adversary commits to a set e∗ ∈ S at the
beginning of the game. In his challenge, he submits just a single set S, and we encrypt to the set S
or the set Flipe∗(S). The adversary must tell which set we encrypted to.

Now we can discuss what kind of encryption scheme E we need to securely encrypt S. We
note that for a fixed key k, E(k, ·) is just a permutation on sets. So we will associate keys k with
permutations σ(·) = E(k, ·). The question then becomes: What class of permutations do we need
for our scheme to be secure?

Recall that, together with the secret key for i, the public key can be used as a membership oracle
answering questions of the form “is i in S?” We need that, even with such an oracle for each i /∈ e∗,
the adversary still cannot determine which set the message is encrypted to. Intuitively, we need
that, for every permutation σ that may be used to encrypt S, there is another permutation σ′ that
preserves the adversary’s membership oracle, but exchanges encryptions of S with encryptions of
Flipe∗(S). In other words, σ′ = σ ◦Flipe∗ . Therefore, at a minimum, we need the set of permutations
to include the group generated by the Flipe permutations:

Definition 7.6 (Flip Group). Let S ⊆ 2[N] be E-efficiently connected. Let GFlip(S, E), called the
flip group of S, be the group generated by the Flipe permutations. When the collections are clear, we
will often write GFlip. We say that the flip group is efficiently represented if all group elements can
be efficiently represented, a random group element efficiently generated, and all group operations
and the application of a group element to elements in S can be computed efficiently.

34

We can now state a generalization of Theorem 7.2 that encompasses the three collections of sets
we are interested in:

Theorem 7.7. Let S and E be collections of sets such that:

• S is E-efficiently connected

• GFlip(S, E) is efficiently represented

Let K = GFlip(S, E), E(σ, S) = σ(S) and D(σ, S) = σ−1(S). If PRFenc is a secure punctured
PRF, PRFkey is a secure constrained PRF (resp. punctured PRF), and iO is an indistinguishability
obfuscator, then Construction 7.1 instantiated with K, E,D is S-recipient-private semi-statically
(resp. selectively) semantically secure.

Before proving Theorem 7.7, we explain why it generalizes Theorem 7.2. In particular, for
S = 2[N], LinN , and

([N]
r

)
, we give a set E that efficiently connects S and determined the flip group

GFlip(S, E):

• S = 2[N]. Here we let E = {{1}, . . . , {N}}, the set of singletons. Then Flip{i}(S) = S∆{i}.
These flip permutations generate the group 2[N], with composition and action on S given by
symmetric difference.

• S = LinN . We again use the set of singletons as E . We note that we can represent an element
[r] by the integer r. Under this representation, Flip{i}(i) = i − 1, Flip{i}(i − 1) = i, and
Flip{i}(r) = r for r 6= i, i− 1. Thus Flip{i} is just the 2-cycle 〈i− 1 i〉. These 2-cycles generate
the set of all permutations on {0, . . . , N}.

• S =
([N]
r

)
. This time we let E be the set of all distinct pairs on integers in [N]. Then Flip{i,j}(S)

exchanges i for j and vice versa. Thus, we can associate Flip{i,j} with the 2-cycle 〈i j〉 in the
sense that Flip{i,j} = {〈i j〉(r) : r ∈ S}. These 2-cycles generate SN .

Proof. We prove the semi-static case, the selective case being simpler. We need to prove that
Construction 7.1 is both semi-static semantically secure and has recipient set privacy. We prove
security for the private-key setting (without the program PPBE−Enc), the public-key setting being
similar.

Semantic security follows a similar argument as in the proof of Theorem 5.6. The main difference
is that now the secret key is derived by applying a PRF to the set of users, rather than the public
values from the set of users. If we let r∗ be the randomness used for the challenge ciphertext, we first
puncture PRFenc at r∗ and include the key σ∗ ← PRFenc(r∗) hard-wired in the decryption program.
Then we can replace σ∗ with a truly random key. Next, we puncture PRFkey at all “encryptions” of
subsets S ⊆ Ŝ using randomness r∗: that is, at all points (r∗, E(σ∗, S)) for S ⊆ Ŝ. The derived key
for any challenge query the adversary gives us is then independent of the program, and therefore
can be replaced with a random key. Therefore, the adversary can not distinguish a random key
from the correct key.

Now we turn our focus to proving recipient set privacy. To that end, we assume toward
contradiction that there is a polynomial time adversary A′ breaking the privacy of Construction 7.1.
A′ succeeds at the following task: First, A′ receives the public parameters. Then A′ then makes
several kinds of queries:

35

• Recipient key queries for index i, for which A′ receives the secret key si for user i.

• Message encryption queries for a set S, for which A′ receives an encryption (r, c) to S.

• Challenge queries for sets S0, S1, for which A′ receives an encryption (r∗, c∗) to Sb.

We require that each challenge (S0, S1) and each recipient key query i satisfies i /∈ S0∆S1. A simple
hybrid argument allows us to assume that A′ only makes a single challenge query, receiving a single
challenge ciphertext (r∗, c∗) in return. Let σ∗ = PRFenc(r∗). Then c∗ = σ∗(Sb). A′ then outputs a
guess b′ for b. By assumption, A′ distinguishes b = 0 from b = 1 with non-negligible probability ε′.

