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Abstract

TLS is the most important cryptographic protocol in use today. However, up to now there is no com-
plete cryptographic security proof in the standard model, nor in any other model. We give the first
such proof for the core cryptographic protocol of TLS ciphersuites based on ephemeral Diffie-Hellman
key exchange (TLS-DHE), which include the cipher suite TLS DHE DSS WITH 3DES EDE CBC SHA
mandatory in TLS 1.0 and TLS 1.1.

It is impossible to prove security of the TLS Handshake in any classical key-indistinguishability-
based security model (like e.g. the Bellare-Rogaway or the Canetti-Krawczyk model), due to subtle
issues with the encryption of the final Finished messages of the TLS Handshake. Therefore we start
with proving the security of a truncated version of the TLS Handshake protocol, which has also been
considered in previous work on TLS.

Then we define the notion of authenticated and confidential channel establishment (ACCE) as a new
security model which captures precisely the security properties expected from TLS in practice, and show
that the combination of the TLS Handshake protocol with the TLS Record Layer can be proven secure
in this model.

Keywords: authenticated key exchange, SSL, TLS, provable security, ephemeral Diffie-Hellman.
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1 Introduction

TRANSPORT LAYER SECURITY (TLS) is the single most important Internet security mechanism today.
Due to a subtle interleaving of the TLS Handshake protocol with the data encryption in the TLS Record
Layer it is impossible to prove the security of TLS using well-established security models [11, 20, 19]
which define security via indistinguishability of keys. Therefore there is no security proof for the complete
protocol up to now, as we illustrate below. Instead, all prior work either considered a modified version of
the TLS Handshake [35, 47], or weaker security goals [33].

In this paper we provide new security results for the core cryptographic protocol of TLS based on
ephemeral Diffie-Hellman key exchange (TLS-DHE). First we give a formal proof that the truncated version
of the TLS Handshake protocol, which has been subject to prior work on TLS [35, 47], is an authenticated
key exchange protocol in a security model that extends the Bellare-Rogaway model [11] to the public-key
setting with adaptive corruptions and perfect forward secrecy (cf. [14]). Then we extend both the model
and the proof to cover the combination of the TLS Handshake protocol with the TLS Record Layer, which
allows us to show the security of the cryptographic core of a full TLS ciphersuite.

In our analysis we assume that the majority of building blocks of TLS-DHE (digital signature scheme,
Diffie-Hellman key exchange, symmetric cipher) meets standard security properties. Solely for the pseudo-
random function we require an additional non-standard security assumption, which is a variant of the Oracle
Diffie-Hellman assumption [1]. We also explain why such a non-standard assumptions seems hard to avoid,
if a security model with corruptions is considered. Our proofs are stated for mutual authentication, i.e., the
client authenticates itself using a client certificate.

PROVING SECURITY OF TLS. The full TLS Handshake does not provide indistinguishable keys due to
an interleaving of the key exchange part of TLS (the TLS Handshake protocol) and the data encryption in
the TLS Record Layer. This interleaving provides a ‘check value’ that allows to test whether a given key
is ‘real’ or ‘random’. More precisely, the final messages of the TLS Handshake protocol (the Finished
messages), which are essential to provide security against active adversaries like e.g. man-in-the-middle
attackers, are first prepended with constant byte values (which provides us with known plaintext), then
integrity protected by a MAC (which is instantiated with a pseudo-random function) and encrypted with
the keys obtained from the TLS Handshake protocol. Thus, whenever an adversary receives a challenge
key in response to a Test query, he can try to decrypt the Finished message and check validity of the
MAC. If this succeeds, he will output ‘real’, and otherwise ‘random’. Even changing the behavior of the
Test query to only return the decryption keys (and not the MAC keys) does not help, since the adversary
could still use the known plaintext bytes to answer the Test query successfully. Therefore it is impossible
to prove the full TLS Handshake protocol secure in any security model based on indistinguishability of
keys. Morissey et al. [47] have thereofre introduced a truncated TLS Handshake protocol, where the final
encryption of the Finished messages is omitted.

In addition, in this paper we indentify another subtle issue, makes it hard to prove TLS-DHE secure
under standard assumptions, if a security model is considered which allows the adversary to corrupt users
and no additional non-standard assumption on the pseudo-random function PRF used in TLS is made.

1.1 Contribution

The paradox that the most important AKE protocol cannot be proven secure in any existing security model
can be solved in two ways. Either one considers a truncated version of the TLS Handshake by omitting the
encryption of the two Finished messages, or a new model for the combination of the TLS Handshake
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protocol and the Application data protocol must be devised. In this paper we follow both approaches.
First we give a security proof for the truncated version of the TLS-DHE Handshake protocol. This

allows to compare our results to previous work. The proof relies on the DDH assumption, an additional
assumption called PRF-ODH that we need due to the issue discussed above, and the assumption that the
building blocks of TLS (i.e. the signature scheme and the pseudo-random function) have certain security
properties. It remains to analyse whether the building blocks have the required properties. Here we can
partially build on previous work that analysed particular TLS components, see Section 1.2 for details.

Second we define the notion of authenticated and confidential channel establishment (ACCE). ACCE
protocols are an extension of AKE protocols, in the sense that the symmetric cipher is integrated into the
model. In contrast to AKE protocols, where one requires key indistinguishability, we demand that a secure
ACCE protocol allows to establish a ‘secure communication channel’1 in the sense of stateful length-hiding
authenticated encryption [50]. Loosely speaking, an ACCE channel guarantees that messages written to
this channel are confidential (indistinguishable, and even the length of messages is concealed up to some
granularity), and that a sequence of messages read from this channel corresponds exactly to the sequence of
messages sent by the legitimate sender (of course up to dropping messages at the very end of the sequence,
which is always possible). This captures exactly the properties expected from TLS-like protocols in practice.
We prove that the core of the full TLS-DHE ciphersuites, i.e., the combination of the TLS Handshake with
the TLS Record Layer, forms a secure ACCE protocol, if the Record Layer provides security in the sense of
length-hiding authenticated encryption. Note that the latter was proven recently by Paterson et al. [50] for
CBC-based Record Layer protocols.

Finally, we discuss the subtle property of TLS-DHE, which seems to make it hard to prove security
without making an additional non-standard assumption, like PRF-ODH, on the PRF, in our security model.
We also discuss several options to obtain a security proof under standard assumptions, which include con-
sidering a weak security model that disallows corruptions, and modifications to TLS-DHE.

PRACTICAL IMPACT. We stress that in practice TLS-DHE is much less used than TLS with encrypted
key transport using an RSA-based encryption scheme (TLS-RSA). At the same time, mutual authentication
is rarely used in practice. Typically, TLS is first used to authenticate the server and to establish a ’secure
communication channel’ between client and server. In the next step, the client authenticates itself by sending
his authentication information over this secure communication channel to the server.

We believe that our result is nevertheless of high practical value. First, the TLS-DHE-based cipher-
suite TLS DHE DSS WITH 3DES EDE CBC SHA is mandatory for TLS 1.0 and 1.1, which are both still
in widespread use. Only the most recent version TLS 1.2 prescribes TLS with encrypted key transport as
mandatory. So one could theoretically configure a considerable amount of servers to use only TLS-DHE
and benefit from the provable security guarantees of TLS-DHE as provided in our security analysis.

Second, in our analysis we can show that TLS-DHE provides perfect forward secrecy – a very strong
form of long-term security, which basically states that future compromises of long-term secrets do no
threaten past communication sessions. With encrypted key transport as in TLS-RSA this is not achiev-
able, since an attacker that compromises the long-term key (the private decryption key) can easily obtain
session keys from previous sessions by just decrypting recorded encryptions of session keys. To better pro-
tect users from the consequences of such key compromise attacks and offer better long-term security, service
providers might therefore consider to switch to the (exclusive) use of TLS-DHE. Recently Google has made
a first step in that direction, by announcing that it will switch over to TLS-DHE to provide (and push) perfect
forward secrecy by using TLS-DHE as the default key exchange method for its services [2].

1Not to be confused with ‘secure channels’ in the sense of [20].
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Third, it is likely that giving a security proof of the actually most widespread TLS Handshake option
TLS-RSA is impossible in the standard model. Any approach we can think of would require IND-CCA
security of the encryption scheme used to transport the premaster secret from the client to the server, as
otherwise we cannot simulate protocol executions while still being able to argue with indistinguishability
of premaster secrets. But unfortunately it is well-known that the RSA-PKCS v1.5 scheme used in TLS is
vulnerable to chosen-ciphertext attacks [15]. This problem was circumvented in previous work by either
using an abstract public-key encryption scheme which is secure against chosen-ciphertext attacks [47], or
by assuming PKCS#1 v2.0 (RSA-OAEP), which is not used in TLS, and omitting authentication [33].

INTERPRETATION. Our results show that the core cryptographic protocol of TLS is cryptographically sound,
if the building blocks are suitably secure. By combining our work with [50] we obtain a standard-model
security proof of core TLS 1.1 and 1.2 for current ciphersuites if we assume directly that the signature
scheme is EUF-CMA secure.2

Our results can also be seen as a ‘stepping stone’ towards a TLS version with a complete security proof
in the standard model. Essentially, we identify certain security properties and prove that the TLS protocol
framework yields a secure ACCE protocol under the assumption that the TLS building blocks satisfy these
properties.

CHOICE OF SECURITY MODEL. Authenticated key exchange is a basic building block in modern cryptog-
raphy. However, since many different security models for different purposes exist [10, 11, 14, 19, 20, 25,
42, 23], choice of the right model is not an easy task, and must be considered carefully. We have to take into
account that we cannot modify any detail in the TLS protocol, nor in the network protocols preceding it.

We have chosen an enhanced variant of the first model of Bellare and Rogaway [11]. Variants of this
model have also been studied by [23, 14], and especially by [47]. Detailed reasons for our choice are given
in Appendix A.

1.2 Security Requirements on TLS Building Blocks

In our proofs we reduce the security of ephemeral Diffie-Hellman ciphersuites to certain security properties
of building blocks of TLS. These building blocks (see Section 3 for precise definitions) are:

PSEUDORANDOM FUNCTION. For the pseudo-random function used in TLS we essentially require that the
pseudo-random function (i) is secure in the standard sense (see Definition 3) and (ii) meets an additional
requirement. The additional requirement on the PRF is related to the Oracle Diffie-Hellman (ODH) assump-
tion, as introduced by Abdallah, Bellare, and Rogaway in 2001 to prove security of DHIES [1]. Although
the PRF-ODH assumption is non-standard, it is, in a way, the best we can achieve. We argue in Section 8
why we need this assumption, if we consider a security model that allows the attacker to corrupt parties.
We also remark in Section 8 that we can obtain a proof under the DDH assumption instead of PRF-ODH,
if we (a) either do not allow corruptions or (b) slightly modify the TLS Handshake. However, although the
latter idea might guide future revisions of the TLS standard, it is not an option for the current work in which
we are concerned with the security of the present TLS protocol. Disallowing corruptions on the other hand
would make the security model unrealistically weak.

Besides this non standard assumption, our proofs require that the pseudo-random function PRF meets
the standard security definition for pseudo-random functions. All TLS versions specify a construction of
PRF from cryptographic hash functions. TLS 1.2 prescribes SHA-256 [30], while previous standards used
MD5 [53] and SHA-1 [31]. Foque et al. [32] where able to show that the pseudo-random function of

2To our best knowledge there is no security proof for the currently used schemes, but also no result contradicting this assumption.
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TLS 1.2 constitutes a secure randomness extractor for two different key spaces simultaneously (albeit under
different security assumptions, which however all are related to the fact that the compression function of
the underlying hash function behaves like a pseudo-random function) – the key may either be a random
bit-string, or a random element of a prime-order group (either a group defined over an elliptic curve or
a subgroup of Z∗p ). Their work focuses on TLS 1.2, while stressing that the implementation of the key
derivation function is not very different from the previous standards. We believe that similar results can
easily be obtained for TLS 1.0 and TLS 1.1.

SYMMETRIC ENCRYPTION. The purpose of the TLS protocol is to establish an authenticated symmetric
secret between two parties first (in the TLS Handshake), and then to use this secret to provide a ‘secure
communication channel’ based on symmetric encryption (in the TLS Record Layer). While the informal
idea of a ‘secure communication channel’ is simple, defining its security requirements precisely is not so
trivial.

For instance, it is well-known that using IND-CCA secure encryption in the Record Layer is not suffi-
cient to provide what is expected from a secure TLS channel, since it does not prevent many relevant attacks.
For instance, it does not rule out replaying, dropping or re-ordering of ciphertexts. This is certainly not de-
sirable in a ‘secure communication channel’, since it may lead to various kinds of attacks (cf. [16]). This
issue can be solved by using a suitable stateful encryption scheme [6, 7]. For instance, TLS uses a ‘MAC-
then-Encode-then-Encrypt’ (MEE) approach where a sequence counter is included in the MAC of each
ciphertext. Moreover, it is well-known that sometimes even only the plaintext length may reveal valuable
informations to an adversary, such as web browsing habits (e.g. [55]) or spoken phrases in Voice-over-IP
connections (e.g. [58]). Therefore TLS may utilize variable-length encoding to conceal the plaintext length
up to some granularity.

To capture such requirements, the notion of stateful length-hiding authenticated encryption (stateful
LHAE) was recently introduced by Paterson et al. [50], as a formalization of the security properties that are
expected from the TLS Record Layer. The authors of [50] were able to show that CBC-based Record Layer
protocols of TLS 1.1 and 1.2 provably meet this security goal under reasonable assumptions.3 The results
are not applicable to TLS 1.0, since it is well-known that this version is insecure against chosen-plaintext
attacks [4, 5] since intialization vectors are not always chosen at random.

