
One-round Strongly Secure Key Exchange with
Perfect Forward Secrecy and Deniability

Version 3, October 26, 2011?

Cas Cremers and Michèle Feltz

Department of Computer Science
ETH Zurich, Switzerland

Abstract. Traditionally, secure one-round key exchange protocols in the PKI
setting have either achieved perfect forward secrecy, or forms of deniability, but
not both. On the one hand, achieving perfect forward secrecy against active
attackers seems to require some form of authentication of the messages, as in
signed Diffie-Hellman style protocols, that subsequently sacrifice deniability.
On the other hand, using implicit authentication along the lines of MQV and
descendants sacrifices perfect forward secrecy in one round and achieves only
weak perfect forward secrecy instead.
We show that by reintroducing signatures, it is possible to satisfy both a very
strong key-exchange security notion, which we call eCK-PFS, as well as a strong
form of deniability, in one-round key exchange protocols. Our security notion
for key exchange is stronger than, e. g., the extended-CK model, and captures
perfect forward secrecy. Our notion of deniability, which we call peer-and-time
deniability, is stronger than that offered by, e. g., the SIGMA protocol.
We propose a concrete protocol and prove that it satisfies our definition of
key-exchange security in the random oracle model as well as peer-and-time
deniability. The protocol combines a signed-Diffie-Hellman message exchange
with an MQV-style key computation, and offers a remarkable combination of
advanced security properties.

Keywords: Key Exchange, Perfect Forward Secrecy, Deniability, PKI

1 Introduction

We consider the problem of key exchange in the PKI setting. Numerous protocols
have been proposed in this context, which can be classified into two main
categories: those that explicitly provide authentication, e. g., by using signatures
or additional authenticating message flows, and those that only implicitly provide
authentication, e. g., by involving the participants’ private keys in the key
derivation. An example from the first category is the modified STS-protocol [4]:

Â B̂

1. x ∈R Zq ; X := gx
X−−−−−−−−−−−−−−→ y ∈R Zq ; Y := gy

2. verify signature
Y,Signsk

B̂
(Y,X,Â)

←−−−−−−−−−−−−−− KB̂ := Xy

3. KÂ := Y x
Signsk

Â
(X,Y,B̂)

−−−−−−−−−−−−−−→ verify signature

? Important differences between the versions are summarized in Appendix D.

2

The core of the protocol is a basic Diffie-Hellman key exchange. Additionally, the
protocol ensures authentication of the exchanged messages by adding signatures,
which include the peer’s identity to prevent unknown-key share (UKS) attacks.

The modified-STS protocol ensures perfect forward secrecy (PFS). This
security property means that the compromise of long-term secret keys does not
compromise past session keys [24]. However, the protocol requires three messages
and lacks desirable security features, such as deniability: The signatures prove
that Â intended to talk to B̂, and vice versa. If Â is malicious, she can even
replace x by a digest of today’s newspaper, which allows her to prove that B̂
was willing to communicate with her after a certain date.

In contrast, protocols from the second category only authenticate implicitly,
and delay the authentication to the key derivation phase. This allows for the con-
struction of very efficient one-round protocols. These protocols offer deniability
of the message exchange and aim at providing strong security properties, such as
resilience against UKS attacks and leakage of ephemeral keys (i. e., the random
coins drawn by the parties). A basic example is the MQV protocol [21], shown
below. Here, G = 〈g〉 denotes a subgroup of Z∗q of prime order p where p|q − 1

for some large prime q, X is defined as X mod 2w + 2w, and a and b denote
Â’s and B̂’s long-term private keys, respectively. The corresponding long-term
public keys are A = ga and B = gb.

Â B̂

1. x ∈R Zq ; X := gx
X−−−−−−−→ verify that Xp mod q = 1

2. verify that Y p mod q = 1
Y←−−−−−−− y ∈R Zq ; Y := gy

KÂ := (Y BY)x+aX KB̂ := (XAX)y+bY

Due to the lack of message origin authentication, a recipient must check that
the received element X belongs to the group G (that is, Xp mod q = 1) and
that X 6= 1 to prevent attacks such as small subgroup attacks.

However, implicitly authenticated one-round protocols that are similar to
MQV do not guarantee perfect forward secrecy, as witnessed by the attack
described by Krawczyk [19]. Assume that Alice starts the protocol, trying to
talk to Bob. The adversary intercepts her message, and generates his own value
y, and sends gy to Alice. Next, Alice computes the session key and sends her
confidential message to Bob, encrypted with the session key. If at any point in the
future, the adversary manages to learn Bob’s long-term secret key, he can decrypt
Alice’s message. This generic attack shows the impossibility of achieving perfect
forward secrecy for a class of implicitly authenticated one-round protocols.

To prove a slightly weaker notion of forward secrecy for the HMQV protocol,
Krawczyk introduces the notion of weak perfect forward secrecy [19]. When
the long-term keys are compromised, weak perfect forward secrecy guarantees
secrecy of previously established session-keys, but only for sessions in which the
adversary did not actively interfere. Hence, the strong level of deniability, which
is achieved by implicitly-authenticated key-exchange protocols such as (H)MQV,
is achieved at the expense of important security guarantees.

The desire to efficiently achieve both perfect forward secrecy and deniability
has been first addressed in the context of ”off-the-record messaging” by Borisov,

3

Goldberg and Brewer in [6]. They suggest an instant-messaging protocol (OTR)
that relies on an authenticated Diffie-Hellman key-exchange protocol using
digital signatures. However, in [26], Di Raimondo, Gennaro and Krawczyk show
that the OTR protocol suffers from a serious security flaw, namely it admits
an unknown-key share attack. Fixing the flaw by including the identity of the
intended peer within the signed messages, as suggested in [26], significantly
weakens the level of deniability.

In this work, we propose a protocol that combines the message exchange
of a signed Diffie-Hellman variant with an MQV-style key computation. The
signatures offer two main benefits. First, they allow us to establish perfect
forward secrecy in one round contradicting common belief. Second, message
origin authentication is achieved through the signatures on the exchanged
ephemeral public keys and the group element check on received data.

It may seem at first glance that the use of signatures has drastic consequences
on the level of deniability of our protocol. However, we show that it is possible
to establish a very strong form of deniability, which we call peer-and-time
deniability. In practice, this means that participants cannot deny that they may
have participated in partial protocol runs with some party at some time in
the past, in either the initiator or responder role. But they can deny any more
specific allegations.

Thus, our protocol achieves the best of two worlds for one-round authenti-
cated key-exchange protocols using explicit signatures, that is, perfect forward
secrecy defined within a remarkably strong indistinguishability-based security
model as well as a high well-defined level of deniability.

Contributions. First, we define a new security notion for key-exchange protocols,
which we call eCK-PFS. The eCK-PFS model is a strengthening of the extended-
CK model [20] and additionally requires (full) perfect forward secrecy.

Second, we introduce a strong notion of deniability, called peer-and-time
deniability. This notion is strictly weaker than full deniability [27], but stronger
than the deniability offered by protocols such as SIGMA [18]. Peer-and-time
deniability allows parties to deny communicating with particular peers as well
as being alive at specific times.

Third, we propose a one-round key exchange protocol, which combines
signatures on self-generated data with an MQV-style key computation. We
prove that the protocol satisfies our notion of key-exchange security as well
as peer-and-time deniability. To the best of our knowledge, our key-exchange
protocol is the first to satisfy this strong key-exchange security property, even
without considering deniability.

Organization. We recall standard definitions in Section 2. In Section 3 we
define our notion of key exchange (KE) security, and introduce peer-and-time
deniability in Section 4. We propose a concrete protocol and discuss design
choices in Section 5. We sketch proofs of the deniability and KE security of our
protocol in Section 6. We discuss the efficiency of our protocol in Section 7 and
related work in Section 8. Finally, we conclude in Section 9. We give detailed
proofs of our results in the appendix.

4

2 Preliminaries

Let G = 〈g〉 be a finite cyclic group of prime order p with generator g.

Definition 1 (CDH-Assumption). The computational Diffie-Hellman as-
sumption (CDH) in G states that, given gu and gv, for u, v chosen uniformly at
random from Zp, it is computationally infeasible to compute guv.

Definition 2 (GAP-CDH-Assumption). The GAP − CDH assumption in
G states that, given gu and gv, for u, v chosen uniformly at random from Zp, it
is computationally infeasible to compute guv with the help of a decisional Diffie-
Hellman (DDH) oracle (that, for any three elements gu, gv, gw ∈ G, replies
whether or not w = uv mod p).

We denote by AdvGAP−CDH
C the probability of a probabilistic polynomial

time (PPT) adversary C to break the GAP − CDH assumption in G. If the
GAP − CDH assumption in G holds, then AdvGAP−CDH

C is negligible for any
PPT adversary C.

Definition 3 (Signature Scheme [16]). A signature scheme is a tuple of
three polynomial-time algorithms (Gen,Sign,Vrfy) satisfying the following:

1. The probabilistic key-generation algorithm Gen takes as input a security
parameter 1k and outputs a public/private key pair (pk, sk).

2. The (possibly probabilistic) signing algorithm Sign takes as input a private
key sk and a message m ∈ {0, 1}∗. It outputs a signature σ := Signsk(m).

3. The deterministic verification algorithm Vrfy takes as input a public key pk,
a message m, and a signature σ. It outputs a bit b, with b = 1 meaning valid
and b = 0 meaning invalid. We write b := Vrfypk(m,σ).

Definition 4 (EU-CMA [16]). A signature scheme Σ = (Gen,Sign,Vrfy) is
existentially unforgeable under an adaptive chosen-message attack if for all
probabilistic polynomial-time adversaries A, there exists a negligible function
negl such that AdvSigA (k) ≤ negl(k), where AdvSigA (k) denotes the probability of
successfully forging a valid signature on a message which has not been previ-
ously queried to a signing oracle (returning a signature for any message of the
adversary’s choice).

Key exchange terminology. Key exchange protocols are specified as a set of roles.
In particular, for two-party protocols as considered here, there is an initiator
role and a responder role. Roles are performed by parties such as Â or B̂. Each
party may execute multiple roles, and even multiple instances of each role,
concurrently. We refer to a particular instance of a role at a party as a session.

3 Key exchange security notion: eCK-PFS

We define a security notion for key exchange (KE) protocols, which we refer to as
eCK-PFS. Our work builds on Bellare-Rogaway style indistinguishability-based
security notions for key exchange protocols [3]. As illustrated in Appendix A,

5

our KE-security notion is stronger than the extended-CK security notion [20],
that is, it captures strictly more attack scenarios than the extended-CK model.
Instead of only requiring weak perfect forward secrecy (as in extended-CK), we
require (full) perfect forward secrecy.