Our first step is to make two simplifying assumptions: First, assume that S0∆S1 ∈ E . Since it is
always possible to compute an E path from S1 to S2 of polynomial length p in polynomial time, it is
straightforward to turn an adversary winning in the original game with advantage ε′ to an adversary
winning in this restricted setting with advantage ε′/p. We may also require the adversary to commit
to e∗ = S1∆S2 at the beginning of the game. Since E is polynomial q in size, we can just guess e at
the beginning, and abort if our guess is incorrect. We can simplify things even further by having
the adversary make a challenge on a single set S∗, and then letting S0 = S∗ and S1 = Flipe∗(S∗).
Therefore, we obtain an adversary A winning in this even more restricted setting with probability
ε := ε′/pq.

Now we prove that no such efficient adversary can exist. We prove security through a sequence
of games:

Game 0 This game is the game described above, where A has advantage ε. We can assume that
r∗ is chosen at the beginning of the game.

Game 1 Here, we answer encryption queries by generating a random r not equal to r∗. Since r is
chosen at random from an exponential-sized set, Game 1 is indistinguishable from Game 0.

Game 2 Now, for every i ∈ e∗, we choose xi uniformly at random. By the security of PRG, this
game is indistinguishable from Game 1, meaning A still has advantage ε− negl.

Game 3 Here, we construct a modified program P ′PBE−Dec as in Figure 14, puncturing PRFenc at
r∗, and including σ∗ = PRFenc(r∗) explicitly in the constants for the program. We also add a check
that i /∈ e∗. With overwhelming probability, PRG(s) 6= xi for any s and xi for i ∈ e∗, so this check is
redundant. The security of iO implies that A still has advantage at least ε− negl. Note that, since
r∗ is different from any r used in an encryption query, all encryption queries can be answered using
the punctured program PRF{r∗}enc .

Game 4 Sample σ∗0 at random from GFlip, and let σ∗1 = σ ◦Flipe∗ . Let σ∗ = σ∗b . Then σ∗ is chosen
uniformly at random. The security of PRFenc implies that A still has advantage at least ε− negl.

Game 5 In the b = 1 case, instead of encrypting S1 = Flipe∗(S∗) using σ∗ = σ∗1 = σ∗0 ◦ Flipe∗ , we
encrypt S∗ using σ∗0. This does not change the ciphertext.

Now the only difference between the b = 0 and b = 1 case is the value of σ∗ used to build
P ′PBE−Dec: when b = 0, σ∗ = σ∗0, and when b = 1, σ∗ = σ∗1 = σ∗0 ◦ Flipe∗ . Changing from σ∗0 to σ∗1

36

Inputs: r, c, s, i
Constants: x1, . . . xN ,PRF{r∗}

enc , σ
∗,PRFkey

1. Let σ ←

PRF{r
∗}

1 (r) if r 6= r∗

σ∗ if r = r∗

2. Let S ← σ−1(c)

3. Check that PRG(s) = xi and i ∈ S and that i /∈ e∗.

4. If check fails, about ⊥

5. Otherwise, output PRFkey(r, c)

Figure 14: The program P ′PBE−Dec.

has the effect of changing the plaintext S∗ to Flipe∗(S∗), and thus membership is not affected for
each i /∈ e∗. Since P ′PBE−Dec always aborts on i ∈ e∗, this change does not affect the functionality of
the program. Thus, the indistinguishability of iO implies that the obfuscated program in each case
is indistinguishable. Thus, the advantage of A in Game 4 is negligible. This means ε is negligible,
and therefore, Construction 7.1 is recipient-private.

8 Extensions

8.1 CCA-secure Broadcast Encryption

Our key exchange to broadcast conversion actually gives a CCA scheme. For CCA security, the
adversary is allowed decryption queries, where the adversary submits a header, and receives in
response the corresponding message encryption key. In the proof of security, these decryption queries
can easily be handled by making reveal queries to the key exchange challenger. Applying to our key
exchange protocol, decryption queries then correspond to making PRF queries to PRF.

A similar statement applies to our recipient-private broadcast scheme, though there are some
subtleties. Our first traitor tracing scheme is CCA-secure, even if the adversary is able to learn the
recipient set and key for a header of its choice. The reason is that the simulator is always able to
answer decryption queries for ciphertexts with a different randomness than the challenge ciphertext,
and we showed that all ciphertexts with the same randomness as the challenge can be rejected.

Our private broadcast scheme, including the second traitor tracing scheme, are also secure if the
adversary is restricted to only learning the key for headers of his choice. However, if the adversary
may learn the set to which a message is encrypted, he will easily be able to break our scheme. The
reason is that the “encryption scheme for sets” that we use is malleable.

8.2 Identity-Based Multiparty Key Exchange

It is straightforward to turn our scheme into an identity-based key exchange. In identity-based
multiparty non-interactive key exchange (ID-NIKE), there is no more Publish step. Instead, KeyGen

37

takes as input a list of identities, as well as a secret key for one of them, and outputs a group key
for those identities. To give a user id his secret key, the authority runs an additional algorithm Ext
which outputs the secret key.