DIGITAL SIGNATURES. Our analysis furthermore requires that the employed signature scheme is secure
against existential forgeries under adaptive attacks (see Definition 2). The current TLS standards offer three
different signature schemes for authentication: RSASSA-PKCS#1 v1.5 [36], DSA [44], and ECDSA [34].
To our knowledge there exists currently no security proof for these signature schemes (under standard com-
plexity assumptions). In the random oracle model, DSA and ECDSA are provably secure. More details can
be found in [52, 56].

1.3 Related Work

Because of its eminent role, TLS and its building blocks have been subject to several security analyses. In
1996, Schneier and Wagner presented several minor flaws and some new active attacks against SSL 3.0 [57].
Starting with the famous Bleichenbacher attack [15], many papers focus on various versions of the PKCS#1
standard [36] that defines the encryption padding used in TLS with RSA-encrypted key transport [24, 35,
38, 37]. At Crypto’02, Johnson and Kaliski showed that a simplified version of TLS with padded RSA is

3The proceedings version of [50] contains only a proof of stateless LHAE security, a full proof was announced for the full
version. However, as also noted in [50], it is straightforward to adopt the results to the stateful setting.

6



IND-CCA secure when modeling TLS as a ‘tagged key-encapsulation mechanism’ (TKEM) [35] under the
strong non-standard assumption that a ‘partial RSA decision oracle’ is available.

In an independent line of research, several works analysed (simplified versions of) TLS using automated
proof techniques in the Dolev-Yao model [29]. Proofs that rely on the Dolev-Yao model view crypto-
graphic operations as deterministic operations on abstract algebras. There has been some work on simpli-
fied TLS following the theorem proving and model checking approach, i.e. Mitchell et al. used a finite-
state enumeration tool named Murphi [46] while Ogata and Futatsugi used the interactive theorem prover
OTS/CafeObj [49]. Paulson used the inductive method and the theorem prover Isabelle [51]. Unfortunately
it is not known if these proofs are actually cryptographically sound.

Bhargavan et al. [13] go two steps farther: First, they automatically derive their formal model from
the source code of an TLS implementation, and second they try to automatize computational proofs using
the CryptoVerif tool. Chaki and Datta [22] also use source code of TLS, automatically find a weakness in
OpenSSL 0.9.6c, and claim that SSL 3.0 is correct.

In 2008, Gajek et al. presented the first security analysis of the complete TLS protocol, combining
Handshake and Record Layer, in the Universal Composability framework [19] for all three key exchange
protocols static Diffie-Hellman, ephemeral signed Diffie-Hellman, and encrypted key transport [33]. The
nonces rC and rS exchanged between client and server can be seen as an instantiation of the protocol of
Barak et al. [3] to agree on a globally unique session id. However, the ideal functionalities described in this
paper are strictly weaker than the security guarantees we expect from TLS: For the Handshake part, only
unauthenticated key exchange is modelled (FKE), and thus the secure communication channel functionality
(FSCS) only guarantees confidentiality, not authenticity of endpoints. The paper further assumes that RSA-
OEAP is used for encrypted key transport, which is not the case for current versions of TLS.

Küsters and Tuengerthal [41] claim to prove composable security for TLS assuming only local session
identifiers, but leave out all details of the proof and only point to [33].

Morissey et al. [47] analysed, in a paper that is closest to our results, the security of the truncated TLS
Handshake protocol (cf. Section 5) in the random oracle model and provided a modular proof of security
for the established application keys. They make extensive use of the random oracle model to separate the
three layers they define in the TLS Handshake, and to switch from computational to indistinguishability
based security models. The proof of Morissey et al. proceeds in three steps, and the order of messages
of the TLS Handshake is slightly changed to better separate these three steps. They first consider a very
weak class of passively secure key exchange protocols where the session key cannot be computed from the
session transcript. As an example, when considering encrypted key transport (of the premaster secret) this
requirement can easily be fulfilled if the employed public key encryption scheme is OW-CPA secure. Next
they define a slightly stronger security notion that additionally protects against unknown key share attacks
and show that it applies to the master secret key exchange of TLS. As before security of the key is defined
in a one-way sense. In the last step they show that the ‘application keys’ (i.e. the encryption keys and MAC
keys) produced by TLS fulfill the standard notion of security, namely indistinguishability from random
values. The use of the random oracle model is justified by the authors by the fact that it seems impossible to
prove the PKCS#1 v1.5 based ciphersuites of TLS secure in the standard model. This argumentation does
not affect our work, since we only consider Diffie-Hellman-based ciphersuites.

The work of Morissey et al. [47], which can be seen as a reference for the TLS Handshake protocol,
considers also security of RSA based ciphersuites, and thus is much broader in scope than our paper, but it
does not cover our analysis of the TLS-DHE ciphersuite. The modular proof strategy used in this paper is
essentially bound to the Random Oracle Model, since secure protocols for the premaster phase only yield
secure protocols for the master phase if the master secret is derived from the premaster secret by evaluating
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a Random Oracle. Thus the ROM is used not only to allow a security proof for TLS-RSA ciphersuites, but
also to allow for a modular proof technique.

In a very recent work, Paterson, Ristenpart, and Shrimpton [50] introduce the notion of length-hiding
authenticated encryption, which aims to capture the properties from the TLS Record Layer protocols. Most
importantly, they were able to show that CBC-based ciphersuites of TLS 1.1 and 1.2 meet this security no-
tion. This work matches nicely our results on the TLS Handshake protocol. Their paper extends the seminal
work of Bellare and Namprempre [8, 9] on authenticated encryption, and on the analysis of different Mac-
then-Encode-then-Encrypt (MEE) schemes analysed by Krawczyk [39] and Maurer and Tackmann [45].

This is an important building block for our work, since it allows to capture the precise notion of a TLS-
based authenticated and confidential channel establishment protocol (ACCE). TLS-ACCE is used implicitly
in many security applications (e.g. the Same Origin Policy of webbrowsers), and explicitely stating the
security guarantees offered by TLS-ACCE is an important step towards a future anaysis of these protocols.

Very recently, Brzuska et al. [17] proposed relaxed game-based security notions for key exchange. This
approach may serve as an alternative to our ACCE-based approach to circumvent the impossibility of prov-
ing the TLS Handshake secure in a key-indistinguishability-based security model.

2 Preliminaries and Definitions

In this section, we recall the required definitions for our result on the TLS protocol. We denote with ∅ the
empty string, and with [n] = {1, . . . , n} ⊂ N the set of integers ranging from 1 to n. If A is a set, then
a

$← A denotes the action of sampling a uniformly random element fromA. IfA is a probabilistic algorithm,
then a $← A denotes that A is run with fresh random coins and returns a.

2.1 The Decisional Diffie-Hellman Assumption

Let G be a group of prime order q. Let g be a generator of G. Given, (g, ga, gb, gc) for a, b, c ∈ Zq the
decisional Diffie-Hellman (DDH) assumption says that it is hard to decide whether c = ab mod q.

Definition 1. We say that the DDH problem is (t, εDDH)-hard in G, if for all adversaries A that run in time
t it holds that ∣∣∣Pr

[
A(g, ga, gb, gab) = 1

]
− Pr

[
A(g, ga, gb, gc) = 1

]∣∣∣ ≤ εDDH,

where a, b, c $← Zq.

2.2 Digital Signature Schemes

A digital signature scheme is a triple SIG = (SIG.Gen,SIG.Sign,SIG.Vfy), consisting of a key generation
algorithm (sk, pk)

$← SIG.Gen(1κ) generating a (public) verification key pk and a secret signing key sk on
input of security parameter κ, signing algorithm σ

$← SIG.Sign(sk,m) generating a signature for message
m, and verification algorithm SIG.Vfy(pk, σ,m) returning 1, if σ is a valid signature for m under key pk,
and 0 otherwise.

Consider the following security experiment played between a challenger C and an adversary A.

1. The challenger generates a public/secret key pair (sk, pk)
$← SIG.Gen(1κ), the adversary receives pk

as input.
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2. The adversary may query arbitrary messages mi to the challenger. The challenger replies to each
query with a signature σi = SIG.Sign(sk,mi). Here i is an index, ranging between 1 ≤ i ≤ q for
some q ∈ N. Queries can be made adaptively.

3. Eventually, the adversary outputs a message/signature pair (m,σ).

Definition 2. We say that SIG is (t, εSIG)-secure against existential forgeries under adaptive chosen-message
attacks (EUF-CMA), if for all adversaries A that run in time t it holds that

Pr
[
(m,σ)

$← AC(1κ, pk) such that SIG.Vfy(pk,m, σ) = 1 ∧m 6∈ {m1, . . . ,mq}
]
≤ εSIG.

Note that we have q ≤ t, i.e. the number of allowed queries q is bound by the running time t of the adversary.

2.3 Pseudo-Random Functions

A pseudo-random function is an algorithm PRF. This algorithm implements a deterministic function z =
PRF(k, x), taking as input a key k ∈ KPRF and some bit string x, and returning a string z ∈ {0, 1}µ.

Consider the following security experiment played between a challenger C and an adversary A.

1. The challenger samples k $← KPRF uniformly random.

2. The adversary may query arbitrary values xi to the challenger. The challenger replies to each query
with zi = PRF(k, xi). Here i is an index, ranging between 1 ≤ i ≤ q for some q ∈ N. Queries can
be made adaptively.

3. Eventually, the adversary outputs value x and a special symbol>. The challenger sets z0 = PRF(k, x)

and samples z1
$← {0, 1}µ uniformly random. Then it tosses a coin b $← {0, 1}, and returns zb to the

adversary.

4. Finally, the adversary outputs a guess b′ ∈ {0, 1}.

Definition 3. We say that PRF is a (t, εPRF)-secure pseudo-random function, if an adversary running in time
t has at most an advantage of εPRF to distinguish the PRF from a truly random function, i.e.∣∣Pr

[
b = b′

]
− 1/2

∣∣ ≤ εPRF.
Again the number of allowed queries q is upper bounded by t (see Def. 2).

Remark 1. In 2008, Fouque et al. [32] showed that the HMAC-based key-derivation function of TLS is a
pseudo-random function for 1) KPRF = S, where S is a prime-order group of size |S| = q that is either
defined over an elliptic curve or as a subgroup of Z∗p such that q|p − 1, and 2) KPRF = {0, 1}l where l is
the size of the master-secret (l = 384). The underlying security assumptions are all related to the fact that
the compression function of the hash function used in HMAC behaves like a pseudo-random function. More
details can be found in [32].

LetG be a group with generator g. Let PRF be a deterministic function z = PRF(X,m), taking as input
a key X ∈ G and some bit string m, and returning a string z ∈ {0, 1}µ. Consider the following security
experiment played between a challenger C and an adversary A.

1. The adversary A outputs a value m.

9



2. The Challenger samples u, v $← [q], z1
$← {0, 1}µ uniformly random and sets z0 := PRF(guv,m).

Then it tosses a coin b ∈ {0, 1} and returns zb, gu and gv to the adversary.

3. The adversary may query a pair (X,m′) with X 6= gu to the challenger. The challenger replies with
PRF(Xv,m′).

4. Finally the adversary outputs a guess b′ ∈ {0, 1}.

Definition 4. We say that the PRF-ODH problem is (t, εprfodh)-hard in with respect to G and PRF, if for all
adversaries A that run in time t it holds that∣∣Pr

[
b = b′

]
− 1/2

∣∣ ≤ εprfodh.
The PRF-Oracle-Diffie-Hellman (PRF-ODH) assumption is a variant of the ODH assumption introduced

by Abdalla, Bellare and Rogaway in [1], adopted from hash functions to PRFs. In contrast to allowing a
polynomial number of queries as in the original assumption [1], we allow only a single oracle query.

2.4 Collision-Resistant Hashing

Definition 5. We say that a hash function H is (t, εH)-collision resistant, if for all adversaries A that run in
time t it holds that

Pr
[
A(H) = (m,m′) : m 6= m′ ∧ H(m) = H(m′)

]
≤ εH.

2.5 Stateful Length-Hiding Authenticated Encryption

Let us now describe the stateful variant of LHAE security (the following description and security model
was obtained from the authors of [50] via personal communication). See [50] for a detailed discussion and
motivation of this model.

A stateful symmetric encryption scheme consists of three algorithms StE = (StE.Init, StE.Enc, StE.Dec).
Algorithm (ste, std) = StE.Init() initializes all states used by the encryption scheme. Algorithm (C, st′e)

$←
StE.Enc(k, len, H,m, ste) takes as input a secret key k ∈ {0, 1}κ, an output ciphertext length len ∈
N, some header data H ∈ {0, 1}∗, a plaintext m ∈ {0, 1}∗, and the current state ste ∈ {0, 1}∗, and
outputs either a ciphertext C ∈ {0, 1}len and an updated state st′e or an error symbol ⊥.4 Algorithm
(m′, st′d) = StE.Dec(k,H,C, std) takes as input a key k, header data H , a ciphertext C, and the current
state std ∈ {0, 1}∗, and returns an updated state st′d and a value m′ which is either the message encrypted
in C, or an error symbol ⊥ indicating that C is not a valid ciphertext.

Definition 6. We say that a stateful symmetric encryption scheme StE = (StE.Init,StE.Enc,StE.Dec) is
(t, εsLHAE)-secure, if Pr[b = b′] ≤ εsLHAE for all adversaries A running in time at most t in the following
experiment.

• Choose b $← {0, 1} and k $← {0, 1}κ, and set (ste, std)
$← StE.Init.

• run b′ $← AEncrypt,Decrypt.
4For instance if the output length len is smaller than the length of message m.
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Here AEncrypt,Decrypt denotes that A has access to two oracles Encrypt and Decrypt. The encryption oracle
Encrypt(m0,m1, len, H) takes as input two messages m0 and m1, length-parameter len and header data H .
It maintains a counter u which is initialized to 0. Oracle Decrypt(C,H) takes as input a ciphertext C and
header H , and keeps a counter v and a variable phase, both are initialized to 0. Both oracles process a query
as defined in Figure 1.