We associate to each session a unique session identifier. The session identifier
of a session s is defined as a quintuple (sactor , speer , ssend , srecv , srole), where
sactor , speer denote the identities of the owner and intended peer of the session s,
srole ∈ {i (initiator), r (responder)} denotes the role that the session is executing,
and ssend , srecv are sequences of timely ordered messages as sent/received by
sactor during session s. For incomplete sessions, these sequences are defined as
the messages sent/received so far. From now on, we assume that each session is
represented by its session identifier.

In order to specify functional requirements (e. g., two parties can success-
fully establish a shared key in the absence of adversaries) as well as security
requirements (e. g., keys from different sessions should be independent) we need
to specify when two sessions are intended to be communication partners. In KE
security notions this is commonly done by defining a notion of matching. Here
we adopt the matching sessions definition from the extended-CK model [20].

Definition 5 (matching sessions for two-message protocols). Two com-
pleted sessions s and s′ are said to be matching, denoted by s ∼ s′, if the
following condition holds

sactor = s′peer ∧ speer = s′actor ∧ ssend = s′recv ∧ srecv = s′send ∧ srole 6= s′role .

In early models, the definition of matching based only on the exchanged mes-
sages [3], but for protocols that offer, e. g., identity protection, the names of
the involved parties cannot be inferred from the messages although they clearly
play a role when defining the intended communication partner. Hence they are
explicit in the above definition. For similar reasons, the role is included in the
definition.

To relate a received message that was not constructed by the adversary to
the session it originates from, we introduce the concept of origin-session.

Definition 6 (origin-session). We say that a (possibly incomplete) session s′

is the origin-session for a completed session s when

s′send = srecv ∧ speer = s′actor .

In other works the previous two definitions are collapsed into a single matching
predicate, by extending the definition of matching to also cover incomplete
sessions. However, for clarity we choose to keep these concepts separate.

As we will see later in more detail, the key exchange security notion is defined
as a game in which the adversary interacts with the parties. The adversary
attempts to distinguish a real session key from a random one, and can activate
parties to start sessions and he can send messages to parties. The parties are
restricted to executing the roles. Any message sent by the parties is learned
by the adversary. This interaction is modeled by an experiment in which the
adversary can perform the following operations, known as queries.

6

1. send(s, v). This query models the adversary sending message v to an active
session s, or initiating a session, via a send(s,”initiate”) query. The adversary
is given the response from sactor according to the protocol.

2. corrupt(X). With this query E learns the long-term key of party X.
3. ephemeral-key(s). This query reveals the ephemeral keys (i. e., the random

coins) of an incomplete session s.
4. session-key(s). This query returns the session key accepted during the session
s. If s is incomplete or no key was accepted, the query returns empty.

5. test-session(s). To respond to this query, a random bit b is chosen. If b = 0,
then the session-key established in session s is returned. Otherwise, a random
key is output chosen from the probability distribution of keys generated by
the protocol. This query can only be issued to a completed session that is a
fresh session (defined below) by the time the query is issued.

An adversary that can perform the above queries can simply reveal the session
key of all sessions, breaking any protocol. The intuition underlying Bellare-
Rogaway KE models is to put minimal restrictions on the adversary with respect
to performing these queries, such that there still exist protocols that are secure
in the presence of such an adversary. We specify the restrictions on the queries
made by the adversary by the concept of fresh sessions.

Definition 7 (Fresh session). A completed session s in a key-exchange ex-
periment W is said to be fresh if all of the following conditions hold:

1. W does not include the query session-key(s)
2. if a session s̃ exists that matches s, then W does not include session-key(s̃)
3. W does not include both corrupt(sactor) and ephemeral-key(s)
4. if s′ is an origin-session for session s, then W does not include both

corrupt(speer) and ephemeral-key(s′)
5. if there is no origin-session for session s, then W does not include a

corrupt(speer) query before the completion of session s.

Observe that in experiments in which no ephemeral-key queries occur, the
above definition allows the adversary to corrupt all parties after the session s is
completed, specifying (full) perfect forward secrecy.

Security Experiment for eCK-PFS. Security of a key-exchange protocol Π is
defined via an attack game played by the adversary E, modeled as an efficient
probabilistic algorithm, against a challenger. Before the attack game starts,
each of the involved parties P̂ runs a key-generation algorithm Gen that takes
as input a security parameter 1k and outputs a static public/private key pair
(pkP , skP). The public key of each party is distributed in an authenticated way
to all other parties. The adversary is given access to all public data.

First E is allowed to perform send, corrupt, ephemeral-key and session-key
queries. The adversary then issues a test-session query to a fresh session of its
choice. The challenger chooses a random bit b and provides the adversary with
either the real session key (for b = 0) or a random key (for b = 1). The aim of the
adversary is to correctly guess b, i. e., whether he got the real session key or not.
To achieve this, he may continue with prevalent queries (session-key, corrupt,

7

send, ephemeral-key) without rendering the test-session un-fresh. Finally, the
adversary outputs a bit b′ as his guess for b. He wins the game if b′ = b.

The advantage of adversary E in the above security experiment with a key
exchange protocol Π at security parameter k is defined as

AdvΠE (k) = |2P (b = b′)− 1|.

Definition 8. A key exchange protocol Π is called KE-secure if, for any efficient
probabilistic adversary E, the following conditions hold:

– If two parties successfully complete matching sessions, then they both compute
the same session key.

– E has no more than a negligible advantage in winning the above experiment,
that is, there exists a negligible function negl in the security parameter k
such that AdvΠE (k) ≤ negl(k).

Rationale. Our KE security model captures the following security requirements.
Perfect forward secrecy means that the compromise of long-term secret keys does
not compromise past session keys. This property is reflected in the above security
model by allowing the adversary to corrupt any party after the completion of
the test-session. Further, the adversary is allowed to perform key compromise
impersonation attacks by corrupting the actor of the test-session before its
completion. Additionally, the adversary is allowed to reveal ephemeral keys of
any session as in the extended-CK model. Note that if the adversary reveals
the ephemeral keys of a session as well as the long-term secret key of the actor
of that session, he can trivially reconstruct any computation performed by
that party in any protocol. Hence we need to exclude this combination for the
test-session and the origin-session if it exists (matching sessions are by definition
also origin-sessions). Also, note that if the adversary chooses ephemeral-keys on
behalf of a party and corrupts this party before the completion of the test-session,
he can impersonate this party as peer to the test-session. Therefore we need
to exclude this scenario by requiring that if there is no origin-session for the
test-session, then the adversary should not be allowed to reveal the long-term key
of the peer to the test-session before the latter is completed. Finally, known-key
attacks are captured via the session-key queries; revealing session-keys of some
sessions should not enable the adversary to obtain information on other session-
keys. Unknown key-share (UKS) attacks lead to a special kind of known-key
attacks. Informally, a key-exchange protocol is resilient against UKS attacks if
no probabilistic polynomial-time (PPT) adversary can lead a party to sharing
a session-key with a different party than its intended peer, with more than
negligible probability (similar to the informal definition in [15]). In Appendix C
we show in more detail how UKS attacks are captured in our model.

4 Peer-and-Time Deniability

Deniability is a privacy-related property that considers the scenario in which at
least one of two parties involved in a protocol execution is dishonest and tries
to convince a judge that some messages can be traced back to the other party.

8

Formal definitions of full deniability and partial deniability for key-exchange
protocols were proposed in [27]. Full deniability allows a party to deny having
been involved in a given run of the protocol. As a consequence, a recipient
cannot convince a judge that the messages it received during a given execution
were sent by the accused sender. In contrast, partial deniability does not allow
the recipient to prove that the accused sender communicated with him: in other
words, the transcripts are peer-independent.

As pointed out in [27], there is an inherent trade-off between deniability
and authentication. This poses a direct problem for one-round key exchange
problems. On the one hand, authentication of the exchanged key is critical, and
on the other hand, there are only very limited options to establish authentication
without violating deniability. In practice, many protocols do not achieve full
deniability, and instead only weaker forms such as partial deniability of identity
protection. In [27], the authors show that SKEME satisfies full deniability
whereas the four-message version of SIGMA only satisfies partial deniability.

In order to achieve perfect forward secrecy in a one-round key exchange pro-
tocol, the protocol that we propose later relies on message-origin authentication
of the exchanged messages, realized using signatures. This directly leads to a
violation of full deniability. However, we manage to achieve a different form
of deniability, which we call peer-and-time deniability. As opposed to partial
deniability, our peer-and-time deniability allows parties to deny that they were
alive during a certain time window. Though a judge can be convinced that a
party signed some self-generated data at some point, there can be no proof of
the party’s role, its intended peer, whether the session was completed, or the
time at which the message was signed happened. For many practical purposes,
peer-and-time deniability seems to be a sufficiently strong form of deniability.
In contrast, the SIGMA protocol allows others to obtain a signature on a peer-
provided value. If this is chosen as, e. g., the hash of today’s newspaper, a judge
can be convinced that a party was alive after a certain date and time.

We formally define peer-and-time deniability by first formalizing the weaker
property of peer-deniability and strengthening it to peer-and-time deniability.
In our formal definitions, we assume an environment where an adversary has
full control over the communication medium, can activate sessions through
send queries and can corrupt parties, as in Section 3. Corrupted parties model
malicious (or dishonest) insiders on behalf of whom the adversary can act. Given
a protocol execution of an honest party Â and a possibly dishonest party B̂,
Â should be able to deny having been intentionally involved in a protocol run
with B̂. That is, party Â should be able to deny its communication peer. Our
notion of peer-deniability refers to the ability to produce a protocol transcript
indistinguishable from a real protocol transcript between an honest party Â and
an adversary-controlled party B̂. Informally, a protocol is said to be peer-deniable
if, after a protocol execution between an adversary-controlled party B̂ and some
honest party Â, party B̂ cannot convince a judge that party Â was intentionally
involved in that execution with B̂. Party Â should be able to deny interaction
with B̂ by arguing that its signed messages could have been generated while
executing a protocol session with another party. If Â is in the initiator role,
then Â could even deny having ever accomplished (completed) a protocol run

9

with any other party. The message exchange of some protocol execution with a
dishonest peer B̂ can be efficiently simulated given access to an oracle of Â in a
protocol execution with some other party Ĉ 6= B̂.