Let ID be the identity space. Our basic idea is to have an additional PRF PRFkey which takes
an identity id ∈ ID and outputs a seed si that wil be the secret key. How the PRFkey is incorporated
into our basic scheme is described below:

Construction 8.1. Let PRG be a pseudorandom generator, let PRF and PRFkey be constrained
PRFs for circuit predicates.

Setup(λ,N) Pick a random instance of PRF and PRFkey. Compute the program PIBKE in Figure 15
padded to the appropriate length, and compute PiO = iO(PIBKE). Publish the public parameters
params = PiO.

Ext(PRFkey, id) Outputs PRFkey(id).
KeyGen(params, S, id, sid) To obtain the key kS, sort S and compute kS = PiO(S, sid, id).

Inputs: S = {id1, . . . , idN}, s, id
Constants: PRF,PRFkey

1. If id /∈ S or G(s) 6= G(PRFkey(id)), output ⊥

2. Otherwise, output PRF(id1, . . . , idN)

Figure 15: The program PIBKE .

Similar to our basic key exchange protocol, this scheme does not meet the strongest notion
of security, where the adversary may adaptively choose the set of identities it gets secret keys for
and makes challenges on. Nonetheless, it meets a semi-static security notion, where the adversary
commits to a set of identities for which he will not receive the secret key, and must challenge on a
subset of these identities. We leave achieving full adaptive security as an open question.

8.3 Identity-Based Broadcast Encryption

Using the same ideas as for identity-based key exchange, we can get identity-based broadcast
encryption. We cannot quite go through the key exchange to broadcast conversion from Section 5
since the encryption step would require an extract query. Instead, we present a direct construction:

Construction 8.2. Let PRG be a pseudorandom generator, let PRF and PRFkey be constrained
PRFs for circuit predicates.

Setup(λ,N) Pick a random instance of PRF and PRFkey. Compute the program PIBBE in Figure 16
padded to the appropriate length, and compute PiO = iO(PIBBE). Publish the public parameters
params = PiO.

Enc(params, S) Pick a random seed s⊥ and let x = PRG(s⊥). Sort S, and let kS = PiO(x, S, s⊥,⊥).
Output (Hdr = x, kS).

Ext(PRFkey, id) Outputs PRFkey(id).

38

Inputs: x, id1, . . . , idN , s, id
Constants: PRF,PRFkey

1. If id /∈ S
⋃
{⊥}, output ⊥

2. If id = ⊥ and G(s) 6= x, output ⊥

3. If id 6= ⊥ and G(s) 6= G(PRFkey(id)), output ⊥

4. Otherwise, output PRF(x, id1, . . . , idN)

Figure 16: The program PIBBE .

Dec(params, S, id, sid, x0) To obtain the key kS, sort S and compute kS = PiO(x, S, sid, id).

Again, this scheme does not meet the adaptive notion of security, but instead meets a semi-static
security notion, where the adversary commits to a set of identities for which he will not receive
the secret key, and must challenge on a subset of these identities. We leave achieving full adaptive
security as an open question.

8.4 Distributed Broadcast Encryption

Our public-set broadcast encryption scheme is distributed — the sender sets up the system, but each
user generates their own key when joining the system. Our traitor tracing and private broadcast
schemes do not meet the notion of distributed broadcast encryption, since the decryption algorithm
depends on each party’s public keys. Nonetheless, for our private broadcast scheme, each party can
generate their own secret and public values before the setup algorithm is run. Then, each party can
send their public values to the broadcaster, who will generate the public parameters. In this way,
our scheme satisfies a weaker notion of distributed broadcast encryption.

9 Constrained PRFs and Signatures from Indistinguishability Ob-
fuscation

In this section, we explain how to realize constrained pseudorandom functions and signatures for
circuit predicates from indistinguishability obfuscation.

9.1 Constrained PRFs

We start with constrained PRFs. Such PRFs were already constructed by Boneh and Waters [BW13]
directly from multilinear maps. We give an alternative construction that uses only indistinguishability
obfuscation and punctured PRFs, which can in turn be built from one-way functions. The idea is
the following: starting with a punctured PRF, to constrain to circuit C, we obfuscate the program
that takes an input x, checks that C(x) = 1, and then outputs PRF(x). The exact construction is
the following:

Construction 9.1. Let PRF be a punctured PRF with domain {0, 1}n, and iO an indistinguishability
obfuscator. To constrain PRF to a circuit C, we run the following procedure:

39

PRF.Constrain(C): Build the program PC in Figure 17. Output iO(PC).

Inputs: x
Constants: PRF, C

1. Check that C(x) = 1.

2. If check fails, output ⊥

3. Otherwise, output PRF(x)

Figure 17: The program PC .

To prove selective security, we puncture PRF at the adversary’s challenge x∗. Since C(x∗) = 0,
this new program is identical, so the security of iO shows that no efficient adversary can tell the
difference. But now the security of PRF implies that the adversary cannot distinguish the challenge
value from random. Unfortunately, this achieves only selective security — we need to know x∗ in
order to compute the new program. For adaptive security, we must guess x∗ at the beginning of the
game, incurring an exponential loss in security. Then we must strengthen the security requirements
of PRF and iO and apply a complexity leveraging argument to achieve security. This problem is
also present in the construction of Boneh and Waters [BW13].

