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Abstract

This work is concerned with the security of the standard T10 OSD protocol, a capability-
based protocol for object stores designed by the OSD SNIA working group. The Object Store
security protocol is designed to provide access control enforcement in a distributed storage
setting such as a Storage Area Network (SAN) environment. In this work we consider in par-
ticular the ability of the OSD protocol to enforce confinement, which is the property that even
misbehaving participants can not leak secret information across predefined boundaries.

We observe that being a “pure capability” protocol, the plain vanilla OSD protocol is inca-
pable of enforcing confinement. We show, however, that given a trustworthy infrastructure for
authentication and secure channels, the protocol can be used in a manner that achieves the de-
sired property (and does not require any change in the message format). Thus we demonstrate
that object stores can in principle be used in a standard fashion in applications that require
protection against leakage of secret data.

Having identified a problem and proposed a solution, we proceed to prove formally that
the proposed protocol indeed meets all its security goals. In the process we refine common
cryptographic models in order to be able to reason about confinement, and then devise a precise
model for a distributed capability-based access-control mechanism. To our knowledge, this is
the first time such a model for access-control is defined, and defining it highlights what can and
cannot be achieved by such mechanisms.
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1 Introduction

Access control is the process of determining what objects can be accessed by what subjects (al-
ternatively what information can be sent to what processes). In particular, secrecy models for
access control are concerned with ensuring that secret objects are not leaked to subjects that are
not cleared to see them. The confinement problem, defined by Lampson [Lam73], is to determine
whether there exists a series of operations that will ultimately leak information to an unauthorized
user. A system is said to enforce confinement if no such leakage can occur.

This work is concerned with the security of the standard T10 OSD security protocol [Web04],
and in particular its ability to enforce confinement. Networked Storage is a classic example of a
distributed system that needs an access-control mechanism. The distribution of storage over the
network allows a higher level of data sharing and better manageability, but requires protection of
the data. For networked file systems and Network Attached Storage (NAS) access to data is always
mediated by the file server (or the NAS box), which makes it possible for these ”choke points” to
enforce the access control policy. This should be contrasted with Storage Area Networks (SANs),
whose main benefit is exactly the removal of this single ”choke point”. In principle, SANs allow
each client non-mediated access to the data, thus removing the centralized file server from the
critical I/O path. This means, however, that there is no longer a single entity in the system that
is capable of mediating all accesses and enforcing the access-control policy. A SAN environment
may still have a centralized server that handles locking, placement of data, etc. But the actual I/O
operations are done over the storage area network, with the client directly accessing the storage
device. A misbehaving client can therefore completely bypass the centralized server (and every
access-control decision that is made by that server), and instead go directly to the storage devices.

Object Storage technology addresses exactly this problem by providing an architecture and
a protocol for enforcing access control in a SAN environment. The object store protocol is a
capability-based protocol. The common setting is of a client that first contacts the decision-making
server with an access request for some object, and later contacts the keeper of the object for the
actual access. The decision maker provides the client with a ”cryptographically secured” capability
(or credential) that the client can later present to the object server that keeps the object, and the
object server can check the validity of the credential before granting access.

Since the I/O path between the client and the object server is performance critical, an important
objective of the protocol is to allow efficient validation of the request by the object store. In
particular, the Object Store Device (OSD) security protocol from the T10 standard does not require
that the object server knows the client’s identity on every request. Rather, the object server only
needs to verify that the credential was granted by the trusted security/policy server, and the
request and credentials have not been modified. This makes it possible for a client process to freely
delegate a legitimate credential to other client processes. (In fact, credential delegation was viewed
as a desired feature of the object store protocol, as it allows an application to separate obtaining
the credentials from using them.)

We observe, however, that the unrestricted delegation makes the OSD security protocol an in-
stance of a ”pure capability system”, and it is well known that such systems are inherently incapable
of enforcing confinement. On the other hand we show that when a trustworthy authentication in-
frastructure is available, a small modification to the protocol can transform the (CAPKEY method
of the) OSD security protocol from a ”pure capability system” to one that enforces confinement.
This is achieved without affecting the underlying message format. Essentially, the security server
needs to embed the client name in the capability (and the capability already has a field that can be
used for that purpose), and the object server needs to compare the name on the capability to the
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name associated with the channel on which the request arrived. This fix can be implemented as a
vendor-specific extension of the protocol and thus can be used with standards-compliant OSDs.

After describing this solution we proceed to prove formally that it indeed solves the problem.
Since the OSD protocol relies on cryptography to achieve its goals, we need to analyze it in some
cryptographic model. We thus provide a precise definition of a “secure capability-based access-
control mechanism”. Roughly, a mechanism is deemed secure if it looks just like a trusted party
that both issues the capabilities and then checks them.

However, before we can formalize this idea and prove security of the protocol, we must make
some modification to the workings of common cryptographic models. Specifically, the standard
convention in most models is that all the misbehaving participants are coordinated and controlled
by a single entity (called the adversary). Clearly, this convention makes it impossible to reason
about confinement.1 We therefore describe a different convention (in Section 4.1) that more carefully
accounts for communication among misbehaving players and between players and “the network”.
Then we can prove that the (CAPKEY method in the) OSD protocol indeed realizes our notion of
security. Also, we prove that our notion of security is strong enough to support confinement (by
adapting to our setting the definition of probabilistic non-interference due to Backes and Pfitzmann
[BP04]).

What’s new. We see two contributions in this paper. On a practical level, we identified a
problem with respect to confinement in a plain vanilla instantiation of the OSD protocol and show
how it can be fixed without changing the message format. On a theoretical level, we provide a
robust cryptographic definition for security of a capability-based access-control mechanism, and
prove that the CAPKEY method of the OSD protocol realizes that definition. Moreover, this
definition is refined enough to capture the difference between the vanilla protocol that cannot
enforce confinement and the modified protocol that can.

Paper Roadmap. The paper is organized as follows. Section 2 describes relevant access-control
concepts. Section 3 describes object storageand the OSD protocol itself, explain why the OSD
protocol does not enforce confinement as is, and how it can be used in a manner that enforces
confinement. In Section 4 we formulate our notion of security by defining a specific cryptographic
model for capability-based access-control, and in the appendix we sketch a proof of security for the
modified OSD protocol.2 Finally, in Section 5 we demonstrate that our security notion is sufficient
to enforce confinement.

Sections 2 and 3 are sufficient to understand the first contribution of the paper regarding
confinement in distributed storage. Sections 3.3, 4, and 5 describe our definitional contributions.

Acknoledgements

The first author thanks Ran Canetti, Yael Tauman Kalai, and Manoj Prabhakaran for enlightening
discussions about formal modeling of information-flow considerations in cryptographic settings.

2 Access control

Access-control models can be partitioned into two major categories: secrecy models that are con-
cerned with ensuring that secret objects are not leaked to subjects that are not cleared to see them,

1The security of the CAPKEY method was already analyzed by Azagury et al. [ACF+02], but that analysis was
carried out in a common cryptographic model, and therefore did not capture issues of confinement.

2We comment that the proof itself is rather straightforward. It is specifying the model that is non-trivial.
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and integrity models that deal with ensuring that potentially harmful objects are not accessed by
vulnerable programs.3 In this work we concentrate on the simplest case of secrecy models, and we
will not consider integrity models any further.4 For a survey on security models, see in [Lan81].

2.1 Preventing information disclosure

Lampson has defined in [Lam73] the confinement problem as determining whether there exists a
series of operations that will ultimately leak information to an unauthorized user. Although the
generic form of this problem is undecidable [HRU76], the focus in most access-control systems is on
constructing specific systems for which it can be shown that no such unauthorized leakage occurs.

Preventing attempts of outsiders to directly gain access to unauthorized information is fairly
starightforward in principle. However, the problem then becomes preventing leakage by “unsus-
pecting insiders”. Specifically, many programs in the system may contain modifications that, when
executed by legitimate users, may attempt to leak information to other unauthorized users. (Such
surreptitious modifications are called Trojan horses, viruses, worms, etc.) The issue is preventing
leakage of secret objects to other unauthorized processes, even if the process holding these objects
is infected with a Trojan horse. (See Lipner [Lip75]).