Our formal definitions of deniability are inspired by the works of Dwork,
Naor and Sahai [11] as well as of Di Raimondo, Gennaro and Krawczyk [27]. The
main difference to the definition of partial-deniability [27] is that the simulator
is additionally given access to the secret key of corrupted parties and that the
simulation of the protocol transcript does not include the session-key. As in [27],
we model the generation of signatures on behalf of uncorrupted parties by giving

the simulator access to oracles. We denote by ΣÂ,B̂
I the I−oracle representing

either an incomplete initiator session at party Â with intended peer B̂ or a

completed initiator session at party Â with peer B̂. Similarly, ΣÂ,B̂
R denotes an

R−oracle representing a responder session at party Â with peer B̂.

Definition 9 (peer-deniability). Let Π be an (authenticated) key-exchange
protocol. We say that an initiator role of Π is peer-deniable with respect to an
I−oracle (or R−oracle) if there exists a polynomial time simulator SI such that,
for any adversary-controlled party B̂ and any honest party Â, SI can produce
a transcript of sent and received messages between Â as initiator and B̂ as
responder, indistinguishable from a real transcript between Â and B̂ in a setting
where the adversary is allowed to issue send and corrupt queries, while given

oracle access to a polynomial number of protocol role instances except to ΣÂ,B̂
I

and ΣÂ,B̂
R (i.e. no oracle access to role instances with actor Â and peer B̂).

Additionally, the simulator is given the secret keys of corrupted parties.

An initiator role is said to be peer-deniable if it is peer-deniable with respect
to an I−oracle or with respect to an R−oracle. A responder role is defined
to be peer-deniable analogously. Protocol Π is peer-deniable if both roles are
peer-deniable.

Under the key-awareness assumption (see [27]) for the key derivation function
used, the four-message version of the SIGMA protocol is peer-deniable with
respect to Definition 9. Note that even the session-key (which is independent of
public/private information relating to the parties involved in the simulation)
could be simulated.

We now specialize the above definition by conditioning the proceedings of the
simulator. The resulting definition additionally ensures timelessness of exchanged
messages. Thus, it captures peer-independence as well as time-independence of
sent and received messages during a protocol execution.

Definition 10 (peer-and-time deniability). Let Π be an (authenticated)
key-exchange protocol. We say that an initiator role of Π is peer-and-time deni-
able with respect to an I−oracle (or R−oracle) if there exists a polynomial time
simulator SI working as described below such that, for any adversary-controlled
party B̂ and any honest party Â, SI can produce a transcript of sent and received
messages between Â as initiator and B̂ as responder, indistinguishable from a
real transcript between Â and B̂ in a setting where the adversary is allowed to

10

issue send and corrupt queries, while given oracle access to a polynomial number

of protocol role instances except to ΣÂ,B̂
I and ΣÂ,B̂

R .
The simulation should proceed in four steps, as follows:

1. At time τ0, the simulator is setup with public knowledge (such as the identity
and public-key of a polynomial number of parties (in particular the public
keys of the parties Â and B̂) as well as the secret keys of corrupted parties.

2. The simulator is allowed to activate and query the oracles is it given access
to for a time period δ := τ1 − τ0, where τ1 > τ0. It is not allowed to interact
with B̂ or to perform on behalf of B̂ (since it knows its long-term secret key).

3. From time τ2 > τ1, the simulator can interact with B̂ without interacting

with oracles ΣÂ,∗
I and ΣÂ,∗

R for which Â acts as initiator or responder. (Here

∗ can be replaced by any identity Ĉ 6= B̂.)
4. The simulator outputs a protocol transcript between Â and B̂.

An initiator role is said to be peer-and-time deniable if it is peer-and-time
deniable with respect to an I−oracle or with respect to an R−oracle. A responder
role is defined to be peer-and-time deniable analogously. Protocol Π is peer-and-
time deniable if both roles are peer-and-time deniable.

The SIGMA protocol does not satisfy peer-and-time deniability because it
requires a signature on a peer-provided element.

5 A strongly-secure one round key exchange protocol

Let G be a finite cyclic group of prime order p with p = O(2k) for some
security parameter k and let g be a generator of the group G. Further, let
KDF : {0, 1}∗ → {0, 1}k denote a key derivation function. We assume that each
party has a long-term public/private key pair (pk = gv, sk = v) (where v ∈ Zp)
for use in a digital signature scheme and that the public keys of other involved
parties are known and distinct from each other. We assume that the owners of
valid public keys know the corresponding private keys. For example, this can be
realized by a CA that generates the pairs, or by requiring that users provide a
proof-of-possession for the private key when they register a public key. If users
can generate key pairs dynamically, i. e., they can register new key pairs during
the lifetime of the protocol, then we require that the signature scheme is resilient
against Duplicate Signature Key Selection (DSKS) attacks [17].

An execution of the protocol proceeds as follows. We denote by x ∈R S the
element x being chosen uniformly at random from the set S.

1. Â (initiator) chooses an ephemeral secret key x ∈R Zp, signs the group
element X = gx with her long-term secret key, and sends the message
(Â,X, σX = SignskÂ

(X)) to B̂.

2. B̂ (responder) verifies that X ∈ G and that VrfypkÂ
(X,σX) = 1. If the

checks are successful, then B̂ chooses an ephemeral secret key y ∈R Zp,
signs the group element Y = gy with his long-term secret key, sends the
message (B̂, Y, σY = SignskB̂

(Y)) to Â and computes the session-key KB̂ =

KDF (Â, B̂, (XA)y+b, X).

11

3. Â verifies that Y ∈ G and that VrfypkB̂
(Y, σY) = 1. If the checks are

successful, then Â computes the session-key KÂ = KDF (Â, B̂, (Y B)x+a, X).

We assume that whenever a verification in a session s fails, all session-specific
data is erased from memory and session s is aborted (that is, it terminates
without establishing a session-key). Note that the role of the session specifies
the order of the identities as input to the key derivation function KDF .

i : Â : a,A = ga r : B̂ : b, B = gb

x ∈R Zp

X = gx
Â,X,Signsk

Â
(X)

−−−−−−−−−−−→ Check X ∈ G
Verify signature

y ∈R Zp

Check Y ∈ G
B̂,Y,Signsk

B̂
(Y)

←−−−−−−−−−− Y = gy

Verify signature

KÂ = KDF (Â, B̂, (Y B)x+a, X) KB̂ = KDF (Â, B̂, (XA)y+b, X)

Design choices. Under the assumption that an attacker did not learn a party’s
long-term secret key and that forging signatures is hard, he cannot impersonate
that party to a session. Without ephemeral public-key validation, an attacker
could recover the long-term secret key of an uncorrupted party via a variant
of the small-subgroup attack against HMQV described in [23, p. 136]. The
attack involves corrupt, ephemeral-key and session-key queries and exploits the
structure of certain cyclic groups.

To prevent unknown-key share attacks, we include the participants’ identities
(ordered according the their roles) in the input of the key derivation function
KDF . The final component X in the key derivation function excludes two
initiators from computing the same key, even in the case of self-communication.

An important design choice in our protocol is the secret group element
g(x+a)(y+b) taken as input to the KDF . This provides resilience against the
replay attack described in [18, p. 418]. Suppose that an adversary E learns
the ephemeral private key x of an exponential gx sent by party Â in session
s. Replaying the message (Â, gx, SignskÂ(gx)) to a session s′ at party B̂, the

adversary cannot impersonate Â (or compute the same session-key as in session s′)
without revealing Â’s long-term secret key (under the GAP − CDH assumption
in the underlying group G). Thus, the leakage of an ephemeral private key
used in a given session does not affect the security of other sessions. Moreover,
revealing any subset of {x, y, a, b} that does not contain {x, a} or {y, b}, does
not allow the adversary to compute the session-key. 1

1 In the security proof of our protocol, we assume that the signature scheme does not leak
any information about the secret key. Alternatively, one can use two different independent
public/secret key pairs. One for use in the digital signature scheme and the other one for
the computation of the secret value in the key derivation function.

12

6 Security and Deniability Analysis

We focus on the most important steps in the security analysis of our protocol
and discuss the reasons for achieving the desired security goals. Detailed proofs
of Theorem 1 and Lemma 1 can be found in Appendix B. We first state the
main security result.

Theorem 1. Under the GAP − CDH assumption in the cyclic group G of
prime order p, using a deterministic signature scheme that is existentially un-
forgeable under adaptively chosen-message attacks, our protocol is a secure
authenticated key-exchange protocol with respect to the eCK-PFS model (Defini-
tion 8), when KDF is modeled as a random oracle. The adversary E’s advantage
is bounded by

AdvΠE (k) ≤ (qs + qro)
2

2k
+
q2s + 2Nqs

p
+2NqsAdv

Sig
M (k)+2q2sqroAdv

GAP−CDH
C (k)+

qs
2k
,

where N is an upper bound on the number of parties and qs, qro are upper bounds
on the number of activated sessions and random oracle queries by the adversary.

The following lemma is an intermediate result that states that the adversary
cannot break the security of the protocol through session-key reveal queries.
First, these queries are not allowed on matching sessions. Second, since the
session-keys are generated independently from each other and do only collide
with negligible probability when the key derivation function KDF is modeled
as a random oracle, session-key reveal queries on non-matching sessions give
no information on the session-key of the fresh test-session. Both arguments
guarantee resilience against known-key attacks as well as UKS attacks.

We write Ks to denote the session key computed by session s.

Lemma 1. Assume that the KDF function in the protocol is modeled as a
random oracle. If for any two sessions in a security experiment the chosen
ephemeral public keys are distinct, then it holds that either s ∼ t or Ks 6= Kt

with overwhelming probability, for all completed sessions s, t with s 6= t.

We proceed with two reduction arguments. First, recall that, while being
allowed to compromise the long-term secret key of the actor of the test-session,
the adversary can only reveal the long-term secret key of the peer to the test-
session before its completion when he does not inject his own message. Hence,
the adversary could only break the security of the protocol via insertion of a
message of its choice by forging a signature with respect to the long-term public
key of the test-session’s peer. By assumption forgery events can only occur with
negligible probability, so that the protocol is resilient against key compromise
impersonation attacks.

Excluding a forgery event, we can assume that there exists an origin-session s
for the test-session t. Revealing the long-term secret keys of actor and peer of the
test-session, the adversary could break the security of the protocol by solving the
instance of the GAP − CDH problem given by the sent and received messages
involved in the test-session. Similarly, the adversary could have issued other

13

combinations of corrupt and ephemeral-key queries (without rendering the test-
session un-fresh) and break the GAP − CDH with respect to a corresponding
instance. The hardness of the GAP − CDH assumption in the cyclic group G
of prime order allows to achieve resilience against such attacks.