Encrypt(m0,m1, len, H): Decrypt(C,H):
u := u+ 1 v := v + 1

(C(0), st
(0)
e )

$← StE.Enc(k, len, H,m0, ste) If b = 0, then return ⊥
(C(1), st

(1)
e )

$← StE.Enc(k, len, H,m1, ste) (m, std) = StE.Dec(k,H,C, std)

If C(0) = ⊥ or C(1) = ⊥ then return ⊥ If v > u or C 6= Cv, then phase := 1

(Cu, ste) := (C(b), st
(b)
e ) If phase = 1 then return m

Return Cu Return ⊥

Figure 1: Encrypt and Decrypt oracles in the stateful LHAE security experiment.

3 Transport Layer Security

The current version of TLS is 1.2 [28] and coexists with its predecessors TLS 1.0 [26] and TLS 1.1 [27]. In
the following we give a description of all messages sent during the TLS Handshake with ephemeral Diffie-
Hellman key exchange and client authentication (i.e. for ciphersuites TLS DHE *). This description and
its illustration in Figure 2 are valid for all TLS versions since v1.0. Our description makes use of several
‘state variables’ (Λ, k,Π, ρ, st). For instance, variable Λ ∈ {accept, reject} determines whether one
party ‘accepts’ or ‘rejects’ an execution of the protocol, or variable k stores the session key. These variables
will also appear later in our security model (Section 4).

The TLS-DHE Handshake Protocol consists of 13 messages, whose content ranges from constant byte
values to tuples of cryptographic values. Not all messages are relevant for our security proof, we list them
merely for completeness. All messages are prepended with a numeric tag that identifies the type of message,
a length value, and the version number of TLS. All messages are sent through the TLS Record Layer, which
at startup provides no encryption nor any other cryptographic transformations.

CLIENT HELLO. Message m1 is the Client Hello message. It contains four values, two of which are
optional. For our analysis the only important value is rC , the random value chosen by the client. It consists
of 32 bytes (256 Bits), where 4 Bytes are usually used to encode the local time of the client. The remaining
28 Bytes are chosen randomly by the client. This is followed by a list cs-list of ciphersuites, where
each ciphersuite is a tuple of key exchange method, signing, encryption and MAC algorithms, coded as
two bytes. Data compression is possible before encryption and is signaled by the inclusion of zero or more
compression methods.

SERVER HELLO AND SERVER KEY EXCHANGE. The Server Hello message m2 has the same struc-
ture as Client Hello, with the only exception that at most one ciphersuite and one compression method
can be present. In our analysis the random value rS is important. The server may send a TLS session ID
sID to the client. Messagem3 may contain a chain of certificates, starting from the TLS server certificate up
to a direct child of a root certificate. Since we do not include public key infrastructures in our analysis (the
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C S

(IC = pkC , skC)(IC = pkC , skC) (IS = pkS , skS)

m1
$← Client Request() m1

(m2, . . . ,m6)
$← Server Response(m1)m2, . . . ,m6

(m7, . . . ,m11)
$← Client Response(m2, . . . ,m6)

m7, . . . ,m11

(m12,m13)← Server Accept(m7, . . . ,m11)m12,m13

Client Accept(m12,m13)

pre-accept phase
————————————————————————————————————————————

post-accept phase
StE.Enc(kClientenc , len, H, data, ste)

StE.Enc(kServerenc , len, H, data, ste)

Figure 2: TLS handshake for ciphersuites TLS DHE * with client authentication

identity of each party is its public key pkS), one certificate certS containing pkS (which may be self-signed)
is sufficient for this paper. When the certificate certS is received, the client sets its partner id Π := S. The
public key in the certificate must match the ciphersuite chosen by the server. For ephemeral Diffie-Hellman
key exchange, the public key may be any key that can be used to sign messages. The Diffie-Hellman (DH)
key exchange parameters are contained in the Server Key Exchange message m4, including informa-
tion on the DH group (e.g. prime number p and generator g for a prime-order q subgroup of Z∗p), the DH
share TS , and a signature computed over these values plus the two random numbers rC and rS . The next two
messages are very simple: the Certificate Request message m5 only contains a list of certificate
types that the client may use to authenticate itself, and the Server Hello Done message m6 does not
contain any data, but consists only of a constant tag with byte-value ‘14’ and a length value ‘0’.

CLIENT KEY EXCHANGE AND CLIENT FINISHED. Having received these messages, the signature σS is
verified. If this fails, the client ‘rejects’ and aborts. Otherwise, after successful verification, the client is
able to complete the key exchange and to compute the cryptographic keys. The Client Certificate
message m7 contains a signing certificate certC with the public key pkC of the client. Message m8 is called
Client Key Exchange, and contains the Diffie-Hellman share TC of the client. When the certificate
certC is received by the server, the server sets its partner id Π := C. To authenticate the client, a sig-
nature σC is computed on a concatenation of all previous messages (up to m8) and padded prefixes, thus
including the two random nonces and the two Diffie-Hellman shares. This signature is contained in the
Certificate Verify message m9.

The client is now also able to compute the premaster secret pms, from which all further secret values
are derived. After computing the master secret ms, it is stored for the lifetime of the TLS session, and pms
is erased from memory. The master secret ms is subsequently used, together with the two random nonces,
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Client Request()

ρ := Client

rC
$← {0, 1}λ

m1 := (rC ,cs-list)

Server Response()

ρ := Server

rS
$← {0, 1}λ

tS
$← Zq, TS := gtS mod p

σS := SIG.Sign(skS , rC ||rS ||p||g||TS)
m2 := (rS ,cs-choice)
m3 := certS
m4 := (p, g, TS , σS)
m5 := get-cert
m6 := done

Client Accept()

α := H(m1|| . . . ||m10||finC ||m12)
fin∗S := StE.Dec(kClientdec , H,m13, std)
If fin∗S 6= PRF(ms, label4||α)a

Λ := ‘reject’ and abort
else

Λ := ‘accept’ and output k

afin∗S is also computed over the plaintext hand-
shake messages only

Client Response()

Π := S, S is determined from certS
if SIG.Vfy(pkΠ, σS , rC ||rS ||p||g||TS) = 0

Λ := ‘reject’ and abort
else
tC

$← Zq, TC := gtC mod p
(m7,m8) := (certC , TC)
σC := SIG.Sign(skC ,m1|| . . . ||m8)
pms := T tCS mod p,ms := PRF(pms, label1||rC ||rS)
KC→S

enc ||KS→C
enc ||KC→S

mac ||KS→C
mac := PRF(ms, label2||rC ||rS)

kClientenc := (KC→S
enc ,KC→S

mac ), kClientdec := (KS→C
enc ,KS→C

mac )
k := (kClientenc , kClientdec )
(m9,m10) := (σC , f lagenc)
finC := PRF(ms, label3||H(m1|| . . . ||m10))
m11 := StE.Enc(kClientenc , len, H, finC , ste)

Server Accept()

Π := C, C is determined from certC
if SIG.Vfy(pkΠ, σC ,m1|| . . . ||m8) = 0

Λ := ‘reject’ and abort
else
pms := T tSC mod p,ms := PRF(pms, label1||rC ||rS)
KC→S

enc ||KS→C
enc ||KC→S

mac ||KS→C
mac := PRF(ms, label2||rC ||rS)

kServerenc := (KS→C
enc ,KS→C

mac ), kServerdec := (KC→S
enc ,KC→S

mac )
k := (kServerdec , kServerenc )
m12 := flagenc
finS := PRF(ms, label4||H(m1|| . . . ||m10||finC

a||m12)))
m13 := StE.Enc(kServerenc , len, H, finS , ste)
fin∗C := StE.Dec(kServerdec , H,m11, std)
If fin∗C 6= PRF(ms, label3||H(m1|| . . . ||m10))

Λ := ‘reject’ and abort
else
Λ := ‘accept’ and output k

aNote, that m11 contains an encryption of finC , and that finS
is computed over plaintext handshake messages only.

Figure 3: Computation of Client/Server Handshake Messages

to derive all encryption and MAC keys as well as the Client Finished message finC . More precisely,
the key material kClientenc := (KC→S

enc ,KC→S
mac ) and kClientdec := (KS→C

enc ,KS→C
mac ) is computed as

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac := PRF(ms, label2||rC ||rS) (1)

where kClientenc is used to encrypt and authenticate data sent from the client to the server, and kClientdec is used to
decrypt and verify data received from the server.

After these computations have been completed, the keys are handed over to the TLS Record Layer of
the client, which is now able to encrypt and MAC any data. To signal the ‘start of encryption’ to the server,
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a single message m10 (Change Cipher Spec) with byte value ‘1’ (flagenc) is sent unencrypted to S.
Then messagem11 consists of an authenticated encryption of the Client Finishedmessage finC which
is computed as

finC := PRF(ms, label3||H(m1|| . . . ||m10)),

where H is a hash function specified by the negotiated ciphersuite.

Remark 2. Please note that a padding is applied to finC before encryption and that this padding allows for
(partially) known plaintext attacks on m11. Thus if we analyse TLS in a key-indistinguishability-based
security model, the answer to a Test query could be determined by simply decrypting m11, and checking
if the resulting plaintext has the appropriate padding. Thus TLS is not provably secure in any such model.

SERVER FINISHED. After the server has received messages m7,m8,m9, the server verifies the signa-
ture in m9. If this fails, the server ‘rejects’ (i.e. sets Λ = ‘reject’) and aborts. Otherwise it first
determines pms and ms. From this the encryption and MAC keys kServerenc := (KS→C

enc ,KS→C
mac ) and

kServerdec := (KC→S
enc ,KC→S

mac ) are computed as in (1).5 It can then decrypt m11 and check finC by com-
puting the pseudo-random value on the messages sent and received by the server. If this check fails, it
‘rejects’ and aborts. If the check is successful, it ‘accepts’ (i.e. sets Λ = ‘accept’) and computes the
Server Finished message finS over all plaintext handshake messages as

finS := PRF(ms, label4||H(m1|| . . . ||m10||finC ||m12))

Then it sends messages m12 (flagenc) and m13 (the encryption of finS) to the client. If the check of finS on
the client side is successful, the client also ‘accepts’.

ENCRYPTED PAYLOAD TRANSMISSION. The obtained keys can now be used to transmit payload data in
the TLS Record Layer using a stateful symmetric encryption scheme StE = (StE.Enc, StE.Dec) (cf. Sec-
tion 2.5). The CBC-based TLS Record Layer protocols work as follows. The state ste of the encryption
algorithm consists of a sequence number, which is incremented on each encryption operation. The encryp-
tion algorithm takes a message m and computes a MAC over m, the sequence counter, and some additional
header dataH (such as version numbers, for instance). Then message and MAC are encoded into a bit string
by using a padding to a specified length len and encrypted (‘MAC-then-Encode-then-Encrypt’).

The state std of the decryption algorithm consists of a sequence number, which is incremented on
each decryption operation. Given a ciphertext, the algorithm decrypts and verifies the MAC using its own
sequence counter. See [50] for details.

ABBREVIATED TLS HANDSHAKES, SIDE-CHANNELS, AND CROSS-PROTOCOL ATTACKS. In our analy-
sis, we do not consider abbreviated TLS Handshakes, but we note that the server can always enforce a full
TLS Handshake. Moreover, we do not consider attacks based on side-channels, such as error messages or
implementation issues like the cross-protocol attack from [57].

4 AKE Protocols

While the established security models for, say, encryption (e.g. IND-CPA or IND-CCA security), or dig-
ital signatures (e.g., EUF-CMA), are clean and simple, a more complex model is required to model the
capabilities of active adversaries to define secure authenticated key-exchange. An important line of re-
search [14, 20, 42, 25] dates back to Bellare and Rogaway [11], where an adversary is provided with an

5Note that we have kServerenc = kClientdec and kServerdec = kClientenc .
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‘execution environment’, which emulates the real-world capabilities of an active adversary. In this model,
the adversary has full control over the communication network, which allows him to forward, alter, or drop
any message sent by the participants, or insert new messages. In the sequel we describe a variant of this
model, which captures adaptive corruptions, perfect forward secrecy, and security against key-compromise
impersonation attacks in a public-key setting.

4.1 Execution Environment

Consider a set of parties {P1, . . . , P`}, ` ∈ N, where each party Pi ∈ {P1, . . . , P`} is a (potential) protocol
participant and has a long-term key pair (pki, ski). To model several sequential and parallel executions of
the protocol, each party Pi is modeled by a collection of oracles π1i , . . . , π

d
i for d ∈ N. Each oracle πsi

represents a process that executes one single instance of the protocol. All oracles π1i , . . . , π
d
i representing

party Pi have access to the same long-term key pair (pki, ski) of Pi and to all public keys pk1, . . . , pk`.
Moreover, each oracle πsi maintains as internal state the following variables:

• Λ ∈ {accept, reject}.

• k ∈ K, where K is the keyspace of the protocol.

• Π ∈ {1, . . . , `} containing the intended communication partner, i.e., an index j that points to a public
key pkj used to perform authentication within the protocol execution.6

• Variable ρ ∈ {Client,Server}.

• Some additional temporary state variable st (which may, for instance, be used to store ephemeral
Diffie-Hellman exponents or the transcript of all messages sent/received during the TLS Handshake).

The internal state of each oracle is initialized to (Λ, k,Π, ρ, st) = (∅, ∅, ∅, ∅, ∅), where V = ∅ denotes
that variable V is undefined. Furthermore, we will always assume (for simplicity) that k = ∅ if an oracle
has not reached accept-state (yet), and contains the computed key if an oracle is in accept-state, so that
we have

k 6= ∅ ⇐⇒ Λ = ‘accept′. (2)

An adversary may interact with these oracles by issuing the following queries.

• Send(πsi ,m): The adversary can use this query to send message m to oracle πsi . The oracle will
respond according to the protocol specification, depending on its internal state.