In a distributed system, a Trojan horse can leak information via either network channels, covert
storage channels, covert timing channels, or side channels. Using a network channel is the simplest
type of leakage, consisting of simply sending this information over the network. Information can
be leaked through a covert storage channel by changing the values of any of the state variables of
the system. (Examples of potential covert storage channels include contents of files, names of files,
amount of disk space used, etc.) Both network and covert storage channels are characterized by the
fact that the Trojan horse uses the prescribed interfaces of the system in order to leak information.

By contrast, information can be leaked through covert timing channels and side channels by
exploiting side effects of the system that may be visible to other processes. For example, a Trojan
horse could encode information into deliberate modifications of the system page-fault rate, or it can
modify the time interval between sent packages to encode this information. (Other side channels
may include varying the power consumption of the physical machine, or causing it to emit different
types of radiation.)

The distinctions between these different types of channels can be argued at great length [Wra91],
and indeed, the Trusted Computer Security Evaluation Criteria (TCSEC) [Dep85], also called the
Orange Book, encouraged such distinctions by requiring storage channel protection at level B2,
but not timing channel protection until level B3. However, such distinctions are of no importance
to a sophisticated attacker who will use whatever techniques will work, regardless of the level of
evaluation.

There have been two general techniques for restricting capabilities, so that confinement can be
ensured. Either the delegation of capabilities to other users must be restricted, as done by Hy-
dra [WLH81] and PSOS [NBF+80] or the ID of the user of a capability must be checked at time of
use to ensure that the capability holder is actually authorized to use the capability. Karger [Kar88]
showed how checking IDs can leave traditional capability delegation unrestricted, support addi-
tional access control models (such as access control lists), and with proper caching, not increase
the performance costs over traditional unrestricted capabilities. Limiting capability delegation has
an additional disadvantage that it is essential to show that no possible path exists in which an

3A third possible category is protection against denial of service, but very few models have dealt with denial of
service. Gligor’s work [YG90] is an exception.

4For more information on integrity models, see Biba [Bib77] and Schellhorn, et. al. [SRS+00].
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unauthorized process can get a copy of a particular capability. This can be difficult, particularly in
a distributed environment. If any failure occurs anywhere, then that capability could be used im-
properly. By contrast, delaying the checking until time of use (with caching to reduce performance
costs) requires only showing that the checking is properly done. Furthermore, checking at time of
use also makes revocation of capabilities much easier.

Most modern capability systems restrict the use of capabilities for confinement. EROS [SW00]
limits delegation. IBM’s iSeries does additional checks at time of use [Sol01].

Most of these systems were designed for the case of a “stand-alone machine”, where the assump-
tion is that all the different processors have access to a common (trustworthy) hardware/software
platform, and that platform is capable of interfering with every access.

In this work, we are interested in a distributed capability systems, where objects (and reference
monitors) may be geographically distributed, and need to communicate with the decision-makers
over unreliable links (that may even be adversarially controlled in some cases). A number of
distributed capability systems have been designed over the years, including Amoeba [Mul85] and
the Monads [APW86]. Indeed, the Kerberos ticket system [SNS88] was a distributed capability
system.

Most systems today use discretionary access controls, where the access rights to an object
may be determined at the discretion of the owner of the object. (These are based on the fully
general Lampson access matrix [Lam74].) Such mechanisms, however, are typically vulnerable to
unauthorized disclosure of information by misbehaving processes.5 Thus, mandatory access controls
have been developed to deal with this problem. The distinguishing feature of mandatory access
controls is that a security officer may constrain the owner of an object in determining who may have
access rights to that object. Most mandatory access controls have been based on lattice security
models. These models were first developed at the MITRE Corporation by Bell and LaPadula [BL73]
and at Case Western Reserve University by Walter et al. [WOR+74].6 A lattice secrecy model
consists of a set of access classes that are partially ordered. A simple example of such a lattice is
the common list of sensitivity levels, unclassified, confidential, secret, and top secret.

Lattice models define a policy for ensuring confinement, consisting of two simple rules: The
simple security property says that to read an object, the access class of the object must be less than
or equal to the access of the subject trying to read it. The confinement property requires that to
write to an object, the access class of the object must be greater than or equal to the access of the
subject trying to write to it. (The effect of enforcing the confinement property is that a Trojan
horse at top secret cannot leak objects to lower classes, since any object that it write will also be
marked top secret.)

2.2 Capability systems

Roughly, a capability system is one where the access-control decisions are separated from the
enforcement of these decisions. In our setting we have a “client process” that first contacts a
“manager process” with an access request for some object, and later contacts the “server” that
keeps that object for the actual access. To ensure that the server grants the request if and only if
it was deemed allowed, the manager provides the client with a capability that the client can attach
to the access request, and the server can check the capability before granting access. Capability
systems were first suggested in [DVH66]. See also [AP67, Geh82, Lev83].

However, it was shown by Karger and Herbert [KH84] and Boebert [Boe84] that systems such
5The one exception is the strict need-to-know model developed at Case Western. [WOR+74].
6The non-discretionary models were based on earlier work described in [Wei69] and [Lob86, pages 147–148].
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as in [DVH66] are inherently incapable of solving the confinement problem. The problem arises
because in these systems the possession of a capability is both necessary and sufficient to gain
access to an object. Furthermore, capabilities can be freely passed between clients. To illustrate
the problem, consider two Trojan horse processs, one at high secrecy level and another at low
secrecy level (denoted H and L, respectively), that are cooperating in order to leak high-secrecy
object to the low-secrecy spy. First, the receiver L obtains a write capability to an agreed-upon
low-secrecy object O, then L copies the write-capability into the object O itself. Next, the Trojan
horse H obtains a read capability to object O, and use it to read the write capability off the
object O. Now H is in possession of a write capability for the low-secrecy object O, and it can
copy high-secrecy objects into O, thus making these objects available to the receiver L.

There have been two general techniques for restricting capabilities, so that confinement can be
ensured. Either the delegation of capabilities to other users must be restricted, as done by Hy-
dra [WLH81] and PSOS [NBF+80] or the ID of the user of a capability must be checked at time of
use to ensure that the capability holder is actually authorized to use the capability. Karger [Kar88]
showed how checking IDs can leave traditional capability delegation unrestricted, support addi-
tional access control models (such as access control lists), and with proper caching, not increase
the performance costs over traditional unrestricted capabilities. Limiting capability delegation has
an additional disadvantage that it is essential to show that no possible path exists in which an
unauthorized process can get a copy of a particular capability. This can be difficult, particularly in
a distributed environment. If any failure occurs anywhere, then that capability could be used im-
properly. By contrast, delaying the checking until time of use (with caching to reduce performance
costs) requires only showing that the checking is properly done. Furthermore, checking at time of
use also makes revocation of capabilities much easier.

Most modern capability systems restrict the use of capabilities for confinement. EROS [SW00]
limits delegation. IBM’s iSeries does additional checks at time of use [Sol01]. Most of these systems
were designed for the case of a “stand-alone machine”, where the assumption is that all the different
processors have access to a common (trustworthy) hardware/software platform, and that platform
is capable of interfering with every access.

In this work, we are interested in a distributed capability systems, where objects (and reference
monitors) may be geographically distributed, and need to communicate with the decision-makers
over unreliable links (that may even be adversarially controlled in some cases). A number of
distributed capability systems have been designed over the years, including Amoeba [Mul85] and
the Monads [APW86]. Indeed, the Kerberos ticket system [SNS88] was a distributed capability
system.

3 Object storage and the OSD protocol

Networked Storage allows clients to access storage over the network, as well as storage devices to
be connected over a storage area network (SAN). While this provides a higher level of data sharing,
it also necessitates protection of the data. In networked file systems and network-attached storage
(NAS), data sharing and coordination among multiple clients is mediated by the file server or the
NAS box. These “trusted entities” are therefore capable of making the access-control decisions as
well as enforcing them.

Storage Area Networks go one step further in that they allow in principle direct access to the
data by the client, thus removing the centralized file server from the critical I/O path. A client
may first approach a centralized entity (e.g. an NFS server) for locking, placement of the data
etc., but then it performs the I/O operation over the storage area network by directly accessing the
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storage device. Thus, the entity that makes the access control decision is no longer in a position
ot enforce it. Moreover, in common SANs today, the storage device is not capable of any access
control, which leaves the storage system wide open to attacks by misbehaving clients. Today, this
issue is handled mostly my means of physical security, with Fibre Channel SANs that are deployed
in a relatively closed environment. But as SANs evolve from Fibre Channel to IP networks (e.g. via
iSCSI), securing shared data is likely to become a key factor. Object Storage technology addresses
exactly this problem.