Theorem 2. Our protocol is peer-and-time deniable conform Definition 10.

Proof. We first show that an initiator role of our protocol is peer-and-time
deniable with respect to an I-oracle. The simulator SI is setup with public
information, in particular the identity and public key of the parties Â,B̂ and Ĉ.

Further, SI is given oracle access to the initiator instance ΣÂ,Ĉ
I where Ĉ 6= B̂.

The simulator activates the oracle ΣÂ,Ĉ
I and gets as response the message

m = (Â,X, SignskÂ(X)) at time τ1. At time τ2 > τ1, it forwards the message m

to B̂. Upon receipt of B̂’s response n of the form (B̂, Y, σ), SI verifies whether
Y ∈ G and whether the signature σ on Y with respect to the public key of B̂ is
valid, and if the verifications are successful, SI outputs the simulated protocol
transcript (m,n). Note that the initiator session at Â is still incomplete.

Next, we show that a responder role is peer-and-time deniable with respect
to an I-oracle. The simulator SR is setup as in the previous case. SR is given

oracle access to the initiator instance ΣÂ,Ĉ
I where Ĉ 6= B̂. The simulator

SR first activates the oracle ΣÂ,Ĉ
I and gets as response the message m =

(Â,X, SignskÂ(X)) at time τ1. At time τ2 > τ1, it activates B̂ and gets as

response the message n of the form (B̂, Y, σ). If Y belongs to the group G and
the verification of the signature σ on Y with respect to the public key of B̂
succeeds, then SI outputs the simulated protocol transcript (n,m). In a similar
way, one can show that a responder role is peer-and-time deniable with respect
to an R-oracle.

Known weaknesses. If the adversary learns the exponent used in the key deriva-
tion, e. g., (x+a), as well as the signature on gx, he can indefinitely impersonate
Â. Similar attacks exist for (H)MQV [1] and Naxos [8]. The exponents (x+ a)
and (y + b) must therefore be similarly protected as the long-term private key.

7 Efficiency

Computational complexity. A run of the protocol requires for each party three
exponentiations (one for the ephemeral public key, one for the session key and
one for the group element check), one signature generation and one signature
verification.

The computational cost of the signature scheme is therefore a large factor
in the efficiency of our protocol. We require that the signature scheme does
not reveal the long-term keys even if the used random coins are revealed. This
can be realized, e. g., by using a deterministic signature scheme. For example,
when using the GDH signature scheme from [5], the signature generation needs
one exponentiation, and verification costs one DH-tuple check. As mentioned
in [5], for the suggested signature scheme based on elliptic curves the signature

14

verification is more expensive than the signature generation since it requires the
computation of two pairings.

Alternatively, the “NAXOS trick” [20] can be applied to a non-deterministic
signature scheme: the random coins x drawn by party Â for use in the signature
scheme can be replaced by H(skÂ, x), where H is a hash function. As a concrete
example for Schnorr signatures, this means that in the computation of the
signature we draw random coins x, and compute gH(skÂ,x) instead of just gx.
Consequently, revealing x (but not skÂ) and the corresponding signature no
longer reveals any information about the long term key.

Note that the ephemeral public keys and their signatures can be computed
off-line. However, the signature verification and the exponentiation for the key
computation need to be performed on-line.

Communication complexity. Our protocol requires that the two ephemeral public
keys are sent together with the signatures. Depending on the signature scheme,
this is about 2.5 times more bandwidth than (the two-message version of) MQV.
However, two-message protocols that satisfy similar security notions, such as
MQV or NAXOS, require additional communications to achieve perfect forward
secrecy. Furthermore, at the expense of computational efficiency, it is possible
to switch to short signatures, e. g. [5], to optimize communication complexity.

8 Related work

Our eCK-PFS security notion is a strengthening of extended-CK [20]. The
extended-CK model only considers weak perfect forward secrecy. Hence, the
model only allows revealing the long-term keys of the test session’s participants
if the adversary is passive during the session, which is captured in the model by
requiring the existence of a matching session. This restriction does not occur in
eCK-PFS.

Deniable authentication was first introduced by Dwork et al. [11] using the
simulation paradigm. Deniability of key-exchange protocols has been formalized
by Di Raimondo et al. [27]. Their definition of partial-deniability cannot be met
by signed key-exchange protocols where the session-key computation depends
on public data related to actor and peer of the session such as their identities
or public/secret keys. An honest initiator Â cannot pretend having established
the same session-key with B̂ as with any other party Ĉ 6= B̂ since these keys
will be distinct with overwhelming probability (e. g., by collision-freeness of the
key derivation function, and assuming that the computation of the session-keys
relies on the same ephemeral public/private data). Further, partial-deniability
only captures deniability for those sessions that computed a session-key. Thus an
honest initiator Â may not pretend never having completed a protocol session.
Also, the dishonest party B̂ in a protocol execution with Â trying to trace a
session-key back to Â cannot convince a judge that he could not have computed
the session-key himself given the sent and received messages.

The protocol that is closest to our protocol is the YAK protocol by Hao [13].
There are two main differences: YAK uses zero-knowledge proofs instead of
signatures, and includes identity information in the messages whereas our

15

protocol delays this to the key computation. Because YAK does not offer message
origin authentication, it is vulnerable to the generic PFS attack sketched by
Krawczyk, and only satisfies weak perfect forward secrecy. Compared to our
protocol, YAK requires more communication (for the zero-knowledge proofs).

After we published the first version of our report, a closely related protocol
was proposed in [14]. The protocol in [14] can be considered as an instance
of our protocol (up to the computation of the session-key) by instantiating
the deterministic signature scheme with Boneh’s GDH Signature Scheme [5].
As stated in [5], this scheme was implicitly described in [25]. In the protocol
description [14, Section 3.2], the “signatures” c1 and c2 on the messages X and
Y are included within the key derivation (as part of the session identifier sid).
These values c1, c2 are redundant in the computation of the session-key and only
serve authentication purposes through the DDH check.

The modified-Okamoto-Tanaka (mOT) protocol by Gennaro, Krawczyk and
Rabin [12] very efficiently provides perfect forward secrecy in the identity-based
setting in one round. This is achieved by defining the messages as the product
of the ephemeral public key and the ID-based private key. In the key derivation
function, these values are subsequently divided by the ID-based public keys,
allowing both parties to compute the same key. The security proof for mOT
depends on a variant of the KEA1 assumption [2]. Additionally, they sketch
variants of the protocol for the PKI-based setting. As noted by the authors,
the mOT protocol is not resilient against loss of ephemeral keys. In particular,
the loss of a single ephemeral key and corresponding message allows indefinite
impersonation of that party to any other party.

9 Conclusions

At the expense of a small degree of deniability, the use of signatures in an MQV-
style protocol yields several advantages for one-round key exchange protocols.
The main advantage is that they allow us to prove a very strong security notion
for our protocol. To the best of our knowledge, our protocol is the first one-round
key exchange protocol that satisfies this strong security notion, which implies
both extended-CK security and perfect forward secrecy.

In terms of efficiency, our protocol is more expensive than protocols that
offer only weak perfect forward secrecy and do not use signatures. However,
protocols that satisfy comparable security notions, including perfect forward
secrecy (e. g., the three-message versions of (H)MQV and NAXOS), require
significantly more communication than our protocol.

Finally, our concept of peer-and-time deniability may be of use in other
contexts where full deniability cannot be achieved.

References

1. D. Basin and C. Cremers. Modeling and analyzing security in the presence of compromising
adversaries. In Computer Security - ESORICS 2010, volume 6345 of Lecture Notes in
Computer Science, pages 340–356. Springer, 2010.

16

2. M. Bellare and A. Palacio. The Knowledge-of-Exponent assumptions and 3-round Zero-
Knowledge protocols. In CRYPTO, volume 3152 of Lecture Notes in Computer Science,
pages 273–289. Springer, 2004.

3. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Advances in
Cryptology-CRYPTO 93, volume 773, pages 232–249. Springer-Verlag, 1994.

4. S. Blake-Wilson and A. Menezes. Unknown key-share attacks on the Station-to-Station
(STS) protocol. In Imai H. and Zheng Y., editors, PKC ’99 Proceedings of the Second
International Workshop on Practice and Theory in Public Key Cryptography, volume 1560
of Lecture Notes in Computer Science, pages 154–170. Springer-Verlag Berlin / Heidelberg,
1999.

5. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil Pairing. In
ASIACRYPT’01, pages 514–532, 2001.

6. N. Borisov, I. Goldberg, and E. Brewer. Off-the-record communication, or, why not to use
pgp. In Proceedings of the 2004 ACM workshop on Privacy in the electronic society, pages
77–84. ACM Press, 2004.

7. C. Boyd, Y. Cliff, J.M. Gonzalez Nieto, and K.G. Paterson. One-round key exchange in
the standard model. Int. J. Applied Cryptography, 1:181–199, 2009.

8. C. Cremers. Session-StateReveal is stronger than eCK’s EphemeralKeyReveal: Using
automatic analysis to attack the NAXOS protocol. International Journal of Applied
Cryptography (IJACT), 2:83–99, 2010.

9. Cas Cremers. Examining indistinguishability-based security models for key exchange
protocols: the case of ck, ck-hmqv, and eck. In Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, ASIACCS ’11, pages 80–91, New
York, NY, USA, 2011. ACM.

10. A.W. Dent. A note on game-hopping proofs. Cryptology ePrint Archive, Report 2006/260,
2006. Available at http://eprint.iacr.org/2006/260.

11. C. Dwork, M. Naor, and A. Sahai. Concurrent zero-knowledge. In IN 30TH STOC, pages
409–418, 1999.

12. R. Gennaro, H. Krawczyk, and T. Rabin. Okamoto-Tanaka revisited: fully authenticated
Diffie-Hellman with minimal overhead. In Proceedings of the 8th international conference
on Applied cryptography and network security, ACNS’10, pages 309–328. Springer-Verlag,
2010.

13. F. Hao. On robust key agreement based on public key authentication. In Financial
Cryptography, volume 6052 of Lecture Notes in Computer Science, pages 383–390. Springer,
2010.

14. H. Huang. Strongly secure one round authenticated key exchange protocol with perfect
forward security. Cryptology ePrint Archive, Report 2011/346, 2011. http://eprint.

iacr.org/.

15. B.S.JR. Kaliski. An unknown key-share attack on the MQV key agreement protocol.
In ACM Transactions on Information and System Security (TISSEC), volume 4, pages
275–288. ACM New York, NY, USA, August 2001.