If the attacker asks the first Send-query to oracle πsi , then the oracle checks whether m = > con-
sists of a special ‘initialization’ symbol >. If true, then it sets its internal variable ρ := Client and
responds with the first protocol message. Otherwise it sets ρ := Server and responds as specified in
the protocol.7

The variables Λ, k,Π, st are also set after a Send-query. When and how depends on the considered
protocol.

6We assume that each party Pi is uniquely identified by its public key pki. In practice, several keys may be assigned to one
identity. Furthermore, there may be other ways to determine identities, for instance by using certificates. However, this is out of
scope of this paper.

7Note that we do not include the identity of the (intended) communication partner in the Send-query. Instead, we assume that the
exchange of identities of communication partners (which is necessary to determine the public-key used to perform authentication)
is part of the protocol.
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• Reveal(πsi ): Oracle πsi responds to a Reveal-query with the contents of variable k. Note that we have
k 6= ∅ if and only if Λ = ‘accept’, see (2).

• Corrupt(Pi): Oracle π1i responds with the long-term secret key ski of party Pi.8 If Corrupt(Pi) is
the τ -th query issued by A, then we say that Pi is τ -corrupted. For parties that are not corrupted we
define τ :=∞.

• Test(πsi ): This query may be asked only once throughout the game. If πsi has state Λ 6= accept, then
it returns some failure symbol⊥. Otherwise it flips a fair coin b, samples an independent key k0

$← K,
sets k1 = k to the ‘real’ key computed by πsi , and returns kb.

The Send-query enables the adversary to initiate and run an arbitrary number of protocol instances,
sequential or in parallel, and provides full control over the communication between all parties. The Reveal-
query may be used to learn the session keys used in previous/concurrent protocol executions. The Corrupt-
query allows the attacker to learn ski of party Pi, it may for instance be used by A to impersonate Pi. The
Test-query will be used to define security.

4.2 Security Definition

Bellare and Rogaway [11] have introduced the notion of matching conversations in order to define correct-
ness and security of an AKE protocol precisely.

We denote with Ti,s the sequence that consists of all messages sent and received by πsi in chronological
order (not including the initialization-symbol >). We also say that Ti,s is the transcript of πsi . For two
transcripts Ti,s and Tj,t, we say that Ti,s is a prefix of Tj,t, if Ti,s contains at least one message, and the
messages in Ti,s are identical to and in the same order as the first |Ti,s| messages of Tj,t.

Definition 7 (Matching conversations). We say that πsi has a matching conversation to πtj , if

• Tj,t is a prefix of Ti,s and πsi has sent the last message(s), or

• Ti,s = Tj,t and πtj has sent the last message(s).

Remark 3. We remark that matching conversations in the above sense can also be seen as post-specified
session identifiers. The ‘asymmetry’ of the definition (i.e., the fact that we have to distinguish which party
has sent the last message) is necessary, due to the fact that protocol messages are sent sequentially. For
instance in the TLS Handshake protocol (see Figure 2) the last message of the client is the ‘client finished’
message finC , and then it waits for the ’server finished’ message finS before acceptance. In contrast, the
server sends finS after receiving finC . Therefore the server has to ‘accept’ without knowing whether its last
message was received by the client correctly. We have to take this into account in the definition of matching
conversations, since it will later be used to define security of the protocol in presence of an active adversary
that simply drops the last protocol message.

Security of AKE protocols is now defined by requiring that (i) the protocol is a secure authentication
protocol, and (ii) the protocol is a secure key-exchange protocol, thus an adversary cannot distinguish the
session key k from a random key.

8Note, that the adversary does not ‘take control’ of oracles corresponding to a corrupted party. But he learns the long-term secret
key, and can henceforth simulate these oracles.
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AKE Game. We formally capture this notion as a game, played between an adversary A and a challenger
C. The challenger implements the collection of oracles {πsi : i ∈ [`], s ∈ [d]}. At the beginning of the game,
the challenger generates ` long-term key pairs (pki, ski) for all i ∈ [`]. The adversary receives the public
keys pk1, . . . , pk` as input. Now the adversary may start issuing Send, Reveal and Corrupt queries, as well
as one Test-query. Finally, the adversary outputs a bit b′ and terminates.

Definition 8. Assume a “benign” adversary A, which picks two arbitrary oracles πsi and πtj and performs a
sequence of Send-queries by faithfully forwarding all messages between πsi and πtj . Let ksi denote the key
computed by πsi and let ktj denote the key computed by πtj . We say that an AKE protocol is correct, if for
this benign adversary and any two oracles πsi and πtj always holds that

1. both oracles have Λ = accept9, and

2. ksi = ktj ∈ K.

Definition 9. We say that an adversary (t, ε)-breaks an AKE protocol Φ, ifA runs in time t, and at least one
of the following two conditions holds:

1. When A terminates, then with probability at least ε there exists an oracle πsi such that

• πsi ‘accepts’ when A issues its τ0-th query with intended partner Π = j, and

• Pj is τj-corrupted with τ0 < τj ,10 and

• there is no unique oracle πtj such that πsi has a matching conversation to πtj .

If an oracle πsi accepts in the above sense, then we say that πsi accepts maliciously.

2. When A issues a Test-query to any oracle πsi and

• πsi ‘accepts’ when A issues its τ0-th query with intended partner Π = j, and Pj is τj-corrupted
with τ0 < τj ,

• A does not issue a Reveal-query to πsi , nor to πtj such that πsi has a matching conversation to πtj
(if such an oracle exists), and

then the probability that A outputs b′ which equals the bit b sampled by the Test-query satisfies∣∣Pr[b = b′]− 1/2
∣∣ ≥ ε.

If an adversary A outputs b′ such that b′ = b and the above conditions are met, then we say that A
anwers the Test-challenge correctly.

We say that an AKE protocol Φ is (t, ε)-secure, if it is correct and there exists no adversary that (t, ε)-breaks
it.

Remark 4. Note that the above definition even allows to corrupt oracles involved in the Test-session (of
course only after the Test-oracle has reached accept-state, in order to exclude trivial attacks). Thus, pro-
tocols secure with respect to this definition provide perfect forward secrecy. Note also that we allow the
‘accepting’ oracle to be corrupted even before it reaches accept-state, which provides security against
key-compromise impersonation attacks.

9We do not demand that partner ids Π are mutually matching. However, this is required by the security definition.
10That is, Pj is not corrupted when πsi ‘accepts’. Recall that uncorrupted parties are τ -corrupted with τ = ∞.
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5 Truncated TLS with Ephemeral Diffie-Hellman is a Secure AKE Protocol

In this section we prove the security of a modified version of the TLS Handshake protocol. As discussed
in the introduction, it is impossible to prove the full TLS Handshake protocol secure in any security model
based on key-indistinguishability, like the model from Section 4, because the encryption and MAC of the
Finished messages provide a ‘check value’, that can be exploited by an adversary to determine the bit b
chosen by the Test-query.

Therefore we consider a ‘truncated TLS’ protocol as in [47, 48]. In this truncated version, we assume
that the Finished messages are sent in clear, that is, neither encrypted nor authenticated by a MAC. More
precisely, we modify the TLS protocol depicted in Figure 2 such that

• message m11 contains only finC (instead of StE.Enc(kClientenc , len, H, finC , ste)), and

• message m13 contains only finS (instead of StE.Enc(kServerenc , len, H, finS , ste)).

This simple modification allows to prove security in the key-indisinguishability-based security model from
Section 4.

Theorem 1. Let µ be the output length of PRF and let λ be the length of the nonces rC and rS . Assume
that the pseudo-random function PRF is (t, εprf)-secure, the signature scheme is (t, εsig)-secure, the DDH-
problem is (t, εddh)-hard in the group G used to compute the TLS premaster secret, the hash function H is
(t, εH)-collision resistant, and the PRF-ODH-problem is (t, εprfodh)-hard with respect to G and PRF.

Then for any adversary that (t′, εttls)-breaks the truncated ephemeral Diffie-Hellman TLS Handshake
protocol in the sense of Definition 9 with t ≈ t′ holds that

εttls ≤ 4 · d`
(
d`

2λ
+ ` · εsig +

5

4
· εddh +

5 + 2d`

2
· εprf + d`

(
εprfodh + εH +

1

2µ

))
.

We consider three types of adversaries:

1. Adversaries that succeed in making an oracle accept maliciously, such that the first oracle that does
so is a Client-oracle (i.e., an oracle with ρ = Client). We call such an adversary a Client-adversary.

2. Adversaries that succeed in making an oracle accept maliciously, such that the first oracle that does
so is a Server-oracle (i.e., an oracle with ρ = Server). We call such an adversary a Server-adversary.

3. Adversaries that do not succeed in making any oracle accept maliciously, but which answer the Test-
challenge. We call such an adversary a Test-adversary.

We prove Theorem 1 by proving three lemmas. Lemma 1 bounds the probability εclient that a Client-
adversary succeeds, Lemma 2 bounds the probability εserver that a Server-adversary succeeds, and Lemma 3
bounds the success probability εke of a Test-adversary. Then we have

εttls ≤ εclient + εserver + εke.

5.1 Authentication

Lemma 1. For any adversary A running in time t′ ≈ t, the probability that there exists an oracle πsi with
ρ = Client that accepts maliciously is at most

εclient ≤ d`
(
d`

2λ
+ ` · εsig + d`

(
εprfodh + εprf + εH +

1

2µ

))
where all quantities are defined as stated in Theorem 1.
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PROOF. The proof proceeds in a sequence of games, following [12, 54]. The first game is the real security
experiment. We then describe several intermediate games that modify the original game step-by-step, and
argue that our complexity assumptions imply that each game is computationally indistinguishable from the
previous one. We end up in the final game, where no adversary can break the security of the protocol.

Let break(1)δ be the event that occurs when the first oracle that accepts maliciously in the sense of Defi-
nition 9 with ρ = Client in Game δ.

Game 0. This game equals the AKE security experiment described in Section 4. Thus, for some εclient we
have

Pr[break
(1)
0 ] = εclient.

Game 1. In this game we add an abort rule. The challenger aborts, if there exists any oracle πsi that
chooses a random nonce rC or rS which is not unique. More precisely, the game is aborted if the adversary
ever makes a first Send query to an oracle πsi , and the oracle replies with random nonce rC or rS such that
there exists some other oracle πs

′
i′ which has previously sampled the same nonce.

In total less than d` nonces rC and rS are sampled, each uniformly random from {0, 1}λ. Thus, the
probability that a collision occurs is bounded by (d`)22−λ, which implies

Pr[break
(2)
0 ] ≤ Pr[break

(2)
1 ] +

(d`)2

2λ
.

Note that now each oracle has a unique nonce rC or rS , which is included in the signatures. We will use this
to ensure that each oracle that accepts with non-corrupted partner has a unique partner oracle.

Game 2. We try to guess which client oracle will be the first oracle to accept maliciously. If our guess is
wrong, i.e. if there is another (Client or Server) oracle that accepts before, then we abort the game.

Technically, this game is identical to Game 1, except for the following. The challenger guesses two
random indices (i∗, s∗)

$← [`] × [d]. If there exists an oracle πsi that ‘accepts’ maliciously, and (i, s) 6=
(i∗, s∗) and πsi has ρ 6= Client, then the challenger aborts the game. Note that if the first oracle πsi that
‘accepts’ maliciously has ρ = Client, then with probability 1/(d`) we have (i, s) = (i∗, s∗), and thus

Pr[break
(2)
1 ] = d` · Pr[break

(2)
2 ].

Note that in this game the attacker can only break the security of the protocol, if oracle πs
∗
i∗ is the first oracle

that ‘accepts’ maliciously and has ρ = Client, as otherwise the game is aborted.

Game 3. Again the challenger proceeds as before, but we add an abort rule. We want to make sure that πs
∗
i∗

receives as input exactly the Diffie-Hellman value TS that was selected by some other uncorrupted oracle
that received the nonce rC chosen by πs

∗
i∗ as first input (note that there may be several such oracles, since

the attacker may send copies of rC to many oracles).
Technically, we abort and raise event abortsig, if oracle πs

∗
i∗ ever receives as input a messagem3 = certS

indicating intended partner Π = j and message m4 = (p, g, TS , σS) such that σS is a valid signature over
rC ||rS ||p||g||TS , but there exists no oracle πtj which has previously output σS . Clearly we have

Pr[break
(1)
2 ] ≤ Pr[break

(1)
3 ] + Pr[abortsig].
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Note that the experiment is aborted, if πs
∗
i∗ does not accept maliciously, due to Game 2. This means that

party Pj must be τj-corrupted with τj = ∞ (i.e., not corrupted) when πs
∗
i∗ accepts (as otherwise πs

∗
i∗ does

not accept maliciously). To show that Pr[abortsig] ≤ ` · εsig, we construct a signature forger as follows. The
forger receives as input a public key pk∗ and simulates the challenger for A. It guesses an index φ $← [`],
sets pkφ = pk∗, and generates all long-term public/secret keys as before. Then it proceeds as the challenger
in Game 3, except that it uses its chosen-message oracle to generate a signature under pkφ when necessary.

If φ = j, which happens with probability 1/`, then the forger can use the signature received by πs
∗
i∗ to

break the EUF-CMA security of the signature scheme with success probability εsig, so Pr[abortsig]/` ≤ εsig.
Therefore if Pr[abortsig] is not negligible, then εsig is not negligible as well and we have

Pr[break
(1)
2 ] ≤ Pr[break

(1)
3 ] + ` · εsig.

Note that in Game 3 oracle πs
∗
i∗ receives as input a Diffie-Hellman value TS such that TS was chosen by

another oracle, but not by the attacker. Note also that there may be multiple oracles that issued a signature
σS containing rC , since the attacker may have sent several copies of rC to several oracles.