What is an object store? An object store (ObS) or Object Storage Device (OSD), is a new
abstraction for a storage device that moves low-level storage functions into the storage device itself,
raising the level of abstraction presented by the storage device to its users. Instead of presenting
the abstraction of a logical array of unrelated blocks, an object store appears as a collection of
objects. An individual object is a container of storage exposing an interface similar to a file. Users
of an object store (e.g., the file system) operate on data by performing operations such as creating
an object, reading/writing at a logical location in the object, and deleting the object, all using a
standard object interface [SNI].

Increasing the access granularity from blocks to objects allows the object store to also en-
force access at the object level. Namely, the object store may allow or disallow an operation (like
read/write) initiated by a certain client to be performed on an object. The ability to enforce ac-
cess control at the storage device is a key characteristics of an object store, allowing non-mediated
shared access to shared storage in a secure manner.

The concept of object storage was originated in the Network-Attached Storage Devices (NASD)
project [GNA+97, GNA+96] at CMU, with a security model by [Gob99], and evolved significantly
since then. The first standardization effort of an OSD specification is embodied over the SCSI
protocol [SNI]. It is realized as a new set of SCSI commands [Web04], which became an approved
T10 standard in September of 2004. This standard defines a security model and specifies a security
protocol that accompanies every OSD command.

3.1 The OSD security protocol

The object store security model is a capability-based access control system composed of three types
of entities: clients/hosts, object stores/servers, and a security/policy manager. Below we simply
refer to them as clients, servers, and the manager. The object store trust model assumes that the
servers are trusted components that maintain integrity for the data while stored. The manager is
also a trusted component that implements a certain access control policy. The application clients,
however, are untrusted, and the main security goal of the protocol is to prevent misbehaving clients
from accessing objects that they are not entitled to.

Since the I/O path between the client and server is performance critical, an important objective
of the protocol is to allow the efficient validation of access request by the object store. To enforce
access-control, all the commands to the object store must be accompanied by a valid credential
that allows the host to perform the requested operation. The object-store standard [Web04] dis-
tinguishes between a capability (which is just a set of rights to perform operations on objects) and
a credential which is a cryptographically secured capability. The standard also defines the set of
allowed operations, namely Create object, Remove object, Read, Write, Append, Set Attribute,
Get Attribute, and Set Key. There are other device management commands that are not relevant
to our discussion.

In the protocol, the manager generates credentials for authorized clients, clients send credentials
with their commands, and servers validate the credentials presented by clients before granting
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access. The OSD security protocol specifies how to bound the capability to the request so that
the object store can verify that the request is authorized by the manager. The standard protocol
defines three different methods to perform the validation, depending on what network security
infrastructure is assumed. In this work we only consider the CAPKEY method [Web04, 4.10.4.3],
that assumes a network security infrastructure for secure channels (such as IPSec). The relevant
parts of the OSD T10 standard protocol specify the format and semantics for the credential, and
also the format and semantics of commands between clients and servers. (The standard protocol
views the manager as yet another client with certain privileges.)

Capabilities and credentials. The basic structure that is manipulated by the standard pro-
tocol is a capability. This is a set of fields that specify what commands are allowed, on what
storage construct, expiration time, etc. The exact structure is specified in [Web04, 4.9.2], and can
be described as
Cap ≡ [ExpiryTime, Audit, Discriminator, ObjCreationTime, ObjType, Permissions, ObjDescriptor],

where ExpiryTime is the expiration time, ObjCreationTime, ObjType, and ObjDescriptor identify
the storage construct to which this capability applies, Discriminator is a nonce, and Permissions
encodes the set of allowed operations on the storage construct. The Audit field is a 20-byte field
that is described as a “vendor specific value that the security manager may use to associate the
capability and credential with a specific application client” [Web04, 4.9.2.2.1]. We assume for the
moment that the Audit field is set to zero.

The standard also defines a credential as a pair Cred ≡ [Cap,CKey], where Cap is a capability
as above and CKey is a secret information that is associated with the capability and defined as
CKey ≡ PRFK(Cap). Here PRF is a pseudo-random function (specifically HMAC-SHA1), and K
is a secret key that is shared between the manager and the server on which the storage construct
resides.7

Access requests. The standard also specifies the format and semantics of commands to the
servers. There are several types of commands, depending on the specific operations that are re-
quested, but for our purposes we only distinguish between commands that are issued by a “regular
client” and commands that are issued by (a client that represents) the manager. The CAPKEY
method stipulates that these commands are sent over secure channels such as given by IPSec.

Client commands. The exact format of these commands is defined by the OSD T10 stan-
dard [Web04, 5.2]. The client appends two new fields to every command: a capability as above
that permits the requested operation, and a validation tag that is computed using the CKey
field in the credential. Specifically, in the CAPKEY method the validation tag is computed as
VTag ≡ MACCKey(SecToken), where MAC is a keyed message-authentication-code (which is also
implemented using HMAC-SHA1), and SecToken is a value that is unique to this combination of
client, server, and the particular link on which they communicate [Web04, 7.5.3].8

The extended request therefore has the structure [Request,Cap,VTag]. Upon receipt of an
extended request the server computes CKey = PRFK(Cap) and verifies that the ExpiryTime in the
capability Cap is still in the future, that the validation tag is correct, VTag = MACCKey(SecToken)
and that the Permissions field in Cap matches the request. It processes the request if all three
conditions are met, and rejects it otherwise.

7More accurately, in the OSD protocol there is a hierarchy of secret keys shared between the object store and the
security manager. Here, the term K is used in a generic manner to denote any key in the hierarchy.

8The standard requires that SecToken be a random value, but in theory it could also be a nonce.
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Manager commands. Two of the commands that are standardized by the OSD protocol can
be used by the manager to revoke credentials: these are the SET ATTRIBUTE and SET KEY
commands. The OSD protocol as standardized allows any client to issue these commands if it has a
credential for them, but in a “reasonable deployment” there will be a specialized client that is run
at the manager site, and only this client will ever get such credentials.9 In this paper we therefore
consider only such “reasonable deployments”, and assume that these commands are issued by the
manager itself.

The SET ATTRIBUTE can be used to revoke the credential of a single storage construct (e.g.,
a single object). The server maintains for each object a policy/access tag value, that can be set
by the SET ATTRIBUTE command. This value also appears as part of the field ObjDescriptor
that is included in the capability [Web04, 4.9.2.2.2]. This tag is therefore considered to be part of
the object ID, and changing it changes the object ID and therefore invalidates all the credentials
that were issued with the previous tag value. Future capabilities that are issued after the SET
ATTRIBUTE command should include the new policy/access tag value. The SET KEY command
can be used to revoke all the credentials for a server, by resetting the secret key K that is shared
between the security manager and the object store. 10

3.2 Credential Delegation

We observe that the security protocol between the server and the client from above does not
authenticate the client’s identity on every request. Rather, the server only verifies that (1) the
credential was granted by the trusted security/policy manager (2) the request and credentials have
not been modified. This allows a client with a valid credential to pass it on to another client.
Specifically, a client C that obtains a credential [Cap,CKey] that was issued to another client C ′

can use this credential just as well. The server will grant the same access right to C as it would
to C ′. (In fact, credential delegation is a design feature of the object store protocol, and it has uses
in several environments.)

However, this means that possession of a valid credential is both necessary and sufficient to gain
access to an object, which makes the basic OSD protocol an instance of a pure capability protocol.
As explained in Section 2, this means that the basic protocol is inherently incapable of enforcing
confinement. We now show how to augment the basic protocol (without changing the message
format) to make it suitable for enforcing confinement.

Recall that the capability includes a 20-byte Audit field that is left for “vendor specific” exten-
sions. One can use this field for a value that identifies one specific client, thereby binding the capa-
bility to that client. For example, one could set the value of the Audit field to PRFK(ClientName),
where ClientName is a string that is unique for each client and is known to the manager and the
server. Specifically, an implementation that uses a secure-channel mechanism like IPSec to authen-
ticate the communication can use for ClientName the name that was used to establish the secure
channels (e.g. the IPSec public key of that client). Of course, for this to work the client must use
the same name to authenticate itself to the manager and to the server.