16. J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman Hall/CRC, 2008.

17. N. Koblitz and A. Menezes. Another look at security definitions. Cryptology ePrint
Archive, Report 2011/343, 2011. http://eprint.iacr.org/.

18. H. Krawczyk. SIGMA: The ’SIGn-and-MAc’ Approach to Authenticated Diffie-Hellman
and Its Use in the IKE-Protocols. In CRYPTO, pages 400–425, 2003.

19. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In CRYPTO
2005, volume 3621 of Lecture Notes in Computer Science, pages 546–566. Springer-Verlag,
2005.

20. B.A. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated key
exchange. In ProvSec, volume 4784 of Lecture Notes in Computer Science, pages 1–16.
Springer-Verlag, 2007.

21. L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient protocol for
authenticated key agreement. Designs, Codes and Cryptography, 28(2):119–134, 2003.

22. U. Maurer. Abstract models of computation in cryptography. In Nigel Smart, editor,
Cryptography and Coding 2005, volume 3796 of Lecture Notes in Computer Science, pages
1–12. Springer-Verlag, December 2005.

17

23. A. Menezes and B. Ustaoglu. On the Importance of Public-Key Validation in the MQV
and HMQV Key Agreement Protocols. In R. Barua and T. Lange, editors, INDOCRYPT
2006, volume 4329 of Lecture Notes in Computer Science, pages 133–147. Springer-Verlag
Berlin / Heidelberg, 2006.

24. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of applied cryptography, October
1996.

25. T. Okamoto and D. Pointcheval. The gap-problems: a new class of problems for the
security of cryptographic schemes. In Proceedings of the 2001 International workshop on
Practive and Theory in Public Key Cryptography (PKC ’2001), Lecture Notes in Computer
Science, pages 104–118. Springer-Verlag, 2001.

26. M. Di Raimondo, R. Gennaro, and H. Krawczyk. Secure off-the-record messaging. In
WPES ’05 Proceedings of the 2005 ACM workshop on Privacy in the electronic society,
pages 81–89. ACM New York, NY, USA, 2005.

27. M. Di Raimondo, R. Gennaro, and H. Krawczyk. Deniable authentication and key exchange.
Cryptology ePrint Archive, Report 2006/280, 2006. http://eprint.iacr.org/.

28. V. Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology
ePrint Archive, Report 2004/332, 2006. http://eprint.iacr.org/.

A Comparison of the eCK-PFS model to the eCK model

The eCK-PFS model is a strengthened eCK-like model that captures perfect for-
ward secrecy by allowing the adversary to corrupt any party after the completion
of the test-session. Further, it requires that, when an origin-session for the test-
session exists, the adversary is not allowed to reveal both the long-term secret
key of the peer to the test-session and the ephemeral-key of the origin-session.
In Table 1, we compare the adversary’s capabilities in the eCK model [20] and
the eCK-PFS model with respect to the same definition for matching sessions
(that is, Definition 5). The reader is referred to [9] for an in-depth comparison
of other security models for key exchange protocols.

Adversary capability Condition in eCK Condition in eCK-PFS

reveal long-term key of actor
sactor of test-session s

if no ephemeral-key reveal on
s

if no ephemeral-key reveal on
s

reveal long-term key of peer
speer to test-session s

if there is a session s′ that eCK-
matches s, then no ephemeral-
key reveal on s′, else not al-
lowed

if there is an origin-session
s′ for the test-session s, then
no ephemeral-key reveal on s′,
else only allowed after the com-
pletion of session s

reveal ephemeral-key of test-
session s

if no long-term key reveal on
sactor

if no long-term key reveal on
sactor

reveal ephemeral-key of non-
test session s′

if s′ eCK-matches the test-
session s, then no long-term
key reveal on s′actor

if s′ is an origin-session for the
test-session s, then no long-
term key reveal on s′actor

reveal session-key of non-test
session s′

if s′ does not eCK-match the
test-session s

if s′ does not eCK-match the
test-session s

Table 1. Comparison of the necessary conditions for adversary capabilities be-
tween the security models eCK and eCK-PFS

The following proposition states that the eCK-PFS model is stronger than
the eCK model with respect to the adversary’s capabilities.

18

Proposition 1. The eCK-PFS model is stronger than the eCK model, that is,
eCK-PFS captures strictly more attacks than the eCK model.

Proof. Let valid(W,M) be the predicate that is true if and only if security
experiment W is valid in security model M , that is, the session chosen by
the adversary to be the test-session must be fresh by the time he issues the
test-session query and remains fresh until the end of the experiment with respect
to the freshness definition of model M .

We have to show that

– ∀W (valid(W, eCK)→ valid(W, eCK− PFS)), and
– ∃W such that valid(W, eCK− PFS) and ¬valid(W, eCK).

Claim. It holds that ∀W (valid(W, eCK)→ valid(W, eCK− PFS)).

Proof. Most cases of the proof are straightforward. We focus on the non-trivial
cases that revolve around ephemeral-key reveals on non-test sessions. Let W be
a security experiment such that valid(W, eCK). Suppose that in experiment W
there exists a session s′ that eCK-matches the test-session s and that W includes
a corrupt(speer) query before the completion of the test-session. Note that session
s′ is also an origin-session for session s (by definition). Since valid(W, eCK),
the experiment W does not include an ephemeral-key(s′) query. It follows that
valid(W, eCK− PFS).

Now let W ′ be a security experiment such that valid(W ′, eCK). Suppose
that in experiment W ′ there exists a session s′ that eCK-matches the test-
session s and that W ′ includes an ephemeral-key(s′) query. By assumption
valid(W ′, eCK), so that the experiment W ′ does not include a corrupt(speer)
query. Since session s′ is an origin-session for the test-session s and W ′ does not
include a corrupt(speer) query, it holds that valid(W, eCK− PFS).

Claim. It holds that ∃W such that valid(W, eCK− PFS) and ¬valid(W, eCK).

Proof. Let W be a security experiment such that valid(W, eCK− PFS). Suppose
that in experiment W there exists a unique origin-session s′ for the test-session
s such that s′ is not extended to an eCK-matching during experiment W .
Further, suppose that the adversary issued a corrupt(speer). Note that, since
by assumption valid(W, eCK− PFS), experiment W does not include the query
ephemeral-key(s′). Clearly, it holds that ¬valid(W, eCK). This follows from the
fact that in the eCK model, the query corrupt(speer) with speer = s′actor and s′

does not eCK-match s in experiment W renders the test-session s un-fresh.

B Security proofs

In this appendix we provide detailed proofs of Lemma 1 and Theorem 1.

B.1 Preliminaries

We first recall some cryptographic assumption and then we state a new definition
for resilience against key-recovery attacks within security experiments.

19

Similar to the discrete logarithm experiment [16], we define the GAP discrete
logarithm2 experiment for a given group-generating algorithm G, algorithm A,
and parameter k as follows.

The GAP discrete logarithm experiment GAP −DLogA,G(k): (see
also [16])

1. Run G(1k) to obtain (G, p, g), where G is a cyclic group of order p (with
||p|| = k) and g is a generator of G.

2. Choose h← G. (This can be done by choosing x′ ∈ Zp and setting h := gx
′
.)

3. A is given G, p, g, h, and outputs x ∈ Zp. In addition, A is given access
to a decisional Diffie-Hellman (DDH) oracle that, for any three elements
gu, gv, gw ∈ G, replies whether or not w = uv mod p.

4. The output of the experiment is defined to be 1 if gx = h, and 0 otherwise.

Definition 11 (GAP −DLog). We say that the GAP discrete logarithm prob-
lem is hard relative to G if for all probabilistic polynomial-time algorithms A
there exists a negligible function negl such that

P (GAP −DLogA,G(k) = 1) ≤ negl(k).

Consider the following experiment for a given group G, algorithm A, pro-
tocol Π, adversarial environment EnvM (where M denotes a security model)3

specifying the queries that an adversary can issue against the protocol instances
and the parties involved, and parameter k:

The key-recovery experiment KRA,G,Π,EnvM (k):
Let G be a cyclic group of order p (with ||p|| = k) and g a generator of G.

1. Choose party Ĥ whose public key is an element h← G such that h := gx
′

for some x′ ∈ Zp. (e.g. choose a party uniformly at random)
2. A is given G, p, g, h where h is the public key of party P and other public

data (such as the public keys of other parties). Additionally, A can interact
with a polynomial number of sessions of protocol Π and perform queries as
specified in EnvM (e.g. send, corrupt, ephemeral-key and session-key queries
when M = eCK − PFS). However, A is not allowed to corrupt party Ĥ.

3. A outputs x ∈ Zp.
4. The output of the experiment is defined to be 1 if gx = h, and 0 otherwise.

Definition 12 (key-recovery attack). We say that a key-exchange protocol
Π relative to a security model M and group G is resilient against key-recovery at-
tacks if for all probabilistic polynomial-time algorithms A there exists a negligible
function negl such that

P (KRA,G,Π,EnvM (k) = 1) ≤ negl(k).

Finally, we recall the Difference Lemma introduced by Shoup in [28]. Let
P (X) denote the probability that event X occurs. We denote the complement
of an event F by F c (also often denoted by ¬F).

2 The GAP discrete logarithm problem has been studied by Maurer [22] in an abstract model
of computation.

3 When M = eCK − PFS, the adversarial environment EnvM comprises send, corrupt,
ephemeral-key and session-key queries. Note that the test-session query is not part of EnvM .

20

Lemma 2 (Difference Lemma [28]). Let A,B, F be events defined on some
probability space, and suppose that A ∧ F c ⇔ B ∧ F c. Then

|P (A)− P (B)| ≤ P (F).

B.2 Security statements and proofs

Lemma 3. Assume that the key derivation function KDF used in our protocol
is modeled as a random oracle. If for any two sessions in a security experiment
the chosen ephemeral public keys are distinct, then it holds that either s ∼ t
(i. e., s and t are matching sessions) or Ks 6= Kt with overwhelming probability,
for all completed sessions s, t with s 6= t.

Proof. By contrapositive. Suppose that there exist two completed sessions s, t
with s 6= t such that Ks = Kt and s 6∼ t. We have to show that there are two
distinct sessions in the experiment that generate the same ephemeral keys.