We note that our construction actually achieves the stronger notion of security of Boneh and
Waters [BW13], where the adversary may adaptively ask for the constrained programs for many
circuits C, and may make many challenge queries. Let qcons be the number of constrain queries and
qchal be the number of challenge queries. The following theorem states the security of the scheme:

Theorem 9.2. For any adversary A breaking the security of Construction 9.1, there is an adversary
B for iO and an adversary C for PRF such that:

PRF(adv)A(λ) ≤ qchal2n(qconsIO(adv)B(λ) + PRF(adv)C(λ))

Proof. A simple hybrid argument shows that any adversary with advantage ε making qchal challenge
queries can be turned into an adversary with advantage ε/qchal making a single challenge query. We
will therefore start with an adversary A that makes a single challenge on x∗, and has advantage
ε/qchal. We prove security through a sequence of games:

Game 0 This is the standard constrained PRF game, where A makes a polynomial number
qPRF of PRF queries on inputs x1, . . . , xqP RF , and a polynomial number qcons of constrain queries
on circuits C1, . . . , Cqcons , and a single challenge query on x∗. We require that x∗ 6= xi for any i,
and that Cj(x∗) = 0 for all j. If b = 0, the response to the challenge query is PRF(x∗). If b = 1, the
response is chosen at random. By assumption, A has advantage ε/qchal in distinguishing b = 0 from
b = 1.

Game 1 Here, we guess x∗ at the beginning of the game, and abort if our guess was wrong.
The advantage of A is now ε/2nqchal.

Game 2 Now we puncture PRF at x∗, obtaining PRF{x∗}. Let y∗ = PRF(x∗). When responding
to a constrain query on a circuit Cj , we replace PRF with PRF{x∗} in the program PCj . Since

40

Cj(x∗) = 0 by assumption, this new program has the same functionality as the old program. If A
can distinguish Game 2 from Game 1 with probability γ, then it is straightforward to build an
adversary B that breaks the indistinguishability of iO with probability IO(adv)B(λ) = γ/qcons. A
thus has advantage at least ε/2nqchal − qconsIO(adv)B(λ) in Game 2.

Now we describe an adversary C that breaks the security of PRF as a punctured PRF. Guess
x∗ at the beginning of the game, and query the punctured PRF challenger on x∗, obtaining y∗.
Also ask for the punctured PRF PRF{x∗}. When A makes a PRF query, forward the query to the
punctured PRF challenger. When A makes a constrain query on circuit Cj , build the modified
program PCj as described above and give the obfuscation of this program to A. When A makes
its challenge, abort and output a random bit if the challenge is not x∗. Otherwise, respond with
y∗. This new adversary perfectly simulates the view of A in Game 3, and therefore has the same
advantage of A in this game. In other words,

ε/2nqchal − qconsIO(adv)B(λ) ≤ PRF(adv)C(λ)

Rearranging gives the desired inequality, completing the proof.

9.2 Constrained Signatures

Now we move on to constrained signatures. Recall that these signatures come with an algorithm
ConstrainGen(C), which outputs a public key pkC which rejects all signatures for messages x ∈ {0, 1}n
with C(x) = 0. For security, we require that pkC is indistinguishable from a valid pk by any adversary
making a polynomial number of signature queries to x such that C(x) = 1. We give two constructions.
Our first construction relies on witness indistinguishable proofs and perfectly binding commitments.
Our second construction uses only obfuscation and one-way functions, but requires complexity
leveraging.

Construction from Witness Indistinguishable Proofs. Our first construction is built from
perfectly binding commitments and non-interactive witness indistinguishable proofs (called zaps).
A very similar construction is implicit in the attribute-based encryption scheme of Garg et
al. [GGSW13].

A non-interactive zap [DN00] for a relation R consists of an efficient prover and verifier P, V .
The prover, on input an instance x and witness w such that R(x,w) = 1, produces a proof π. The
verifier, on instance x and proof π, either accepts or rejects. We require the following properties:

• Perfect Completeness: for a true statement, the honest prover convinces the honest verfier
with probability 1. That is, for any (x,w) where R(x,w) = 1, if π ← P (x,w), then V (x, π)
accepts.

• Perfect Soundness: for a false statement, it is impossible to convince an honest verifier. That
is, for any x and any (possibly unbounded) adversary A, if π ← A(x) and V (x, π) accepts,
then there must exist a w such that R(x,w) = 1.

• Witness Indistinguishability: given the proof, it is computationally infeasible to tell which
witness was used. In other words, for all PPT adversaries A in the following experiment, A has
negligible advantage in guessing b: A produces (x,w0, w1) such that R(x,w0) = R(x,w1) = 1.
The challenger responds with π ← P (x,wb).

41

Constructions of non-interactive zaps are given in [BOV03] and [GOS06].

Construction 9.3. Let (P, V) be a non-interactive zap and Com a perfectly binding commitment
scheme.