When the server validates a request, it will also check that the Audit field in the credential
matches the client name that is associated with the secure channel on which the request arrived.
This means that to delegate a credential, the client must delegate also the ability to open a secure

9The SET ATTRIBUTE command is not only a manager’s command, it can be used by any client, depending on
the attribute that is being set

10As we explained above, a server will typically share more than one key with the manager, and a SET KEY
command may only revoke the credentials that were issued relative to one key.
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channel in its name. (Roughly, this means delegating its IPSec secret key.) If we have a trustworthy
implementation of the secure channel mechanism (e.g., via secure IPSec cards in a “bump-in-a-wire”
configuration), then even misbehaving clients cannot delegate their IPSec secret keys, and therefore
no delegation of credentials is possible.

As this does not change the message format, it allows in principle standard-compliant OSDs to
be used as trusted distributed storage elements in systems that require protection against leakage
of secret data. (This holds provided that the OSD communicates with its clients and manager over
secure channels.)

3.3 The protocol that we analyze

We now present a somewhat simplified interface that makes the CAPKEY method of the OSD
protocol more amenable to analysis. We believe that this simplified interface captures faithfully
all the relevant aspects of the CAPKEY method. (But note that we only model the access-control
aspects of the protocol, and completely abstract out all the storage aspects of it.) We denote this
simplified protocol by Pacc, and this is the protocol that we analyze formally.

Infrastructure. The protocol Pacc is designed to work over secure channels. Namely, it assumes
that participants have access to a message transmission mechanism, where a participantP can send
messages to another participant P ′ in such a way that only P ′ gets these messages (if anyone). To
use this mechanism, P must know the name of P ′ and it is assumed that all the participants that
send messages to P ′ use the same name for it. In a few more details, when P sends messages to P ′,
a “misbehaving network” can see that messages are sent (and their length) and can also drop
messages, but cannot do anything else. Moreover, we assume that the channels from the manager
to the servers are reliable, which means that the network cannot even drop messages on these
channels.11 In addition to the message transmission mechanism, the protocol Pacc also assumes
that every client-server pair (Ci, Sj) share a public random value Rij , to be used as SecToken
values.12

Interfaces. The protocol Pacc exposes four interfaces. Specifically, a Capability message from the
manager to a client, an Access request from client to server, and two messages Revoke and RevokeAll
from the manager to a server. In more details, the interfaces and their intended semantics are as
follows:

Capability(Sj , CAP ) from the manager to client Ci, where CAP = (n, t, oid, ops). Here n is an
opaque handle, t is the expiration time of this handle, and oid, ops denote the object and
allowed operations for which this handle can be used.

Delivers (Sj , CAP ) to client Ci, and also adds this pair as a valid capability in the system.

Access(request, CAP ) from client Ci to server Sj , where CAP = (n, t, oid, ops) as above. Delivers to
server Sj either (request, (t, oid, ops)) if (CAP, Sj) is a valid capability or (request, “invalid”)
otherwise (or sometimes just returns “invalid” to Ci).

11This assumption is needed since we need revocations to have “guaranteed arrival”. What it means in practice is
that if there is ever a network partition between the manager and a server during a revocation message, the manager
needs to alert an operator.

12There is no security need for the Rij ’s to be random, but the standard specifies that they are, so we model them
as such.
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Revoke(oid) from the manager to server Sj . Does not deliver anything to Sj , but has the side effect
of invalidating all the capabilities that correspond to object oid on server Sj .

RevokeAll from the manager to server Sj . Does not deliver anything to Sj , but has the side effect
of invalidating all the capabilities of all the objects on server Sj .

(Note that these interfaces do not have a “guaranteed delivery”. Namely, whenever it says “deliv-
ers X” it actually means “either delivers X or nothing at all”.)

Implementation. For each object oid on server Sj that the manager knows about, it keeps a tag
τj,oid. Each tag is initially set to zero. Similarly each server Sj keeps a tag for each object that it
maintains. Given the secure channels, the protocol Pacc is as follows:

Capability(Sj , CAP ) from the manager to client Ci, where CAP = (n, t, oid, ops). If the manager
never sent a key to Sj (see RevokeAll below), then it ignores this query. Otherwise, the
manager computes Audit = PRFKSj

(Audit, Ci), and Cap = (t,Audit, n, oid, τoid, ops), CKey =
PRFKSj

(Cap) and sends (CKey,Cap, Sj) to Ci over the secure channel.

Upon receipt of (CKey,Cap, Sj), client Ci records that tuple, sets CAP = (n, t, oid, ops), and
outputs the pair (Sj , CAP ) to the higher-level protocol.13

Access(request, CAP ) from client Ci to server Sj , where CAP = (n, t, oid, ops). Client Ci looks up
a recorded tuple (CKey,Cap, Sj) with Cap = (t,Audit, n, oid, τoid, ops) that matches the fields
in CAP . If found, Ci uses the public random value Rij that it shares with Sj to compute
v = MACCKey(Rij), and sends to Sj the message (request,Cap, v). If Ci does not find Cap
it returns “invalid” on its output interface.

Upon receipt of (request,Cap, v), server Sj computes CKey = PRFKSj
(Cap) and verifies that

v = MACCKey(Rij). Sj also parses Cap = (t,Audit, n, oid, τoid, ops) and checks that τoid

is the same as the tag value that it keeps for oid. If all the checks pass then it outputs
(request, (t, oid, ops)) to the higher-level protocol.14 If some of the checks fail, then Sj outputs
(request, “invalid”) to the higher-level protocol.

Revoke(oid) from the manager to server Sj . The manager picks a new random value for the tag
τoid, and sends to Sj a message (Set-Attribute, oid, τoid) with the new tag value. Upon receipt
of this message Sj updates its own tag value.

RevokeAll from the manager to server Sj . The manager picks a new random value for KSj and
sends to Sj a message (Set-Key, KSj ). Upon receipt of this message Sj replace its secret key
with the new KSj .

In the next section we define an abstract access-control functionality Facc, and prove that the
protocol Pacc with the assumed infrastructure as above securely realizes this functionality.

Theorem 1 (informal) The protocol Pacc securely realizes the functionality Facc in the hybrid
world with trustworthy secure message transmission, with respect to environments in which the
manager is never corrupted.

13The higher-level protocol in our case would probably be the actual storage system, e.g. a file system.
14Since we do not model any storage or timing aspects, we leave it to the higher-level protocol to verify that t is

consistent with the local time at the server and the request is consistent with the given oid, ops.
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Comments

1. We said above that the protocol Pacc assumes secure channels, but in fact the CAPKEY method
only requires that the client–server channels be authenticated. (That is, the client–server channels
need not encrypt the traffic, see [ACF+02]). In our case, however, we care about confinement, so we
assume that these channels are both authenticated and encrypted to prevent misbehaving clients
from using them to leak information.
2. The reader may notice that the abstraction Facc in the next section has another interface
PurgeCap that is not exposed by the protocol Pacc from above. Roughly, this interface allows a
client to forget a capability that it got from the manager (say, it the client discovers that it is no
longer valid). The protocol Pacc as above realizes the functionality Facc with or without PurgeCap,
since it just never uses this interface. But we added this extra interface to the abstraction to be
able to model also protocols that forget about invalid credentials.15

3. In the T10 OSD standard protocol, every object belongs to a partition, where a partition is an
independent security unit which has it own keys, so RevokeAll revokes all the capabilities of all the
objects in a given partition. This means that a server Sj in Pacc is mapped to a partition in the
standard protocol (rather than to an entire store).

4 A Cryptographic model for capability-based access control

Our formal model in staged in the framework for universally-composable security (UC framework)
of Canetti [Can01], which is based on the paradigm of abstract-world/real-world formulation due to
Goldreich et al. [GMW87]. According to the abstract/real paradigm, the formal modeling proceeds
by describing two probabilistic games, referred to as the real world and the abstract world.16 The
real world is meant to capture the protocol flows and the capabilities of a “real world attacker”, the
abstract world is meant to capture what we think of as a secure system, and the notion of security
asserts that a protocol is secure if these two worlds are essentially equivalent.

4.1 The UC framework

In the UC framework, the players in the real world are the legitimate participants (usually denoted
P1, P2, . . .), the adversary A that models an attacker, and the environment E that models “all the
observable aspects” of the protocol (such as the higher-level protocols at the legitimate participants
and any other activity that may happen concurrently with a run of the protocol). All these players
are formally modeled as (efficient, probabilistic) message-driven programs.