We denote by Zs, Zt the Diffie-Hellman exponentials sent in sessions s, t,
respectively. Let Qs, Qt denote the Diffie-Hellman exponentials received in
sessions s, t, respectively. Observe that s 6∼ t if and only if (sactor 6= tpeer ∨speer 6=
tactor ∨ ssend 6= trecv ∨ srecv 6= tsend ∨ srole = trole). We exclude collisions in the
key derivation function since they can only occur with negligible probability (by
assumption).

We distinguish between the following cases.
Case 1: trole = srole = i. Then we must have that Zs = Zt so that Ks = Kt.
Case 2: trole = srole = r. Both sessions must receive the same Diffie-Hellman
value, i. e., Qs = Qt (otherwise the last input to the KDF would be different).
Suppose that session t receives a message at time τn and session s receives a
message at time τm with m > n. Then session t establishes the session-key first
which involves the computation of the group element (Qt ∗ pktpeer)(zt+sktactor)

(where zt denotes the discrete logarithm of Zt = gzt and pktpeer , sktactor denote
the public key of tpeer and secret key of tactor , respectively). Necessary conditions
to have Ks = Kt are that tactor = sactor and tpeer = speer . This implies that
Zs = Zt.

Note that we do not need to consider the case where srole = i and trole = r.
To get Ks = Kt, it must hold that sactor = tpeer and speer = tactor (by the
ordering of the identities as input to the KDF according to their roles and the
the inclusion of the first message’s ephemeral public key). Together with the
fact that we must have Zs = Qt and Zt = Qs, it follows that ssend = trecv and
tsend = srecv . Hence, the sessions s and t are matching (that is, s ∼ t).

Lemma 4. Assume that the signature scheme does not leak any information
about the secret key and that KDF is modeled as a random oracle. Under the
GAP −DLog assumption in the finite cyclic group G of prime order p, our
protocol is resilient against key-recovery attacks.

Proof. We present a proof structured as a sequence of games where KDF :
{0, 1}∗ → {0, 1}k is modeled as a random oracle. Let N, qs be upper bounds on
the number of parties and activated sessions, respectively. We denote by Si the

21

event that the adversary E succeeds in a key-recovery attack in Game i. Recall
that we assume that the public/secret key pairs of the parties are distinct from
each other.

Game 0 Fix an efficient adversary E. This game reflects the real attack game
against E in the key-recovery experiment.

Game 1 [Transition based on a bridging step] Let Event N be the session-
specific failure event that there exist two distinct sessions s and s′ that choose
the same ephemeral private key. As soon as event N occurs, the attack game
stops.
Analysis of Game 1: Game 1 is identical to Game 0 up to the point in the
experiment where event N occurs for the first time. Moreover, we have that

P (N) =

(
qs
2

)
1

p
≤ q2s

2p
.

The Difference Lemma yields that

|P (S0)− P (S1)| ≤ P (N) ≤ q2s
2p
.

Game 2 [Transition based on a small failure event] Let Event U be the session-
specific failure event that there exists a session t and a party P such that the
long-term public key of party P equals the ephemeral public key chosen in
session t. We need to prevent the scenario where revealing the ephemeral secret
key of some session implies learning the long-term secret key of some party,
because they are identical. When event U occurs, the attack game stops.

Game 1 and Game 2 simplify the analysis of the success probability in a
key-recovery attack in Game 2.
Analysis of Game 2: Game 1 is identical to Game 2 up to the point where
event U occurs. We have that

P (U) ≤ Nqs
p
.

The Difference Lemma yields that

|P (S1)− P (S2)| ≤ P (U) ≤ Nqs
p
.

Claim. If the GAP discrete logarithm problem is hard relative to the group G,
then the probability of the adversary succeeding in a key-recovery attack is negligi-
ble. Moreover, in Game 2, it holds that P (S2) = N ∗P (GAP −DLogC ,G(k) = 1).

Proof. We define the minimal session identifier, denoted by min-sid, of a session s
as a quintuple (sactor , speer , X1, X2, srole), where sactor , speer denote the identities
of the owner and intended peer of the session s, srole ∈ {i (initiator), r (responder)}
denotes the role that the session is executing, and X1, X2 are the Diffie-Hellman
exponentials (belonging to the group G) contained in the messages ssend , srecv ,

22

respectively. For incomplete sessions, the element X2 is undefined (denoted by
∗).

We solve the GAP −DLog problem with probability 1
NP (S2) where P (S2)

denotes the probability in succeeding in a key-recovery attack in Game 2.
Consider the following algorithm C (against GAP −DLog) which uses adversary
E as a subroutine.
ALGORITHM C: The algorithm is given a group element B = gb of G as an
instance of the GAP −DLog problem. C chooses public keys for all parties
except for some party B̂ and stores the associated secret keys. It sets the public
key of party B̂ to B = gb. Additionally, it is given access to a signing oracle
OSign that on input an ephemeral public key W outputs the signature on W
with respect to the public key of B̂.

1. Run E on input 1k and the public keys for all of the N parties.
2. If E issues a send(z, ”initiate”) query to session z with zactor = B̂, answer

it in the following way. Choose x ∈R Zp and query the signing oracle on
message X = gx to get σ(X). Return (zactor , X, σ(X)) to E.
If E issues a send(z, ”initiate”) query to session z with zactor = P̂ 6= B̂, then
choose x ∈R Zp and return (zactor , X, σ(X)) to E (C knows the long-term
secret key of P̂).

3. If E issues a send(z,m = (P̂ ,X, σ)) query to session z with zactor = B̂ and
zrole = r, answer it in the following way. Check whether X ∈ G and whether
σ is a valid signature on message X with respect to the public key of party
P̂ . Choose y ∈R Zp and query the signing oracle on message Y = gy to get
σ(Y).

– If an origin-session z̃ exists for session z and z̃actor = B̂, then check
whether there is an entry (x, h) in Table 2 such that x = B̂, B̂, Z,X
with Z ∈ G and DDH(BY,BX,Z) = 1. If there is such an entry, then
store the tuple ((B̂, B̂, Y,X, r), x, h) in Table 1. Else (if there is no such
entry), choose a random h ∈ {0, 1}k (uniformly at random) and store
the following entry in Table 1:

min-sid(s) x KDF(x)

...

(B̂, B̂, Y,X, r) B̂, B̂, ∗, X h

Table 2. Table 1

Return the message (zactor , Y, σ(Y)) to E.
– If an origin-session z̃ exists for session z and z̃actor = P̂ 6= B̂, then

compute the secret Z = (BY)x+p.
Check whether there is an entry (x = (P̂ , B̂, Z,X), h) in Table 2. If there
is such an entry, then store the tuple ((B̂, P̂ , Y,X, r), x, h) in Table 1.
Else (if there is no such entry), choose a random l ∈ {0, 1}k (uniformly
at random) and store the entry ((B̂, P̂ , Y,X, r), (P̂ , B̂, Z,X), l) in Table
1.
Return the message (zactor , Y, σ(Y)) to E.

23

– If no origin-session exists for session z, then check whether there is
an entry (x, h) in Table 2 such that x = P̂ , B̂, Z,X with Z ∈ G and
DDH(BY,PX,Z) = 1.4 If there is such an entry, then store the tu-
ple ((B̂, P̂ , Y,X, r), x, h) in Table 1. Else (if there is no such entry),
choose a random l ∈ {0, 1}k (uniformly at random) and store the entry
((B̂, P̂ , Y,X, r), (P̂ , B̂, ∗, X), l) in Table 1.

Return the message (zactor , Y, σ(Y)) to E.

Return the message (zactor , Y, σ(Y)) to E.5

4. If E issues a send(z,m = (P̂ , Y, σ)) query to session z with zactor = B̂
and zrole = i, answer it in the following way. Check whether X ∈ G and
whether σ is a valid signature on message X with respect to the public key
of party P̂ . Check in Table 1 whether the matching session exists. If yes,
copy the (x,KDF (x)) entry in the row for min− sid = (B̂, P̂ ,X, Y, i) where
X denotes the Diffie-Hellman exponential sent in session z. If no, proceed in
a similar way as before (previous point).

5. If E issues a send(z,m = (Q̂,X, σ)) query to session z with zactor = P̂ 6= B̂
and zrole = r, answer it in the following way. Check whether X ∈ G and
whether σ is a valid signature on message X with respect to the public
key of party Q̂. Choose y ∈R Zp and compute the secret Z = (QX)y+p.
Check whether there is an entry ((Q̂, P̂ , Z,X), h) in Table 2. If yes, then
copy the entry to the corresponding min-sid (P̂ , Q̂, Y,X, r) in Table 1. If no,
then select a random l ∈ {0, 1}k (uniformly at random) and store the entry
((P̂ , Q̂, Y,X, r), (Q̂, P̂ , Z,X), l) in Table 1.

6. If E issues a send(z,m = (Q̂, Y, σ)) query to session z with zactor = P̂ 6= B̂
and zrole = i, answer it in the following way. Check whether Y ∈ G and
whether σ is a valid signature on message Y with respect to the public key of
party Q̂. Check in Table 1 whether the matching session exists. If yes, copy
the (x,KDF (x)) entry in the row for min− sid = (P̂ , Q̂,X, Y, i) where X
denotes the Diffie-Hellman exponential sent in session z. If no, compute the
secret Z = (QY)x+p and check whether there is an entry ((P̂ , Q̂, Z,X), h)
in Table 2. If this is the case, then copy this entry into Table 1. If not,
then select a random l ∈ {0, 1}k (uniformly at random) and store the entry
((P̂ , Q̂,X, Y, i), (P̂ , Q̂, Z,X), l) in Table 1.

7. When E makes a query x of the form x = (P̂1, P̂2, Z,X) to the random
oracle KDF , where P̂1, P̂2 are identities of parties and Z,X ∈ G, answer it
as follows:

Check whether there is an entry for x in Table 1 for whichDDH(XA,Y B,Z) =
1 for some corresponding min-sid that contains Y .

– If yes, then update the x-entry for min-sid with (P̂1, P̂2, Z,X) (only if
x-entry incomplete) and return the corresponding KDF (x)-entry.

4 If one omits the check X ∈ G in the protocol description, then the consistency between
the tables could not be guaranteed anymore due to the DDH oracle requiring three group
elements as input. In case the group element check is omitted, the adversary can succeed in
a key-recovery attack via a variant of a small-subgroup attack.

5 In these three subcases, the matching session cannot exist yet, because the session-key is
computed/chosen by C before the message is sent to E.