G(λ, n, t) Sets up a signature scheme for n-bit messages that can be constrained to circuits C of
description size at most t. Choose random r, s, and let c1 = Com(0; r) and c2 = Com(0t; s).
The secret key is sk = r and the public key is pk = (c1, c2).

Sign(r,m) Compute the proof πm ← P (xm, (r,⊥,⊥)) where r is a witness for following NP state-
ment xm:

∃w1, w2, C such that c1 = Com(0;w1) or (c2 = Com(C;w2) and C(m) = 1)

Ver((c1, c2),m, πm) Run the verification procedure V (xm, πm) where xm is defined as above.

ConstrainGen(λ, t, C) On input a circuit C of size at most t, choose a random r, s and let c1 =
Com(1; r) and c2 = Com(C; s). The secret key is sk = s and the public key is pk = (c1, c2).
To sign a message m such that C(m) = 1, run P (xm, (⊥, s, C)). Observe that (⊥, s, C) is a
valid witness for the statement xm.

Theorem 9.4. If Com is a perfectly binding computational hiding commitment scheme and (P, V)
is a non-interactive zap, then (G,Sign,Ver,ConstrainGen) is a secure constrained signature scheme

Proof. Fix a circuit C. We prove security through a sequence of hybrid games.

Game 0. This is the game where the adversary is given a correct public key. That is, (sk, pk)←
G(λ, n, t), where pk = (c0, c1) = (Com(0; r),Com(0n; s)) and sk = r. The adversary is allowed to
make signature queries on messages m such that C(m) = 1; in response the adversary receives the
proof πm = P (xm, (r,⊥,⊥)).

Game 1. This is identical to Game 0, except that c2 = Com(C; s). Since s is never used after
generating c2, the computational hiding property of Com shows that Game 0 and Game 1 are
indistinguishable.

Game 2. This is identical to Game 1, except that now signature queries are answered using the
witness (⊥, s, C). The witness indistinguishability of (P, V) and a simple hybrid across signature
queries shows that Game 1 and Game 2 are indistinguishable.

Game 3. This is identical to Game 2, except that c1 = Com(1; r). Since r is never used after
generating c1, the computational hiding property of Com shows that Game 2 and Game 3 are
indistinguishable. Observe that Game 3 is exactly the setting where the adversary is given a
constrained public key for the circuit C. Thus, the constrained public key is indistinguishable from
an unconstrained public key.

It remains to show that given a constrained key for a circuit C, there are no valid signatures
relative to messages m where C(m) = 0. Indeed, such a signature exists, it implies that the
statement xm is true. Since Com is perfectly binding, c1 = Com(1) and c2 = Com(C) and C(m) = 0,
there is no witness (w1, w2, C

′) such that c1 = Com(0;w1) or (c2 = Com(C ′;w2) and C ′(m) = 1).
Therefore, the statement xm is false, meaning no signature exists. This completes the proof.

42

Construction from Obfuscation. We now give our second construction from indistinguishability
obfuscaiton and any one-way function. Our construction is very similar to the signature scheme of
Sahai and Waters [SW13].

Construction 9.5. Let PRF be a pseudorandom function, PRG : {0, 1}λ → {0, 1}2λ a pseudorandom
generator, and iO and indistinguishability obfuscator.

G(λ, n, t) Sets up a signature scheme for n-bit messages that can be constrained to circuits C of
description size at most t. Choose a random instance of PRF. The secret key is sk = PRF.
The public key will be the obfuscation of PVer in Figure 18, padded to the appropriate length.

Sign(PRF, x) Output PRF(x).

Ver(PVer, x, σ) Output PVer(x, σ).

ConstrainGen(λ, t, C) On input a circuit C of size at most t, choose a random instance of PRF, and
set the secret key to be sk = PRF. The public key will be the obfuscation of PVer,C in Figure 19,
padded to the appropriate length.

Inputs: x, σ
Constants: PRF

1. Output 1 if PRG(PRF(x)) = PRG(σ). Otherwise output 0.

Figure 18: The program PVer.

Inputs: x, σ
Constants: PRF, C

1. If C(x) = 0, output 0 and stop.

2. Output 1 if PRG(PRF(x)) = PRG(σ). Otherwise output 0.

Figure 19: The program PVer,C .

Theorem 9.6. For any adversary A breaking the security of Construction 9.5, there is an adversary
B for iO,an adversary C for PRF such that, and an adversary D for PRG:

PRF(adv)A(λ) ≤ 2n(2−λ + IO(adv)B(λ) + PRF(adv)C(λ) + PRG(adv)D(λ))

Proof. Let εA be the advantage of A in distinguishing an obfuscation of PVer from an obfuscation
of PVer,C , for a circuit C of A’s choice, and where A can make a polynomial number of signature
queries on messages x satisfying C(x) = 1. We define security though a sequence of games:

Game 0. In this game, A is given a correct public key iO(PVer).

43

Game i.0. For each i ∈ [0, 2n − 1], we define Game i.0 as follows: when the challenger receives
a circuit C, it constructs a circuit Ci where Ci(x) = C(x) for x ≤ i (treating x as an integer in
[0, 2n − 1]), and Ci(x) = 1 for x > i. It then runs ConstrainGen on Ci and gives the resulting public
key pkCi

to the adversary. Notice that Game 0.0 is identical to Game 0.