The actions in this game should capture all the interfaces that the various participants can
utilize in an actual run of the protocol in a deployed system. In particular, the capabilities of A in
this game should capture all the interfaces that a real-life attacker can utilize in an attack on the
system. For example, A can see and modify network traffic. (In fact, it is usually assumed that A
is the network : Every bit that a legitimate participant Pi sends on the network is routed to A, and
every bit that Pi receives from the network is coming from A.) Also, A can sometimes take control
over some of the legitimate participants. The interfaces of E include providing all the inputs to
the legitimate participants in the protocol and getting all the outputs back from them. Also, E

15The issue is that if a client is later corrupted, the attacker will see more data if invalid credentials are not
forgotten.

16In the cryptographic literature, the “abstract world” is usually called the “ideal world”.
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is in general allowed to communicate with the adversary A. (This last aspect is meant to capture
potential interactions in which the higher-level protocols are leaking things to the adversary, etc.)

In the abstract-world model, we have all the participants of the real-world model and in addition
we pretend that there is a completely trusted party that is accessible to everyone, and this trusted
party is performing all the tasks that are required of the protocol. To describe a specific abstract-
world model, one simply writes the code that this trusted third party should run, thereby specifying
the expected functionality of the protocol. This trusted third party is usually called “the abstract
functionality” and denoted by F . In this abstract world, instead of invoking the protocol on some
inputs, the legitimate participants give these inputs to F . Then F records the inputs, produces the
correct outputs based on the specification, and these outputs are handed back to the players. In
fact, the legitimate players in the abstract world are reduced to nothing more than a communication
channel between E and F , since all the work is done by F itself. The functionality F can still
interact with the adversary, but only to the extent that the intended security allows. For example,
it can “leak” to the adversary things that should be publicly available for anyone (e.g., public keys
and ciphertexts).

We note that writing the code of F is often non-trivial: It is only too easy to write a functionality
that describes “what we want” but is not realizable. An example is a functionality for secure
message transmission that withholds from the adversary any knowledge about the fact that a
message was sent. Such functionality can only be realized if the “real world” has some mechanism
to prevent traffic analysis. Hence, in typical formulations for secure message transmission, the code
for the trusted party specifies that the adversary should be informed whenever a message is sent
(and typically the adversary is also given the power to order messages dropped).

After formally defining the real and abstract worlds, the security notion in this framework
asserts that a protocol is secure if “no environment can distinguish between these world”. Formally,
a protocol Π is said to securely realize the functionality F , if for any adversary A in the real-
world game there exists an adversary A′ in the idea-world game, such that no environment E can
distinguish between interacting with A and Π in the real world and interacting with A′ and F in
the abstract world.

Hybrid models and composition. In addition to the real and abstract worlds, an important
concept in the UC framework is that of a “hybrid model”. A hybrid world contains elements from
both the real and the abstract models. Specifically, it includes some abstract functionality F , but
it also has legitimate participants that run a real protocol (rather than the degenerate participants
of the abstract world that are only channels between E and F).

Hybrid models are used in the UC framework for several things. For example, when we have a
sub-protocol Π inside a bigger protocol Γ, we can analyze the sub-protocol Π separately, proving
that it realizes some functionality FΠ. Then it is sufficient to analyze Γ in a hybrid model in
which calls to Π are replaced by calls to the functionality FΠ. This, in a nutshell, is the universal-
composition theorem [Can01, Theorem 6]. Hybrid models are also used to describe trusted in-
frastructure that is assumed to be available to the players. For example, to model an execution
environment in which all participants has access to real-time clocks, we can analyze the protocol
in a hybrid model with a functionality that implements such real-time clocks.

Corruptions and communication. To capture the notion of misbehaving participants, we
typically give the adversary the power to corrupt players. Corruptions are formally modeled by a
special corrupt interface of the adversary. The standard convention in the UC frameowrk (as well
as most all other cryptogaphic models) is that in the real world, the adversary gains full control
over the corrupted players. That is, the adversary can see the entire state of the corrupted player,
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and can replace that state with an arbitrary state of the adversary’s choosing. Thereafter, the
adversary has complete control over all the interfaces of the player. In effect, a corrupted player
“belongs to the adversary”. (The adversary in the abstract world has the same corrupt interface,
but the effect of using this interface is entirely up to the functionality F . Namely, it is the code of
F that tells it what to do when receiving a query Corrupt(Pi) from the adversary.)

It is clear, however, that this corruption convention in the real world preclude any information-
flow constraints, and in particular inherently cannot be used to reason about confinement. Instead,
we suggest here a convention in which when a player P is corrupted, it just sends its entire state
on its output interface to the “higher level protocol” at P . Thereafter, P relinquish control to the
higher-level protocol and serves just as a channel that conveys the messages from the higher-level
protocol to whatever interfaces that P has to communicate over. This is justified by viewing the
entire node P as being controlled by a rogue code (call it a virus VP ). When this happens, VP can
learn the state and control the actions of every protocol that runs at the node P .

Note that with this convention, corruption by itself does not provide the adversary with addi-
tional communication channels. However, if we stick to the view of “the adversary is the network”
and let VP have a direct access to A, then VP can still send its entire state to A and no confinement
is possible. To prevent this, we modify the formal model by denying the participants direct access
to the adversary/network. Of course, to be of any use the participants should be given other means
of communication. This is done by working in an appropriate hybrid model, where participants
have access to some functionality that implements a mediated network access. In our case, we use
the “trusted communication mechanism” that is assumed by the protocol Pacc from Section 3.3.

4.2 Our real-world model

The participants in our real-world model (other than the environment E and the adversary A) are
a set of clients C1, C2, . . . , Cn, a set of servers S1, S2, . . . , Sm, and the manager M . As explained
above, the participants Ci, Sj and M in our real-world model do not have direct access to the
network, and instead they have access to a functionality that implements a mediated access to
secure channels.

This functionality, denoted F ′smt, is very similar to the standard functionality of secure message
transmission (see, e.g., [Can01, Section 6.3]), except that it treats “corrupted” participant the
same as “uncorrupted” ones. Namely, it forces all the participants to send their messages over
secure channels, even if they are corrupted and would like to leak their secrets in the clear over
the network.17 The formal description of that functionality is in Figure 1. Two other interesting
aspects of it are discussed next:

• F ′smt forbids direct communication between clients or between servers. That is, we model
a communication infrastructure where clients cannot directly communicate with each other,
but only with servers. They can still use the storage system as a communication medium,
but cannot directly communicate via the network. We chose this model only to simplify the
presentation, and because it is sufficient to express the concerns that we address in this work.

We note that the model is easy to extend to a setting where participants can communicate
with each other under some information-flow restrictions that are set by a policy. (Of course,
the access-control policy and the communication policy have to agree on the same information-
flow restrictions, or else you get no confienment.)

17As explained earlier, this functionality can be realized in practice by using IPSec in a “bump-in-the-wire” con-
figuration where a trustworthy hardware maintains all the keys and does all the cryptography.
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Secure-transmission functionality, F ′smt

F ′smt interacts with the adversary A′, n clients C1, . . . , Cn, m servers S1, . . . , Sm and an manager M .
When receiving a message (Sj , X) from M , F ′smt reports (M,Sj , |X|) to the adversary A′ and
delivers X to Sj from M .
On any other message (P ′, X) from participant P , F ′smt reports (P, P ′, |X|) to the adversary A′.
If A′ replies with “proceed” then F ′smt does the following: If P, P ′ are either both clients or both
servers, then F ′smt ignores this message. Else, F ′smt sends (P, X) to participant P ′.

Figure 1: F ′smt, message-transmission functionality for access-control.

• F ′smt guarantees reliable delivery from the manager to the servers. This aspect was discussed in
Section 3.3. We note that extending the model to handle dropped messages from the manager
to the servers is quite involved. In particular, one has to specify both in the protocol and in
the functionality how the manager and servers react to such events.

Corrupted manager and servers. In our proof of security below we assume that the manager
is never corrupted. Namely, we only prove that the protocol Pacc realizes the functionality Facc

with respect to the restricted “real world” model in which the manager is never corrupted. On the
other hand, the clients and servers can be arbitrarily corrupted.