Game 4. In this game we want to make sure that we know which oracle πtj will issue the signature σS
that πs

∗
i∗ receives. Note that this signature includes the random nonce rS , which is unique due to Game 1.

Therefore the challanger in this game proceeds as before, but additionally guesses two indices (j∗, t∗)
$←

[`]× [d]. It aborts, if the attacker does not make a Send-query containing rC to πt
∗
j∗ , and πt

∗
j∗ responds with

messages containing σS such that σS is forwarded to πs
∗
i∗ .

We know that there must exists at least one oracle that outputs σS such that σS is forwarded to πs
∗
i∗ , due

to Game 3. Thus we have
Pr[break

(1)
3 ] ≤ d` · Pr[break

(1)
4 ].

Note that in this game we know exactly that oracle πt
∗
j∗ chooses the Diffie-Hellman share TS that πs

∗
i∗ uses

to compute its premaster secret.

Game 5. Recall that πs
∗
i∗ computes the master secret asms = PRF(T tcS , label1||rC ||rS), where TS denotes

the Diffie-Hellman share received from πt
∗
j∗ , and tc denotes the Diffie-Hellman exponent chosen by πs

∗
i∗ .

In this game we replace the master secret ms computed by πs
∗
i∗ with an independent random value m̃s.

Moreover, if πt
∗
j∗ receives as input the same Diffie-Hellman share TC that was sent from πs

∗
i∗ , then we set the

master secret of πt
∗
j∗ equal to m̃s. Otherwise we compute the master secret as specified in the protocol. We

claim that
Pr[break

(1)
4 ] ≤ Pr[break

(1)
5 ] + εPRF-ODH.

Suppose there exists an adversary A that distinguishes Game 5 from Game 4. We show that this implies an
adversary B that solves the PRF-ODH problem.

Adversary B outputs (label1||rC ||rS) to its oracle and receives in response (g, gu, gv, R), where either
R = PRF(guv, label1||rC ||rS) or R $← {0, 1}µ. It runs A by implementing the challenger for A, and
embeds (gu, gv) as follows. Instead of letting πs

∗
i∗ choose TC = gtC for random tC

$← Zq, B defines
TC := gu. Similarly, the Diffie-Hellman share TS of πt

∗
j∗ is defined as TS := gv. Finally, the master secret

of πs
∗
i∗ is set equal to R.
Note that πs

∗
i∗ computes the master secret after receiving TS from πt

∗
j∗ , and then it sends m8 = TC . If

the attacker decides to forward m8 to πt
∗
j∗ , then the master secret of πt

∗
j∗ is set equal to R. If πt

∗
j∗ receives
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TC′ 6= TC , then B queries its oracle to compute ms′ = PRF(T vC′ , label1||rC ||rS), and sets the master secret
of πt

∗
j∗ equal to ms′.
Note that in any case algorithm B ‘knows’ the master secret of πs

∗
i∗ and πt

∗
j∗ , and thus is able to compute

all further protocol messages (in particular the finished messages finC and finS) and answer a potential
Reveal-query to πt

∗
j∗ as required (note that there is no Reveal-query to πs

∗
i∗ , as otherwise the experiment is

aborted, due to Game 2). If R = PRF(guv, label1||rC ||rS), then the view ofA is identical to Game 4, while
if R $← {0, 1}µ then it is identical to Game 5, which yields the above claim.

Game 6. In this game we replace the function PRF(m̃s, ·) used by πs
∗
i∗ with a random function. If πt

∗
j∗

uses the same master secret m̃s as πs
∗
i∗ (cf. Game 5), then the function PRF(m̃s, ·) used by πt

∗
j∗ is replaced

as well. Of course the same random function is used for both oracles sharing the same m̃s. In particular,
this function is used to compute the Finished messages by both partner oracles.

Distinguishing Game 6 from Game 5 implies an algorithm breaking the security of the pseudo-random
function PRF, thus

Pr[break
(1)
5 ] ≤ Pr[break

(1)
6 ] + εprf

Game 7. In Game 6 we have replaced the function PRF(m̃s, ·) with a random function. Thus, the Server-
Finished message expected by πs

∗
i∗ is

fin∗S = Fm̃s(label4||H(m1|| · · · ||m10||finC ||m12)),

where m1|| · · · ||m10||finC ||m12 denotes the transcript of all messages sent and received by πs
∗
i∗ . In the next

game we would like to argue, that the attacker is not able to predict fin∗S , unless there is an oracle πt
∗
j∗ having

a matching conversation to πs
∗
i∗ , because Fm̃s is random. Before we can do so, we need to make sure that

oracle πt
∗
j∗ (the only other oracle potentially having access to Fm̃s, due to Game 6) never evaluates Fm̃s on

any input label4||H(m′) with

m′ 6= m1|| · · · ||m10||finC ||m12 and H(m′) = H(m1|| · · · ||m10||finC ||m12). (3)

Therefore we add another abort condition. We abort the game, if oracle πt
∗
j∗ ever evaluates the random

function Fm̃s on an input m′ such that (3) holds. Since (3) implies that a collision for H is found, we have

Pr[break
(1)
6 ] ≤ Pr[break

(1)
7 ] + εH

Game 8. Finally we use that the unique (due to Game 7) hash of the full transcript of all messages sent
and received is used to compute the Finished messages, and that Finished messages are computed by
evaluating a truly random function that is only accessible to πs

∗
i∗ and (possibly) πt

∗
j∗ due to Game 6. This

allows to show that any adversary has probability at most 2−µ of making oracle πs
∗
i∗ accept without having

a matching conversation to πt
∗
j∗ .

Thus, this game proceeds exactly like the previous game, except that the challenger now aborts if oracle
πs
∗
i∗ accepts without having a matching conversation to πt

∗
j∗ . Thus we have Pr[break

(1)
8 ] = 0.

The Finished messages are computed by evaluating a truly random function Fm̃s. This function is
only accessible to oracles sharing m̃s, and evaluated on a unique hash value derived from the full transcript
containing all previous messages. Thus, if there is no oracle having a matching conversation to πs

∗
i∗ , the
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adversary receives no information about Fm̃s(label4||H(m1|| · · · ||m12)). Therefore we have Pr[break
(1)
8 ] =

0 and
Pr[break

(1)
7 ] ≤ Pr[break

(1)
8 ] +

1

2µ
=

1

2µ
.

Collecting probabilities from Game 0 to Game 8 yields Lemma 1. �

Lemma 2. For any adversary A running in time t′ ≈ t, the probability that there exists an oracle πsi with
ρ = Server that accepts maliciously is at most

εserver ≤ d`
(
d`

2λ
+ ` · εsig + εddh + 2 · εprf + εH +

1

2µ

)
where all quantities are defined as stated in Theorem 1.

PROOF. Let break(2)δ be the event that occurs when the first oracle that accepts maliciously in the sense of
Definition 9 with ρ = Server in Game δ.

Game 0. This game equals the AKE security experiment described in Section 4. Thus, for some εserver we
have

Pr[break
(2)
0 ] = εserver.

Game 1. In this game we add an abort rule. The challenger aborts, if there exists any oracle πsi that
chooses a random nonce rC or rS which is not unique. With the same arguments as in Game 1 from the
proof of Lemma 1 we have

Pr[break
(2)
0 ] ≤ Pr[break

(2)
1 ] +

(d`)2

2λ
.

Game 2. This game is identical, except for the following. The challenger guesses two random indices
(i∗, s∗)

$← [`] × [d]. If there exists an oracle πsi that ‘accepts’ maliciously, and (i, s) 6= (i∗, s∗) and πsi has
ρ 6= Server, then the challenger aborts the game. Note that if the first oracle πsi that ‘accepts’ maliciously
has ρ = Server, then with probability 1/(d`) we have (i, s) = (i∗, s∗), and thus

Pr[break
(2)
1 ] = d` · Pr[break

(2)
2 ].

Note that in this game the attacker can only break the security of the protocol, if oracle πs
∗
i∗ is the first oracle

that ‘accepts’ maliciously and has ρ = Server, as otherwise the game is aborted.

Game 3. The challenger proceeds as before, but we add an abort rule. We want to make sure that πs
∗
i∗

receives as input exactly the Diffie-Hellman value m8 = TC that was selected by some other uncorrupted
oracle.

Technically, we abort and raise event abortsig, if oracle πs
∗
i∗ ever receives as input a messagem7 = certC

indicating intended partner Π = j and message m9 = σC = SIG.Sign(skC ,m1|| . . . , ||m8) such that σC is
a valid signature but there exists no oracle πtj which has previously output σC . Clearly we have

Pr[break
(2)
2 ] ≤ Pr[break

(2)
3 ] + Pr[abortsig].
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Note that the experiment is aborted, if πs
∗
i∗ does not accept maliciously, due to Game 2. This means

that party Pj must be τj-corrupted with τj = ∞ (i.e., not corrupted) when πs
∗
i∗ accepts. To show that

Pr[abortsig] ≤ ` · εsig, we construct a signature forger as follows. The forger receives as input a public key
pk∗ and simulates the challenger for A. It guesses an index φ $← [`], sets pkφ = pk∗, and generates all
long-term public/secret keys as before. Then it proceeds as the challenger in Game 3, except that it uses its
chosen-message oracle to generate a signature under pkφ when necessary.

If φ = j, which happens with probability 1/`, then the forger can use the signature received by πs
∗
i∗ to

break the EUF-CMA security of the signature scheme with success probability εsig, so Pr[abortsig]/` ≤ εsig.
Therefore if Pr[abortsig] is not negligible, then εsig is not negligible as well and we have

Pr[break
(2)
2 ] ≤ Pr[break

(2)
3 ] + ` · εsig.

Note that in Game 3 oracle πs
∗
i∗ receives as input a Diffie-Hellman value TC such that TC was chosen by

another oracle, but not by the attacker. Note also that this oracle is unique, since the signature includes the
client nonce rC , which is unique due to Game 1. From now on we denote this unique oracle with πt

∗
j∗ .

Note also that πs
∗
i∗ and πt

∗
j∗ share a premaster secret pms = T tSC = T tCS , where TC = gtC and TS = gtS

for random exponents tS and tC chosen by πs
∗
i∗ and πt

∗
j∗ , respectively.

Game 4. In this game, we replace the premaster secret pms = gtCtS shared by πs
∗
i∗ and πt

∗
j∗ with a random

value gr, r $← Zq. The fact that the challenger has full control over the Diffie-Hellman shares TC and TS
exchanged between πs

∗
i∗ and πt

∗
j∗ , due to the modifications introduced in the previous games, provides us

with the leverage to prove indistinguishability under the Decisional Diffie-Hellman assumption.
Technically, the challenger in Game 4 proceeds as before, but when πs

∗
i∗ and πt

∗
j∗ compute the premaster

secret as pms = gtCtS , the challenger replaces this value with a uniformly random value p̃ms = gr, r
$← Z∗p,

which is in the following used by both partner oracles. Suppose there exists an algorithm distinguishing
Game 4 from Game 3. Then we can construct an algorithm B solving the DDH problem as follows. Algo-
rithm B receives as input a DDH challenge (g, gu, gv, gw). The challenger defines TC := gu and TS := gv

for the Diffie-Hellman shares chosen by πs
∗
i∗ and πt

∗
j∗ , respectively. Instead of computing the Diffie-Hellman

key as in Game 3, it sets pms = gw both for the ‘client’ and the ‘server’ oracle. Now if w = uv, then this
game proceeds exactly like Game 3, while if w is random than this game proceeds exactly like Game 4. The
DDH assumption therefore implies that

Pr[break
(2)
3 ] ≤ Pr[break

(2)
4 ] + εddh.

Note that in Game 4 the premaster secret of πs
∗
i∗ and πt

∗
j∗ is uniformly random, and independent of TC and

TS . This will provide us with the leverage to replace the function PRF(p̃ms, ·) with a truly random function
in the next game.

Game 5. In Game 5 we make use of the fact that the premaster secret p̃ms of πs
∗
i∗ and πt

∗
j∗ is chosen uni-

formly random, and independent of TC and TS . We thus replace the value ms = PRF(p̃ms, label1||rC ||rS)
with a random value m̃s.

Distinguishing Game 5 from Game 4 implies an algorithm breaking the security of the pseudo-random
function PRF, thus

Pr[break
(2)
4 ] ≤ Pr[break

(2)
5 ] + εprf .
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Game 6. In this game we replace the function PRF(m̃s, ·) used by πs
∗
i∗ and πt

∗
j∗ with a random function.

Of course the same random function is used for both oracles πs
∗
i∗ and πt

∗
j∗ . In particular, this function is used

to compute the Finished messages by both partner oracles.
Distinguishing Game 6 from Game 5 again implies an algorithm breaking the security of the pseudo-

random function PRF, thus
Pr[break

(2)
5 ] ≤ Pr[break

(2)
6 ] + εprf .

Game 7. In Game 6 we have replaced the function PRF(m̃s, ·) with a random function. Thus, the Client-
Finished message expected by πs

∗
i∗ is

fin∗C = Fm̃s(label3||H(m1|| · · · ||m10)),

wherem1|| · · · ||m10 denotes the transcript of all messages sent and received by πs
∗
i∗ . Again we would like to

argue that the attacker is not able to predict fin∗C , unless there is an oracle πt
∗
j∗ having a matching conversation

to πs
∗
i∗ , because Fm̃s is random.
Before we can do so, we need to make sure that oracle πt

∗
j∗ (the only other oracle potentially having

access to Fm̃s, due to Game 6) never evaluates Fm̃s on any input label3||H(m′) with

m′ 6= m1|| · · · ||m10 and H(m′) = H(m1|| · · · ||m10). (4)

Therefore we add another abort condition. We abort the game, if oracle πt
∗
j∗ ever evaluates the random

function Fm̃s on an input m′ such that (4) holds. Since (4) implies that a collision for H is found, we have

Pr[break
(2)
6 ] ≤ Pr[break

(2)
7 ] + εH

Game 8. Finally we use that the unique hash of the full transcript of all messages sent and received by πs
∗
i∗

is used to compute the Finished messages, and that Finished messages are computed by evaluating a
truly random function that is only accessible to πs

∗
i∗ and πt

∗
j∗ due to Game 7. This allows to show that any

adversary has probability at most 1
2µ of making oracle πs

∗
i∗ accept without having a matching conversation

to πt
∗
j∗ .
Thus, this game proceeds exactly like the previous game, except that the challenger now aborts if oracle

πs
∗
i∗ accepts without having a matching conversation to πt

∗
j∗ . Therefore we have Pr[break

(1)
8 ] = 0.