Game i.1. In this game, if C(i+1) = 1, the challenger behaves exactly as inGame i.0. However, if
C(i+1) = 0, the challenger computes the constrained PRF PRF{i+1} as well as y = PRG(PRF(i+1)).
Then the challenger gives an obfuscation of the program P

(1)
Ver,Ci

in Figure 20 to the adversary. Notice
that, PVer,Ci

and P (1)
Ver,Ci

have the same functionality.

Inputs: x, σ
Constants: PRF{i+1}, Ci, y, i

1. If Ci(x) = 0, output 0 and stop.

2. If x = i+ 1: Output 1 if y = PRG(σ), and otherwise output 0.

3. If x 6= i+ 1: Output 1 if PRG(PRF(x)) = PRG(σ) and otherwise output 0.

Figure 20: The program P
(1)
Ver,Ci

.

Game i.2. In this game, if C(i + 1) = 1, the challenger still behaves exactly as in Game i.0.
However, if C(i+ 1) = 0, the challenger behaves as in Game i.1, except that it sets y = PRG(s)
for a random seed s ∈ {0, 1}λ. Notice that the obfuscated programs in Game i.2 and Game i.1
can both be constructed knowing only the constrained function PRF{i+1}, as can all answers to
signing queries asked by A. Therefore, if A can distinguish Game i.2 form Game i.1, then we
can construct an adversary Ci for PRF with the same advantage as A.

Game i.3. In this game, if C(i + 1) = 1, the challenger still behaves exactly as in Game i.0.
However, if C(i+ 1) = 0, the challenger behaves as in Game i.2, except that it chooses y uniformly
at random from {0, 1}2λ. If A can detect this change, then we can construct a adversary Di for PRG.
Now y is only in the range of PRG with probability at most 1/2λ. Notice that if C(i+ 1) = 0 and y
is not in the range of PRG, the programs P (1)

Ver,Ci
and PVer,Ci+1 have identical functionality. Similarly,

if C(i + 1) = 1, then the programs PVer,Ci
and PVer,Ci+1 have the same functionality. Hence, for

both C(i+ 1) = 0 and C(i+ 1) = 1, the obfuscated programs in Game i.3 and Game (i+ 1).0
compute the same functionality. Hence, so do the programs in Game i.3 and Game (i + 1).1.
Therefore, if A can distinguish these two with probability ε, we can construct an adversary Bi that
breaks the security of iO with probability ε− 1/2λ.

Finally, notice that Game 2n.0 is identical to the case where the adversary is given the output
of ConstrainGen on C, where n is the number of bits of input to C. Combining all the Bi, Ci, and
Di adversaries into single adversaries B, C,D where i is chosen at random, we get the claim of the
theorem.

44

10 Conclusion and Open Problems
We give the first construction of multiparty key exchange requiring no trusted setup and prove
security in the static and semi-static models. Building on these ideas we get the first distributed
broadcast encryption scheme, that is, every party generates its own secret key. We also construct a
short-ciphertext recipient-private broadcast encryption scheme from which we obtain traitor tracing
with very short parameters. Our constructions extend to give identity-based broadcast encryption.
Along the way we develop new techniques for proving security using indistinguishability obfuscation.

We leave several open problems. We obtain adaptive security for our broadcast encryption and
recipient private schemes using the conversion of Gentry and Waters [GW09]. No such conversion is
known for multiparty key exchange, and achieving adaptive security for key exchange from iO is
an interesting open problem. While our traitor tracing system has short public keys, our general
recipient private broadcast system has long public keys, and we leave open the problem of reducing
the public key size of our construction.

Acknowledgments
We thank Jonathan Ullman for his comments on the connection to differential privacy. We thank
Brent Waters for suggesting adding capabilities to existing systems such as RSA, and for comments
on the definitions of security for key exchange protocols. This work was supported by NSF, the
DARPA PROCEED program, an AFOSR MURI award, a grant from ONR, an IARPA project
provided via DoI/NBC, and by a Google faculty scholarship. Opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of DARPA or IARPA.

References
[BBW06] Adam Barth, Dan Boneh, and Brent Waters. Privacy in encrypted content distribution

using private broadcast encryption. In Financial Cryptography, pages 52–64, 2006.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (Im)possibility of obfuscating programs. In Advances in
Cryptology — CRYPTO 2001, number Im, 2001.

[BGI13] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. Cryptology ePrint Archive, Report 2013/401, 2013.

[BGK+13] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protect-
ing obfuscation against algebraic attacks. Cryptology ePrint Archive, Report 2013/631,
2013. http://eprint.iacr.org/.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption
with short ciphertexts and private keys. Advances in Cryptology — CRYPTO 2005,
pages 1–19, 2005.

[BN08] Dan Boneh and Moni Naor. Traitor tracing with constant size ciphertext. In ACM
Conference on Computer and Communications Security, pages 501–510, 2008.

45

http://eprint.iacr.org/

[BOV03] Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography.
In Proc. of Crypto, 2003.