Common random string. Although there is no real need for it, the standard specifies that the
system must use random values for the SecToken’s between clients and servers. (These values could
be public, however). Hence we assume that we have in the real world a collection of values Rij , one
for each client-server pair, and these values are publicly known. Formally, this makes the protocol
Pacc rely on the common-random-string model.

4.3 The access-control abstraction

We now define our abstract-world model by formally specifying Facc, the abstract functionality for
capability-based access-control. A formal specification of Facc is given in Section 4.4.

Intuitively, we are trying to model the situation where all the client requests go through a
trusted gateway that consults the access-control policy and enforces its decision. This model is
similar to a trusted file server, except that the actual files can still be kept on several storage
servers, and we do not try to hide what storage server is serving what request. In other words,
the abstract model includes the same manager and storage servers as in the “real world”, but the
clients can no longer contact the servers directly. Instead, any request to access an object in the
“abstract world” is presented to the functionality, who contacts the appropriate storage server only
if this request should be granted.

Corrupted participants. When a participant in the abstract world is corrupted, the adversary
A′ alerts the functionality Facc to the corruption and also gives Facc some “state” to pass to that
player. This represents allowing the “higher level protocol” (which would be a virus at this point)
to use all the state of the “lower level” protocol (the protocol Pacc in our case).

The functionality Facc treats corrupted and non-corrupted players similarly, except that the
corrupted players have richer interfaces than the non-corrupted ones. For example, the higher-level
protocol of a non-corrupted server Sj sees only the “relevant parts” of access requests from clients,
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and only if these requests pass the checks of the OSD protocol. In particular, the higher-level
protocol is never presented the validation tag that is sent by the client as part of the request in the
protocol, since this tag is for “internal consumption” by the OSD protocol itself. If the server is
corrupted, however, then it can see all the requests that are sent its way (validation tag included),
even those requests that were supposed to be rejected by the OSD protocol.

When a participant is corrupted, therefore, the functionality records that fact, and from then
on it interacts with that participant using the “richer” interfaces. Technicality, upon corruption of
a participant P , Facc gets from the adversary A′ a stateful program ΠP that can translate between
the “simple” interface that Facc knows how to handle to the “richer” interface that the corrupted
player expects.

Note that just like any other participant, also the corrupted participants can send requests to
the functionality, and the functionality always reports to the adversary the length of the requests
that it gets. This means that even in the abstract world, corrupted players can communicate to
the adversary via timing/traffic-analysis channels. This models the fact that in an open network,
corrupted players can always communicate to the network via timing/traffic-analysis channels, and
the OSD protocol does not protect against such leakage.

4.4 Formal description of Facc

Facc is interacting with clients C1, . . . , Cn, storage servers S1, . . . , Sm, the manager M and an
adversary A′.

Facc maintains for each server Sj a list of valid capabilities, and for each client a list of capabilities
“that the client knows about”, both initially empty. Also, Facc maintains a list of object counters
that is initially empty, and a counter cj for every server Sj that is initially set to zero.18 Facc reacts
(a-synchronously) to the following queries:

Capability. A query (Ci, Q) from M where Q = Capability(Sj , (n, t, oid, ops)). Facc recalls the
counter value cj for server Sj . If cj = 0 then Facc ignores this query.19

Otherwise, Facc reports (M, Ci, |Q|) to A′. If A′ replies with “proceed” then Facc recalls
the counter value cj,oid for object oid on server Sj (or adds a new counter cj,oid = 0 if it is
not on the list yet). Facc sets CAP = (n, t, oid, ops), adds (Ci, CAP ) to the capability list
of server Sj , adds (Si, CAP, cj,oid, cj) to the list of client Ci, and delivers (Sj , CAP ) to Ci

from M .

Access. A query (Sj , Q) from Ci where Q = Access(request, CAP ). Facc parses CAP = (n, t, oid, ops),
checks that the capability list of Ci contains a tuple (Sj , CAP, ?, ?), and if not it returns “in-
valid” to Ci.

If it finds such tuple then it reports (Ci, Sj , |Q|) to A′. If A′ replies with “proceed” then Facc

checks that the valid capability list of Sj contains the tuple (Ci, CAP ). If so, Facc delivers
(request, (t, oid, ops)) to Sj on helaf of Ci. If not, Facc instead delivers (request, “invalid”)
to Sj on helaf of Ci.

Revocation. A query (Sj , Q) from M where Q = RevokeAll or Q = Revoke(oid). Facc reports
(M,Sj , |Q|) to A′.

18The main purpose of the client capability list and the counters is to help generate the client state when the client
is corrputed.

19This essentially represents the manager not yet sharing a key with that server.
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If Q = RevokeAll then Facc increases the server counter cj and removes everything from the
valid capability list of Sj .

If Q = Revoke(oid) then Facc increases the object counter cj,oid and removes from the valid
capability list of Sj all the entries of the form (?, (?, ?, oid, ?)).

Forgetting capabilities. A query PurgeCap(Sj , n) from Ci. Facc removes from the list of Ci any
tuple of the form (Sj , CAP, ?, ?) where CAP has nonce value n.

Corruptions. The description above assumes that no one is corrupted; we need the following
modifications to handle corruption: On a query Corrupt(P, Π) from A′, where P is either Sj or Ci

and Π a program, Facc records the fact that P is corrupted and associates with P the program
ΠP = Π.

If P = Sj is a server then Facc sets s = ΠSj (Corrupt, cj) and delivers (Corrupt, s) to Sj .
If P = Ci is a client, then for every tuple (Sj , CAP, c, c′) in the list of Ci, Facc sets Cred =
ΠCi(Capability, Sj , CAP, c, c′) and delivers (Corrupt,Cred1,Cred2, . . .) to Ci. (This represents the
fact that the virus at the higher-level protocol at P can use also the state of the OSD protocol.)
Thereafter, whenever a participant P submits a query (P ′, X), the functionality Facc does the
following:

• If both P and P ′ are corrupted, and if P, P ′ are neither noth clients nor both servers, then
Facc reports (P, P ′, |X|) to A′, and if A′ replies with “proceed” then it forwards X to P ′

without any further processing.

• If neither P nor P ′ are corrupted, Facc proceeds as described above.

• If P is corrupted and P ′ is not, then it runs the program ΠP to get Q = ΠP (P ′, X). Then
Facc processes Q as above.

• If P is not corrupted but P ′ is, then Facc proceeds similar to above, except for the following
changes:

A Capability query to a corrupted Ci. After inserting (Ci, CAP, c, c′) to the capability list of
client Ci, Facc sets R = ΠCi(Capability, CAP, Sj , c, c

′) and delivers R to Ci.

An Access query by non-corrupted Ci to a corrupted Sj . If the capability list of Ci contains
a tuple (Sj , CAP, c, c′), then Facc reports (Ci, Sj , |Q|) to A′, and if A′ replies with “proceed”
then Facc sets R = ΠSj (Access, CAP, c, c′) and delivers R to Sj . (If no such tuple is found
then Facc still returns “invalid” to Ci without delivering anything to Sj .)

Queries Q = RevokeAll or Q = Revoke(oid) to a corrupted server Sj . Facc reports (M, Sj , |Q|)
to A′, increases the relevant counter c, sets R = ΠSj (Q, c) and returns R to Sj .

Comments. 1. We already remarked above that the protocol Pacc realizes the functionality Facc

only under the assumption that the manager is never corrupted. Although it is possible in principle
to write a weaker notion of security that we can prove Pacc to realize without this extra assumption,
this would complicate the definition quite a bit. (For example, we would have to worry about a
corrupted manager that issues an invalid capability to a non-corrupted client, who later tries to use
that capability with a corrupted server.) Since achieving confinement anyway depends crucially
on the manager not being corrupted, we decided to forgo this more general but more complicated
definition.
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Figure 2: An illustration of the simulator.

2. The server counter cj in the definition above is only needed to handle cases where the server
Sj is corrupted. Note that if Sj is corrupted from the beginning then the environment knows all
its keys, and thus when a client Ci is corrupted, the environment can check what credential was
generated with respect to what key. Hence it is important that this information will be available
somewhere also in the abstraction so that the simulator can simulate the state of Ci. Of course, we
could get rid of the cj ’s if we assume that the servers are never corrupted (just like we assumed it
for the manager), but here we think that the small modification in Facc is worth the extra generality
of handling also corrupted servers.