The Finished messages are computed by evaluating a truly random function Fm̃s, which is only
accessible to oracles sharing m̃s, and the full transcript containing all previous messages is used to compute
the Finishedmessages. If there is no oracle having a matching conversation to πs

∗
i∗ , the adversary receives

no information about Fm̃s(label3||m1|| · · · ||m10). Thus we have

Pr[break
(2)
7 ] ≤ Pr[break

(2)
8 ] +

1

2µ
=

1

2µ
.

Collecting probabilities from Game 0 to Game 8 yields Lemma 2. �
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5.2 Indistinguishability of Keys

Lemma 3. For any adversary A running in time t′ ≈ t, the probability that A answers the Test-challenge
correctly is at most 1/2 + εke with

εke ≤ εclient + εserver + d` · (εddh + 2 · εprf) .

where εclient+εserver is an upper bound on the probability that there exists an oracle that accepts maliciously
in the sense of Definition 9 (cf. Lemmas 1 and 2) and all other quantities are defined as stated in Theorem 1.

PROOF. Assume without loss of generality that the A always asks a Test-query such that all conditions in
Property 2 of Definition 9 are satisfied. Let break(3)δ denote the event that b′ = b in Game δ, where b is the
random bit sampled by the Test-query, and b′ is either the bit output by A or (if A does not output a bit)
chosen by the challenger. Let Advδ := Pr[break

(3)
δ ]− 1/2 denote the advantage of A in Game δ. Consider

the following sequence of games.

Game 0. This game equals the AKE security experiment described in Section 4. For some εke we have

Pr[break
(3)
0 ] =

1

2
+ εke =

1

2
+ Adv0.

Game 1. The challenger in this game proceeds as before, but it aborts and chooses b′ uniformly random,
if there exists any oracle that accepts maliciously in the sense of Definition 9. Thus we have

Adv0 ≤ Adv1 + εclient + εserver,

where εclient + εserver is an upper bound on the probability that there exists an oracle that accepts maliciously
in the sense of Definition 9 (cf. Lemmas 1 and 2).

Recall that we assume that A always asks a Test-query such that all conditions in Property 2 of Defi-
nition 9 are satisfied. In particular it asks a Test-query to an oracle πsi that ‘accepts’ after the τ0-th query
of A with intended partner Π = j, such that Pj is τj-corrupted with τj > τ0. Note that in Game 1 for any
such oracle πsi there exists a unique ‘partner oracle’ πtj such that πsi has a matching conversation to πtj , as
the game is aborted otherwise.

Game 2. The challenger in this game proceeds as before, but in addition guesses indices (i∗, s∗)
$←

[`] × [d]. It aborts and chooses b′ at random, if the attacker issues a Test(πsi )-query with (i, s) 6= (i∗, s∗).
With probability 1/(d`) we have (i, s) = (i∗, s∗), and thus

Adv1 ≤ d` · Adv2.

Note that in Game 2 we know that A will issue a Test-query to oracle πs
∗
i∗ . Note also that πs

∗
i∗ has a unique

‘partner’ due to Game 1. In the sequel we denote with πt
∗
j∗ the unique oracle such that πs

∗
i∗ has a matching

conversation to πt
∗
j∗ , and say that πt

∗
j∗ is the partner of πs

∗
i∗ .
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Game 3. Let Ti∗,s∗ = gu denote the Diffie-Hellman share chosen by πs
∗
i∗ , and let Tj∗,t∗ = gv denote the

share chosen by its partner πt
∗
j∗ . Thus, both oracles compute the premaster secret as pms = guv.

The challenger in this game proceeds as before, but replaces the premaster secret pms of πs
∗
i∗ and πt

∗
j∗

with a random group element p̃ms = gw, w $← Zq. Note that both gu and gv are chosen by oracles πs
∗
i∗ and

πt
∗
j∗ , respectively, as otherwise πs

∗
i∗ would not have a matching conversation to πt

∗
j∗ and the game would be

aborted.
Suppose that there exists an algorithm A distinguishing Game 3 from Game 2. Then we can construct

an algorithm B solving the DDH problem as follows. B receives as input (g, gu, gv, gw). It implements the
challenger for A as in Game 2, except that it sets Ti∗,s∗ := gu and Tj∗,t∗ := gv, and the premaster secret of
πs
∗
i∗ and πt

∗
j∗ equal to pms := gw. Note that B can simulate all messages exchanged between πs

∗
i∗ and πt

∗
j∗

properly, in particular the finished messages using knowledge of pms = gw. Since all other oracles are not
modified, B can simulate these oracles properly as well.

If w = uv, then the view of A when interacting with B is identical to Game 2, while if w $← Zq then it
is identical to Game 3. Thus, the DDH assumption implies that

Adv2 ≤ Adv3 + εddh.

Game 4. In Game 4 we make use of the fact that the premaster secret p̃ms of πs
∗
i∗ and πt

∗
j∗ is chosen

uniformly random. We thus replace the value ms = PRF(p̃ms, label1||rC ||rS) with a random value m̃s.
Distinguishing Game 4 from Game 3 implies an algorithm breaking the security of the pseudo-random

function PRF, thus
Adv3 ≤ Adv4 + εprf .

Game 5. In this game we replace the function PRF(m̃s, ·) used by πs
∗
i∗ and πt

∗
j∗ with a random function

Fm̃s. Of course the same random function is used for both oracles πs
∗
i∗ and πt

∗
j∗ . In particular, this function

is used to compute the key material as

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac := Fm̃s(label2||rC ||rS)

Distinguishing Game 5 from Game 4 again implies an algorithm breaking the security of the pseudo-random
function PRF. Moreover, in Game 5 the adversary always receives a random key in response to a Test-query,
thus receives no information about b′, which implies Adv5 = 0 and

Adv4 ≤ Adv5 + εprf = εprf .

Collecting probabilities from Game 0 to Game 5 yields Lemma 3. �
Summing up probabilities from Lemmas 1 to 3, we obtain that

εttls ≤ εclient + εserver + εke

≤ 2 · (εclient + εserver) + d` · (εddh + 2 · εprf)
≤ 4 ·max{εclient, εserver}+ d` · (εddh + 2 · εprf)

≤ 4 · d`
(
d`

2λ
+ ` · εsig + εddh + 2 · εprf + d`

(
εprfodh + εprf + εH +

1

2µ

))
+ d` · (εddh + 2 · εprf)

= 4 · d`
(
d`

2λ
+ ` · εsig +

5

4
· εddh +

5

2
· εprf + d`

(
εprfodh + εprf + εH +

1

2µ

))
,

which yields Theorem 1.
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6 ACCE Protocols

An authenticated and confidential channel establishment (ACCE) protocol is a protocol executed between
two parties. The protocol consists of two phases, called the ‘pre-accept’ phase and the ’post-accept’ phase.

Pre-accept phase. In this phase a ‘handshake protocol’ is executed. In terms of functionality this protocol
is an AKE protocol as in Section 4, that is, both communication partners are mutually authenticated,
and a session key k is established. However, it need not necessarily meet the security definition for
AKE protocols (Definition 9). This phase ends, when both communication partners reach an accept-
state (i.e. Λ = ‘accept’).

Post-accept phase. This phase is entered, when both communication partners reach an accept-state. In
this phase data can be transmitted, encrypted and authenticated with key k.

The prime example for an ACCE protocol is TLS. Here, the pre-accept phase consists of the TLS Handshake
protocol. In the post-accept phase encrypted and authenticated data is transmitted over the TLS Record
Layer.

To define security of ACCE protocols, we combine the security model for authenticated key exchange
from Section 4 with stateful length-hiding encryption in the sense of [50]. Technically, we provide a slightly
modified execution environment that extends the types of queries an adversary may issue.

6.1 Execution environment

The execution environment is very similar to the model from Section 4, except for a few simple modifica-
tions. We extend the model such that in the post-accept phase an adversary is also able to ‘inject’ chosen-
plaintexts by making an Encrypt-query,11 and chosen-ciphertexts by making a Decrypt-query. Each oracle
πsi keeps as additional internal state a bit bsi

$← {0, 1}, chosen at random at the beginning of the game.
Moreover, for the post-accept phase each oracle πsi keeps additional variables (usi , v

s
i , C

s
i , θ

s
i ). Variables

usi , v
s
i are counters, which are initialized to (usi , v

s
i ) := (0, 0). To simplify our notation in the sequel we

additionally define u00 := 0. Variable Csi is a list of ciphertexts, which initially is empty. We write Csi [u]
to denote the u-th entry of Csi . Variable θsi stores a pair of indices θsi ∈ [`] ∪ {0} × [d] ∪ {0}. If oracle πsi
accepts having a matching conversation to some other oracle πtj , then θsi is set to θsi := (j, t).12 Otherwise
it is set to θsi := (0, 0).

In the sequel we will furthermore assume that the key k consists of two different keys k = (kρenc, k
ρ
dec)

for encryption and decryption. Their order depends on the role ρ ∈ {Client,Server} of oracle πsi . This is
the case for TLS (see Section 3).

An adversary may interact with the provided oracles by issuing the following queries.

• Sendpre(πsi ,m): This query is identical to the Send-query in the AKE model from Section 4, except
that it replies with an error symbol ⊥ if oracle πsi has state Λ = ‘accept’. (Send-queries in an
accept-state are handled by the Decrypt-query below).

• Reveal(πsi ) and Corrupt(Pi): These queries are identical to the corresponding queries in the AKE
model from Section 4.

11This models that an adversary may trick one party into sending some adversarially chosen data. A practical example for this
attack scenario are cross-site request forgeries [59] on web servers, or Bard’s chosen-plaintext attacks on SSL3.0 [4, 5].

12If there is more than one such oracle, the first in lexicographical order is chosen.

27



• Encrypt(πsi ,m0,m1, len, H): This query takes as input two messages m0 and m1, length parameter
len, and header data H . If Λ 6= ‘accept’ then πsi returns ⊥.

Otherwise, it proceeds as depicted in Figure 4, depending on the random bit bsi
$← {0, 1} sampled by

πsi at the beginning of the game and the internal state variables of πsi .

• Decrypt(πsi , C,H): This query takes as input a ciphertext C and header data H . If πsi has Λ 6=
‘accept’ then πsi returns ⊥. Otherwise, it proceeds as depicted in Figure 4.

Encrypt(πsi ,m0,m1, len, H): Decrypt(πsi , C,H):

(C(0), st
(0)
e )

$← StE.Enc(kρenc, len, H,m0, ste) (j, t) := θsi
(C(1), st

(1)
e )

$← StE.Enc(kρenc, len, H,m1, ste) vsi := vsi + 1

If C(0) = ⊥ or C(1) = ⊥ then return ⊥ If bsi = 0, then return ⊥
usi := usi + 1 (m, std) = StE.Dec(kρdec, H,C, std)

(Csi [usi ], ste) := (C(bsi ), st
(bsi )
e ) If vsi > utj or C 6= Ctj [v

s
i ], then phase := 1

Return Csi [usi ] If phase = 1 then return m

Here usi , v
s
i , b

s
i , ρ, k

ρ
enc, k

ρ
dec denote the values stored in the corresponding internal variables of πsi .

Figure 4: Encrypt and Decrypt oracles in the ACCE security experiment.

Remark 5. Note that in the case of TLS, a message encrypted by some oracle πsi can only be decrypted by
its ‘partner’ oracle, as different keys are used for the different communication directions (i.e. a single oracle
uses different keys for encryption and decryption).

6.2 Security Definition

Security of ACCE protocols is defined by requiring that (i) the protocol is a secure authentication protocol
and (ii) in the post-accept phase all data is transmitted over an authenticated and confidential channel in the
sense of Definition 6.

Again this notion is captured by a game, played between an adversary A and a challenger C. The
challenger implements the collection of oracles {πsi : i ∈ [`], s ∈ [d]}. At the beginning of the game, the
challenger generates ` long-term key pairs (pki, ski) for all i ∈ [`]. The adversary receives the public keys
pk1, . . . , pk` as input. Now the adversary may start issuing Sendpre, Reveal, Corrupt, Encrypt, and Decrypt
queries. Finally, the adversary outputs a triple (i, s, b′) and terminates.

Definition 10. Assume a “benign” adversary A, which picks two arbitrary oracles πsi and πtj and performs
a sequence of Send-queries by faithfully forwarding all messages of the pre-accept phase between πsi and
πtj . Let ksi = (kClientenc , kClientdec ) denote the key computed by πsi and let ktj = (kServerdec , kServerenc ) denote the key
computed by πtj . We say that an ACCE protocol is correct, if for this benign adversary and any two oracles
πsi and πtj always holds that

1. both oracles have Λ = accept,

2. ksi = ktj ∈ K.
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Furthermore we require that for all messages m ∈ {0, 1}∗, lengths fields len ∈ N that are valid for m,
roles ρ ∈ {Client,Server}, keys k = (kρenc, k

ρ
dec), headers H ∈ {0, 1}∗, and encryption/decryption states

ste, std ∈ {0, 1}∗ holds that StE.Dec(kρdec, H, StE.Enc(k
ρ
enc, len, H,m, ste), std) = m.