[BR13a] Zvika Brakerski and Guy N. Rothblum. Black-box obfuscation for d-cnfs. Cryptology
ePrint Archive, Report 2013/557, 2013. http://eprint.iacr.org/.

[BR13b] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. Cryptology ePrint Archive, Report 2013/563, 2013.
http://eprint.iacr.org/.

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography.
Contemporary Mathematics, 324:71–90, 2003.

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. Fully Collusion Resistant Traitor Tracing
with Short Ciphertexts and Private Keys. Advances in Cryptology – EUROCRYPT
2006, pages 573–592, 2006.

[BW06] Dan Boneh and Brent Waters. A fully collusion resistant broadcast trace and revoke
system with public traceability. In ACM Conference on Computer and Communication
Security (CCS), 2006.

[BW13] Dan Boneh and Brent Waters. Constrained Pseudorandom Functions and Their
Applications. Advances in Cryptology — AsiaCrypt 2013, pages 1–23, 2013.

[BWZ14] Dan Boneh, Brent Waters, and Mark Zhandry. Low overhead broadcast encryption
from multilinear maps. In Proceedings of CRYPTO, 2014.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. Advances in Cryptology — CRYPTO 1997, pages 455–469, 1997.

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In CRYPTO, pages 257–270,
1994.

[CLT13] Jéan-Sebastien Coron, Tancède Lepoint, and Mehdi Tibouchi. Practical Multilinear
Maps over the Integers. Advances in Cryptology — CRYPTO 2013, pages 1–22, 2013.

[CMR98] Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly One-Way Probabilistic
Hash Functions. Proc. of STOC 1998, pages 131–140, 1998.

[CPP05] Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. Public traceability in
traitor tracing schemes. In EUROCRYPT’05, pages 542–558, 2005.

[CRV10] Ran Canetti, Guy N Rothblum, and Mayank Varia. Obfuscation of hyperplane
membership. Theory of Cryptography Conference 2010, 5978:72–89, 2010.

[Del07] Cécile Delerablée. Identity-Based Broadcast Encryption with Constant Size Ciphertexts
and Private Keys. 2:200–215, 2007.

[DF02] Yevgeniy Dodis and Nelly Fazio. Public key broadcast encryption for stateless receivers.
In Proceedings of the Digital Rights Management Workshop 2002, volume 2696 of LNCS,
pages 61–80. Springer, 2002.

46

http://eprint.iacr.org/
http://eprint.iacr.org/

[DF03] Y. Dodis and N. Fazio. Public key broadcast encryption secure against adaptive chosen
ciphertext attack. In Workshop on Public Key Cryptography (PKC), 2003.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In FOCS, pages 283 –
293, 2000.

[DNR+09] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N Rothblum, and Salil Vadhan. On
the complexity of differentially private data release: efficient algorithms and hardness
results. In Proceedings of STOC 2009, 2009.

[DPP07] Cécile Delerablée, Pascal Paillier, and David Pointcheval. Fully collusion secure dynamic
broadcast encryption with constant-size ciphertexts or decryption keys. PAIRING
2007, (July), 2007.

[FHKP13] Eduarda S.V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenny Paterson. Non-interactive
key exchange. In Public-Key Cryptography, pages 1–28, 2013.

[FHPS13] Eduarda S.V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks.
Programmable hash functions in the multilinear setting. In CRYPTO 2103, pages
513–530, 2013.

[FN94] Amos Fiat and Moni Naor. Broadcast encryption. Advances in Cryptology — CRYPTO
1993, 773:480–491, 1994.

[FP12] Nelly Fazio and IrippugeMilinda Perera. Outsider-anonymous broadcast encryption
with sublinear ciphertexts. In Public Key Cryptography — PKC 2012, volume 7293 of
LNCS, pages 225–242, 2012.

[Fre10] David Mandell Freeman. Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In EUROCRYPT, pages 44–61, 2010.

[GGH13a] S Garg, Craig Gentry, and S Halevi. Candidate multilinear maps from ideal lattices.
Advances in Cryptology — EUROCRYPT 2013, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. Proc. of FOCS 2013, 2013.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to Construct Random
Functions. Journal of the ACM (JACM), 33(4):792–807, 1986.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Proceedings of the Forty-fifth Annual ACM Symposium on Theory
of Computing, STOC ’13, pages 467–476, New York, NY, USA, 2013. ACM.

[GKSW10] Sanjam Garg, Abishek Kumarasubramanian, Amit Sahai, and Brent Waters. Building
efficient fully collusion-resilient traitor tracing and revocation schemes. In ACM
Conference on Computer and Communications Security, pages 121–130, 2010.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge
for NP. In Proc. of Eurocrypt, 2006.

47

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In TCC, pages
194–213, 2007.

[GST04] M. T. Goodrich, J. Z. Sun, , and R. Tamassia. Efficient tree-based revocation in groups
of low-state devices. In Proceedings of Crypto ’04, volume 2204 of LNCS, 2004.

[GW09] Craig Gentry and Brent Waters. Adaptive security in broadcast encryption systems
(with short ciphertexts). Advances in Cryptology — EUROCRYPT 2009, pages 1–18,
2009.