4.5 Pacc securely realizes Facc

Now that we defined formally both models, we can finally state and prove a theorem saying that
the protocol Pacc is indeed secure according to our notion.

Theorem 1 Assume that PRF is a cryptographically secure pseudo-random function and that
MAC is a cryptographically secure message-authentication code. Then the protocol Pacc securely
realizes the functionality Facc in the hybrid world with common random string and F ′smt, with respect
to environments in which the manager is never corrupted.

Proof Sketch The proof is actually quite straightforward given the formal layout from above.
Fix some real-world adversary A and we describe an ideal-world adversary A′ such that no environ-
ment E can distinguish between interacting with A and Pacc (in the world with common random
string and F ′smt) and interacting with A′ and Facc.

Description of A′. As usual, A′ uses A as a black box, simulating for it the “real world”.
Specifically, A′ needs to generate the “encrypted traffic” that A expects to see from F ′smt, and it
needs to interact with Facc in such a way that the I/O that E sees in both worlds is the same. See
an illustration of the two worlds in Figure 2.

A′ begins by choosing random Rij ’s and passing them to A. Then it also chooses a “master
key” mk for PRF . To generate the “encrypted traffic”, every time that A′ gets a message (P, P ′, `)
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from Facc, it figures out the query type based on the length, then computes the length `′ of the
corresponding message in the protocol Pacc and sends to A (P, P ′, `′), which is what A expects to
see from F ′smt. If A replies with “proceed” then A′ also replies with “proceed” to Facc.

When A asks to corrupt a client Ci, A′ prepares a program ΠCi to pass to Facc as follows: The
program ΠCi is given the master key mk. When ΠCi runs on an input (Capability, Sj , (n, t, oid, ops), c, c′)
it computes the “server key” KSj = PRFmk(ServerKey, Sj , c

′), and tag τj,oid = PRFmk(Tag, Sj , oid, c),20

then compute Audit = PRFKSj
(Audit, Ci), sets Cap = (t,Audit, n, oid, τoid, ops), computes CKey =

PRFKSj
(CKey,Cap) and outputs Cred = [Cap]. (The collection of credentials is what Facc sends

to the higher-level protocol in the corrupted Ci as the current state of the local Pacc protocol.) The
program ΠCi also needs to translates from Pacc messages that the corrupted Ci sends to queries
that Facc understands, and from replies that Facc returns to Pacc messages that the corrupted Ci

expects. This is done in the obvious way by stripping the extra fields on the way from Ci to Facc

and computing them back on the way from Facc to Ci (using the master key mk).
When A asks to corrupt a server Sj , A′ prepares a program ΠSj that knows the master key mk

as follows: ΠSj (Corrupt, c) returns the “server key” KSj = PRF (Sj , c), and later ΠSj translate
between Pacc messages and queries for Facc in the obvious way.

Indistinguishability. Proving that E cannot distinguish between the “real world” with A and
the “abstract world” with A′ is also quite straightforward. One first notices that the view of E in
the “abstract world” is consistent: namely even if all the clients are corrupted then the values that
they get, say, for Ckey in their credentials will always match the key KSj that Sj was supposed to
be using for computing these values (and that E may learn if it corrupts Sj). The reason is that all
the programs ΠP are using the same master key mk and compute all the keys in the same manner.
(This is the only argument that is not entirely standard in this proof.)

It remains to show that the environment cannot distinguish the various “random fields” that
it sees from random, and (most importantly) that it gets the same responses from Pacc on access
requests as it would from the functionality Facc. This is proven by going through a few “mental
experiments” that describe related games: we begin by replacing the applications of PRF with
applications of a truly random function (first only w.r.t. the master key, then with respect to other
keys as well), and proving that distinguishing the simulation from the resulting mental experiments
implies breaking the security of the PRF function.

Then we argue that Pacc grants access if and only if Facc does. (This, after all, is the main point
of this exercises.) Clearly, if Facc grants accesss then all the relevant fields match, in which case the
validation tag in Pacc will be accepted. In the other direction, we argue that the case in which Pacc

grants access but Facc refuses corresponds to breaking the security of the MAC function. (This
last argument is nearly identical to the one in [ACF+02], where the same protocol was analyzed.)

5 Facc can enforce confinement

Having specified an abstraction and proved that Pacc realizes that abstraction, we now show that
it is possible to use the abstraction to enforce confinement, and so it follows that Pacc can be used
to enforce confinement. Specifically, we consider a “hybrid world” in which all parties have access
to the abstract access-control functionality Facc as defined in Section 4. We consider a system

20If c = 0 then ΠCi sets τoid = 0 rather than computing it with PRF .
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that uses Facc to implement a distributed storage system, with the manager using a lattice-based
access-control policy, following both the “simple security” and the “confinement” rules as described
in Section 2.1. We further assume that:

(a) Neither the manager nor any of the storage servers are corrupted, and

(b) The high-secrecy data is not leaked via timing or traffic-analysis channels, nor via the proto-
cols above the storage system.

Under these conditions, we prove that the system achieves confinement.
The rest of this section is organized as follows: In Section 5.1 we describe a toy distributed

storage system that implements access control via access to Facc. Then in Section 5.2 we formally
define confinement in our cryptographic setting, essentially using the definition of “probabilistic
non-interference” due to Backes and Pfitzmann [BP04, BP03] as adapted to our settings, and prove
that under the conditions (a) and (b) from above, our toy storage system achieves confinement.

5.1 Pst — a toy storage system

Recall that in our protocol Pacc we completely ignored the storage aspects of the OSD protocol,
concentrating only on its access-control aspects. We now describe a very simple distributed storage
system that uses the interfaces of Pacc (or Facc) to do access control. Formally, we describe a
“storage protocol” that operates on top of the “access control mechanism” Facc. We denote this
protocol Pst. We believe that the protocol Pst, although simplistic, is consistent with the storage
aspects of the OSD standard [Web04] (i.e., Pacc can be implemented using the OSD commands).
But we did not verify this carefully.

Infrastructure. The protocol Pst assumes that all the participants have access to the access-
control functionality Facc, as well as to the secure message transmission mechanism F ′smt that can
be used to pass storage messages.

Interfaces. The interfaces of Pst are roughly those of a (flat) file system. In principle only the
clients need to get inputs from the higher level protocols (since the manager and servers are only
“implementation details” at this level), and these inputs are the usual variety of Open, Read, Write,
etc. In practice there will be interfaces also for the manager and servers, to handle administrative
tasks, quotas, revocations, etc., but we omit all of these for simplicity.

The interfaces of Pst, all of them invoked by clients, are the following: Create returns an
identifier oid for a new object; Open(oid, ops) returns a handle n that can be used to access the
object; Read(n) returns the content of the object whose handle is n; Write(n, data) replaces the
content of the object whose handle is n by the content of the string data; and Delete(n) removes
the object hose handle is n from the storage system.

We comment that Pst is only a toy protocol, and it is not at all usable in practice. For example,
it assumes that every operation is atomic, with a Read returning the entire object and a Write
overwriting the entire object. Also many aspects of the implementation as described below are
ridiculous from a practical point of view (e.g., some crucial acknowledgments are never returned).
Still, it serves to demonstrate the main point of this paper, namely that the CAPKEY method of
the OSD protocol can in principle be used to enforce confinement (when used with the Audit tag
and over trustworthy secure channels).

Implementation. The system is parametrized by a lattice L and a “clearance mapping” clr :
{C1, . . . , Cn} → L that assigns a clearance level in L to every client Ci. The manager M keeps a
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table of objects in existence, which is initially empty. M begins by issuing RevokeAll queries to all
the servers (since Facc does not handle Capability queries when the server Sj has counter value 0).
Thereafter, the interfaces are implemented as follows:

Create. Client Ci sends a message to M (using F ′smt) asking to create an object.

The manager M consults its table to find the server Sj with the least occupied space. Then it
makes a query (Ci, Capability(Sj , (n, t, 0, Create))) to Facc. Here 0 is a special object-ID that
is used for creation of new objects, n is a random value that is used as nonce, and t is set to
five minutes in the future (by the manager’s local clock).

Upon receipt of the result (Sj , (n, t, 0, Create)) from Facc, the client Ci makes up a new object-
ID oid (say, at arandom), sets request = (Create, oid) and CAP = (n, t, 0, Create) and makes
a query (Sj , Access(request, CAP )) to Facc.