24

– If no, then check whether there is an entry (x, h) in Table 2. If this is
the case, then return h. Else choose a random l ∈ {0, 1}k (uniformly at
random) and store (x, l) in Table 2 and return l to E.

x KDF(x)

... ...

x l

Table 3. Table 2

8. When E makes a query x not of the above form to the random oracle KDF
answer it as follows: Check whether there is an entry (x, h) in Table 2.
– If yes, then return h.
– If no, then choose a random l ∈ {0, 1}k (uniformly at random), store

(x, l) in Table 2 and return l to E.
9. Corrupt and Ephemeral-key queries are answered in the appropriate way (C

knows the secret keys of the parties, except for party B̂, and has chosen the
ephemeral secret keys in the sessions (as answer to a Send query)).

10. Session-Key-Reveal queries are answered by lookup in Table 1.
11. When E outputs an element w ∈ Zq, output w as well.

C correctly solves the GAP discrete logarithm problem with probability
at least 1

NP (S2) which implies that P (S2) ≤ N ∗ P (GAP −DLogC,G(k) = 1).
Since, by assumption, the GAP discrete logarithm problem is hard relative to
G, we conclude that P (S2) is negligible.

Theorem 3. Under the GAP − CDH assumption in the cyclic group G of
prime order p, using a deterministic signature scheme that is existentially
unforgeable under adaptively chosen-message attacks, our protocol is a secure
authenticated key-exchange protocol according to Definition 8, when KDF is
modeled as a random oracle. The adversary E’s advantage for distinguishing a
session key from a random key is bounded by

AdvΠE (k) ≤ (qs + qro)
2

2k
+
q2s + 2Nqs

p
+2NqsAdv

Sig
M (k)+2q2sqroAdv

GAP−CDH
C (k)+

qs
2k
,

where N is an upper bound on the number of parties and qs, qro are upper bounds
on the number of activated sessions and random oracle queries by the adversary.

It is straightforward to verify the first condition of Definition 8, i. e., that
matching sessions compute the same key. We show next that the second condition
of Definition 8 holds, i. e., the adversary has the above advantage in distinguishing
the session key from a random key.

We present a security proof structured as a sequence of games where KDF :
{0, 1}∗ → {0, 1}k is modeled as a random oracle. Let N, qs, qro be upper bounds
on the number of parties, activated sessions and random oracle queries by the
adversary. We denote by Si the event that the adversary E correctly guesses
the bit chosen by the challenger to answer the test-session query in Game i and
by αi := |2P (Si)− 1| the advantage of adversary E in Game i.

Proof. The proof proceeds by the following sequence of games.

25

Game 0 This game reflects the real interaction of adversary E with the protocol.
The challenger chooses a bit b at random. When b = 0, he returns the real
session-key to E in answer to the test-session query, otherwise he returns a
random key from the set {0, 1}k.

Game 1 [Transition based on a small failure event] Let Event R be the event
that the random oracle for KDF produces a collision. When Event R occurs,
the attack game halts.

Analysis of Game 1: Game 0 is identical to Game 1 up to the point in the
experiment where event R occurs for the first time. Moreover, we have that

P (R) =

(
qro + qs

2

)
1

2k
≤ (qs + qro)

2

2 ∗ 2k
.

Hence, by the Difference Lemma,

|P (S0)− P (S1)| ≤ P (R) ≤ (qs + qro)
2

2 ∗ 2k
,

and therefore

α0 = |2P (S0)− 1| = 2|P (S0)− P (S1) + P (S1)− 1/2|
≤ 2(|P (S0)− P (S1)|+ |P (S1)− 1/2|)

≤ (qs + qro)
2

2k
+ α1.

Game 2 [Transition based on a small failure event] Let Event N be the session-
specific failure event that there exist two distinct sessions s and s′ that choose
the same ephemeral private key. As soon as event N occurs, the attack game
stops.

Analysis of Game 2: Game 1 is identical to Game 2 up to the point in the
experiment where event N occurs for the first time. Moreover, we have that

P (N) =

(
qs
2

)
1

p
≤ q2s

2p
.

The Difference Lemma yields that

|P (S1)− P (S2)| ≤ P (N) ≤ q2s
2p
.

So

α1 = |2P (S1)− 1| = 2|P (S1)− P (S2) + P (S2)− 1/2|
≤ 2(|P (S1)− P (S2)|+ |P (S2)− 1/2|)

≤ (qs)
2

p
+ α2.

26

Game 3 [Transition based on a small failure event] Let Event U be the session-
specific failure event that there exists a session t and a party P̂ such that the
long-term public key of P̂ equals the ephemeral public key chosen in session t.
When event U occurs, the attack game stops.

As we will see later, Game 3 is useful for the analysis of Game 6. We need
to prevent the scenario where revealing the long-term secret key of some party
implies learning the ephemeral secret key used in some session, because they are
identical, without explicitly issuing an ephemeral-key query against the session
and vice-versa.
Analysis of Game 3: Game 2 is identical to Game 3 up to the point in the
experiment where event U occurs. We have that

P (U) ≤ Nqs
p
.

The Difference Lemma yields that

|P (S2)− P (S3)| ≤ P (U) ≤ Nqs
p
.

So

α2 = |2P (S2)− 1| = 2|P (S2)− P (S3) + P (S3)− 1/2|
≤ 2(|P (S2)− P (S3)|+ |P (S3)− 1/2|)

≤ 2Nqs
p

+ α3.

Game 4 [Transition based on a large failure event (see [10], [7])] Before the
adversary E starts the attack game, the challenger chooses a random value
m ∈R {1, 2, ..., qs}. The m-th session activated by E is the target session on
which the challenger wants the adversary to be tested. We denote the m-th
activated session by s∗. Let event T be the event that the target session is not
the test session. If event T occurs, then the attack game halts and the adversary
outputs a random bit.

Analysis of Game 4: The transition from Game 3 to Game 4 is based on a
large failure event, as introduced by Dent in [10]. Event T is non-negligible, the
environment can efficiently detect it and T is independent of the output in Game
3 (i.e. P (S3|T) = P (S3)). If T does not occur, then the attacker E will output the
same bit in Game 4 as it did in Game 3 (so that P (S4|T c) = P (S3|T c) = P (S3)).
If event T occurs in Game 4, then the attack game halts and the adversary E
outputs a random bit (so that P (S4|T) = 1/2). We have,

P (S4) = P (S4|T)P (T) + P (S4|T c)P (T c)

=
1

2
P (T) + P (S3)P (T c)

= P (T c)(P (S3)−
1

2
) +

1

2
.

Hence,

α4 = |2P (S4)− 1| = P (T c)|2P (S3)− 1| = 1

qs
α3.

27

Game 5 [Transition based on a small failure event] This game is the same as
the previous one except that when a forgery event with respect to the long-term
public key of party s∗peer occurs, the attack game halts.

A forgery event F with respect to the public long-term key pkP̂ of some

party P̂ occurs when adversary E issues a send(s∗, (P̂ , h, σ)) query such that

– VrfypkP̂
(h, σ) = accept, i.e. σ is a valid signature on h with respect to pkP̂ ,

– (P̂ , h, σ) has never been output by party P̂ in response to a send(.) query
(i.e. h is a fresh message),

– the message (P̂ , h, σ) is accepted by s∗actor during the test-session s∗ (accord-
ing to the protocol) and leads to its completion.

In the subsequent game, we can therefore assume that there exists a (unique,
by distinct randomness assumption) origin-session s with sactor = s∗peer and
s∗recv = ssend .

Analysis of Game 5: Suppose that the adversary E chooses an ephemeral
secret/public key pair on his own with intent to impersonate party s∗peer to
session s∗. Then we can distinguish between the following two cases:

1. If E issues a corrupt(s∗peer) query before the completion of session s∗, then
this query would render session s∗ un-fresh. This would cause Game 4 to
abort since the target session would be different to the test-session. Recall
that the test-session query can only be issued to a completed session that is
fresh by the time the query is issued. Hence this case can be excluded.

2. If E does not issue a corrupt(s∗peer) query before the completion of session s∗,
then he can only impersonate party s∗peer to session s∗ by forging a signature
on his message with respect to the long-term public key of party s∗peer .

Claim. We have |P (S4)− P (S5)| ≤ P (F).

Proof. It is obvious that if event F does not occur, then Games 4 and 5 proceed
identically (i.e. S4 ∧F c ⇔ S5 ∧F c). The Difference Lemma yields that |P (S4)−
P (S5)| ≤ P (F).

Claim. If the signature scheme is existentially unforgeable under adaptively
chosen message attacks, then P (F) is negligible.

Proof. Consider the following algorithm M which uses adversary E as a subrou-
tine. The algorithm is given a public key pk. It selects at random one of the N
parties and sets its public key to pk. We denote this party by P̂ , its public key
by pkP̂ = pk and the corresponding secret key by skP̂ . Further, the algorithm
M chooses public keys for all other parties and stores the associated secret keys.
Additionally, it is given access to a conditional oracle OSign which works as
follows.6

6 0 represents a corrupt(P) query by E. If the test-session is incomplete, then the forger
M can monitor the end of the test-session (i.e. point in time where (test-)session-key is
established) since he computes the session-key on behalf of the party.

28

input : (gx f o r some x ∈ Zp) or 0)
i f test−session incomplete and m 6= 0 then

output SignskP̂ (m)

else
output skP̂

end i f

ALGORITHM M :

1. Run E on input 1k and the public keys for all of the N parties.

2. If E issues a send query to session z, answer it in the following way.

– If zactor 6= P̂ , then choose x ∈R Zp, compute σ(gx) = Signskzactor (gx)
and return (zactor , g

x, σ(gx)) to E.

– If zactor = P̂ , then choose b ∈R Zp and query the signature oracle on
message gb to get σ(gb). Store the pair (gb, σ(gb)) in a table L (initially
empty) and return (zactor , g

b, σ(gb)) to E.

3. If E makes a send query of the form send(s∗, (P̂ , h, σ)) (where σ is a valid
signature on h with respect to pkP̂) before the completion of the test-session
s∗ and (h, σ) /∈ L, then store (h, σ) as a forgery.

4. When E makes a query to the random oracle KDF , answer it in the following
way. Store pairs of strings (., .) in a table, initially empty. When E makes a
query x to the random oracle KDF , answer it as follows:

– If there is an entry (x, h) in the table, return h.

– If there is no entry for x, then do the following: choose a random h ∈
{0, 1}k, store (x, h) in the table and return h to E.

5. Corrupt, Session-Key-Reveal, Ephemeral-key and Send queries are answered
in the appropriate way (M knows the secret keys of the parties and has
chosen the ephemeral secret keys for all the sessions). A corrupt(P̂) query
can be answered by M by querying the oracle OSign on message 0 and get
as response the long-term secret key of P̂).