[HS02] D. Halevy and A. Shamir. The lsd broadcast encryption scheme. In Proceedings of
Crypto ’02, volume 2442 of LNCS, pages 47–60, 2002.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. Cryptology ePrint Archive, Report
2013/509, 2013.

[Jou04] Antoine Joux. A One Round Protocol for Tripartite Diffie-Hellman. Journal of
Cryptology, 17(4):263–276, June 2004.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Proceedings ACM CCS, 2013.

[KRW13] Venkata Koppula, Kim Ramchen, and Brent Waters. Separations in circular security
for arbitrary length key cycles. Cryptology ePrint Archive, Report 2013/683, 2013.
http://eprint.iacr.org/.

[KS13] Aggelos Kiayias and Katerina Samari. Lower bounds for private broadcast encryption.
In Information Hiding, pages 176–190. Springer, 2013.

[KY02] Aggelos Kiayias and Moti Yung. Breaking and repairing asymmetric public-key traitor
tracing. In Joan Feigenbaum, editor, ACM Workshop in Digital Rights Management
– DRM 2002, volume 2696 of Lecture Notes in Computer Science, pages pp. 32–50.
Springer, 2002.

[LPQ12] Benoît Libert, Kenneth G. Paterson, and Elizabeth A. Quaglia. Anonymous broadcast
encryption: Adaptive security and efficient constructions in the standard model. In
Public Key Cryptography, pages 206–224, 2012.

[LPS04] Benjamin Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and techniques
for obfuscation. Advances in Cryptology — EUROCRYPT 2004, pages 1–18, 2004.

[LSW10] Allison B. Lewko, Amit Sahai, and Brent Waters. Revocation systems with very small
private keys. In IEEE Symposium on Security and Privacy, pages 273–285, 2010.

[MR13] Tal Moran and Alon Rosen. There is no indistinguishability obfuscation in pessiland.
Cryptology ePrint Archive, Report 2013/643, 2013. http://eprint.iacr.org/.

[NNL01] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless
receivers. In Proceedings of Crypto ’01, volume 2139 of LNCS, pages 41–62, 2001.

48

http://eprint.iacr.org/
http://eprint.iacr.org/

[NP00] M. Naor and B. Pinkas. Efficient trace and revoke schemes. In Financial cryptography
2000, volume 1962 of LNCS, pages 1–20. Springer, 2000.

[Pfi96] B. Pfitzmann. Trials of traced traitors. In Proceedings of Information Hiding Workshop,
pages 49–64, 1996.

[PW97] B. Pfitzmann and M. Waidner. Asymmetric fingerprinting for larger collusions. In
Proceedings of the ACM Conference on Computer and Communication Security, pages
151–160, 1997.

[SF07] Ryuichi Sakai and Jun Furukawa. Identity-Based Broadcast Encryption. IACR
Cryptology ePrint Archive, 2007.

[Sir07] Thomas Sirvent. Traitor tracing scheme with constant ciphertext rate against powerful
pirates. In Workshop on Coding and Cryptography, 2007.

[SW13] Amit Sahai and Brent Waters. How to Use Indistinguishability Obfuscation: Deniable
Encryption, and More. Cryptology ePrint Archive, Report 2013/454, 2013. http:
//eprint.iacr.org/.

[Ull13] Jonathan Ullman. Answering n{2+o(1)} counting queries with differential privacy is
hard. In STOC, pages 361–370, 2013.

[Wee05] Hoeteck Wee. On obfuscating point functions. Proc. of STOC 2005, page 523, 2005.

[WHI01] Yuji Watanabe, Goichiro Hanaoka, and Hideki Imai. Efficient asymmetric public-key
traitor tracing without trusted agents. In Proceedings CT-RSA ’01, volume 2020 of
LNCS, pages 392–407, 2001.

49

http://eprint.iacr.org/
http://eprint.iacr.org/

	Introduction
	Multiparty non-interactive key exchange
	Broadcast encryption
	Recipient-private broadcast encryption
	Traitor tracing with short ciphertexts, secret keys, and public keys
	Related work

	Preliminaries: Definitions and Notation
	Indistinguishability Obfuscation
	Constrained Pseudorandom Functions

	Key Exchange from Indistinguishability Obfuscation
	Our Construction

	Multi-party Key Exchange with No Setup
	Constrained Signatures
	Security of our No-Setup Key Exchange Protocol

	Adaptively Secure Public-key Broadcast Encryption With Optimal Ciphertext Size
	Broadcast Encryption From Key Exchange

	Traitor Tracing With Small Parameters
	Private broadcast encryption: first construction
	Extension to Other Set Systems

	Recipient-Private Broadcast Encryption
	Our Recipient-Private Broadcast Scheme
	Applications
	Private Broadcast Encryption for All Sets
	Traitor Tracing with Short Ciphertexts and Secret Keys
	Private Broadcast Encryption with Optimal Ciphertext Length

	Proving security for general set systems

	Extensions
	CCA-secure Broadcast Encryption
	Identity-Based Multiparty Key Exchange
	Identity-Based Broadcast Encryption
	Distributed Broadcast Encryption

	Constrained PRFs and Signatures from Indistinguishability Obfuscation
	Constrained PRFs
	Constrained Signatures

	Conclusion and Open Problems