When Facc delivers ((Create, oid), (0, Create)) to server Sj on behalf of Ci, Sj verifies that it
has no existing object with ID (Ci, oid). If there is such an existing object, Sj sends a message
(oid, “existing”) to Ci using F ′smt. Otherwise it sends a message ((Ci, oid), “created”) for Ci,
and also send the same message to M .

Upon receipt of these messages, client Ci returns (Ci, oid) to the higher level protocol, and
the manager adds the tuple (Sj , (Ci, oid), 0, clr(Ci)) to its table of objects, denoting an object
with ID (Ci, oid) on server Sj with initial size zero and level clr(Ci) in the lattice. (If the
table already has an object (Ci, oid) at server Sj then M does nothing.)

Open(oid, ops), with ops a non-empty subset of {Read, Write, Delete}. Ci sends a message to M ,
asking for a capability for object oid and operations ops. The manager M checks that it has
an object oid on server Sj in some level ` in the lattice. It also checks that (a) ` ≤ clr(Ci) if
ops includes Read, (b) ` ≥ clr(Ci) if ops includes either Write of Delete, and (c) that the size
of the object is non-negative. (A negative size signals a deleted object.)

If all the checks succeed, then M makes a query Capability(Sj , (n, t, oid, ops)) to Facc for Ci,
where n is random and t is five minutes in the future. Upon receipt of the result (n, t, oid, ops, Sj)
from Facc, the client Ci sets CAP = (n, t, oid, ops), records (Sj , CAP ) and returns n to the
higher-level protocol.

Read(n). Client Ci looks for a recorded pair (Sj , CAP = (n, t, oid, ops)) with the right value of n.
If no such pair is found or if ops does not include Read, it returns “invalid” to the higher-level
protocol. Else it sets request = (Read, oid) and makes a query Access(request, CAP ) to Facc

for Sj .

When Facc delivers ((Read, oid), (t, oid, ops)) to server Sj from Ci, it verifies that t is in thefu-
ture and ops includes Read and that it has an object oid. If one of the first two checks fails it
sedns (Read, oid, “unauthorized”) to Ci, and if the last check fails it sends (Read, oid, “absent”).
If all succeed then Sj sends to Ci (Read, oid, data) where data is the content of object oid.
When Ci gets the reply from Sj , it outputs it to the higher-level protocol.

Write(n, data). Similar to above, Ci looks for a matching capability (Sj , CAP ) and makes a query
Access(request, CAP ) with request = (Write, oid, data). When Sj gets ((Write, oid, data), (t, oid, ops))
it makes the same checks with the same two error messages if they fail.

If all succeed then Sj replaces the content of object oid by the string data, and sends to the
manager M a message (Write, oid, |data|). The manager records the size of object oid in its
table.
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Delete(n). Handled similarly to Write, except that if all goes well then Sj removes the object from
its storage space and sends (Delete, oid) to the manager, who sets the new size of object oid
in its table to −1.

5.2 Formalizing confinement

We now formalize our notion of confinement and then prove that Pacc satisfies it. Our definition
is an adaptation to our setting of the notion of “probabilistic non-interference” due to Backes and
Pfitzmann [BP04, BP03]. We comment that the definitions of Backes and Pfitzmann are staged
in the reactive simulatability framework of Pfitzmann and Weidner [PW00, PW01] rather than in
the UC framework. However, these two frameworks are nearly interchangeable and in particular
all the aspects that are of interest to us in this work behave exactly the same in both.

Before presenting the definition of confinement, we recall that the UC framework stipulates a
special “environment machine” E that controls the I/O interfaces of all the legitimate participants
(see Section 4.1). To define confinement we consider a setting in which the environment is split into
two machines, EH and EL, such that EH controls the I/O interfaces of the “high secrecy” clients
and EL controls the I/O interfaces of the “low secrecy” clients.

To formalize the requirement that no secrets are leaked via the higher-level protocols, we insist
that EH cannot send messages to EL or to the adversary. (On the other hand, we let EH receive
messages from both the adversary and EL, and we let EL and the adversary exchange messages
freely.) We now consider an experiment in which EH is given a random input bit b, and eventually
EL halts with a guess b′ for that input bit, and we require that the probability of b = b′ is not
significantly more than 1/2.

A little more formally, consider a prescribed system S = {P1, . . . , Pn}, and let H : L be a
partition of the set of participants (i.e., H ⊆ S and L = S \H). We would like to say that there is
no information-flow from H to L in S (or that L cannot interfere with H) if for any adversary A
and environments EH , EL as above, such that EH controls the I/O of H and EL controls the I/O
of L, it holds that Pr[b = b′] ≈ 1/2.

Traffic-oblivious systems. The condition above cannot be met in our setting where we allow
traffic analysis, since EH can leak to A the value of the bit b by sending either a short message when
b = 0 or a long one when b = 1. We therefore restrict ourselves only to cases where traffic analysis
is not used. We say that a complete system (S, A,EH , EL) is traffic-oblivious if whenever we fix the
randomness that is used by the entire system except for the bit b, the traffic pattern of the execution
of (S, A,EH(0), EL) is the same as the traffic pattern of the execution of (S, A,EH(1), EL).21

Then we say that there is no information-flow from H to L in S upto traffic analysis if for
any A,EH , EL as above, such that EH controls the I/O of H, EL controls the I/O of L, and
(S, A, EH , EL) is traffic-oblivious, it holds that Pr[b = b′] ≈ 1/2.

We comment that stronger definitions are certainly possible. For example we can have n random
bits as inputs to EH , allow leakage of n−1 bits via either the high-level protocol or timing channels,
and require that the last bit will still be unguessable. We expect Pst to meet these stronger notions,
but formalizing these notions is very messy, so we did not attempt it at this time.

21The traffic pattern means who sent messages to whom and of what length. This can be made formal, but the
formalization does not add anything here, so we leave it on an intuitive level.
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5.3 Pst achives confinement

Consider a system S = {Ci, . . . , Cn, S1, . . . , Sm,M} that implements the protocol Pst with respect
to some lattice L and clearance mapping clr : {C1, . . . , Cn} → L. For every client Ci we consider a
partition Hi : Li of the client set to those that are allowed to read what Ci writes and those that
are not. Namely, Hi = {Ci′ : clr(Ci′) ≥ clr(Ci)} and Li = {C1, . . . , Cn} \ Hi. Then we prove the
following lemma:

Lemma 2 For every partition Hi : Li of S as above, there is no information flow from Hi to Li

in S upto traffic analysis.

Proof Sketch The proof is straightforward (mostly because there is no cryptography involved in
the workings of Facc). Consider a specific partition Hi : Li, adversary A and environments EH , EL,
such that the complete system (S, A,EH , EL) is traffic oblivious, and fix all the randomness in the
system other than the input bit b of EH . We show that the views of EL in the cases b = 0 and
b = 1 are identical, and it follows that Pr[b = b′] = 1/2.

We can assume w.l.o.g. that EL and A are the same machine (since they are allowed to talk
freely and we quantify over all A,EL). So we consider the complete system (S, EH , EL). Note that
since we fixed all the randomness, then the runs of (S, EH(0), EL), (S, EH(1), EL) are deterministic.
By traffic oblivious-ness it follows that what the functionalities reports to A is the same in both
runs. So we need to show that also what EL sees on the output interfaces of the clients in L is the
same.

Assume toward contradiction that EL sees something different on the output interfaces of some
clients in L, and consider the first event in which this happens. Since the view of EL up to the
distinguishing event if the same in both runs, it means that the inputs that the clients in L had
upto that point where the same, so they made exactly the same queries with the same data to the
functionalities.

Also, since we assume that M and the Sj ’s are not corrupted, then the servers in Facc enforce
all the decisions of M , and these decisions are made according to a lattice-based policy, which is
known to enforce confinement. Thus what the clients in L see as replies to their queries to all the
servers and the manager is independent of the actions of clients in H.22

It remains to verify that EL does not learn anything about b when a client in Li is corrupted.
Notice that the only new things that EL sees when corrupting a client C are (computed by ΠC

from known information and) the counters cj,oid and cj in the capabilities that were issued to C.
In the simplistic Pst from above there are no revocations, so these values are always fixed and in
particular EL does not learn anything from them. (But this aspect remains true also for more
realistic protocol, as long as revocation of capabilities for lower-secrecy objects are never influenced
by the contents of higher-secrecy objects.)
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