6. At the end of E’s execution (after it has output its guess b′) output ”failed”
if no forgery has been detected and stored, otherwise return the forgery.

The probability that E breaks the protocol by forging a signature with respect
to the public key of P̂ is bounded above by the probability that M outputs a
forgery multiplied by the number of parties, that is, P (F) ≤ NAdvSignM (k).

Game 6 [Transition based on a small failure event] In this game, we replace
the session-key of the test-session Ks∗ by a key chosen uniformly at random
from the set {0, 1}k. The session key of the matching session (if it exists) is also
replaced by the same random key.7

Analysis of Game 6: Here we assume w.l.o.g. that s∗role = i. The analysis works
similarly for s∗role = r.

7 As a reminder, note that, for all completed sessions s 6= s∗ it holds that either Ks 6= Ks∗ or
s ∼ s∗. If Ks 6= Ks∗ , then a session-key query on session s presents no problem (through
key-independence) and if s ∼ s∗, then a session-key query on session s is not allowed by
definition of the security model (i.e. session-key query not allowed on matching session).

29

Claim. Let us denote by X,Y the ephemeral public keys sent, received during
the test-session s∗. Then we have

|P (S5)− P (S6)| ≤ P (Q) ≤ qsqroAdvGAP−CDH
C (k),

where Q denotes the event that at any point during its execution, adversary
E queries message (s∗actor , s

∗
peer , Z,X) to the random oracle for KDF (where

Z = (Y ∗ pks∗peer)
x+sks∗actor for x = DLOGg(X)). We will analyze the probability

of event Q with respect to Game 6.

Proof. It is obvious that if event Q does not occur, then Games 5 and 6 proceed
identically (i.e. S5 ∧Qc ⇔ S6 ∧Qc). The Difference Lemma yields that |P (S5)−
P (S6)| ≤ P (Q).

Claim (A). If the GAP − CDH problem is hard relative to our experiment and
KDF is modeled as a random oracle, then P (Q) is negligible.

We denote by s the origin-session for the test-session s∗ (which exists in this
game). There are four different scenarios to consider.

1. The adversary E issued the queries corrupt(s∗actor) and corrupt(s∗peer).
2. The adversary E issued the queries corrupt(s∗actor) and ephemeral-key(s).
3. The adversary E issued the queries corrupt(s∗peer) and ephemeral-key(s∗).
4. The adversary E issued the queries ephemeral-key(s) and ephemeral-key(s∗).

Analysis of scenario 1 and proof of Claim B.2 w. r. t. scenario 1 We
denote by X,Y the ephemeral public keys sent, received during the test-session
s∗. Revealing the long-term secret keys of both s∗actor and s∗peer , the adversary
E could distinguish the session-key of the test-session from a random key by
computing DHg(X,Y) = gxy (and thus, breaking the CDH assumption in the
group G) since

gxy = (Y ∗ pks∗peer)
x+sks∗actor ∗ (Y

−sks∗actor ∗X−sks∗peer ∗ pk
−sks∗actor
s∗peer

).

Proof. We solve the CDH problem with probability 1
qroqs

P (Q) where P (Q) must
be negligible since CDH problem is hard in G.

Consider the following algorithm C which uses adversary E as a subroutine.
ALGORITHM C: The algorithm is given a pair (X = gx, Y = gy) of elements
from G as an instance of the CDH problem. The algorithm randomly selects a
session number n from {1, ..., qs} which reflects the guess that the n-th activated
session, say session s, is the origin-session for session s∗. C chooses public keys
for all parties and stores the associated secret keys.

1. Run E on input 1k and the public keys for all of the N parties.
2. When the test-session at s∗actor is initiated (by E), set the ephemeral

public key of session s∗ to X and answer the query with the message
(s∗actor , X, σ(X)) = (s∗actor , X, Signs∗actor (X)).

3. When session s is activated (either by an incoming message or by an initiation
request), set the ephemeral public key of session s to Y and answer the query
with the message (sactor , Y, σ(Y)) = (sactor , Y, Signsactor (Y)).

30

4. Store pairs of strings (., .) in a table, initially empty. When E makes a query
x to the random oracle KDF , answer it as follows:
– If there is an entry (x, h) in the table, return h.
– If there is no entry for x, then do the following: choose a random h ∈
{0, 1}k, store (x, h) in the table and return h to E.

5. In case of the test-session query, return either the real session-key or a
random value.

6. Corrupt, Session-Key-Reveal, Ephemeral-key and Send queries are answered
in the appropriate way (C knows the secret keys of the parties and has chosen
the ephemeral secret keys except for the test-session and its origin-session).

7. At the end of E’s execution (after it has output its guess b′), let x1, ..., xw
(with w ≤ qro) be the list of all oracle queries made by E. Choose a random

i for which xi is of the form (s∗actor , sactor , Z,X) and output Z ∗ Y −sks∗actor ∗
X−sksactor ∗ pk

−sks∗actor
sactor .

C correctly computes the CDH instance with probability at least 1
qsqro

P (Q)

which implies that P (Q) ≤ qsqroAdvCDHC (k).

Analysis of scenario 2 and proof of Claim B.2 w. r. t. scenario 2 We
denote by X = gx, Y = gy the ephemeral public keys sent, received during the
test-session s∗. Revealing the long-term secret key of s∗actor and the ephemeral key
of the origin-session s to session s∗, the adversary E could distinguish the session-
key of the test-session from a random key by computing DHg(X,B) = gxb where
B = gb denotes the public key of sactor = s∗peer , since

gxb = (Y ∗ pks∗peer)
x+sks∗actor ∗ (X−y ∗ Y −sks∗actor ∗ pk

−sks∗actor
s∗peer

).

Proof. We solve the GAP − CDH problem with probability 1
qroqs

P (Q) where
P (Q) must be negligible since GAP − CDH problem is hard in G.

Consider the following algorithm C ′ which uses adversary E as a subroutine.
ALGORITHM C ′: The algorithm is given a pair (X = gx, B = gb) of elements
from G as an instance of the GAP − CDH problem. The algorithm randomly
selects a session number n from {1, ..., qs} which reflects the guess that the n-th
activated session, say session s, is the origin-session for session s∗. C ′ chooses
public keys for all parties except for party s∗peer and stores the associated secret

keys. It sets the public key of party s∗peer to B = gb. Additionally, it is given

access to a signing oracle OSign that on input an ephemeral public key Y outputs
the signature on Y with respect to the public key of s∗peer.

1. Run E on input 1k and the public keys for all of the N parties.
2. When the test-session at s∗actor is initiated (by E), set the ephemeral

public key of session s∗ to X and answer the query with the message
(s∗actor , X, σ(X)) = (s∗actor , X, Signs∗actor (X)).

3. Send, Session-Key and random oracle queries by the adversary E are pro-
cessed as in the proof of Lemma 4. In particular, when session s is acti-
vated (either by an incoming message or by an initiation request), set the
ephemeral public key of session s to Y and answer the query with the message
(sactor , Y, σ(Y)) = (sactor , Y, Signsactor (Y)).

31

4. In case of the test-session query, return either the real session-key or a
random value.

5. Corrupt and Ephemeral-key queries are answered in the appropriate way (C ′

knows the secret keys of the parties, except for party s∗peer , and has chosen
the corresponding ephemeral secret keys except for the test-session s∗).

6. At the end of E’s execution (after it has output its guess b′), let x1, ..., xw
(with w ≤ qro) be the list of all oracle queries made by E. Choose a random
i for which xi is of the form (s∗actor , sactor , Z,X) and output Z ∗ X−y ∗
Y
−sks∗actor ∗ pk

−sks∗actor
s∗peer

.

C ′ correctly computes the GAP − CDH instance with probability at least
1

qsqro
P (Q) which implies that P (Q) ≤ qsqroAdvGAP−CDH

C (k).

Remark 1. The analyses and proofs of scenario 3 and 4 are similar to the previous
analyses and proofs.

Claim. It holds that P (S6) = 1
2 + 1

2k+1 .

Proof. Let D be the event that E correctly guesses the session-key of the test-
session. By definition of the underlying security model, the adversary is not
allowed to perform a session-key query on the test-session or a matching session
(if it exists). This implies that P (D) = 1

2k
(since it is generated uniformly at

random via the random oracle) and P (S6|Dc) = 1
2 . Thus,

P (S6) = P (S6|D)P (D) + P (S6|Dc)P (Dc) =
1

2
+

1

2k+1
.

This completes the proof of Theorem 1.

C UKS attacks in our model

We define resilience of a key-exchange protocol against UKS attacks.

Definition 13 (UKS attack). A key-exchange protocol Π relative to a security
model M is said to be resilient against UKS attacks if no PPT adversary can
establish, with more than negligible probability, a fresh session s and a session
s′ between uncorrupted (i. e., the adversary does not know their long-term secret
keys) parties such that

1. the computed session-keys Ks,Ks′ are identical,

2. s′peer 6= sactor (where s′peer denotes the intended peer of session s′ and sactor
denotes the actor of session s),

3. no session-specific private data from both sessions (such as ephemeral private
data or session-keys) is leaked to the adversary.

As a straightforward consequence of being secure according to Definition 8,
a key-exchange protocol is resilient against UKS attacks, as the following propo-
sition shows.

32

Proposition 2. If a protocol Π is secure with respect to Definition 8, then it
is resilient against UKS attacks in the sense of Definition 13.

Proof. If there is a PPT adversary who creates a UKS attack for some fresh
session s with non-negligible probability, then there exists a PPT adversary
who can break the security of the protocol in a security experiment with non-
negligible probability by issuing a session-key reveal query on some session s′

for which Ks = Ks′ and s′peer 6= sactor . Notice that session s′ is non-matching to
session s since s′peer 6= sactor , hence the query session-key(s′) is allowed.

D Version history

First version: June 6, 2011

Second version: July 22, 2011

– Updated the security model (and proof) to allow corruption of the peer to the
test-session before the completion of the test-session under some condition.

– Added remark related to dynamic generation of key pairs and DSKS attacks
to the introduction of Section 5.

– Added additional related work that was published after our initial report
was released.

Third version: October 26, 2011

– Added group check in protocol description to prevent variants of small-
subgroup attacks (see also [23]), updated proof and efficiency accordingly.

– Added Appendix A on the comparison between the eCK-PFS model and
the extended-CK model.

– In Appendix B, added proof that, under the GAP −DLog assumption in
the group G, our protocol is now resilient against key-recovery attacks.

– Minor changes in the analysis of Game 6 of the main security proof.