Definition 11. We say that an adversary (t, ε)-breaks an ACCE protocol, ifA runs in time t, and at least one
of the following two conditions holds:

1. When A terminates, then with probability at least ε there exists an oracle πsi such that

• πsi ‘accepts’ when A issues its τ0-th query with partner Π = j, and

• Pj is τj-corrupted with τ0 < τj , and

• A did not issue a Reveal-query to oracle πtj , such that πtj accepted while having a matching
conversation to πsi (if such an oracle exists) and

• there is no unique oracle πtj such that πsi has a matching conversation to πtj .

If an oracle πsi accept in the above sense, then we say that πsi accepts maliciously.

2. When A terminates and outputs a triple (i, s, b′) such that

• πsi ‘accepts’ when A issues its τ0-th query with intended partner Π = j, and Pj is τj-corrupted
with τ0 < τj , and

• A did not issue a Reveal-query to πsi , nor to πtj such that πsi has a matching conversation to πtj
(if such an oracle exists),

then the probability that b′ equals bsi is bounded by∣∣Pr[bsi = b′]− 1/2
∣∣ ≥ ε.

If an adversary A outputs (i, s, b′) such that b′ = bsi and the above conditions are met, then we say
that A anwers the encryption-challenge correctly.

We say that an ACCE protocol is (t, ε)-secure, if it is correct and there exists no adversary that (t, ε)-breaks
it.

Remark 6. In comparison to the AKE Definition (Definition 9), we included an additional condition in
Definition 11. Namely, we require thatA did not issue a Reveal-query to an oracle πtj , such that πtj accepted
while having a matching conversation to πsi , to prevent a trivial attack, which is possible for all ACCE
protocols in which the last message (of the pre-accept phase) mx sent was (at least partially) computed by
evaluating some probabilistic function mx

$← F(k, in, r) under the established session key k over some
publicly known input in, like for instance the transcript of all messages. For simplicity we assume, that
some server oracle πtj sends the last message to a client oracle πsi (its intended partner). The attacker can
now proceed as follows:

By definition, πtj has to accept after sendingmx (without knowing if this message was faithfully received
by πsi ). Then (without this condition) it would be possible to ask a Reveal-query to πtj , thus learning the
session key k. Note, that an active adversary at this point may have dropped the message mx. A can now
use the key k, compute a similar message m′x by evaluating the same function with fresh randomness r′

as m′x
$← F(k, in, r′) over the same input in that πtj used and send m′x 6= mx to πsi . Then πsi will accept

without having a matching conversation πtj .
This issue was pointed out to us by [43] and observed independently in [18].
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Remark 7. Also note that the above definition even allows to corrupt the oracle πsi whose internal secret
bit the attacker tries to determine. Of course this is only allowed after πsi has reached an accept-state,
in order to exclude trivial attacks. Thus, protocols secure with respect to this definition provide perfect
forward secrecy. Note also that again we allow the ‘accepting’ oracle to be corrupted even before it reaches
an accept-state, which provides security against key-compromise impersonation attacks.

6.3 Relation to the AKE Security Definition from Section 4

Note that an ACCE protocol can be constructed in a two-step approach.

1. (AKE part) First an authenticated key-exchange (AKE) protocol is executed. This protocol guarantees
the authenticity of the communication partner, and provides a cryptographically ‘good’ (i.e., for the
attacker indistinguishable from random) session key.

2. (Symmetric part) The session key is then used in a symmetric encryption scheme providing integrity
and confidentiality.

This modular approach is simple and generic, and therefore appealing. It can be shown formally that
this two-step approach yields a secure ACCE protocol, if the ‘AKE part’ meets the security in the sense
of Definition 9, and the ‘symmetric part’ consists of a suitable authenticated symmetric encryption scheme
(e.g. secure according to Definition 6).

However, if the purpose of the protocol is the establishment of an authenticated confidential channel,
then it is not necessary that the ‘AKE-part’ of the protocol provides full indistinguishability of session keys.
It actually would suffice if encrypted messages are indistinguishable, and cannot be altered by an adversary.
These requirements are strictly weaker than indistinguishability of keys in the sense of Definition 9, and
thus easier to achieve (possibly from weaker hardness assumptions, or by more efficient protocols).

We stress that our ACCE definition is mainly motivated by the fact that security models based on key
indistinguishability do not allow for a security analysis of full TLS, as detailed in the introduction. We do
not want to propose ACCE as a new security notion for key exchange protocols, since it is very complex
and the modular two-step approach approach seems more useful in general.

7 TLS with Ephemeral Diffie-Hellman is a Secure ACCE Protocol

Theorem 2. Let µ be the output length of PRF and let λ be the length of the nonces rC and rS . Assume
that the pseudo-random function PRF is (t, εprf)-secure, the signature scheme is (t, εsig)-secure, the DDH-
problem is (t, εddh)-hard in the group G used to compute the TLS premaster secret, the hash function H
is (t, εH)-collision resistant, and the PRF-ODH-problem is (t, εprfodh)-hard with respect to G and PRF.
Suppose that the stateful symmetric encryption scheme is (t, εsLHAE)-secure.

Then for any adversary that (t′, εtls)-breaks the ephemeral Diffie-Hellman TLS protocol in the sense of
Definition 11 with t ≈ t′ holds that

εtls ≤ 4d`

(
d`

2λ
+ `εsig + εddh + d`εprfodh + εprf + εslhae + (d`+ 1) ·

(
εprf + εH + εslhae +

1

2µ

))
.

To prove Theorem 2, we divide the set of all adversaries into two categories:

1. Adversaries that succeed in making an oracle accept maliciously. We call such an adversary an
authentication-adversary.
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2. Adversaries that do not succeed in making any oracle accept maliciously, but which answer the
encryption-challenge. We call such an adversary an encryption-adversary.

We prove Theorem 2 by the following two lemmas.
Lemma 4 bounds the probability εauth that an authentication-adversary succeeds and Lemma 5 bounds the
probability εenc that an encryption-adversary succeeds. Then we have

εtls ≤ εauth + εenc.

Lemma 4. For any adversary A running in time t′ ≈ t, the probability that there exists an oracle πsi that
accepts maliciously is at most

εauth ≤ 2 · d`
(
d`

2λ
+ ` · εsig + εddh + 2 · εprf + εslhae + d`

(
εprfodh + εprf + εH + εslhae +

1

2µ

))
where all quantities are defined as stated in Theorem 2.

Note that εauth ≤ εclient + εserver, where εclient is an upper bound on the probability that there exists an
oracle with ρ = Client that accepts maliciously in the sense of Definition 11, and εserver is an upper bound
on the probability that there exists an oracle with ρ = Server that accepts maliciously. We claim that

εclient ≤ d`
(
d`

2λ
+ ` · εsig + d`

(
εprfodh + εprf + εH + εslhae +

1

2µ

))
εserver ≤ d`

(
d`

2λ
+ ` · εsig + εddh + 2 · εprf + εH + εslhae +

1

2µ

)
and thus

εauth ≤ εclient + εserver

≤ d`
(

d`

2λ−1
+ 2`εsig + εddh + d`εprfodh + εprf + (d`+ 1) ·

(
εprf + εH + εslhae +

1

2µ

))
.

The bounds on εclient and εserver are derived similar to the proofs of Lemma 1 and Lemma 2, we only extend
the proofs by one game-hop that exploits the sLHAE-security of the encryption scheme. This is necessary, as
an adversary can violate the matching conversations definition, and thus make an oracle malicously accept,
by creating a new, valid encryption of finC (or finS), which is distinct from the ciphertext output by the
corresponding client (or server) oracle.

Remark 8. Note that although in the non-truncated version of TLS the Client Finished message finC is sent
encrypted, the Server Finished message is always computed over the plaintext handshake messages. Thus,
the Server Finished message computed in the unmodified version of TLS equals the Finished message that
is computed in the truncated TLS version (assuming that the same parameters, randomness etc. are used).
In order to follow the same reasoning in the ACCE setting, we only need to make sure that the adversary is
not able to produce new valid symmetric encryptions of finished messages. This is provided by the sLHAE
security of the symmetric encryption scheme.

Lemma 5. For any adversary A running in time t′ ≈ t, the probability that A anwers the encryption-
challenge correctly is at most 1/2 + εenc with

εenc ≤ εauth + d` (εddh + 2 · εprf + εsLHAE) .

where εauth is an upper bound on the probability that there exists an oracle that accepts maliciously in the
sense of Definition 11 (cf. Lemma 4) and all other quantities are defined as stated in Theorem 2.

31



The proof of this lemma again extends the proof of Lemma 3 by one game-hop that exploits the sLHAE-
security of the encryption scheme.
PROOF. Assume without loss of generality that A always outputs (i, s, b′) such that all conditions in Prop-
erty 2 of Definition 11 are satisfied. Let break(4)δ denote the event that b′ = bsi in Game δ, where bsi is the
random bit sampled by πsi , and b′ is either the bit output by A or (if A does not output a bit) chosen by the
challenger. Let Advδ := Pr[break

(4)
δ ]− 1/2 denote the advantage of A in Game δ. Consider the following

sequence of games.

Game 0. This game equals the ACCE security experiment described in Section 6. For some εenc we have

Pr[break
(3)
0 ] =

1

2
+ εenc =

1

2
+ Adv0.

Game 1. The challenger in this game proceeds as before, but it aborts and chooses b′ uniformly random,
if there exists any oracle that accepts maliciously in the sense of Definition 11. Thus we have

Adv0 ≤ Adv1 + εauth,

where εauth an upper bound on the probability that there exists an oracle that accepts maliciously in the sense
of Definition 11 (cf. Lemma 4).

Recall that we assume that A always outputs (i, s, b′) such that all conditions in Property 2 of Defini-
tion 11 are satisfied. In particular it outputs (i, s, b′) such that πsi ‘accepts’ after the τ0-th query of A with
intended partner Π = j, and Pj is τj-corrupted with τj > τ0. Note that in Game 1 for any such oracle
πsi there exists a unique ‘partner oracle’ πtj such that πsi has a matching conversation to πtj , as the game is
aborted otherwise.

Game 2. The challenger in this game proceeds as before, but in addition guesses indices (i∗, s∗)
$←

[`] × [d]. It aborts and chooses b′ at random, if the attacker outputs (i, s, b′) with (i, s) 6= (i∗, s∗). With
probability 1/(d`) we have (i, s) = (i∗, s∗), and thus

Adv1 ≤ d` · Adv2.

Note that in Game 2 we know that A will output (i∗, s∗, b′). Note also that πs
∗
i∗ has a unique ‘partner’ due

to Game 1. In the sequel we denote with πt
∗
j∗ the unique oracle such that πs

∗
i∗ has a matching conversation to

πt
∗
j∗ , and say that πt

∗
j∗ is the partner of πs

∗
i∗ .

Game 3. The challenger in this game proceeds as before, but replaces the premaster secret pms of πs
∗
i∗ and

πt
∗
j∗ with a random group element p̃ms = gw, w $← Zq. Note that both gu and gv are chosen by oracles πs

∗
i∗

and πt
∗
j∗ , respectively, as otherwise πs

∗
i∗ would not have a matching conversation to πt

∗
j∗ and the game would

be aborted.
With the same arguments as in Game 3 in the proof of Lemma 3, we have

Adv2 ≤ Adv3 + εddh.
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Game 4. As in Game 4 in the proof of Lemma 3, we now make use of the fact that the premaster secret p̃ms
of πs

∗
i∗ and πt

∗
j∗ is chosen uniformly random. We thus replace the value ms = PRF(p̃ms, label1||rC ||rS)

with a random value m̃s.
Distinguishing Game 4 from Game 3 implies an algorithm breaking the security of the pseudo-random

function PRF, thus
Adv3 ≤ Adv4 + εprf .

Game 5. As in Game 5 in the proof of Lemma 3, we replace the function PRF(m̃s, ·) used by πs
∗
i∗ and πt

∗
j∗

with a random function Fm̃s. Of course the same random function is used for both oracles πs
∗
i∗ and πt

∗
j∗ . In

particular, this function is used to compute the key material as

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac := Fm̃s(label2||rC ||rS)

Distinguishing Game 5 from Game 4 again implies an algorithm breaking the security of the pseudo-random
function PRF, thus we have

Adv4 ≤ Adv5 + εprf .

Note that in Game 5 the key material KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac of oracles πs
∗
i∗ and πt

∗
j∗ is uniformly

random and independent of all TLS Handshake messages exchanged in the pre-accept phase.

Game 6. Now we use that the key material KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac used by πs
∗
i∗ and πt

∗
j∗ in the

stateful symmetric encryption scheme uniformly at random and independent of all TLS Handshake mes-
sages.

In this game we construct a simulator B that uses a successful ACCE attacker A to break the security of
the underlying sLHAE secure symmetric encryption scheme (Definition 6). By assumption, the simulator
B is given access to an encryption oracle Encrypt and a decryption oracle Decrypt. B embeds the sLHAE
experiment by simply forwarding all Encrypt(πs

∗
i∗ , ·) queries to Encrypt, and all Decrypt(πt

∗
j∗ , ·) queries to

Decrypt. Otherwise it proceeds as the challenger in Game 5.
Observe that the values generated in this game are exactly distributed as in the previous game. We thus

have
Adv5 = Adv6.

If A outputs a triple (i∗, s∗, b′), then B forwards b′ to the sLHAE challenger. Otherwise it outputs a random
bit. Since the simulator essentially relays all messages it is easy to see that an attacker A having advantage
ε′ yields an attacker B against the sLHAE security of the encryption scheme with success probability at least
1/2 + ε′.

Since by assumption any attacker has advantage at most εsLHAE in breaking the sLHAE security of the
symmetric encryption scheme, we have

Adv6 ≤ 1/2 + εsLHAE.

�
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Addig up probabilities from Lemmas 4 and 5, we obtain that

εtls ≤ εauth + εenc

≤ 2 · εauth + d` (εddh + 2 · εprf + εsLHAE)

≤ d`
(

d`

2λ−2
+ 4`εsig + 3εddh + 2d`εprfodh + 4εprf + εslhae + 2 (d`+ 1) ·

(
εprf + εH + εslhae +

1

2µ

))
≤ 4d`

(
d`

2λ
+ `εsig + εddh + d`εprfodh + εprf + εslhae + (d`+ 1) ·

(
εprf + εH + εslhae +

1

2µ

))
.

which yields Theorem 2.

8 On Proving Security of TLS-DHE from Standard Assumptions

In this section we illustrate why we had to make the PRF-ODH-assumption in the proofs of Lemmas 1 and 4,
and why we can prove Lemma 2 based on the standard DDH assumption. In order to allow a comprehensive
exposition, let us consider the simplified protocol from Figure 5 which abstracts the TLS-DHE Handshake.

Client C Server S

rC
$← {0, 1}λ

−−−−−−−−−−−−−−−
m1 := rC

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
rS

$← {0, 1}λ

tS
$← Zq, TS := gtS mod p

σS := SIG.Sign(skS , (rC , rS , TS))

←−−−−−−−−−−−−−−
m2 := (rS , TS , σS)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

tC
$← Zq, TC := gtC mod p

ms := PRF(T tCS mod p, label1||rC ||rS)
finC := PRF(ms,m1||m2||(TC , σC))
σC := SIG.Sign(skS , (rC , rS , TS , TC))

−−−−−−−−−−−−−
m3 := (TC , σC , finC)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

ms := PRF(T tSC mod p, label1||rC ||rS)
finS := PRF(ms,m1|| . . . ||m3)

←−−−−−−−−−−−−−−−
m4 := finS
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 5: Abstraction of the TLS-DHE handshake.

Let us start with an informal description of the issue. Suppose we are given a Client-adversary, that is,
an adversary which always makes Client-oracle C := πsi (i.e., a particular oracle πsi with ρ = Client) accept
maliciously with intended partner Π = S. Suppose we want to argue that the adversary is not able to forge
the finS-message received by C (which we would have to, since the finS-message is the only message that
cryptographically protects all messages previously received by πsi , and thus is required to ensure that πsi
has a matching conversation), and that we want to assume only that the PRF is secure in the standard sense
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(Definition 3). Then at some point in the proof we would have to replace the premaster secret computed by
πsi as pms = T tCS = gtCtS with an independent random value.

Note that in order to replace pms with a random value and argue in the proof with indistinguishability,
we must not know any of the exponents tC and tS in TC = gtC and TS = gtS , as otherwise we can trivially
distinguish the real pms = gtCtS from a random pms′. The problematic property of TLS-DHE is, that an
adversary may test whether the challenger ‘knows’ tS , and then make Client-oracle πsi accept maliciously
only if this holds. This works as follows.

1. The adversary establishes a communication between two oracles πsi (representing the client C) and
πtj (representing the server S) by simply forwarding the messages m1 and m2 between C and S.

2. The C will respond with m3 = (TC , σC , finC). This message is not forwarded.

3. Instead, the adversary corrupts some party P ∗ 6∈ {Pi, Pj}, and obtains the secret key sk∗ of this party.
Then it computes

(a) T ∗ := gt
∗

mod p for random t∗
$← Zq,

(b) σ∗ := SIG.Sign(sk∗; (rC , rS , TS , T
∗)) using the corrupted key sk∗,

(c) ms∗ := PRF(T t
∗
S , label1||rC ||rS) using knowledge of t∗, and

(d) fin∗C := PRF(ms∗,m1||m2||(T ∗, σ∗)).

and sends m∗3 := (T ∗, σ∗, fin∗C) to S. Note that S cannot determine that its communication partner
has changed, because any messages previously received by S were perfectly anonymous.

4. If S responds with a correct fin∗S message (note that the adversary is able to compute all keys, in
particular pms∗ := T t

∗
S , since it ‘knows’ t∗, and thus is able to verify the validity of fin∗S), then

adversary concludes that the challenger ‘knows’ tS and forges the required finS-message to make πsi
accept without matching conversations. Otherwise the adversary aborts.

Note that the above adversary is a valid, successful adversary in the real security experiment. It does not issue
any Reveal-query and only one Corrupt-query to an unrelated party, such that the intended communication
partner Π = S of C = πsi remains uncorrupted, but still it makes C = πsi ‘accept’ and there is no oracle
that C has a matching conversation to.

However, we will not be able to use this adversary in a simulated security experiment where the chal-
lenger does not know the exponent tS of TS = gtS . Intuitively, the reason is that in this case the challenger
would first have to compute the Finished-message fin∗S , where

fin∗S = PRF(ms,m1|| . . . ||m3) and ms = PRF(T t
∗
S , label1||rC ||rS),

but ‘knowing’ neither tS = log TS , nor t∗ = log T ∗. This is the technical problem we are faced with, if we
want to prove security under a standard assumption like DDH. Under the PRF-ODH-assumption, we can
however use the given oracle to compute first ms, and from this the Finished-message fin∗S .

SERVER-ADVERSARIES. Interestingly, the above technical problem does not appear if we consider Server-
adversaries (i.e., adversaries that make an oracle πsi accept maliciously with ρ = Server) instead of Client-
adversaries. This is due to the asymmetry of the TLS-DHE Handshake protocol. The reason is, that in this
case the adversary is not allowed to corrupt the intended partner of the server (in order to exclude trivial
attacks), and is therefore not able to inject an adversarially-chosen Diffie-Hellman share T ∗. Note here
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Client C Server S

rC
$← {0, 1}λ

tC
$← Zq, TC := gtC mod p

−−−−−−−−−−−−−−−
m1 := (rC , TC)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→

rS
$← {0, 1}λ

tS
$← Zq, TS := gtS mod p

σS := SIG.Sign(skS , (rC , rS , TC , TS))

ms := PRF(T tSC mod p, label1||rC ||rS)
finS := PRF(ms,m1|| . . . ||m3)

←−−−−−−−−−−−−−
m2 := (rS , TS , σS , finS)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ms := PRF(T tCS mod p, label1||rC ||rS)
finC := PRF(ms,m1||m2||(TC , σC))
σC := SIG.Sign(skS , (rC , rS , TS , TC))

−−−−−−−−−−−−−−
m3 := (TC , σC , finC)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 6: Provably secure TLS-DHE Adopting Σ0 variant, adopted to the client/server setting and our
notation.

that the signature sent from the client to the server is computed over both Diffie-Hellman shares received
and chosen by the client. Therefore in this case the server is able to verify whether its intended partner
has received the correct Diffie-Hellman share, and thus the standard DDH assumption is sufficient to prove
security.

DISALLOWING CORRUPTIONS. One possibility to circumvent the above problem, and thus to avoid the
PRF-ODH-assumption, is to consider a weaker security model. If we disallow Corrupt-queries in the model,
then the adversary will not be able to inject an adversarially-chosen, validly signed Diffie-Hellman share.
This prevents the above ‘test’ and again allows a proof under the DDH assumption. However, a security
model without corruptions is rather weak. Albeit it may be reasonable for certain applications, it is certainly
not adequate for the way how TLS-DHE is used on the Internet.

ADOPTING Σ0 TO TLS. In [21] Canetti and Krawczyk describe a protocol called Σ0, which exhibits many
similarities to the TLS-DHE Handshake protocol and the simplified protocol from Figure 5, but is provably
secure under standard assumptions (in particular under DDH instead of PRF-ODH). Let us discuss why the
differences between Σ0 and TLS-DHE, albeit subtle, are crucial.

In Figure 6 we describe a simple variant Σ of Σ0, which essentially extends Σ0 with a server nonce rS
and replaces the MAC computed over identities in Σ0 with a MAC (implemented with PRF) computed over
all previous protocol messages. Note that these messages include the identities, so the security analysis of
Σ0 carries over to Σ.

The major difference between Σ0 and TLS-DHE is, that the client ‘accepts’ already after receiving m2.
There is no message m4 sent from the server to the client (which thus need not be simulated in a security
experiment). This m4-message is not required in Σ0, since the client Diffie-Hellman share gc is sent already
in message m1 (before m2!), and thus finS can be contained in m2.
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We stress that one could make TLS-DHE provably secure under DDH by making it more similar to Σ0:

1. Include the client Diffie-Hellman share gc in

• the first message m1 of TLS-DHE and

• in the signature sent from client to server.

2. Include all data in m4 of TLS-DHE into message m2 of TLS-DHE, and omit m4.

This modification would allow to carry the security analysis of Σ0 from [21] over to TLS-DHE, and
thus allow a security proof under DDH instead of PRF-ODH (and the additional standard assumptions
on the security of the PRF, the signature scheme, and (considering full TLS-DHE) the stateful encryption
scheme).

This would of course require changes to the TLS-DHE protocol, and may therefore be unrealistic. This
section should therefore merely be seen as an additional discussion of the issue analysed in this section.

INCLUDING IDENTITIES IN THE CLIENT NONCE. Another way (the ‘engineering-approach’) to circumvent
the problem, and thus allow a proof under the DDH assumption instead of PRF-ODH, is to modify TLS such
that the client C is able to verify that the server has indeed intended partner C, and not some third party C ′.
Note that the client nonce rC is included in both signatures, in particular in the signature σS sent from the
server to the client. According to [26, 27, 28] the nonce rC consists of 28 random bytes (=224 bits). The
only requirement on the nonces in the proof is that a collision occurs with sufficiently small probability, for
which 160 bits should be sufficient in practice. One could use the remaining 64 bits to encode an ‘identity’
that refers uniquely to the client certificate. The server would have to check whether this identity matches the
received client certificate. This would, again, require changes to the TLS-DHE protocol, and may therefore
be unrealistic, even though these changes are minimal.

9 Conclusion

In this paper we have shown that the core cryptographic protocol underlying TLS with ephemeral Diffie-
Hellman (DHE) provides a secure establishment of confidential and authenticated channels. Contrary to
what previous analyses might suggest the random oracle model is not required to show that the composition
of cryptographic building blocks in TLS is secure, if we make a suitable assumption on the pseudo-random
function.

The design of the TLS-DHE Handshake seems to support our proof idea of reducing active adversaries
to passive attackers very naturally. This is not due to the key transport mechanism itself but rather to the fact
that DHE uses signatures computed over all previously exchanged messages to authenticate the protocol
parties. Our proof essentially exploits that this authentication mechanism at the same time also protects
the first phase of the TLS-DHE Handshake from adversarial modifications. We cannot identify a similarly
straight-forward approach for encrypted key transport, as server authentication is done rather implicitly
when verifying the Finished messages. Likewise, the static Diffie-Hellman key exchange does not use
signatures over the first Handshake messages and our proof technique does not apply.

The whole TLS protocol suite is much more complex than the cryptographic protocol underlying TLS-
DHE. It is very flexible, as it allows to negotiate ciphersuites at the beginning of the TLS Handshake, or to
resume sessions using an abbreviated TLS Handshake. We need to leave an analysis of these features for
future work, since the complexity of the protocol and security model grows dramatically.
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The goal of this work is to analyse TLS-DHE on the protocol layer. As common in cryptographic
protocol analyses, we therefore have ignored implementational issues like error messages, which of course
might also be used to break the security of the protocol. We leave it as an interesting open question to
find an adequate approach for modeling such side-channels in complex scenarios like AKE involving many
parties and parallel, sequential, and concurrent executions. Another important open problem is to consider
cross-protocol attacks, that exploit for instance possible subtle connections between different ciphersuites.
While the example of [57] is impractical (and in this case rather an implementational issue), there may be
other sophisticated attacks.

So clearly the security analysis of TLS is not finished yet, there are still many open questions. However,
we consider our results as a strong indicator for the soundness of the TLS-DHE protocol. We believe that
future revisions of the TLS standard should be guided by provable security – ideally in the standard model.
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A Choosing the Right Model

Authenticated key exchange (AKE) is a basic building block in modern cryptography. Many secure proto-
cols for two-party and group key agreement have been proposed, including generic compilers that transform
simple key agreement protocols into authenticated key agreement protocols, with many additional security
properties. However, since many different formal models for different purposes exist, choice of the right
model is not an easy task, and must be considered carefully.

The main guideline for this choice is the fact that we cannot modify any detail of the TLS protocol, nor
of the network protocols preceding it.

First, we need a model were entity authentication is addressed as a security goal. This goal is often
omitted in newer models, in order to make them suitable for two-party authenticated key agreement protocols
[40]. However, explicit authentication is an important security goal for TLS, in many practical applications
authentication is more important than encryption. For example, in a Single Sign-On scenario, an encrypted
security token may be passed from the identity provider through the browser to a relying party. Since the
security token itself is encrypted, confidentiality is not an issue, but the authenticity of the channel through
which this token was received is crucial.
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Second, there is no way to modularize the security proof of TLS in the sense of [20], since several
protocol messages of TLS come without authenticator. Thus we cannot use the authenticated link model
(AM).

Third, we have chosen not to use a Universal Composability (UC) [19] approach. We think that a
formalization in the UC model first requires a thorough analysis in the standard model. Since the exchange
of nonces rC and rS in the first two messages of the TLS Handshake can be regarded as an instantiation of
the Barak compiler [3], it seems in principle possible to model TLS within the UC framework.

On the other hand, we have to make a choice about the enhanced adversarial capabilities newer models
offer. We allow for RevealKey queries, but do not take into account RevealState queries. The reason
for this omittance is that in TLS there are several successive internal states: Computation of the premaster
secret, computation of the master secret, computation of the session keys. After transition from one state to
another, internal data is erased. So to be precise, we would have to specify several different RevealState
queries, which would have added tremendous complexity to both the model and the proof and rendered the
paper unreadable.

Thus we have chosen in essence the first model of Bellare and Rogaway [11], enhanced with adaptive
corruptions and perfect forward secrecy. Similar variants of this model have been used by [14, 20], and
especially by [47].
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